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1/N expansion in the vibron model: Diatomic molecules
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Using angular-momentum-projected mean-field theory, we develpegpansion solutions for the vibron
model of diatomic molecules. Analytic expressions of spectroscopic accuracy are derived for rotational-
vibrational energy levels and for the intensities of transitions among them. The results are used in a systematic
study of diatomic molecules in the vibron model with a view to finding appropriate Hamiltonians for a realistic
description of rotation-vibration spectf&51050-294{©8)00905-4

PACS numbd(s): 33.20—t, 31.15.Hz

I. INTRODUCTION sively used in the literature so far, is to preserve thHd)O
symmetry by adding higher-order Casimir operators to the
Algebraic techniques, and especially-spectrum generatinglamiltonian. The one-body transition operator is extended
algebragSGA'’s), have been playing an increasingly impor- similarly by including many-body terms. Although this ap-
tant role in the treatment of various quantum-mechanicaproach has the advantage that analytic expressions for ener-
systems. The interacting boson mod&M) [1], in particu-  gies (like the Dunham expansigprand transitions can be
lar, has made a large impact in nuclear structure studies dureadily given, this comes at the cost of introducing many
ing the last two decades. The vibron mofi2|3] provides a more parameters in the model. In the second method, one
similar algebraic framework for treating problems in molecu-breaks the @) symmetry by adding terms from the(8)
lar spectroscopy. It has been especially useful in describinghain to the Hamiltonian. A general study of symmetry-
complex spectra of polyatomic molecules where traditionabreaking effects requires numerical diagonalization of the
methods based on solving the Sdtirmer equation in coor- Hamiltonian, which may explain why it has been neglected.
dinate space run into difficulties. The algebraic techniquesn contrast, symmetry breaking has been the main approach
developed in the nuclear case can be readily applied to the realistic applications of the IBM to collective nuclgt].
vibron model and could play a similarly rejuvenating role in While the degree of symmetry breaking is much larger in the
molecular spectroscopy. IBM, making its study almost unavoidable, a similar ap-
The basic building blocks of the vibron model are theproach may lead to a more economical description of spec-
scalars and vectomp bosons. The latter represents the dipoletroscopic data in the vibron model, and therefore it would be
degree of freedom in a molecular bond while the former isworthwhile to investigate it in some detail.
needed to generate a finite, anharmonic, spectrum. The 16 The angular-momentum-projected mean-field theory pro-
bilinear operator$b,*mb,m, I=0,1,m=—1, ... |} close un- vides analytic solutions for SGA’s in the form of aNLex-
der the W4) algebra which forms the backbone of the modelpansion[4]. Thus it avoids the drudgery of numerical diago-
(here we use the notatidmy,=Ss, b1,=pm). The U4) alge- nalization and could facilitate a systematic study of
bra has two rotationally invariant subalgebra chains, namelysymmetry-breaking effects in the vibron model. Thisl Bx-
(i) U@DU@BDORB)D0(2) and (i) U@)D0O4)D0(3) pansion method has previously been applied to various
D0O(2). When the Hamiltonian describing the boson systemnuclear structure and reaction problefase[5] for a recent
is written in terms of the Casimir operators in one of thereview), where it played a useful role both conceptually and
chains, the eigenvalue problem can be solved analytically. lias a computational tool. The purpose of this paper is to de-
this way, complete solutions for the(8) and Q4) dynami-  velop the 1IN expansion technique for the vibron model of
cal symmetry limits have been obtaing3]. The U3) limit diatomic molecules. Analytic expressions are derived for en-
leads to a vibrational spectrum and is not of much relevancergy levels and electromagnetic transitions, which are then
to molecules. The @) limit, on the other hand, leads to a used in a systematic study of the symmetry breaking to as-
spectrum similar to that of a Morse potential and hence it issess whether it provides a viable alternative to the symmetry-
appropriate for the description of the rotation-vibration specpreserving approach.
tra of molecules. A unique feature of the 4) algebra is that it provides the
In its simplest form with a one-body dipole operator, the simplest, nontrivial SGA’s that can be solved exactly using
O(4) limit corresponds to a rigid rotor with vanishing vibra- the 1N expansion method. This is possible because diatomic
tional transitions, and so it does not give a very accuratenolecules possess axial symmetry in the intrinsic frame,
representation of the data. This zeroth-order description cawhich simplifies the formalism and allows evaluation of the
be improved in two ways. The first, which has been exclujprojection integrals in closed fornfiln the IBM, except in
the SUJ) limit, axial symmetry is realized only approxi-
mately; hence the solutions are not exact at higher orders.
*Electronic address: sek105@rsphysse.anu.edu.au this sense, the W expansion in the vibron model could play
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a similar role as the Lipkin mod¢6], which has been widely model. Therefore, we will also consider the effect of three-

