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1/N expansion in the vibron model: Diatomic molecules

S. Kuyucak* and M. K. Roberts
Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra,

Australian Capital Territory 0200, Australia
~Received 13 November 1997!

Using angular-momentum-projected mean-field theory, we develop 1/N expansion solutions for the vibron
model of diatomic molecules. Analytic expressions of spectroscopic accuracy are derived for rotational-
vibrational energy levels and for the intensities of transitions among them. The results are used in a systematic
study of diatomic molecules in the vibron model with a view to finding appropriate Hamiltonians for a realistic
description of rotation-vibration spectra.@S1050-2947~98!00905-6#

PACS number~s!: 33.20.2t, 31.15.Hz
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I. INTRODUCTION

Algebraic techniques, and especially-spectrum genera
algebras~SGA’s!, have been playing an increasingly impo
tant role in the treatment of various quantum-mechan
systems. The interacting boson model~IBM ! @1#, in particu-
lar, has made a large impact in nuclear structure studies
ing the last two decades. The vibron model@2,3# provides a
similar algebraic framework for treating problems in molec
lar spectroscopy. It has been especially useful in describ
complex spectra of polyatomic molecules where traditio
methods based on solving the Schro¨dinger equation in coor-
dinate space run into difficulties. The algebraic techniq
developed in the nuclear case can be readily applied to
vibron model and could play a similarly rejuvenating role
molecular spectroscopy.

The basic building blocks of the vibron model are t
scalars and vectorp bosons. The latter represents the dipo
degree of freedom in a molecular bond while the former
needed to generate a finite, anharmonic, spectrum. Th
bilinear operators$blm

† blm , l 50,1,m52 l , . . . ,l % close un-
der the U~4! algebra which forms the backbone of the mod
~here we use the notationb005s, b1m5pm). The U~4! alge-
bra has two rotationally invariant subalgebra chains, nam
~i! U~4!.U~3!.O~3!.O~2! and ~ii ! U~4!.O~4!.O~3!
.O~2!. When the Hamiltonian describing the boson syst
is written in terms of the Casimir operators in one of t
chains, the eigenvalue problem can be solved analytically
this way, complete solutions for the U~3! and O~4! dynami-
cal symmetry limits have been obtained@2,3#. The U~3! limit
leads to a vibrational spectrum and is not of much releva
to molecules. The O~4! limit, on the other hand, leads to
spectrum similar to that of a Morse potential and hence i
appropriate for the description of the rotation-vibration sp
tra of molecules.

In its simplest form with a one-body dipole operator, t
O~4! limit corresponds to a rigid rotor with vanishing vibra
tional transitions, and so it does not give a very accur
representation of the data. This zeroth-order description
be improved in two ways. The first, which has been exc
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sively used in the literature so far, is to preserve the O~4!
symmetry by adding higher-order Casimir operators to
Hamiltonian. The one-body transition operator is extend
similarly by including many-body terms. Although this ap
proach has the advantage that analytic expressions for e
gies ~like the Dunham expansion! and transitions can be
readily given, this comes at the cost of introducing ma
more parameters in the model. In the second method,
breaks the O~4! symmetry by adding terms from the U~3!
chain to the Hamiltonian. A general study of symmetr
breaking effects requires numerical diagonalization of
Hamiltonian, which may explain why it has been neglect
In contrast, symmetry breaking has been the main appro
in realistic applications of the IBM to collective nuclei@1#.
While the degree of symmetry breaking is much larger in
IBM, making its study almost unavoidable, a similar a
proach may lead to a more economical description of sp
troscopic data in the vibron model, and therefore it would
worthwhile to investigate it in some detail.

The angular-momentum-projected mean-field theory p
vides analytic solutions for SGA’s in the form of a 1/N ex-
pansion@4#. Thus it avoids the drudgery of numerical diag
nalization and could facilitate a systematic study
symmetry-breaking effects in the vibron model. The 1/N ex-
pansion method has previously been applied to vari
nuclear structure and reaction problems~see@5# for a recent
review!, where it played a useful role both conceptually a
as a computational tool. The purpose of this paper is to
velop the 1/N expansion technique for the vibron model
diatomic molecules. Analytic expressions are derived for
ergy levels and electromagnetic transitions, which are t
used in a systematic study of the symmetry breaking to
sess whether it provides a viable alternative to the symme
preserving approach.

A unique feature of the U~4! algebra is that it provides the
simplest, nontrivial SGA’s that can be solved exactly usi
the 1/N expansion method. This is possible because diato
molecules possess axial symmetry in the intrinsic fram
which simplifies the formalism and allows evaluation of t
projection integrals in closed form.@In the IBM, except in
the SU~3! limit, axial symmetry is realized only approxi
mately; hence the solutions are not exact at higher orders# In
this sense, the 1/N expansion in the vibron model could pla
3381 © 1998 The American Physical Society
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3382 57S. KUYUCAK AND M. K. ROBERTS
a similar role as the Lipkin model@6#, which has been widely
used in testing various many-body techniques. Because
vibron model is formulated in three dimensions instead
one, it can also be used in checking the accuracy of appr
mate angular momentum projection methods such as cr
ing.

Finally, the U~4! SGA of diatomic molecules forms th
basis for extensions of the vibron model to polyatomic m
ecules. A clear understanding of a single molecular bond
the vibron model is necessary before the 1/N expansion tech-
nique can be applied to more complex molecules. A b
version of this work has already appeared in Ref.@7#. Exten-
sions to polyatomic molecules and collision processes
be pursued in future articles.

II. FORMALISM

In this section, we introduce vibron model Hamiltonia
for diatomic molecules that generalize the dynamical sy
metry limits. We briefly discuss the formulation of the mea
field theory in the intrinsic frame and then present the an
lar momentum projection technique that leads to the 1N
expansion formalism. The section ends with the construc
of the projected vibrational states in the laboratory frame

A. Hamiltonian and transition operators

The Hamiltonians in the O~4! and U~3! symmetry limits
of the vibron model can be written in the multipole form
@2#

ĤO~4!52kD̂•D̂1k8L̂•L̂,

ĤU~3!5«n̂p1sn̂p
21k8L̂•L̂. ~2.1!

Here k, k8, «, and s are the model parameters that a
determined from fits to spectra. The dipole, angular mom
tum, and thep-boson number operators in Eqs.~2.1! are
defined by

D̂m5@s† p̃1p† s̃ #m
~1! ,

L̂m52A2@p† p̃#m
~1! ,

n̂p5(
m

pm
† pm , ~2.2!

where brackets denote tensor coupling and the tilde,b̃ lm
5(21)mbl 2m , ensures that the boson annihilation operat
transform like spherical tensors. Combining all the terms
Eqs. ~2.1!, one obtains the most general Hamiltonian w
one- and two-body interactions:

Ĥ52kD̂•D̂1k8L̂•L̂1«n̂p1sn̂p
2 . ~2.3!

We have excluded a constant term from Eq.~2.3!, as our
main interest is in the excitation spectrum. There are vari
other forms of the vibron model Hamiltonian but they can
be shown to be equivalent to Eq.~2.3! up to a constant.

Although the main focus of this paper is to study t
symmetry breaking envisaged by the Hamiltonian~2.3!,
higher-order interactions may be useful in refinements of
he
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model. Therefore, we will also consider the effect of thre
body terms on the spectrum. In general, there are eight in
pendent three-body terms that one can write down@9#. How-
ever, most of these are either constant or can be absorb
the one- and two-body parts of the Hamiltonian. Only thr
of them make genuine three-body contributions to the ex
tation spectrum, and they can be constructed from the op
tors in Eqs.~2.2! as

Ĥ35t1n̂p
31t2~ n̂pD̂21D̂2n̂p!1t3n̂pL̂2, ~2.4!

where t i are parameters that determine the strength of
interactions. The middle term in Eq.~2.4! has been symme
trized because the two operators do not commute andĤ3
would not be Hermitian otherwise.

To calculate various electromagnetic transitions amo
molecular levels, one needs the appropriate transition op
tors in the vibron model. For infrared transitions, the dipo
operator introduced in Eqs.~2.2! provides a lowest-order ap
proximation. A more refined description of vibrational tra
sitions requires inclusion of higher-order terms in the tran
tion operator@2#

T̂m
~1!5d0D̂m1d1~ n̂pD̂m1D̂mn̂p!1d2~ n̂p

2D̂m1D̂mn̂p
2!1•••.

~2.5!

In this work, we limit ourselves to the calculation of the fir
two terms in Eq.~2.5!, which is sufficient for a description o
dipole transitions among the first few vibrational bands. W
will see that Eq.~2.5! is not adequate for transitions involv
ing higher-vibrational bands, and a generalization of E
~2.5! to an exponential form given by

T̂m
~1!5d0D̂m1d1~eln̂pD̂m1D̂meln̂p! ~2.6!

is necessary@8#. Matrix elements of the operator~2.6! are
difficult to evaluate with projection, and therefore will not b
considered here. Nevertheless, these have been evaluate
ing mean-field theory@8# and are sufficient for practical pur
poses.

For Raman transitions, one needs tensor operators of
0 and 2. To lowest order, these are given by

T̂0
~0!5a0n̂p , T̂m

~2!5a2Q̂m , ~2.7!

where the quadrupole operator is defined as

Q̂m5@p† p̃#m
~2! . ~2.8!

B. Mean-field theory

Mean-field techniques have been extensively used in
vibron model to discuss its geometrical content and to p
vide a link with the more conventional models based
geometrical variables@9–15#. Since the number of bosons
N, is conserved in the vibron model, the variational st
used in the mean-field calculations is a projective coher
state or, in more descriptive terms, a simple condensate oN
intrinsic bosons. Exploiting the axial symmetry of diatom
molecules, one can choose the molecular axis along thz
direction so that the variational state for the ground band
the system can be written as



be

n
ie

a

he

re
a

it
-

-
s

of
ith

e

r a
m-

e re-
en-
er
nt
o-
o-

ic
nu-

if
ave

ian

e

a-
e

ple

r

za-

ex-
-

d,
the

ues,

57 33831/N EXPANSION IN THE VIBRON MODEL: DIATOMIC . . .
uN,r &5~N! !21/2~b†!Nu0&, b†5~11r 2!21/2~s†1rp0
†!.
~2.9!

Hereb† denotes the intrinsic boson operator andr is a varia-
tional parameter. The variabler is related to the interatomic
distance in the classical limit of the vibron model (N→`),
but the functional form of this relationship appears to
exponential rather than linear@11,15#. For a given Hamil-
tonian Ĥ, r is determined from the energy surface

E~r !5^N,r uĤuN,r & ~2.10!

by a variational procedure. For the Hamiltonian~2.3!, the
energy surface is given by

E~r !5
Nr2

11r 2F2kS 4~N21!

11r 2 1
31r 2

r 2 D12k81«

1sS ~N21!r 2

11r 2 11D G . ~2.11!

Variation of Eq.~2.11! will be discussed in the next sectio
after we compare it with the projected ground-band energ

Vibrational bands, denoted byuN,v&, can be obtained
from Eqs.~2.9! by replacing the intrinsic bosonsb with the
orthogonal fluctuation bosonsb8:

uN,v&5@~N2v !!v! #21/2~b†!N2v~b8†!vu0&,

b8†5@11r 2#21/2~rs†2p0
†!, ~2.12!

wherev is the vibrational quantum number. These bands
orthogonal by construction, that is,^N,vuN,v8&5dv,v8. En-
ergy expressions for the vibrational bands follow from t
expectation value ofĤ in the states~2.12!:

Ev5^N,vuĤuN,v&. ~2.13!