used in testing various many-body techniques. Because tHedy terms on the spectrum. In general, there are eight inde-

vibron model is formulated in three dimensions instead ofpendent three-body terms that one can write dpinHow-

one, it can also be used in checking the accuracy of approxever, most of these are either constant or can be absorbed in

mate angular momentum projection methods such as crankhe one- and two-body parts of the Hamiltonian. Only three

ing. of them make genuine three-body contributions to the exci-
Finally, the U4) SGA of diatomic molecules forms the tation spectrum, and they can be constructed from the opera-

basis for extensions of the vibron model to polyatomic mol-tors in Egs.(2.2) as

ecules. A clear understanding of a single molecular bond in R R o o

the vibron model is necessary before th &kpansion tech- Ha=7in3+ m5(n,D2+D2ny) + 73n,L2, (2.9

nigue can be applied to more complex molecules. A brief

version of this work has already appeared in Réf. Exten- ~ where 7; are parameters that determine the strength of the

sions to polyatomic molecules and collision processes wilinteractions. The middle term in E(.4) has been symme-

be pursued in future articles. trized because the two operators do not commute Elg]d
would not be Hermitian otherwise.
[l. FORMALISM To calculate various electromagnetic transitions among

. . . . . molecular levels, one needs the appropriate transition opera-
In this section, we introduce vibron model Hamiltonians s in the vibron model. For infrared transitions, the dipole

for diat.onjic molequles t.hat generalize the_ dynamical SYMyperator introduced in Eqé2.2) provides a lowest-order ap-
metry limits. We briefly discuss the formulation of the mean-5ximation. A more refined description of vibrational tran-

field theory in the intrinsic frame and then present the angusiions requires inclusion of higher-order terms in the transi-
lar momentum projection technique that leads to thid 1/ g operator2]

expansion formalism. The section ends with the construction
. S . . . A . . A~y
of the projected vibrational states in the laboratory frame. Tf)zdoDﬂrdl(npD,ﬁ Dan)+d2(npD#+ D2+

2.5

In this work, we limit ourselves to the calculation of the first
two terms in Eq(2.5), which is sufficient for a description of
dipole transitions among the first few vibrational bands. We
will see that Eq(2.5) is not adequate for transitions involv-
ing higher-vibrational bands, and a generalization of Eg.
(2.5 to an exponential form given by

A. Hamiltonian and transition operators

The Hamiltonians in the @) and U3) symmetry limits
of the vibron model can be written in the multipole form as

(2]

Ho(4)=_Kb'6+K,I:'I:,

) A ~2 o ~ ~ oA A -
HU(3)—8np+ O'np+K L-L. (21) Tful):dOD;L+ dl(e}\npD;LJr DMe)\np) (26)

Here x, k', &, and ¢ are the model parameters that are
determined from fits to spectra. The dipole, angular momen
tum, and thep-boson number operators in EqR.1) are

is necessary8]. Matrix elements of the operat@R.6) are
difficult to evaluate with projection, and therefore will not be
considered here. Nevertheless, these have been evaluated us-

defined by ing mean-field theory8] and are sufficient for practical pur-
At D) poses.
D,=[s'p+p's],. For Raman transitions, one needs tensor operators of rank
N ~ 0 and 2. To lowest order, these are given b
L=—2lp'ply, gren by
TP=aonp, T2=asQ,, 2.7
n,=> p'p (2.2 o
o Tetwe where the quadrupole operator is defined as
where brackets denote tensor coupling and the til?ﬂ,e,,, QMZ[pTB]ﬂE)- (2.9

=(—1)"b,_,,, ensures that the boson annihilation operators
transform like spherical tensors. Combining all the terms in

. . . > B. Mean-field theory
Egs. (2.1, one obtains the most general Hamiltonian with

one- and two-body interactions: Mean-field techniques have been extensively used in the
vibron model to discuss its geometrical content and to pro-
|2|:_K[5.|5+K/|”_.|“_+8ﬁp+gﬁgl (2.3  vide a link with the more conventional models based on

geometrical variableg9—15]. Since the number of bosons,
We have excluded a constant term from E2.3), as our N, is conserved in the vibron model, the variational state
main interest is in the excitation spectrum. There are variougised in the mean-field calculations is a projective coherent
other forms of the vibron model Hamiltonian but they can allstate or, in more descriptive terms, a simple condensalté of
be shown to be equivalent to E(.3) up to a constant. intrinsic bosons. Exploiting the axial symmetry of diatomic
Although the main focus of this paper is to study themolecules, one can choose the molecular axis alongzthe
symmetry breaking envisaged by the Hamiltoniéh3), direction so that the variational state for the ground band of
higher-order interactions may be useful in refinements of th¢he system can be written as
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IN,F y=(ND)~Yb"HN0), bf=(1+r2) YsM+ rpg). Note that Eq(2.16) vanishes in the @) limit (r=1) but not
(2.9 in general. This provides a first glimpse of how breaking of
the Q4) symmetry may lead to an improved agreement with
Hereb' denotes the intrinsic boson operator arid a varia-  data.
tional parameter. The variabteis related to the interatomic
distance in the classical limit of the vibron modél-G «), C. Angular momentum projection
but the functional form of this relationship appears to be
exponential rather than lineq1,15. For a given Hamil-

tonianH, r is determined from the energy surface

Because the condensate stat242 break the rotational
invariance, matrix elements obtained in the intrinsic frame
are correct to leading order inNL[4]. Hence the mean-field

. theory provides only an approximate solution, suitable for a

E(r)=(N,r[HIN,r) (210  qualitative description of spectroscopic quantities. For com-

parison with experimental data, one needs more accurate re-

by a variational procedure. For the Hamiltonigh3), the  sults, which can be achieved by performing angular momen-
energy surface is given by tum projection before variation. Since variation after
projection(VAP) with a complete set of states is equivalent

E(r)= Nr? [_ 4(N-1) 3+ re P to solving the Schrdinger equation, this approach can pro-
IR R B Kere vide analytical solutions for general vibron model Hamilto-
) nians. Such a program has been carried out in the [BM
n (N-Dr and was shown to lead to aN/expansion for all matrix
ol ——+1 (2.11
1+r elements.

Angular momentum projection from a general intrinsic
Variation of Eq.(2.11 will be discussed in the next section state is rather complicated and usually requires a large nu-
after we compare it with the projected ground-band energiesnerical effort{ 16]. The situation is considerably simplified if
Vibrational bands, denoted bjN,v), can be obtained the system has axial symmetry. Then the intrinsic states have
from Eqgs.(2.9) by replacing the intrinsic bosorts with the  well-defined quantum numbets for projection on to the
orthogonal fluctuation bosoris : body-fixed axis, and the expectation value of a Hamiltonian
in an intrinsic statepy is given by

IN,v)=[(N—0v)lv!]"Yq(b"HN (b’ )¥|0),
) o > E(L)=(dlHPk $)($Pke d). (.17

rt— 21-12( ot _ it
b =[1+r7] A (rs"=po), (212 whereP},, is the projection operator defined /]
whereuv is the vibrational quantum number. These bands are 2L +1
orthogonal by construction, that iéN,v|N,v')= 46, ,.. En- PLMszf D (Q)R(Q)dQ. (2.18
aa

ergy expressions for the vibrational bands follow from the

expectation value ofl in the states2.12: In Eq.(2.18, R(Q) is the rotation operator which rotates the