Note thatr is already fixed from the ground band, and the
fore it does not appear in the vibrational energies as a v
able. Thus variation of the energy surface~2.10!, in effect,
determines the whole spectrum. The vibrational band exc
tion energies for the Hamiltonian~2.3! are obtained by sub
tracting the ground energy~2.11! from ~2.13!, and given by

Ev2E05v~11r 2!22$2k~N2v !@8r 22~12r 2!2#

1s@2N~22r 2!r 21v~r 424r 211!#

1~2k12k81«!~12r 4!%. ~2.14!

One can also use the states~2.12! to discuss electromag
netic transitions among vibrational bands. For the lowe
order dipole operator in Eq.~2.5!, the only nonzero matrix
elements are between the statesv andv85v, v61:

^N,vuD̂0uN,v&5~N22v !2r /~11r 2!, ~2.15!

^N,vuD̂0uN,v11&5@~N2v !~v11!#1/2~r 221!/~11r 2!.
~2.16!
s.

re

-
ri-

a-

t-

Note that Eq.~2.16! vanishes in the O~4! limit ( r 51) but not
in general. This provides a first glimpse of how breaking
the O~4! symmetry may lead to an improved agreement w
data.

C. Angular momentum projection

Because the condensate states~2.12! break the rotational
invariance, matrix elements obtained in the intrinsic fram
are correct to leading order in 1/N @4#. Hence the mean-field
theory provides only an approximate solution, suitable fo
qualitative description of spectroscopic quantities. For co
parison with experimental data, one needs more accurat
sults, which can be achieved by performing angular mom
tum projection before variation. Since variation aft
projection~VAP! with a complete set of states is equivale
to solving the Schro¨dinger equation, this approach can pr
vide analytical solutions for general vibron model Hamilt
nians. Such a program has been carried out in the IBM@4#
and was shown to lead to a 1/N expansion for all matrix
elements.

Angular momentum projection from a general intrins
state is rather complicated and usually requires a large
merical effort@16#. The situation is considerably simplified
the system has axial symmetry. Then the intrinsic states h
well-defined quantum numbersK for projection on to the
body-fixed axis, and the expectation value of a Hamilton
in an intrinsic statefK is given by

E~L !5^fKuHPKK
L uf&/^fuPKK

L ufK&, ~2.17!

wherePMK
L is the projection operator defined as@17#

PMK
L 5

2L11

8p2 E DMK
L* ~V!R~V!dV. ~2.18!

In Eq. ~2.18!, R(V) is the rotation operator which rotates th
system through the three Euler angles (a,b,g), collectively
denoted byV, andDMK

L is a WignerD function. Note that in
Eq. ~2.17! the expectation value is divided by the normaliz
tion because, contrary to Eq.~2.10!, the projected states ar
not normalized. Since all the intrinsic states~2.12! have
K50, the a and g integrals in Eq.~2.18! simply give 2p
each, and the projection operator takes a particularly sim
form

P00
L 5

2L11

2 E
0

p

db sin bPL~cosb!e2 ibL̂y. ~2.19!

Here we have usedD00
L* (V)5PL(cosb), which is a Leg-

endre function, andL̂y is the y component of the angula
momentum operatorL̂.

As an illustration of how the 1/N expansion follows from
angular momentum projection, we evaluate the normali
tionN(N,L) for the condensate~2.9! in some detail. As will
be seen later, all the matrix elements can be reduced to
pressions containingN(N,L); therefore their accuracy de
pends directly on how accuratelyN(N,L) is evaluated. Be-
sides the key role it plays in the formulation of the metho
N(N,L) also serves as a simple example to demonstrate
boson calculus and angular momentum algebra techniq
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3384 57S. KUYUCAK AND M. K. ROBERTS
which are extensively used in the 1/N expansion calcula-
tions. From Eq.~2.19!, N(N,L) is defined as

N~N,L !5^N,r uP00
L uN,r &,

5
2L11

2N! E
0

p

db sin b PL~cosb!

3^0ubNe2 ibL̂y~b†!Nu0&. ~2.20!

The first step is to apply a rotation operator to the cond
sate. Writing the condensate explicitly as a product and
serting the identity operatorI 5e2 ibL̂yeibL̂y in between each
product, it is clear that rotating the condensate is equiva
to a condensate of rotated intrinsic bosonsbR

† defined as

bR
†5e2 ibL̂yb†eibL̂y. ~2.21!

Using the well-known formula for the rotation of spheric
tensors@17#, we obtain from Eq.~2.21!

bR
†5~11r 2!21/2S s†1r(

m
dm0

1 ~b!pm
† D , ~2.22!

wheredm0
1 is a Wignerd function. The next step is to evalu

ate the matrix element in Eq.~2.20!. The standard techniqu
is to commute all the annihilation operators to the rig
which could be cumbersome especially in cases involv
many different ~but not commuting! boson operators
Schwinger’s boson calculus@18#, where one replaces the an
nihilation operators by differentials acting on the creati
operators~or vice versa!, offers a much simpler method fo
this purpose. Thus the matrix element in Eq.~2.20! can be
written as

^0ubN~bR
† !Nu0&5^0u~]/]b†!N~bR

† !Nu0&

5N! ^0u~]bR
†/]b†!Nu0&. ~2.23!

The last derivative corresponds to a simple contraction
two boson operators; e.g., forb5( ixibi , b85( j xj8bj , it is
given by

^0ubb8†u0&5^0u]b8†/]b†u0&5K 0U(
i j

xixj8~]bj
†/]bi

†!U0L
5(

i j
xixj8d i j 5(

i
xixi8 . ~2.24!

Using this result in Eqs.~2.22! and~2.23!, we obtain for the
matrix element

^0ubN~bR
† !Nu0&5N! F11r 2 cosb

11r 2 GN

[N! @Z~b!#N.

~2.25!

Substituting Eq.~2.25! in Eq. ~2.20!, yields the following
integral for the normalization:

N~N,L !5
2L11

2 E
0

p

db sin b PL~cosb!@Z~b!#N.

~2.26!
-
-

nt

,
g

f

After the transformationz5cosb, the integral in Eq.~2.26!
takes the form

N~N,L !5
2L11

2~11r 2!NE
21

1

dzPL~z!@11r 2z#N. ~2.27!

Although it looks deceptively simple, this integral is n
available in standard tables, and only recently has it b
evaluated in closed form in terms of the hypergeome
function 2F1 @19#. We refer to Ref.@19# for details of the
integration and simply quote the final result here:

N~N,L !5S 2L11

N11 D S 11r 2

2r 2 D F 2F1„2L,L11;N12;~1

1r 2!/2r 2
…2~21!LS 12r 2

11r 2D
2

N11

F1„2L,L11;N

12;~211r 2!/2r 2
…G . ~2.28!

Here the first term arises from the integral range@1,0# and
the second one from@0,21#. For identical-parity boson sys
tems, the second term would be equal to the first one, lea
to a factor of 2. For the mixed-paritysp-boson system, the
second term is clearly much smaller than the first one, s
pressed by the exponential factor in front. In fact, it vanish
in the O~4! limit when r 51, and it is completely negligible
for realistic breaking of the O~4! limit when r is near 1~in a
typical case withr 51.2, N540, the suppression factor i
10230). Therefore, in the following, we will ignore the con
tributions from the second term to simplify the expressio

To make further progress, we first note that the quan
a, defined as

a52r 2/~11r 2!, ~2.29!

provides a more convenient parametrization forN(N,L).
Since the mapping is one to one (@0,̀ # is mapped onto
@0,2#) and monotonous, it will have no effect on the vari
tional problem. This choice fora is preferred over its in-
verse, because physically it corresponds to the ‘‘average
gular momentum squared’’ carried by an intrinsic boson.
bringN(N,L) into a standard form, we write the hyperge
metric function in Eq.~2.28! explicitly as

2F1~2L,L11;N12;x!512
L̄

N12
x1

L̄~ L̄22!

2~N12!~N13!
x2

2
L̄~ L̄22!~ L̄26!

3!~N12!~N13!~N14!
x3

1•••. ~2.30!

Here the overbar denotes the angular momentum eigen
ues,L̄[L(L11). Since projection involvesL̄ rather thanL,
we will use this compact notation throughout the paper. E
panding Eq.~2.30! in 1/N and L̄ finally yields the desired
1/N expansion for the normalization:
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57 33851/N EXPANSION IN THE VIBRON MODEL: DIATOMIC . . .
N~N,L !5
2L11

aN F12
1

aN
~ L̄1a!1

1

2~aN!2@ L̄21~6a22!L̄

12a2#2
1

3!~aN!3 @ L̄31~18a28!L̄21~42a2

236a112!L̄16a3#1 . . . G . ~2.31!

Note that the expansion is in fact in the productaN, which
corresponds to the ‘‘average angular momentum squared
the condensate@20#. While it may seem more appealing t
useLc5aN rather thanN itself as the expansion paramete
we refrain from doing so becauseN is a fixed number
whereasa is a variational parameter dependent on the cho
of the Hamiltonian.

For future notational convenience, we introduce a redu
normalization functionF(N,L)5N(N,L)/(2L11), and re-
write Eq. ~2.31! in a compact form

F~N,L !5
1

aN(
n50

~21!n

n! ~aN!n (
m50

n

anmL̄m. ~2.32!

As is seen from Eq.~2.31!, the coefficientsanm are polyno-
mials in a. A complete list to order 1/N6 is given in Appen-
dix A. As a general terminology, the leading coefficients
each power of 1/N, ann , are called first layer, the secon
ones,ann21, second layer, etc. The significance of the co
cept of layers will be apparent when we evaluate matrix
ements in the next section. Finally, we note that the sec
term in Eq.~2.28! leads to an identical expansion in 1/N and
L̄. Thus, should the need arise, it could be easily include
the final result by modifying the coefficientsanm .

D. Construction of projected states

The condensate~2.9!, with the VAP procedure, provide
an exact description of the ground-band (v50) states. The
same thing is not true for the vibrational bands~2.12! defined
in the intrinsic frame. First, although they are orthogonal
construction, this property is lost after angular moment
projection. Second, comparison with the exact form of
states in the O~4! limit @see Eq.~B6! in Appendix B# shows
that there are extra pieces involved. We use the O~4! limit as
a guide in constructing a new set of vibrational states in
intrinsic frame, which remain orthogonal after projection. I
specting the O~4! intrinsic states in Eq.~B6! suggests the
form

uN,v51&5@~N21!! #21/2@b†b8†1j1p1
†p21

† #~b†!N22u0&,

uN,v52&5@2!~N22!! #21/2@~b†!2~b8†!222j2b†b8†p1
†p21

†

1j28~p1
†p21

† !2#~b†!N24u0&. ~2.33!

We limit ourselves to the first two vibrational bands in th
work, but it should be obvious from these examples how
construct intrinsic states for higher-vibrational bands. In E
~2.33!, the coefficientsj are determined from orthogonalit
conditions with the lower-vibrational bands. For examp
orthogonality of thev50 andv51 bands requires
of

e

d

-
l-
d

in

y

e

e

o
.