. system through the three Euler angles8,v), collectively
E,=(N,v[H[N,v). (213 denoted by, andD}, is a WignerD function. Note that in
Eq. (2.17) the expectation value is divided by the normaliza-
Note thatr is already fixed from the ground band, and there-tion because, contrary to E(.10, the projected states are
fore it does not appear in the vibrational energies as a varinot normalized. Since all the intrinsic staté®.12 have
able. Thus variation of the energy surfa@10, in effect, K =0, the « and y integrals in Eq.(2.18 simply give 27

determines the whole spectrum. The vibrational band excitaeach, and the projection operator takes a particularly simple
tion energies for the Hamiltoniaf2.3) are obtained by sub- fgrm

tracting the ground energi2.11) from (2.13, and given by
2L+1 (7 o
E,—Eo=v(1+r2) 2[2x(N—0v)[8r2—(1-r2)?] P&FTL dB sin BP (cosB)e” Py, (2.19

+o[2N(2=r?)r2+u(r*—4r?+1)] . o
Here we have use®g} () =P, (cosp), which is a Leg-

endre function, andA_y is they component of the angular

One can also use the stai@s12) to discuss electromag- momentum operata.

) . . . As an illustration of how the N expansion follows from
netic transitions among vibrational bands. For the lowest- C .
; . . “““angular momentum projection, we evaluate the normaliza-
order dipole operator in Eq2.5), the only nonzero matrix

tion M(N,L) for the condensaté?.9) in some detail. As will
! — -+ . L]
elements are between the stateandv’ =v, v+1: be seen later, all the matrix elements can be reduced to ex-

pressions containingV(N,L); therefore their accuracy de-
pends directly on how accuratel(N,L) is evaluated. Be-
sides the key role it plays in the formulation of the method,
(N,u|DoIN,v+1)=[(N=v)(v+1)]YAr2=1)/(1+r?). M(N,L) also serves as a simple example to demonstrate the
(2.16 boson calculus and angular momentum algebra techniques,

+(2k+2Kk"+e)(1—r*)}. (2.149

(N,u|DoIN,v)=(N=2v)2r/(1+r?), (2.9
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which are extensively used in theNL/expansion calcula- After the transformatiorz=cosg, the integral in Eq(2.26

tions. From Eq(2.19, M(N,L) is defined as takes the form
NIN,L)=(N,r[PgN,r), 2L+1 (1
/\/(N,L):ﬁ—Nj dzP (2)[1+r2z]N. (2.2
2L+1 2(1+r9)% ) 1

= Wfo dg sin B P (cospB)
Although it looks deceptively simple, this integral is not
X<o|bNefi,8I:y(bT)N|0>‘ (2.20 available ir_1 standard table;, and only recently has it begn
evaluated in closed form in terms of the hypergeometric
The first step is to apply a rotation operator to the condenfunction ,F; [19]. We refer to Ref[19] for details of the
sate. Writing the condensate explicitly as a product and inintegration and simply quote the final result here:
serting the identity operatdr=e~'Atve'fly in between each

g . . : 2L+1)[1+r2
product, it is clear that rotating the condensate is equwalentN(N L)= P (—L,L+1;N+2;(1

to a condensate of rotated intrinsic bostrsdefined as N+1/\ 2r?
t— e iBLypTeiAl _p2\N+1
br=e"""vbTe™y. (2.2 +12)/2r2)— (— 1)t —1+r2) Fo(—L,L+1:N
Using the well-known formula for the rotation of spherical 2
tensorg 17], we obtain from Eq(2.21) o in 2
+2;(=1+r9)/2r°)|. (2.28

bk=(1+r3)" Y4 sT+r > dig(Bpm|,  (2.22
m Here the first term arises from the integral raride0] and
the second one froff0,— 1]. For identical-parity boson sys-
tems, the second term would be equal to the first one, leading
to a factor of 2. For the mixed-parityp-boson system, the
second term is clearly much smaller than the first one, sup-
%ressed by the exponential factor in front. In fact, it vanishes
in the Q4) limit whenr=1, and it is completely negligible
for realistic breaking of the @) limit whenr is near 1(in a
typical case withr=1.2, N=40, the suppression factor is
10739, Therefore, in the following, we will ignore the con-
tributions from the second term to simplify the expressions.
To make further progress, we first note that the quantity