,

^N,v51uP00
L uN,v50&50, ~2.34!

which, after some boson calculus, translates to the condi

E
0

p

db sin b d00
L $@Z~b!#N21r ~12d00

1 !

1j1@Z~b!#N21r 2d10
1 d210

1 %50, ~2.35!

whereZ(b) is defined in Eq.~2.25!. Using Eq.~C1!, one can
couple the variousd functions in Eq.~2.35! to a single func-
tion d00

J . The resultingb integral has the same form as th
normalization integral in Eq.~2.26!, and hence the condition
~2.35! can be written as

(
J

F(
l 50

1

~21! lF~N21,J!1j1r(
l

^11 121u l0&

3^10 10u l0&F~N22,J!G ^L0 l0uJ0&250. ~2.36!

We refer to Appendix C for evaluation of the angular m
mentum sums over the Clebsch-Gordan~CG! coefficients in
Eq. ~2.36!. Both these sums and the division in Eq.~2.36!
can be carried out most efficiently using theMATHEMATICA

software@21#. The resulting expression forj1 to order 1/N5

is given by

j15S 22a

a D 1/2H 11
2~12a!

aN (
m50

S 22a

aN D m

2
L̄

~aN!2
2~12a!F11

725a

aN
1

3~22a!~625a!

~aN!2

1
1762336a1201a2237a3

~aN!3 G2
L̄2

~aN!3
~12a!

3F11
2

aN
2

3~12224a111a2!

~aN!2 G
2

L̄3

~aN!4
~12a!F11

2~22a!

aN G2
L̄4

~aN!5
~12a!J ,

~2.37!

where we have substitutedr 5@a/(22a)#1/2 from Eq.~2.29!.
Orthogonality of thev52 band to thev50 and 1 bands
requires

^N,v52uP00
L uN,v50&50, ^N,v52uP00

L uN,v51&50.
~2.38!

Following steps similar to above, the two conditions in E
~2.38! can be converted to two linear equations in the u
knownsj2 and j28 . These, in turn, can be easily solved f

each power ofL̄ and 1/N, leading to the expressions~to order
1/N4)
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j25S 22a

a D 1/2H 11
2~12a!

aN (
m50

S 42a

aN D m

2
L̄

~aN!2
2~12a!

3F11
1125a

aN
1

3~34232a17a2!

~aN!2 G
2

L̄2

~aN!3
~12a!F11

8

aNG2
L̄3

~aN!4
~12a!J ,

j285S 22a

a D H 11
4~12a!

aN (
m50

S 42a

aN D m

2
L̄

~aN!2
4~12a!

3F11
1125a

aN
1

3~42a!~825a!

~aN!2 G
2

L̄2

~aN!3
2~12a!F11

216a

aN G2
L̄3

~aN!4
2~12a!J .

~2.39!

The O~4! limit ( r 5a51) provides a useful check again
any errors in the calculations. Fora51, all the coefficientsj
in Eqs. ~2.37! and ~2.39! reduce to 1 in agreement with th
group theoretical result given in Eq.~B6!.

As in the case of the ground band, the vibrational intrin
states~2.33! need to be normalized in the laboratory fram
The normalization for the stateuN,v& is defined as

N~N,v,L !5^N,vuP00
L uN,v&. ~2.40!

Evaluation of these matrix elements is similar to the ca
discussed above but much longer due to the extra terms~e.g.,
for v51, there are seven distinct terms in the normalizatio!.
Since there is not much to be gained from these exercise
the use ofMATHEMATICA , we prefer not to go into any de
tails, but simply list the resulting normalization coefficien
for the v51 and 2 bands in Appendix A.

III. ENERGIES

Molecular energy levels are very accurately measur
and to match that accuracy in calculations, one needs to
velop the 1/N expansion to fairly high orders. While this i
not a serious problem owing to the recent development
computer algebra, one would still like to avoid unwield
expressions which have little information content. In th
section, we first show how the layer structure in the 1N
expansion fulfills this role by tailoring the expressions to t
required accuracy with maximum efficiency in algebraic m
nipulations. In the following subsections, we derive ene
formulas for the ground band and discuss the ensuing va
tional problem. Energy formulas for the first two vibration
bands are presented at the end.

A. General form

The general form of the 1/N expansion for energy level
has been conjectured in previous work@4# but not proved
explicitly. Here we demonstrate the layer structure inher
c
.

s

in

d,
e-

in

-
y
a-

t

in the 1/N expansion with an explicit calculation of one-bod
energies. The expectation value of a general one-body op
tor n̂l5(mblm

† blm , with angular momentum projection, i
given by

^n̂l&L5^N,r un̂l P00
L uN,r &/N~N,L !, ~3.1!

whereN(N,L) is the normalization. Following steps simila
to Sec. II C and introducingF(N,L) from Eq. ~2.32!, this
can be written as

^n̂l&L5
1

2N!F~N,L !
E db~sin b!d00

L ~b!^0ubNn̂l~bR
† !Nu0&.

~3.2!

The matrix element in Eq.~3.2! can be evaluated using bo
son calculus:

^0ubNn̂l~bR
† !Nu0&5N!NS ]bR

†

]b†D N21K 0U ]

]b†

]

]bR
n̂lU0L ,

5N!N@Z~b!#N21xl
2d00

l , ~3.3!

whereZ(b) is defined in Eq.~2.25! andxl denotes the nor-
malized mean fields in the condensate~2.9!, that is,

x051/~11r 2!1/2, x15r /~11r 2!1/2. ~3.4!

~Because it offers a more compact notation, we preferx1
over r in intermediate steps. In final results both will b
substituted bya, i.e., a52x1

2.! Substituting Eq.~3.3! in Eq.
~3.2! and coupling thed functions via Eq.~C1! to a single
d00

J , we obtain an integral which is of the same form as

Eq. ~2.26! but with N21 bosons. Thuŝn̂l&L can be written
in the form

^n̂l&L5
Nxl

2

F~N,L !(J
^L0l0uJ0&2F~N21,J!. ~3.5!

Equation~3.5! provides a typical example for the conjectu
made in Sec. II C; namely, all the matrix elements can
reduced to algebraic expressions containing the norma
tion function. Since the algebraic manipulations required
Eq. ~3.5! can be easily performed using computer algebra
any desired order in 1/N, knowledge ofF(N,L) is seen to be
the only factor that could limit its accuracy.

Again, the angular momentum sums~see Appendix C!
and the division in Eq.~3.5! can be carried out most effi
ciently using MATHEMATICA . In order to demonstrate th
layer structure and expose its connection with the layers
the normalization, we use Eq.~2.32! in the evaluation of Eq.
~3.5! ~without substituting the coefficientsanm exceptann
51). The final result, complete to the order 1/N4, reads
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^n̂l&L5Nxl
2H 11

1

aN
~a2 l̄ !1

1

2~aN!2 @2a224a l̄ 1 l̄ 22~2a12 l̄ !a101 l̄ a21#1
1

3!~aN!3 $6a3218l̄ a219 l̄ 2a2 l̄ 313

3@24a224 l̄ a1 l̄ 222~a1 l̄ !a10#a1013 l̄ ~3a1a10!a212 l̄ 2a3213~2a1 l̄ !a202 l̄ a31%1
1

4!~aN!4 $24a4

296l̄ a3172l̄ 2a2216l̄ 3a1 l̄ 4224~a1 l̄ !a10
3 212~4a214 l̄ a2 l̄ 2!a10

2 24~18a3118l̄ a229 l̄ 2a1 l̄ 3!a10

112~6 l̄ a213 l̄ aa101 l̄ a10
2 !a2124~4 l̄ 2a1 l̄ 2a10!a321 l̄ 3a4316@10a214 l̄ a2 l̄ 21~6a14 l̄ !a102 l̄ a21#a20

24~4 l̄ a1 l̄ a10!a311 l̄ 2a4224~3a1 l̄ !a301 l̄ a41%1
L̄

~aN!2F2a1 l̄ 1
1

3aN
@26a2112a l̄ 23 l̄ 212 l̄ 26aa10

13~a1 l̄ !a2122 l̄ a32#1
1

4!~aN!2$272a31216l̄ a214 l̄ ~227l̄ 116!a112l̄ 3220l̄ 2116l̄ 224~3a1 l̄ !a10
2

14~224a2112a l̄ 23 l̄ 214 l̄ !a1016@10a2110l̄ a2 l̄ 21~6a18 l̄ !a102 l̄ a21#a2124 l̄ ~16a1 l̄ 14a10!a32

1 l̄ ~9 l̄ 24!a43136aa2024~3a12 l̄ !a3114 l̄ a42%G1
L̄2

4!~aN!4
@12a2224a l̄ 16 l̄ 224 l̄ 112~23a1 l̄ !a10

16~6a1 l̄ !a2124~3a15 l̄ !a3219 l̄ a43#J . ~3.6!
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Although Eq.~3.6! is derived for the one-body terms in th
Hamiltonian, the same structure~i.e., theN and L̄ depen-
dence, and the distribution of layers inanm) persists also in
the case of higher-order interactions. In order to facilitate
discussion of various terms in the expansion, we introduc
generic form for the expectation value of an-body scalar
operatorÔ:

^Ô&L5Nn(
nm

S L̄

~aN!2D n
Onm

~aN!m
, ~3.7!

where the expansion coefficientsOnm are functions ofanm
and the mean fielda is as in Eq.~3.6!. Note that due to
cancellations between the numerator and the denomin
the L̄/N dependence in the normalization function has
comeL̄/N2 in Eq. ~3.7!. This is essential for the convergenc
of the series, as otherwise matrix elements forL5N would
become a power series inN and diverge. We refer to thek
11 terms in the expansion which haven1m5k constant as
thekth layer. TheN andL̄ dependence of thekth layer is the
same as thekth power of the first layer. Thus one can co
sider the double expansion 1/N and L̄ as a single expansio
in layers. Below we discuss the significance of each laye
turn.

Zeroth layer (O00): The leading term in Eq.~3.6! is the
same as the mean-field result in Eq.~2.11!, which establishes
the validity of the mean-field theory at the limit of largeN
(N→`). Naturally,O00 is independent of projection.

First layer (O01,O10): The first one gives the 1/N correc-
tion to the ground energy and the second gives the lea
contribution to the moment of inertia. If the rotational ba
in question is measured only to low spins (L,10), knowl-
e
a

or,
-

in

g

edge of the first-layer terms is quite sufficient for its descr
tion. Note that there is noanm dependence in the first laye
but that is because we usedann51. Otherwise, there would
be ann dependence in the first layer.

Second layer (O02,O11,O20): These terms represent, re
spectively, the 1/N2 correction to the ground energy, 1/N
correction to the moment of inertia, and the leading-ord
contribution to the deviation from rigid rotor behavior. If
rotational band is known to spins 10,L,20, this last term,
which is a measure of the softness of a rotor, is essentia
its description. Terms in the second layer are seen to dep
on ann21, that is, the second-layer coefficients in the norm
ization ~see Appendix A!, but no higher.

Third layer (O03,O12,O21,O30): The first three represen
the higher-order corrections to the second-layer terms.
last one is a correction to the softness parameter whic
important in description of high-spin states (L.20). Equa-
tion ~3.6! contains only theO02,O11 terms from the third
layer, which are seen to depend onann21 andann22, i.e., up
to the third-layer coefficient in the normalization.