(0]bN(bL)N|0y = (0| (a/abT)N(bL)N|0) a, defined as
=NI(0|(dbi/abNN0).  (2.23 a=2r2/(1+r2), (2.29

wheredﬁ10 is a Wignerd function. The next step is to evalu-
ate the matrix element in EqR.20. The standard technique
is to commute all the annihilation operators to the right,
which could be cumbersome especially in cases involvin
many different (but not commuting boson operators.
Schwinger’'s boson calculy4 8], where one replaces the an-
nihilation operators by differentials acting on the creation
operatorgor vice versy offers a much simpler method for
this purpose. Thus the matrix element in E8.20 can be
written as

The last derivative corresponds to a simple contraction Obrovides a more convenient parametrization fG¢N,L).
two boson operators; e.g., for=3;x;b;, b'=XZxjb;, itis  sjnce the mapping is one to ong0E] is mapped onto

given by [0,2]) and monotonous, it will have no effect on the varia-
tional problem. This choice foa is preferred over its in-
(0[bb'T|0y=(0|ab’ T/9bT|0)= < o> Xixj’((?b]T/(?biT) O> verse, because physically it corresponds to the “average an-
i gular momentum squared” carried by an intrinsic boson. To

bring M(N,L) into a standard form, we write the hypergeo-

=> XiX] 5”:2 XiXi . (2.24  metric function in Eq(2.28 explicitly as
i i
. : : L L(L-2)
Using this result in Eqs(2.22) and(2.23), we obtain for the Fi(—LL+1:N+2:x)=1— X+ X2
matrix element Fal ) N+2" 2(N+2)(N+3)
TN 1+r2 cos BN " - L(L—2)(L—6) 3
(0|b™(bg)"|0)=N! —1z | =Nz 31(N+2)(N+3)(N+4)
(2.29 T (2.30
Substituting Eq.(2.25 in Eq. (2.20), yields the following )
integral for the normalization: Here the overbar denotes the angular momentum eigenval-

ues,L_EL(L+1). Since projection involvek rather tharL,
2L+1 (= . we will use this compact notation throughout the paper. Ex-
N,L)=——| dBsinB P (cosB)[Z(B)]N. ) _ — : .
MN.L) 2 fo A sinf PcospLz(B)] panding Eq.(2.30 in 1/N andL finally yields the desired
(2.26 1/N expansion for the normalization:
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2L+1 1 1 — — N,v=1|P5/N,v=0)=0, 2.3
1__(L+a)+—[|_2+(6a_2)|_ < v | OO| v > ( 4)

MN,L)= aN aN 2(aN)?

1 which, after some boson calculus, translates to the condition
+ 2a2] — W[p—l— (1861— 8)L_2+ (42&2
| "as sin g diitzom 1~ di
—36a+12)L+6a%]+ ... (2.31)
+E[Z(B)NHrPdidt =0, (2.35

Note that the expansion is in fact in the prodadd, which ] ] ] ]
corresponds to the “average angular momentum squared” ofhereZ(p) is defined in Eq(2.29. Using Eq.(C1), one can
the condensatf20]. While it may seem more appealing to Couple the various functions in Eq/2.39 to a single func-
useL.=aN rather tharN itself as the expansion parameter, tion dg,. The resultingg integral has the same form as the
we refrain from doing so becaudd is a fixed number normalization integral in EC(22®, and hence the condition
whereasa is a variational parameter dependent on the choicé2.-39 can be written as
of the Hamiltonian.
For future notational convenience, we introduce a reduced !
normalization functiorF(N,L)=MN,L)/(2L+1), and re- 22 (CD'F(IN-1)+&r > (11 1-1]10)
write EqQ.(2.31) in a compact form I L=0 !
R L —
FINL)= 202 niiangny, @k ™ (232

n=0 m=0

x(10 1410)F(N—2J)|[(LO 10]J0)2=0. (2.36

We refer to Appendix C for evaluation of the angular mo-
mentum sums over the Clebsch-Gord&G) coefficients in
Eqg. (2.36. Both these sums and the division in E8.36