In addition, Eq. ~3.6! contains theO04 term from the
fourth layer, which depends onanm up to the fourth layer.
The connection between the layers in the normalization
the matrix elements should be clear from the above disc
sion: In order to calculate the matrix elements up to thekth
layer, one needs to know the coefficientsanm up to that layer
~to order 1/N2k). This is very useful in higher-order calcula
tions as it restricts the number of terms needed in the n
malization, excluding those which are most complex. A
other computational advantage in using layers is that
length of termsOnm increases exponentially withm, and
terminating the series inm earlier reduces the amount o
algebra enormously. For example, in Eq.~3.6!, terms to the
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second layer take only a few lines, and the bulk of the
pression is occupied by theO03, O12 terms from the third
layer andO04 from the fourth layer. When one fits a rota
tional band with the formC01C1L̄1C2L̄2, the coefficient
C0 is determined most accurately and the others are incr
ingly less so. In a second-layer calculation,C0, C1, andC2
are evaluated to order 1/N2, 1/N, and 1, respectively, which
meets this hierarchical requirement in accuracy perfec
From a practical point of view, the accuracy offered by t
higher-order terms is never required. Thus, on both phys
and computational grounds, use of layers is a more sens
approach than a complete calculation to a given order in 1N.
The further utility of the layer approach will be seen lat
when we discuss the variational problem.

B. Ground band

Rotational bands in diatomic molecules are measured
to quite high spins (L.20), which necessitates calculatio
of the expectation value of the Hamiltonian to the third lay
As the complexity of calculations increases substantia
with the order of the interaction, we will consider the on
two-, and three-body terms in Eqs.~2.3! and~2.4! separately,
in that order. The expectation value ofL̂•L̂ gives L̄5L(L
11) as expected from rotational invariance. Since it do
not play any role in the dynamics of the system, it is n
considered further in this section.

The expectation value for a general one-body operator
already been discussed in detail in the last subsection. H
we present the result forn̂p , extended to the third layer:

^n̂p&L5
aN

2 H 12
22a

aN
1

L̄

~aN!2
~22a!F112~12a!S 1

aN

1
322a

~aN!2 D G2
L̄2

~aN!4
~22a!~12a!F11

827a

aN G
1

L̄3

~aN!6
2~22a!~12a!2J . ~3.8!

For a51, Eq. ~3.8! reduces to

^n̂p&L5
N

2 S 12
1

N
1

L̄

2N2D , ~3.9!

in agreement with the O~4! result given in Eq.~B7!. Note
that after the substitution ofanm in Eq. ~3.6!, all the compli-
catedO0m terms withm.1 have vanished in Eq.~3.8!, lead-
ing to a finite expansion forL50. This is a general feature o
the ground energy that will emerge from the expectation v
ues of all the other terms in the Hamiltonian.

There are two two-body interaction terms in Eq.~2.3!. We
first considern̂p

2 as an example, to demonstrate the ba
technique involved in the evaluation of two-body terms.
simplify the calculations, we rewriten̂p

2 in the normal-
ordered form

n̂p
25 :n̂p

2 :1n̂p , :n̂p
2 :5 (

mm8
pm

† pm8
† pmpm8, ~3.10!
-
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c

where colons denote a normal-ordered operator. Here
second term is an effective one-body operator that res
from the contraction of boson operators. Since its expe
tion value has already been evaluated in Eq.~3.8!, we need
to do the calculation only for the first term. The project
expectation value forn̂p

2 is given by

^n̂p
2&L5

1

2N!F~N,L !
E db~sin b!d00

L ~b!

3^0ubN~ :n̂p
2 :1n̂p!~bR

† !Nu0&. ~3.11!

Using boson calculus, the matrix element for the first term
Eq. ~3.11! can be evaluated as

^0ubN:n̂p
2 :~bR

† !Nu0&5N!N~N21!@Z~b!#N22~x1
2d00

1 !2.
~3.12!

After substituting Eq.~3.12! in Eq. ~3.11! and coupling all
thed functions to a singled00

J , we again recover the standar
form for theb integral in Eq.~2.26! but with N22 bosons.
Thus ^n̂p

2&L becomes

^n̂p
2&L5

a2N~N21!

4F~N,L ! (
lJ

^1010u l0&2^L0l0uJ0&2F~N22,J!

1^n̂p&L . ~3.13!

The rest of the algebraic manipulations in Eq.~3.13! can be
carried out usingMATHEMATICA , leading to the third-layer
result

^n̂p
2&L5

~aN!2

4 H 12
22a

aN
1

2~22a!

~aN!2 1
L̄

~aN!2
2~22a!

3F12
11a

aN
2

21a22a2

~aN!2 G1
L̄2

~aN!4
~22a!

3Fa1
216a27a2

aN G2
L̄3

~aN!6
2a~22a!~12a!J .

~3.14!

The second two-body term in Eq.~2.3! is the dipole in-
teraction, which has the normal-ordered form

D̂•D̂5 :D̂•D̂:13n̂s1n̂p . ~3.15!

The expectation value ofn̂s can be obtained from that ofn̂p
using the conservation of boson number which stipulates

^n̂s&L1^n̂p&L5N. ~3.16!

Following the steps outlined above, the expectation value
D̂•D̂ can be reduced to the form

^D̂•D̂&L5
a~22a!N~N21!

2F~N,L ! (
l 50

1

(
J

^L0l0uJ0&2F~N22,J!

13^n̂s&L1^n̂p&L . ~3.17!
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MATHEMATICA evaluation of Eq.~3.17! to the third layer
gives

^D̂•D̂&L5aN2H 22a1
112a2a2

aN
2

L̄

~aN!2
~22a!

3F2a2122~12a!2S 1

aN
1

322a

~aN!2 D G
2

L̄2

~aN!4
~22a!~12a!2F11

827a

aN G
1

L̄3

~aN!6
2~22a!~12a!3J . ~3.18!

For a51, Eq. ~3.18! reduces to

^D̂•D̂&L5N212N2L̄, ~3.19!

in agreement with Eq.~B2!, obtained from the O~4! Casimir
operator.

We next consider the three-body interactions in Eq.~2.4!.
Of the three terms in Eq.~2.4!, n̂pL̂2 is the easiest to evaluat
because the states have good angular momentum. Its ex
tation value is trivially given by

^n̂pL̂2&L5^n̂p&LL̄. ~3.20!

Calculation of the expectation value ofn̂p
3 follows similar

lines to the previous, lower-order ones. To establish the
tern, we show a few key steps here. The normal-orde
form for n̂p

3 is given by

n̂p
35:n̂p

3 :13n̂p
222n̂p . ~3.21!

The intrinsic matrix element for the normal-ordered part

^0ubN:n̂p
3 :~bR

† !Nu0&5N!N~N21!~N22!

3@Z~b!#N23~x1
2d00

1 !3. ~3.22!

After combining thed functions and substituting theb inte-
gral, the expectation value can be reduced to the form

^n̂p
3&L5

a3N~N21!~N22!

8F~N,L !

3(
l l 8J

^1010u l0&2^10l0u l 80&2^L0l 80uJ0&2

3F~N23,J!13^n̂p
2&L22^n̂p&L . ~3.23!

Finally, MATHEMATICA evaluation of Eq.~3.23! gives the
following third-layer result:
ec-

t-
d

^n̂p
3&L5

~aN!3

8 H 11
~22a!~21a!

~aN!2 1
L̄

~aN!2
3~22a!

3F12
21a

aN
1

10/322a12a2

~aN!2 G1
L̄2

~aN!4
3~22a!

3F12
2a

N G1
L̄3

~aN!6
~22a!~2212a1a2!J .

~3.24!

Comparing Eqs.~3.5!, ~3.13!, and~3.23!, it should be fairly
clear how to generalize these results to even higher-o
interactions inn̂p . The last expectation value to be consi
ered is the second term in Eq.~2.4!. We simply quote the
final result here:

^n̂pD̂21D̂2n̂p&L5a2N3H 22a1
1

aN
2

~22a!~11a2!

~aN!2

1
L̄

~aN!2
3~22a!F12a1

12a1a2

aN

1
2~12a!~4/322a1a2

~aN!2 G2
L̄2

~aN!4

3~22a!F11
3~12a!~324a12a2!

aN G
1

L̄3

~aN!6
~22a!~12a!~222a1a2!J .

~3.25!

We have already commented on the general form of
1/N expressions in the last subsection. Here we compare
projected energies for the one- and two-body terms w
those obtained in the mean-field theory, Eq.~2.11!, and make
a few observations on common features of the expecta
values. Rewriting the energy surface~2.11! in terms of a
yields

E~a!5«
aN

2
1s

~aN!2

4 S 11
22a

aN D
2kaN2S 22a1

323a1a2

aN D1k8aN. ~3.26!

Comparing Eqs.~3.8!, ~3.14!, and ~3.18! with the corre-
sponding terms in Eq.~3.26!, it is seen that the leading term
agree but the next-order (1/N) terms differ. TheL̂•L̂ inter-
action forms an exceptional case in that its leading term v
ishes and the remaining part in Eq.~3.26! is entirely spuri-
ous. The above example explicitly shows that the mean-fi
theory is valid in the large-N limit. Thus, one should con-
sider only the leading-order terms in the energy surface
ignore the 1/N corrections that are not complete. An ea
way to achieve this is to use the Hamiltonian in norm
ordered form in mean-field calculations. In this manner, o
automatically excludes the 1/N terms arising from the con
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traction of boson operators, and thereby avoids potential
falls that could arise from odd-multipole interactions such
L̂•L̂.

As remarked earlier, the ground energy (L50) has a fi-
nite expansion in 1/N, regardless of the type of interactio
used. A finite expansion is usually the hallmark of an exac
solvable model as in the case of dynamical symmetries.
other remark concerns the common factors of (22a) in the
moment of inertia~MOI! terms. In the limit of a→2, r
→`, which corresponds to a dissociated molecule with
infinite MOI. Hence the factors of (22a) simply ensure that
no rotational excitation of such a molecule is possible. Th
factors arise directly from projection, and thus provide
nontrivial check on the accuracy of calculations.

C. Variation after projection

Since there is only one variational parameter in the bo
system, which is to be determined from the ground band,
consider the variational problem before moving on to
vibrational bands. The simplicity of the vibron model allow
an analytical solution for variation after projection, witho
resorting to iterative numerical techniques as is usually
case in Hartree-Bose problems~e.g., the IBM!. This, in turn,
permits writing of the energy expressions directly in terms
the Hamiltonian parameters, an endowment which is n
mally reserved for dynamical symmetries. In order to ta
full advantage of the 1/N expansion in the solution proces
we first scale the strength of the interactions, so that th
expectation values have the sameN dependence to leadin
order. Further, since the dipole interaction dominates
Hamiltonian, its strength sets the energy scale of the sp
trum. Thus, we factor outkN2 from the energy expressions
and introduce the dimensionless strength parameters fo
other interactions as

h15
«

4Nk
, h25

s

4k
, h35

3Nt1

16k
,

h385
Nt2

2k
, h395

Nt3

2k
. ~3.27!

The numerical factors in Eqs.~3.27! are chosen for conve
nience to simplify the expressions. For small perturbation
the O~4! limit, the strength parametersh i should all be much
less than 1.