As is seen from Eq(2.31), the coefficientsy,, are polyno-
mials ina. A complete list to order N° is given in Appen-

dix A. As a general terminology, the leading coefficients N Can be carried out most efficiently using tMATHEMATICA

each power of M, «,,, are called first layer, the second . X 5
ones,a,,_1, Second layer, etc. The significance of the con-?sog;'x::]egl]' The resulting expression fa to order 1N

cept of layers will be apparent when we evaluate matrix el-
ements in the next section. Finally, we note that the second

term in Eq.(2.28 leads to an identical expansion irNland _[2-a\? 1+2(1—a) » 2—a\"
L. Thus, should the need arise, it could be easily included in **" | a aN m=o | aN
the final result by modifying the coefficients,y,.
7—5a 3(2—a)(6—5a)
. . — 2(1—a)|1+ + 5
D. Construction of projected states (aN)? aN (aN)

The condensat&.9), with the VAP procedure, provides

an exact description of the ground-band=0) states. The 176-336a+ 2012”37’ _ L2 (1-a)
same thing is not true for the vibrational bari@sL2 defined (an)® (aN)3
in the intrinsic frame. First, although they are orthogonal by )
construction, this property is lost after angular momentum w14 1_3(12_ 24a+1la )}
projection. Second, comparison with the exact form of the aN (aN)?
states in the @) limit [see Eq{B6) in Appendix B| shows _ _
that there are extra pieces involved. We use tk#) Gmit as L3 2(2-a) L*
a guide in constructing a new set of vibrational states in the N z(1-a) 1+ aN | s(1-a),
o9 . ) = (aN) (aN)
intrinsic frame, which remain orthogonal after projection. In-
specting the @) intrinsic states in Eq(B6) suggests the (2.37)
form
where we have substituted=[a/(2—a)]*? from Eq.(2.29.
INu=1)=[(N=1)!]"¥qbb' T+ ¢&plp",1(bHN"?0), Orthogonality of thev=2 band to thev=0 and 1 bands
requires
IN,v=2)=[2!(N=2)!]" ¥4 (b")?(b'")2~2£&,b"0' Tpip’
+&(plp! 26NN 0). (2.33 (N,v=2|P5JN,u=0)=0, (N,u=2|P5|N,v=1)=0.

(2.38

We limit ourselves to the first two vibrational bands in this ) o o )
work, but it should be obvious from these examples how td-°llowing steps similar to above, the two conditions in Eq.
construct intrinsic states for higher-vibrational bands. In Eq(2-38 can be converted to two linear equations in the un-
(2.33, the coefficientst are determined from orthogonality Knownsé, and &;. These, in turn, can be easily solved for
conditions with the lower-vibrational bands. For example,each power ot and 1N, leading to the expressiofi® order
orthogonality of thev=0 andv =1 bands requires 1/N%
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2_g\ 2 2(1 a) 4—a in the 1N expansion with an explicit calculation of one-body
&= — > - 52(1-a) energies. The expectation value of a general one-body opera-
m=0 (aN) tor n,=2 b/ bym, with angular momentum projection, is
| 11-5a 3(34-32a+ 7a?) given by
X aN (aN)? ~ ~
(N =(N,r|nP5N,r)/MN,L), (3.0
L2 L3
- l1-a)|1+—|— —-a)(, . L . -
(aN)3( ) aN (aN)“( ) where N(N,L) is the normalization. Following steps similar
to Sec. Il C and introducing-(N,L) from Eq. (2.32, this
2_a 4(1-a) 4—a\m can be written as
&= 1+ aN m§=:0 aN | (aN)24(1_a)
R 1 R
11-5a 3(4—a)(8-5 = = i L NA (hTN
aN (aN) (3.2
& 3
- (aN)sz(l—a) It =N~ (aN)42(l—a) : The matrix element in Eq3.2) can be evaluated using bo-
son calculus:
(2.39
The Q4) limit (r=a=1) provides a useful check against A bk N-1 0 4.
any errors in the calculations. Far=1, all the coefficientg (0|bNn,(bL)N|OYy=NIN — 0 — “o 0),
in Egs.(2.37) and (2.39 reduce to 1 in agreement with the b b’ bR
group theoretical result given in E¢B6). ZN!N[Z(B)]NleFdBo, 3.3