Adding all the contributions from Eqs.~3.8!, ~3.14!,
~3.18!, ~3.24!, and ~3.25!, one obtains a rather lengthy ex
pression for the ground-band energies. In discussing
variational problem, it will be more convenient to express
in a compact form. Thus, following the general form in E
~3.7!, we rewrite the ground-band energy as

Eg,L~a!5kN2(
nm

Cnm

Nm S L̄

N2D n

. ~3.28!

The coefficientsCnm in Eq. ~3.28! can be read off from the
respective contributions in the last subsection. For exam
the coefficients for the zeroth and first layers are given b
it-
s

y
n-

n

e

n
e

e

e

f
r-
e

ir

e
c-

he

f

e
t
.

e,

C0052a~22a!12h1a1h2a212h3a3/312h38a
2~22a!,

C0152~112a2a2!22h1~22a!2h2a~22a!12h38a,

C105~22a!@~2a21!/a12h1 /a12h212h3a16h38#

1h39a, ~3.29!

where we have substituted the scaled parameters from
~3.27!. The minimum of the ground energy is obtained fro

dEg,L~a!

da
50, ~3.30!

which can be solved algebraically using an ansatz simila
Eq. ~3.28!:

a5(
nm

anm

NmS L̄

N2D n

. ~3.31!

Use of the layer approach again simplifies solution of
variational equation. Substituting the ansatz~3.31! in Eq.
~3.30!, it can be shown that each layer leads to an indep
dent set of equations. Thus starting from the zeroth lay
one can construct the solution layer by layer. For the lead
order ~zeroth layer!, one has the Hartree-Bose equation

dC00

da U
a00

50. ~3.32!

In the following, we will denotea00 as a0 for notational
convenience. Using the expression forC00, Eqs. ~3.29!, in
Eq. ~3.32!, we obtain the following quadratic equation fo
a0:

211h11~11h214h38!a01~h323h38!a0
250. ~3.33!

Sincea>0, we take the positive root of this equation:

a05
1

2~h323h38!
$2~11h214h38!

1@~11h214h38!214~12h1!~h323h38!#1/2%. ~3.34!

This solution leads to an indeterminate result when the cu
terms vanish. To obtain a more transparent result, we exp
it for small cubic strength:

a05
12h1

11h214h38
F12

~12h1!~h323h38!

~11h214h38!2

12S ~12h1!~h323h38!

~11h214h38!2 D 2

2•••G . ~3.35!

For the one- and two-body parts of the Hamiltonian, i.e.,
h35h3850 in Eq.~3.35!, one obtains a very simple result fo
a0:

a05~12h1!/~11h2!. ~3.36!

When all h!1, corresponding to small perturbations of th
O~4! limit, Eq. ~3.35! gives to leading order
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a0512h12h22h32h38 , ~3.37!

which explains the choice of the numerical factors in E
~3.27!. With the exception ofh39 , all the symmetry-breaking
terms with equal scaled strengthh lead to an equivalen
change in the size parameter.

Oncea0 is determined, the next layers in the solution,a01
anda10, are obtained by solving the respective set of eq
tions for the first layer:

dC00

da U
a01a01 /N

52
1

N

dC01

da U
a0

,

dC00

da U
a01a10L̄/N2

52
L̄

N2

dC10

da U
a0

. ~3.38!

Upon substituting the mean fields in the derivatives in E
~3.38!, the leading order vanishes by virtue of the Hartre
Bose equation~3.32!. The next order leads to trivial linea
equations fora01 anda10 that can be solved to give

a015
12h11h22h382~11h2!a0

11h214h3812~h323h38!a0
,

a105
12~122h1!/a0

21h222h3~12a0!13h382h39

11h214h3812~h323h38!a0
.

~3.39!

Substitutinga0 from Eq. ~3.34!, the coefficientsa01 anda10
can be determined directly in terms of the Hamiltonian p
rameters. These general expressions are somewhat co
cated, and so we will not quote them here. When only
one- and two-body parts are considered, they reduce to
ticularly simple forms given by

a015
h2

11h2
, a105

h1
212h1h22h2

~12h1!2 . ~3.40!

A question of general interest here is the the differen
between variation after and before projection~VAP and
VBP! results. In VBP, one substitutes the leading-ord
mean field (a0), obtained from the Hartree-Bose equation,
the energy expression~3.28!. Whereas in VAP, the full so-
lution for the mean field~3.31! is used. Thus, the differenc
between VAP and VBP arises from the contribution of t
higher-order mean fields to the ground energy. From
.

-

.
-

-
pli-
e
ar-

e

r

e

Taylor expansion ofEg,L(a) and the Hartree-Bose conditio
~3.32!, it is clear that the contribution of the first-layer mea
fields to the first layer in the ground energy vanishes, a
these correction terms due to VAP appear only at the sec
and higher layers. This holds in general for all layers, in t
the corrections due to a given layer in the mean fields app
in the next and higher levels in the energy. Therefore, V
and VBP give the same results for the first layer~i.e., leading
terms in band excitation energies and moment of inertia!, but
differ in the second and higher layers.

The above argument indicates that for the third-layer
pansion considered here, one needs at most the second-
mean fieldsa02, a11, anda20. These are obtained from th
set of equations

dC00

da U
a01a01 /N1a02 /N2

52
1

N

dC01

da U
a01a01 /N

2
1

N

dC02

da U
a0

,

dC00

da U
a01a10L̄/N21a20L̄

2/N4

52
L̄

N2

dC10

da U
a01a10L̄/N2

2
L̄2

N4

dC20

da U
a0

,

dC00

da U
a01a01 /N1a10L̄/N21a11L̄/N3

52
1

N

dC01

da U
a01a10L̄/N2

2
L̄

N2

dC10

da U
a01a01 /N

2
L̄

N3

dC11

da U
a0

. ~3.41!

Again, after substituting the mean fields, the zeroth- a
first-layer parts of these equations vanish by virtue of E
~3.32! and ~3.38!, leaving behind trivial linear equations fo
the second-layer mean fields.

The resulting mean fields and the energy expressions
rather lengthy when the cubic terms are included. Theref
in presenting the complete third-layer results, we prefer
restrict ourselves to the one- and two-body terms in
Hamiltonian. This will make the comparisons between VA
and VBP easier. To this end, we first give the explicit e
pression forEg,L(a):
Eg,L~a!5kN2H a~a2212h11ah2!1
1

N
@~2122a1a2!22~22a!h12a~22a!h2#1

2

N2 ~22a!h21
L̄

N2

22a

a F2a21

12h112ah22
2

aN
@~12a!~12a22h1!1a~11a!h2#2

2

~aN!2 @~12a!~322a!~12a22h1!1a~21a

22a2!h2#G1
L̄2

N4

22a

a3 F ~12a!~12a22h1!1a2h21
1

aN
@~12a!~728a!~12a22h1!1a~216a27a2!h2#G

2
L̄3

N6

2

a5 ~22a!~12a!@~12a!~12a22h1!1a2h2#J . ~3.42!
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The solution of the variational problem for Eq.~3.42! has already been given in Eqs.~3.36! and~3.40! for the zeroth and first
layers, respectively. Extending this solution fora to the second layer gives

a5
12h1

11h2
1

1

N

h2

11h2
1

L̄

N2

1

~12h1!2Fh1
212h1h22h21

1

N

2

12h1
@h1

2~11h114h2!2h21h2
2~3h122!#G

1
L̄2

N4

11h2

~12h1!5~h1
212h1h22h2!~h1

22h1h223h12h2!. ~3.43!

Whenh15h250, Eq.~3.43! reduces toa51, consistent with the O~4! limit. Thus, there is no difference between VAP an
VBP in the O~4! limit. Finally, substituting Eq.~3.43! in Eq. ~3.42!, we obtain the following expression for the ground-ba
energies, directly in terms of the Hamiltonian parameters:

Eg,L5kN2H 2
1

11h2
F ~12h1!21

1

N
~212h11h1

212h1h213h2!2
1

N2 ~212h113h2!h21
1

N3 h2
2G1

L̄

N2

1

12h1
F11h1

12h21
1

N

2

12h1
@~11h1!h1

22~22h124h1
2!h22~324h1!h2

2#1
1

N2

2

~12h1!2@~11h1!~112h1!h1
22~113h1

26h1
2212h1

3!h22~316h1220h1
2!h2

22~528h1!h2
3#G2

L̄2

N4

1

~12h1!4F ~11h2!2~h1
212h1h22h2!1

1

N

11h2

12h1

3@~117h114h1
224h1

3!h1
22~117h1213h1

2231h1
3116h1

4!h22~3117h1252h1
2116h1

3!h2
22~6210h1!h2

3#G
1

L̄3

N6

2h1~11h2!4

~12h1!7 ~h1
212h1h22h2!J . ~3.44!
ve
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Equation~3.44! is an exact result to the given order. We ha
carried out a numerical analysis of the diagonalization res
for the Hamiltonian~2.3!, and directly verified that theN and
L̄ dependence of the ground-band energies are as give
Eq. ~3.44!. This agreement with the diagonalization resu
also confirms that Eq.~3.44! is free from computational er
rors.

The energy difference between VAP and VBP results
obtained by subtracting Eq.~3.42! with a5a0 from Eq.
~3.44!. To the second layer, which is of most interest, it
given by

Eg,L2Eg,L~a0!

52kN2S 1

N2

h2
2

11h2
1

L̄

N3

2h2~h1
212h1h22h2!

~12h1!2

1
L̄2

N4

~11h2!~h1
212h1h22h2!2

~12h1!4 D . ~3.45!

Thus, as expected, VAP leads to a lower ground energy
VBP. Note also that forh250, the difference in the ground
energy and MOI (L̄) terms vanish. In fact, the equivalence
VAP and VBP for these terms holds also in the higher laye
Thus breaking of the O~4! limit with the n̂p term constitutes
a special case, as it partially preserves the complete equ
lence of VAP and VBP found in the O~4! limit.
ts

in

s

an

s.

a-

As a final remark on the ground-band energies~3.44!, we
discuss the MOI systematics and its correlation with the s
parametera or r . @Note that for small perturbations of th
O~4! limit a'r .# From Eqs.~3.35!–~3.37!, it is seen that the
equilibrium size gets smaller for positive values ofh and
larger for negative values. Inspection of the MOI term in E
~3.44! shows that it also gets smaller for positiveh and
larger for negativeh. Thus the two quantities are correlate
as in the geometrical models; a larger size leads to a la
MOI. The same correlation holds also for the cubic termsn̂p

3

andn̂pD̂21D̂2n̂p but not for theL̂2 andn̂pL̂2 terms. In fact,
the L̂2 term is completely divorced from the dynamics of th
system~the MOI remains constant asa or r changes!, and
the n̂pL̂2 term has the wrong dynamic dependence onr ~the
MOI decreases asr increases!. Thus caution should be exer
cised in phenomenological uses of these terms. It would
better if they could be avoided altogether, but certainly th
should not play a dominant role in description of the MO

D. Vibrational bands

Calculations for the vibrational bands follow much th
same lines as in the ground band;, namely,~i! matrix element
of a given interaction is evaluated in the intrinsic frame us
boson calculus,~ii ! all the resultingd functions are combined
to a singled00

J , and ~iii ! the normalization function~2.32!
with the appropriateN is substituted for the resultingb in-
tegrals. The rest of the calculations require standard a
braic manipulations that can be carried out most efficien
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using MATHEMATICA . The only difference is that there ar
many more terms to be evaluated and the amount of ang
momentum algebra in each term gets longer. As a rule
thumb, the complexity of calculations grows exponentia
with the vibrational numberv. Nevertheless, the final expre
sions obtained are as compact as those for the ground b
For reasons of economy, we skip all the lengthy techn
details of the intermediate steps, and present directly the
results.

For v!N, the changes in structure between two neighb
ing bands are very similar, irrespective of the value ofv.
Thus to get a picture of how the band structure changes
increasingv, it is quite sufficient to comparev50 and v
51 bands. To this end, we have repeated the ground-b
calculations presented in Sec. III B for thev51 band. Be-
low, we present the third-layer results without further exp
nations. The expectation value of the one-body operato
given by

^n̂p&1,L5
aN

2 H 12
1

N

1
L̄

~aN!2
~22a!F11

2~32a!

aN
1

2~52a!~322a!

~aN!2 G
2

L̄2

~aN!4
~22a!~12a!F11

3~823a!

aN G
1

L̄3

~aN!6
2~22a!~12a!2J . ~3.46!
u

o
s
i

lar
of

nd.
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r-
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Substitutinga51 in Eq. ~3.46! reproduces the O~4! result
given in Eq.~B7!. For the two-body operators, we obtain

^n̂p
2&1,L5

~aN!2

4 H 11
625a

aN
1

2a

~aN!21
L̄

~aN!2
2~22a!

3F11
3~12a!

aN
1

10221a16a2

~aN!2 G
1

L̄2

~aN!4
~22a!Fa2

6230a113a2

aN G
2

L̄3

~aN!6
2a~22a!~12a!J , ~3.47!

^D̂•D̂&1,L5aN2H 22a1
3210a15a2

aN
2

L̄

~aN!2
~22a!

3F2a2126~12a!2S 1

aN
1

522a

~aN!2 D G
2

L̄2

~aN!4
~22a!~12a!2F11

24213a

aN G
1

L̄3

~aN!6
2~22a!~12a!3J . ~3.48!

Again, substitutinga51 in Eq. ~3.48!, one recovers the Ca
simir result given in Eq.~B2!. The expectation values of th
three-body operators are given by
^n̂p
3&1,L5

~aN!3

8 H 11
6~322a!

aN
1

~4218a111a2!

~aN!2 2
4a

~aN!31
L̄

~aN!2
3~22a!F11

627a

aN
1

2~41/3219a17a2!

~aN!2 G
1

L̄2

~aN!4
3~22a!F12

2~523a!

N G1
L̄3

~aN!6
~22a!~2212a1a2!J , ~3.49!

^n̂pD̂21D̂2n̂p&1,L5a2N3H 22a1
3~5210a14a2!

aN
2

a~215128a211a2!

~aN!2 1
L̄

~aN!2
3~22a!F12a1

5211a17a2

aN

1
2~12a!~34/3218a17a2!

~aN!2 G2
L̄2

~aN!4
~22a!F11

33271a160a2218a3

aN G
1

L̄3

~aN!6
~22a!~12a!~222a1a2!J . ~3.50!
the
ula-
e
e

lues
are
Combining the various expectation values above, and s
stituting the value ofa, Eq. ~3.43!, obtained from the VAP
procedure, one obtains an analytical expression for thev51
band energiesE1,L similar to Eq.~3.44! for the ground band.
We do not present this long formula here because it is
limited use and it can be easily reproduced. For purpose
comparison of different bands, the original expressions
terms ofa are actually more convenient.
b-

f
of
n

Finally, we present similar results for thev52 band. Our
aim here is to confirm the conjecture made above about
change of structure in neighboring bands. Since the calc
tions are very laborious to carry out to the third layer, w
will be content with the second-layer results. This will b
seen to be sufficient for our purposes. The expectation va
of the one- and two-body operators to the second layer
given by
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^n̂p&2,L5
aN

2 H 11
223a

N
1

L̄

~aN!2
~22a!F11

2~52a!

aN G
2

L̄2

~aN!4
~22a!~12a!J , ~3.51!

^n̂p
2&2,L5

~aN!2

4 H 11
14211a

aN
1

2~229a16a2!

~aN!2

1
L̄

~aN!2
2~22a!F11

725a

aN G1
L̄2

~aN!4
a~22a!J ,

~3.52!

^D̂•D̂&2,L

5aN2H 22a1
5222a111a2

aN
2

4a~126a13a2!

~aN!2

2
L̄

~aN!2
~22a!F2a212

10~12a!2

aN G
2

L̄2

~aN!4
~22a!~12a!2J . ~3.53!

Equations~3.51! and~3.53! reproduce the O~4! results given
in Eqs.~B7! and ~B2!, respectively.

In the remaining part of this section, we contrast the
ergy expressions obtained for the ground and vibratio
bands, and comment on their general features. An immed
observation is that the leading term in each power ofL̄ ~i.e.,
Cn0) is the same in all bands. The next-order termsCn1,
which provide the 1/N correction to the former, differ from
band to band, but the difference between neighboring ba
remains constant. That is,Cn1(v51)2Cn1(v50)5Cn1(v
52)2Cn1(v51). Only in the 1/N2 correction terms (Cn2)
do the differences between neighboring bands vary. For
ample, for the one- and two-body Hamiltonian~2.3!, the
second-order energy difference describing anharmonicit
given by

Eg,L22E1,L1E2,L54k@126a13a21h2~226a13a2!#.
~3.54!

Substitutinga from Eq. ~3.40!, we obtain

Eg,L22E1,L1E2,L5
24k

11h2
@223h1

21h2~326h122h2!#.

~3.55!

Implications of these observations for level energies are
follows: ~i! Vibrational band energies increase linearly w
v to leading order, and there are small anharmonic effect
order 1/N, and ~ii ! the MOI of all bands are the same
leading order, and its variation among different bands is
order 1/N. Both of these features are in accordance w
experimental systematics, as will be discussed in more d
in Sec. V.
-
al
te
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IV. ELECTROMAGNETIC TRANSITIONS

In this section, we use the projected states to derive a
lytic expressions for various electromagnetic transitio
which provide sensitive tests for the wave functions. In co
trast to energy levels, transition intensities are not measu
very accurately. Therefore, a first-layer calculation is usua
sufficient in most cases. Reduced matrix elements of a te
operatorT(k) between projected intrinsic states withK50
are calculated using@4#

^v8,L8iT̂~k!iv,L&

5
L̂8~2L11!

2@N~N,v8,L8!N~N,v,L !#1/2(m ^Lmk2muL80&

3E
0

p

db sin bdm0
L ~b!^v8uT̂2m

~k! e2 ibL̂yuv&, ~4.1!

where L̂5@2L11#1/2. Here and in the following, theN
quantum number is suppressed since it is a constant.

A. Infrared transitions

We first discuss the in-band electric dipole transitions
ing the one-body operatorD̂. Applying the boson calculus
and projection techniques to Eq.~4.1!, we obtain for transi-
tions in the ground band

^0,L8iD̂i0,L&5NL̂^L010uL80&@a~22a!#1/2

3
F~N21,L !1F~N21,L8!

2@F~N,L !F~N,L8!#1/2
. ~4.2!

Equation~4.2! shows that, like in the case of band energi
the transition matrix elements can also be reduced to fo
containing the normalization function. Thus, they can
evaluated to any order in 1/N usingMATHEMATICA . Here, we
present the first-layer results as these are sufficiently accu
for practical purposes:

^0,L8iD̂i0,L&5NL̂^L010uL80&@a~22a!#1/2

3F11
1

N
2

~ L̄82L̄ !2

8~aN!2
~2a21!G . ~4.3!

In obtaining this expression, we have used the relations
L̄81L̄5(L̄82L̄)2/2 which holds forL85L61. For a51,
Eq. ~4.3! reproduces the O~4! result given in Eq.~B8! to the
given order. The final result follows upon substituting t
VAP solution for a in Eq. ~4.3!. As the general result is
somewhat complicated, we give here the expression for
one-body symmetry breaking withL85L11:

^0,L11iD̂i0,L&5N~L11!1/2~12h1
2!1/2

3F11
1

N
2

L~L12!

2N2

122h12h1
2

~12h1!3~11h1!
G .

~4.4!
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For small perturbations of the O~4! limit, a0512( ih i , and
the above result can be easily generalized to include o
symmetry-breaking terms. In-band transition matrix e
ments in vibrational bands exhibit a similar structure as
the energy expectation values; namely, the leading term
each power of spin remains the same and the 1/N corrections
vary with bands. Thus, in going from the ground band to
vibrational bandv, the only change in Eqs.~4.3! and~4.4! is
that the term 1/N is replaced by (122v)/N. The effect of
symmetry breaking on in-band transitions is seen to be m
ginal. The change in the leading term in Eq.~4.4! can be
absorbed in the dipole charge, and the small change in
1/N2 term does not have any experimental consequence

We next discuss the interband transitions which are v
sensitive to changes in the vibrational quantum number.
the Dv51 transition from the ground band, a calculatio
similar to Eq.~4.3! yields

^1,L8iD̂i0,L&5ANL̂^L010uL80&~a21!

3F12
1

2aN
~ L̄82L̄2a!G . ~4.5!

This expression vanishes in the O~4! limit when a51. For
the one-body symmetry breaking withL85L11, Eq. ~4.5!
becomes

^1,L11iD̂i0,L&52@N~L11!#1/2h1F12
2L111h1

2N~12h1!G .
~4.6!

The corresponding leading-order expression for theDv52
transition from the ground band is given by

^2,L11iD̂i0,L&5
4A2h1

2~12h1
2!1/2

N2~12h1!3
~L11!3/2. ~4.7!

Comparing the above matrix elements with those obtaine
the mean-field theory, Eq.~2.16!, it is seen that the leading
order results agree as in the case of energies. Projec
yields a nonzero result for theDv52 transition but this is
only in the 1/N2 term of the series, which is too small to hav
any practical value. Experimentally, thev→0 transitions are
10v smaller than the ground ones which requires roughl
drop ofNv/2 in the matrix elements. That is, a leading term
order 1 is needed in Eq.~4.7! to explain the data.

The preceding examples demonstrate that the one-b
dipole operator is not sufficient to describe the vibratio
transitions even with symmetry breaking. To show the eff
of the higher-order terms, we calculate the same matrix
ments with the two-body operator in Eq.~2.5!:

^0,L11i n̂pD̂1D̂n̂pi0,L&

5N2~L11!1/2@a~22a!#1/2

3Fa2
12a

N
1

L~L12!

2aN2 ~524a!G , ~4.8!
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^1,L11i n̂pD̂1D̂n̂pi0,L&

5N3/2~L11!1/2Fa~2a23!1
1

2N

3@2L~12a!1~427a12a2!#G , ~4.9!

^2,L11i n̂pD̂1D̂n̂pi0,L&5A2N~L11!1/2~12a!F12
L

aNG .
~4.10!