As in the case of the ground band, the vibrational intrinsic
states(2.33 need to be normalized in the laboratory frame.

The normalization for the staidl,v) is defined as wherez(p) is defined in Eq(2.25 andx; denotes the nor-
L malized mean fields in the condensé?e9), that is,
NMN,v,L)=(N,v|PgN,v). (2.40

Evaluation of these matrix elements is similar to the cases Xo=U(1+rH)¥2  x;=r/(1+r?)22 (3.9

discussed above but much longer due to the extra tgergs

for v =1, there are seven distinct terms in the normalization

Since there is not much to be gained from these exercises ifBecause it offers a more compact notation, we prefer

the use ofMATHEMATICA, we prefer not to go into any de- Over r in intermediate steps In final results both will be

tails, but simply list the resulting normalization coefficients substituted bya, i.e.,a=2x2.) Substituting Eq(3.3) in Eq.

for thev=1 and 2 bands in Appendix A. (3 2) and coupling thed functions via Eq.(C1) to a single
d3,, we obtain an integral which is of the same form as in

Eq. (2.26 but with N—1 bosons. Thugn,), can be written

ll. ENERGIES in the form
Molecular energy levels are very accurately measured,
and to match that accuracy in calculations, one needs to de- Xz
velop the 1IN expansion to fairly high orders. While this is (n), = = L)E (LOIOJJOY2F(N—1J). (3.5

not a serious problem owing to the recent developments in
computer algebra, one would still like to avoid unwieldy
expressions which have little information content. In this

section, we first show how the layer structure in thél 1/ Equation(3.5 provides a typical example for the conjecture

expansion fulfills this role by tailoring the expressions to themade in Sec. 11 C; _namely, a[l the matrl_x.elements can _be
reduced to algebraic expressions containing the normaliza-

required accuracy with maximum efficiency in algebraic ma- tion function. Since the algebraic manipulations required in

nipulations. In the following subsections, we derive energy (3.5 can be easily performed using computer algebra to
formulas for the ground band and discuss the ensuing varia- 9. y P 9 b 9
any desired order in ¥, knowledge of~(N,L) is seen to be

tional problem. Energy formulas for the first two vibrational the only factor that could limit its accuracy.

bands are presented at the end. Again, the angular momentum sun(see Appendix €
and the division in Eq(3.5 can be carried out most effi-
ciently using MATHEMATICA . In order to demonstrate the
layer structure and expose its connection with the layers in
The general form of the W expansion for energy levels the normalization, we use E(.32) in the evaluation of Eq.
has been conjectured in previous wdd but not proved (3.5 (without substituting the coefficients,,, excepta,,
explicitly. Here we demonstrate the layer structure inherent=1). The final result, complete to the ordeN#/ reads

A. General form
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1 — 1 — — — — 1 — —
SN N2 _ 2_ 2_ 3_ 2 2._73
(N =Nx{§ 1+ aN(a I)+2(aN) [2a“—4al + | (2a+2|)a10+la2]]+3!(aN) {6a°—18la“+9l“a—1°+3

— — — — — 1
X[_4a2_4| a+ | 2_2(a+ | )alo]a10+3 (3a+ alo)a21— I 2a32+ 3(2a+ I )azo_ I a3]}+ W{z%‘l

—96la®+721%a%—161%a+ | *—24a+ | ) ady— 12(4a%+ 4l a— 12)a?,— 4(18a%+ 18l a®— 91 2a+ | 3) ayq

+ 12(6|_a2+ 3|_aa’lo+ Ta’%& A1 4(4|_2a+ |_20110) 0[32+ F”a43+ 6[ 103.2+ 4|_a_|_2+ (6a+ 4|_) a10—|_a2]] [222)

_ 1 o
_ _ga2 T a12 .
a+|+3aN[ 6a“+12al—31°+21 —6aa;g

_4(4|_a+|_(110) a31+ |_2a/42— 4(3a+|_)a30+ |_CY4]}+
(aN)?