The relativeN dependence in the above expressions is n
consistent with the data so that one can attempt to use t
to describe the dipole transitions among thev50, 1, and 2
bands. It should be emphasized that the intrinsic matrix e
ment of the two-body operator vanishes for the 3→0 transi-
tion, and one needs a three-body operator for its descript
In general, av-body operator is required to describe th
v→0 transition. As suggested in Ref.@8#, use of the expo-
nential form~2.6!, which includes all the powers ofn̂p in the
dipole operator, is the most practical way in dealing w
transitions involving higher-vibrational bands.

Here, it is of interest to comment on the spin-depend
terms in vibrational transitions which arise from rotatio
vibration interactions. These terms are represented
Mikhailov plots in collective nuclei and Herman-Walli
forms in molecules. The spin-dependent terms inDv5” 0
transitions are seen to vanish in the O~4! limit in all cases,
even when the matrix element itself is nonzero. To gene
them in the O~4! limit, one needs to include the term
i @ L̂D̂82D̂8L̂# (1) in the dipole operator, whereD̂8 corre-
sponds to the conjugate momentum operator. In the IB
breaking of the SU~3! symmetry was shown to provide
natural explanation for spin-dependent terms in interba
transitions of collective nuclei@22#. Further, these terms ex
hibit a characteristic 1/N dependence as in Eqs.~4.9! and
~4.10! ~which, incidentally, provide the best signatures f
finite N effects in the IBM!. The 1/N dependence of the
slope in Herman-Wallis form gives the right order of ma
nitude when compared to the data. Hence breaking of
O~4! symmetry may explain the spin dependence in vib
tional transitions without the need for an extra term in t
dipole operator.

B. Raman transitions

The available data on Raman transitions are rather sca
and so we limit their discussion to a few examples. T
ground-band matrix element of the quadrupole operator~2.8!
can be reduced to the form

^0,L8iQ̂i0,L&5
A5aNL̂L̂8

2@F~N,L8!F~N,L !#1/2(J
^10L80uJ0&

3^L010uJ0&H 1 L8 J

L 1 2J F~N21,J!,

~4.11!
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TABLE I. Experimental values for the ratios considered in Sec. V. The data are from Ref.@23# and listed
in order of increasing MOI. The O~4! values~with k850) are shown at the top row for reference.C1 is in
cm21.

Molecule N C1 DE/NC1 N2C2 /C1 N4C3 /C1 NDC1 /C1 NDC2 /C2

O~4! k 4.00 0 0 0
1H 19F 44 20.6 4.38 20.200 0.029 21.65 21.2
1H 35Cl 55 10.1 5.17 20.158 21.60 20.70
1H 81Br 57 8.35 5.38 20.134 0.010 21.58 20.51
12C 16O 161 1.92 6.92 20.0825 0.002 21.51
9Be 16O 124 1.64 7.19 20.0768 0.002 21.44 20.15
32S 16O 202 0.718 7.85 20.0642 21.69
27Al 16O 138 0.638 11.0 20.0325 21.30 2.5
27Al 19F 166 0.550 8.68 20.0526 21.51 20.24
27Al 32S 183 0.279 12.0 20.0264 21.31
27Al 35Cl 245 0.243 8.02 20.0618 20.001 22.02 20.52
27Al 79Br 293 0.158 8.11 20.0613 20.001 21.85 20.52
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where the curly brackets denote the 6-j symbol. The angular
momentum algebra in evaluation of Eq.~4.11! is more com-
plicated due to the presence of the 6-j symbol. For the first
layer, these are available@4#, and one obtains from Eq.~4.11!

^0,L8iQ̂i0,L&5
aN

2
L̂^L020uL80&F11

a11

aN
2

~ L̄82L̄ !2

16aN2 G .

~4.12!

SubstitutingL85L12, L and L22 in Eq. ~4.12!, expres-
sions for the so-calledS, O, andQ branches in Raman in
tensities can be obtained. As a final example, we give
first-layer result for the 1→0 Raman transition:

^1,L8iQ̂i0,L&5
21

2
ANL̂^L020uL80&

3F12
1

2aN
~ L̄82L̄2a!G . ~4.13!

Equations~4.12! and ~4.13! have a similar structure to th
corresponding matrix elements for infrared transitions, E
~4.3! and~4.5!. Neither expression vanishes in the O~4! limit,
and therefore, symmetry breaking does not play an impor
role in these Raman transitions.

V. APPLICATIONS TO MOLECULAR SPECTRA

The analytical 1/N expansion formulas derived in the pr
vious sections greatly facilitate systematic study of diatom
molecules in the framework of the vibron model. As me
tioned in the Introduction, past applications of the vibr
model to molecular spectra have mostly followed the path
the symmetry-preserving approach. A primary aim of t
study is to assess whether the alternative, symmetry-brea
approach can provide a more economical and realistic re
sentation of spectroscopic data. In order to establish a re
ence point and motivate this study, we first compare a
key observables in some typical diatomic molecules with
O~4! predictions~see Table I!. The quantities in Table I fol-
low from the definitions of the ground and first vibration
band energies as
e
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Eg,L5C1L̄1C2L̄21C3L̄3,

E1,L5DE1C18L̄1C28L̄
21C38L̄

3. ~5.1!

The other differential quantities are defined asDCi5Ci8
2Ci . The data are extracted from the Dunham parame
given in Ref.@23#. The boson numbers are determined fro
the anharmonicity parameters using the relationshipN12
5ve /vexe @3#. In a few cases where these parameters
not well determined~e.g., AlO and AlS!, N appears to be
underestimated. While use of a largerN in these cases would
have avoided the large fluctuations, leading to a smoo
trend in the ratios, we have decided against it as it would
a ratherad hocprocedure.

The reasons for the particular way the data are prese
are as follows. As stressed before,k is a scale parameter an
it is best determined from the first vibrational energyDE. By
using ratios of the quantities in Eq.~5.1!, we eliminate this
trivial scale parameter from the discussions. Second, the
tors of N are chosen such that the ratios are independen
N. ~Here we limit ourselves to the leading-order terms in 1N
which is sufficient for a qualitative discussion.! Thus the
ratios provide universal parameters for a description of
spectra of diatomic molecules, independent of the scale
rameters. The usefulness of the ratios becomes appa
when one contrasts their range of variation with those oN
andC1. For example, whileC1 ~inverse of the MOI! varies
two orders of magnitude over the range of the molecu
presented in Table I, the ratioNDC1 /C1 remains practically
constant. Below, we discuss the experimental systematics
each ratio and contrast them with the O~4! predictions.

~a! DE/NC1: DE and C1 are the two most importan
spectroscopic quantities characterizing the vibrational
rotational excitations, respectively. Whenk850, the O~4!
limit has the parameter-free prediction of 4 for this rat
which is smaller than the observed values listed in Tabl
The halides are the closest to the O~4! value with some 10–
30 % deviation, but as one moves to heavier and more s
metric molecules, the difference becomes a factor of 2
Clearly one needs a smallerC1 ~larger MOI! than predicted
by the O~4! limit. An easy way to achieve this is to introduc
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the L̂•L̂ term in the Hamiltonian with a negativek8. But as
stressed earlier, this is an artificial way to increase the M
because it does not lead to a corresponding increase in
lecular size. A better and physically more appealing w
would be to break the O~4! limit in such a way that the size
parameterr ~or a) gets larger than the O~4! value of 1 as the
MOI increases.

~b! N2C2 /C1: This ratio measures the softness of a rot
that is, the ability of a molecule to stretch while it rotat
faster and faster in the ground band. The experimental va
in Table I cover a wide range, from20.2 in the halides to
20.02 in AlS. It vanishes in the O~4! limit, which corre-
sponds to a rigid rotor. But as seen in Sec. III, any break
of the O~4! limit leads to nonzero values for this ratio, an
hence they could provide a more natural explanation for
softness parameter than including the term (L̂•L̂)2 in the
Hamiltonian.

~c! N4C3 /C1: This ratio provides a correction to the sof
ness at high spins, and it is usually positive. Again it va
ishes in the O~4! limit. One can accommodate the expe
mental values by either breaking the O~4! limit or including
(L̂•L̂)3 term in the Hamiltonian.

FIG. 1. The effect of the one- and two-body symmetry-break
terms with strength parametersh1 and h2 on the ratioDE/NC1.
The parameterh2 is varied from20.3 to 0.3 in steps of 0.1.
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~d! NDC1 /C1: The differential change inC1 as depicted
by this ratio remains remarkably constant for the diatom
molecules listed in Table I. The negative sign reflects the f
that the MOI of the molecules gets larger with increasi
vibrational number. In the O~4! limit, all the bands have the
same MOI, and hence this ratio vanishes. The obser
changes in the MOI can be reproduced by either includ
the quartic termD̂•D̂ L̂•L̂ in the Hamiltonian or, more gen
erally, by breaking the O~4! limit.

~e! NDC2 /C2: This is similar to ~d! above but for the
softness parameterC2. The experimental values show mo
variation but are generally negative~except AlO!. It is inde-
terminate in the O~4! limit as C250 for all bands.

As stressed earlier, the change in band structure is lin
~to leading order! for low-lying bands; therefore the abov
quantities provide a good overall representation for the sp
troscopic data.

A. Minimal breaking of O „4…

We first consider a minimal breaking of the O~4! limit via
the Hamiltonian~2.3!. The effect of then̂p and n̂p

2 terms on
the ratios~a!–~e! introduced above are shown in Figs. 1–
In each figure, a particular ratio is plotted against the para
eterh1 for various values ofh2. Both parameters are varie
in the range of@20.3,0.3#, h1 continuously andh2 in steps
of 0.1. In Fig. 1, we show the effect of the symmetry brea
ing on the ratioDE/NC1, which is seen to be coherent forh1
and h2. That is, they both reduce this ratio from its O~4!
value of 4 for positive values and, conversely, increase it
negative values. The latter range is preferred by the exp
mental values quoted in Table I, which require a larger M
than that provided by the dipole interaction alone. Note t
for negativeh1 or h2, a ~or r ) gets larger than the O~4!
value@see Eq.~3.37!#. Thus the increase in the MOI is ass
ciated with a corresponding increase in molecular size.
remark that the situation in the IBM description of deform
nuclei is exactly the opposite; namely, the domina
quadrupole-quadrupole interaction there leads to a too la
MOI that needs to be reduced by the addition of~positive!
one-body energies@24#. This choice of sign in the IBM has
firm microscopic foundations in the pairing property of th
nucleon-nucleon interaction. In the case of diatomic m
ecules, there is no microscopic basis for the bosons, and

g

FIG. 2. Same as Fig. 1 but for the ratiosN2C2 /C1 andN4C3 /C1.
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FIG. 3. Same as Fig. 1 but for the ratiosNDC1 /C1 andNDC2 /C2.
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choice of sign for the symmetry-breaking terms is pur
motivated by phenomenology.

In Fig. 2, we study the variation of the ground-band M
with spin. The two ratiosN2C2 /C1 and N4C3 /C1, which
measure the deviation from the rigid-rotor behavior, are p
ted in Figs. 2~a! and 2~b!, respectively. Symmetry breakin
by h1 gives the correct sign forN2C2 /C1 but the magnitude
is not large enough to accommodate the observed val
especially for the halides. The positive range ofh2 leads to
the wrong sign; thus they are excluded by this set of d
The negative range ofh2, on the other hand, gives the co
rect sign and they are much more effective thanh1 in repro-
ducing the experimental range. The ratioN4C3 /C1 has the
wrong sign in most cases when bothh1 andh2 are negative.
Nevertheless, a small positiveh1 and a larger negativeh2
could still explain all three ratios discussed so far.

The change in the MOI among different bands is illu
trated in Fig. 3. The ratiosNDC1 /C1 and NDC2 /C2 are
plotted in Figs. 3~a! and 3~b!, respectively. The former ca
be described by a band value satisfyingh11h2'20.2,
which is still consistent with the previous ratios. But th
latter ratio, which is indeterminate in the O~4! limit, exhibits
large variations far outside the experimental range for
value of the symmetry-breaking terms. Explanation of t
t-

s,

a.

-

y
s

ratio calls for higher-order terms in the Hamiltonian.
As already mentioned in Sec. IV, the one-body dipo

operator is not sufficient to describe the infrared transitio
beyondDv51. Here we discuss the case ofDv51 dipole
transitions, where symmetry breaking provides the right
der of magnitude as far as theN dependence is concerne
From Eqs.~4.6! and ~4.4! the ratio of a 1→0 to 0→0 tran-
sition is roughly given byh1 /AN. Since the dynamic con
siderations above limit the valuesh to about 0.2, symmetry
breaking could provide only a fraction of the experimen
ratio. This again underscores the importance of higher-or
terms in the transition operator.

B. Higher-order terms

Here we discuss the symmetry breaking due to the high
order terms, namely, three-body interactions in the Ham
tonian and two-body terms in the dipole transition operat
The effect of the three cubic terms on the ratios~a!–~e! are
shown in Figs. 4–8. The presentation is similar to Figs. 1
with h2 being replaced byh3 in ~a!, h38 in ~b!, andh39 in ~c!
of each figure. The effect of the cubic terms on the ra
DE/NC1 is shown in Fig. 4. The curves in Fig. 4 exhib
broadly similar features as in the case ofh2 in Fig. 1; thus
sive

FIG. 4. The effect of the cubic terms with strength parametersh3, h38 , andh39 on the ratioDE/NC1. The parameters are varied from

20.3 to 0.3 in steps of 0.1, except forh3 which is varied from20.1 to 0.3. Lowerh3 values are excluded because they lead to exces
fluctuations in the graphs.
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FIG. 5. Same as Fig. 4 but for the ratioN2C2 /C1.
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the same comments apply here. In details, theh38 dependence
is more uniform and weaker compared to the others.

In Fig. 5, we study the dependence of the ratioN2C2 /C1
on the cubic terms. Again, the curves in Fig. 5 exhibit simi
patterns as in Fig. 2~a! showing theh2 dependence. Two
important differences are thath3 is even more effective than
h2 in inducing changes in this ratio, and the sign depende
for h38 is reversed compared to the others. These feat
would be helpful in a fine-tuning of the parameters. In Fig.
we repeat the same study for the ratioN4C3 /C1. In this case,
there are no common features among different figures. N
worthy is theh3 dependence, which is very sensitive to th
ratio, and henceh3 would be best determined by fits to th
C3 coefficient of the ground-band MOI.

The variation in MOI with bands is studied in Figs. 7 an
8. In Fig. 7, the dependence of the ratioNDC1 /C1 on the
cubic terms is seen to be similar to that ofh2 in Fig. 3~a!, but
much weaker in its effect. Thus this ratio should be fitted
the h1 and h2 parameters. The unstable nature of the ra
NDC2 /C2 encountered in Fig. 3~b! is cured by the addition
of the cubic terms~Fig. 8!. Theh3 range is still outside the
experimental range but the other two could explain the d
Clearly, in order to reproduce this ratio, one has to bala
the cubic parameters carefully.

Inclusion of the two-body term in the dipole operat
clearly cures the problem in theDv51 transitions mentioned
r

ce
es
,

e-

y
o

a.
e

above. From Eqs.~4.9! and ~4.8!, the 1→0/0→0 ratio is
given by 1/AN, consistent with the data. However, the sam
ratio for theDv52 transition is still proportional toh; hence
it suffers from the same problem. This again can be resol
by either including the three-body term in Eq.~2.5! or, more
practically, using the exponential form~2.6!.

VI. CONCLUSIONS

In this article, we have developed analytic 1/N expansion
solutions for the vibron model of diatomic molecules a
used the results in a systematic study of symmetry-break
effects in energy levels and electric transitions among th
We have shown that the O~4! results can be improved b
including symmetry-breaking terms in the Hamiltonia
Symmetry breaking could offer a more economical a
physical description of spectroscopic data compared to
symmetry-preserving approach, and should be considere
detailed studies in the future.

A unique aspect of the formalism that is worthwhile em
phasizing is that the solutions obtained for the ground-b
energies and transitions are exact for arbitrary Hamiltoni
and parameters. For the vibrational bands, the ansatz~2.33!,
generalized from the O~4! wave functions, reproduces th
numerical diagonalization results for the energies and
band transitions, but leads to small discrepancies in s
FIG. 6. Same as Fig. 4 but for the ratioN4C3 /C1.
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FIG. 7. Same as Fig. 4 but for the ratioNDC1 /C1.
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dependent terms of interband transitions. While this has
practical consequences, it suggests that the vibrational b
are likely to have more complicated forms in the intrins
frame than given in Eq.~2.33!.

The simplicity of the vibron model also allowed us to g
beyond the usual boundaries of the IBM, and explore,
example, the effects many-body terms in the Hamilton
and transition operators, as well as multiphonon bands. S
the formalism in both models is very similar, one could e
tract lessons for the IBM from the present results. The va
tion of the MOI with bands provides a relevant example.
both collective nuclei and molecules, the MOI ofK50
bands gets larger with increasing phonon number. Repro
ing this feature in the IBM has been an outstanding prob
@25#. Inspection of Fig. 3~a! shows that the positive one-bod
term n̂d could be the source of the problem, and an attrac
two-body termn̂d

2 is needed to compensate for it and to ma
the MOI in theb band larger.

Finally, the formalism for the U~4! SGA provides the ba-
sis for extension of the 1/N expansion technique to poly
atomic molecules, which will be pursued in future articles
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APPENDIX A: NORMALIZATION COEFFICIENTS

Below, we tabulate the coefficientsanm in Eq. ~2.32! up
to the order 1/N6 in a layer format. Layers are defined suc
that anm with n2m115k belongs to thekth layer; that is,
ann forms the first layer,ann21 second, etc.:

first layer: ann51;

second layer: a105a, a2156a22, a32518a28,

a43520~2a21!, a54575a240,

a65514~9a25!;

third layer: a2052a2, a3156~7a226a12!,

a4254~75a2280a127!,

a5354~325a22375a1127!,

a64528~150a22180a161!;
FIG. 8. Same as Fig. 4 but for the ratioNDC2 /C2. The curves forh350, h3850, andh3950 lie outside the figures@cf. Fig. 3~b!#.
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fourth layer: a3056a3,

a41524~15a3225a2120a26!,

a5254~1350a322600a212025a2576!,

a63524~1750a323500a212667a2731!;

fifth layer: a40524a4,

a515120~31a4290a31130a2290a124!,

a62524~4515a4214000a3118900a2

212096a13000!;

sixth layer: a505120a5,

a615720~63a52301a41700a32840a2

1504a2120!. ~A1!

Normalizations for the vibrational bands have exactly
same form as Eq.~2.32! but the coefficientsanm have dif-
ferent values. The exception is the first-layer coefficie
which remain the same, i.e.,ann51. For thev51 band, the
second- and third-layer coefficients are given by

second layer: a1052a24,

a2158a214,

a32521a232,

a43544a260,

a54520~4a25!,

a655132a2154;

third layer: a2056~a224a14!,

a31518~5a2217a114!,

a4254~114a22352a1263!,

a5354~470a221330a1907!

a6454~1200a223090a11957!. ~A2!

For thev52 band, the same coefficients to power 1/N4 are

second layer: a1053a28,

a2152~5a213!,

a3258~3a27!,

a4354~12a225!;
e

s

third layer: a2052~5a2232a148!,

a3156~23a22108a1130!,

a4254~153a22672a1739!. ~A3!

APPENDIX B: O „4… RESULTS

The O~4! limit of the vibron model has been solved e
actly using group theoretical techniques@2,3#. Since it pro-
vides a valuable reference point in both formulation of t
1/N expansion and checking the accuracy of the analyt
formulas, we collect here some of the relevant results. T
O~4! Casimir operator and its expectation value in a st
uN,v,L& are given by

Ĉ2„O~4!…5D̂•D̂1L̂•L̂,

^N,v,LuĈ2„O~4!…uN,v,L&5N~N12!24~N11!v14v2.
~B1!

Thus the energy eigenvalues of the O~4! Hamiltonian ~2.1!
are

^N,v,LuĤO~4!uN,v,L&52k@N~N12!24~N11!v14v2#

1~k1k8!L̄. ~B2!

Explicit expressions for the O~4! wave functions, both in
coordinate space and second-quantized form, are availab
the literature@3#. Here we quote a particularly useful recu
sion relation that allows construction of the vibrational ban
from the ground band of systems with lower boson numb

uN,v,L&5CNv~s†s†2pW †
•pW †!vuN22v,0,L&, ~B3!

whereCNv is a normalization factor:

CNv5~22!2vF ~N22v11!!

v! ~N2v11!! G
1/2

. ~B4!

Rewriting the ground-band state as a projection from
condensateuN22v,0,L&}P00

L uN22v,0&, and noting that the
projection operator commutes with the scalar opera
(s†s†2pW †

•pW †), it is clear that intrinsic states have the sam
form as in Eq.~B3!:

uN,v&5CNv~s†s†2pW †
•pW †!vuN22v,0&. ~B5!

In terms of the intrinsic boson operatorsb5(s1p0)/A2,
b85(s2p0)/A2, the vibrational bands in Eq.~B5! can be
written as

uN,v&52vCNv@~N22v !! #21/2

3@b†b8†1p1
†p21

† #v~b†!N22vu0&. ~B6!

Matrix elements of various operators have been calcula
in the O~4! limit @2,3#. Here we quote a few of them that ar
used in checking the 1/N expansion results:
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^N,v,Lun̂puN,v,L&5
N21

2
1

~N12!L̄

2~N22v !~N22v12!
,

~B7!

^N,v,L11uD̂uN,v,L&

5@~L11!~N22v1L12!~N22v2L !#1/2. ~B8!

APPENDIX C: ANGULAR MOMENTUM SUMS

In evaluating matrix elements, one often needs to cou
the d functions with Clebsch-Gordan coefficients using

dmn
L dm8n8

L8 5(
J

^LmL8m8uJm&^LnL8n8uJm8&dmm8
J . ~C1!

After the angular integration, Eq.~C1! leads to angular mo
mentum sums with thed function replaced by powers ofJ̄.
l
,

k

le

These sums can be evaluated using the techniques desc
in Appendix B of Ref.@4#. Here we quote the results for th
casem5m85n5n850, which are encountered most in th
paper:

Sn5(
J

^L0L80uJ0&2J̄n. ~C2!

The first few of the sums are given by

S051, S15L̄1L̄8, S25L̄214L̄L̄81L̄82,

S35L̄31L̄L̄8~9L̄19L̄824!1L̄83,

S45L̄414L̄L̄8@4L̄219L̄L̄814L̄8225~ L̄1L̄8!14#1L̄84.
~C3!
m.

,
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