_ _ 1 _ _ _ _ _ _ _
+3(a+ | )ay— 21 ag)+ W{—?Za3+ 216l a®+41(— 271 +16)a+1213—201 2+ 16| —24(3a+ 1 )a?

+4(—24a%+12al — 312+ 41 )ayp+6[ 1022+ 10l a— | 2+ (6a+81 ) ajg— | axnlan—41 (16a+ | +4ayg) asy
L2 . _
+———[12a%—24al +61%— 41 +12—3a+ | )«

4!(aN)4[ S )aio

+1(91 —4) g+ 36aa,—4(3a+21 ) ag+41 as)

+6(6a+ 1) ay—4(3a+51)agt+ 9|_a43]} . (3.6

Although Eq.(3.6) is derived for the one-body terms in the edge of the first-layer terms is quite sufficient for its descrip-
Hamiltonian, the same structutee., theN and L depen- tion. Note that there is ne,,, dependence in the first layer
dence, and the distribution of layers dn,,,) persists also in but that is because we useg,=1. Otherwise, there would
the case of higher-order interactions. In order to facilitate thée «,, dependence in the first layer.

discussion of various terms in the expansion, we introduce a Second layer Qy,,011,050): These terms represent, re-
generic form for the expectation value ofiabody scalar spectively, the M? correction to the ground energy,NL/

operatorO: correction to the moment of inertia, and the leading-order
contribution to the deviation from rigid rotor behavior. If a
. L \" Opm rotational band is known to spins 40.< 20, this last term,
(O)= NV% (aN)z) (aN)™ (3.7 which is a measure of the softness of a rotor, is essential in

its description. Terms in the second layer are seen to depend

where the expansion coefficier®,, are functions ofx,, O @nn-1, thatis, the second-layer coefficients in the normal-

and the mean fieldh is as in Eq.(3.6). Note that due to ization(see Appendix A but no higher.

cancellations between the numerator and the denominator, Third layer Ogs,012,0,1,030): The first three represent

the L/N dependence in the normalization function has be—the h|ghgr—order corrections to the second-layer terms. The
L/N? in Eq.(3.7). This is essential for the convergen last one is a correction to the softness parameter which is

C?n;]el‘ _INEG. h s el ¥ g% C€ important in description of high-spin states > 20). Equa-

of the series, as otherwise matrix elementslferN wou tion (3.6) contains only theDg,,0,, terms from the third

become a power series M and diverge. We refer to thie

. . . layer, which are seen to depend @f,_; anda,,,_», i.e., up
+1 terms in the expansion which hame- m=k constantas  4'the third-layer coefficient in the normalization.

thekth layer. TheN andL dependence of thieth layer is the In addition, Eq.(3.6) contains theOy, term from the
same as thé&th power of the first Iiyer. Thus one can con- fourth |ayer’ which depends o,y Up to the fourth |ayer_
sider the double expansionNLAndL as a single expansion The connection between the layers in the normalization and
in layers. Below we discuss the significance of each layer ithe matrix elements should be clear from the above discus-
turn. sion: In order to calculate the matrix elements up toktie

Zeroth layer Qgg): The leading term in Eq(3.6) is the layer, one needs to know the coefficients,, up to that layer
same as the mean-field result in E&.11), which establishes (to order 1N2k). This is very useful in higher-order calcula-
the validity of the mean-field theory at the limit of largf  tions as it restricts the number of terms needed in the nor-
(N—). Naturally, Oqq is independent of projection. malization, excluding those which are most complex. An-

First layer Qg1,010): The first one gives the W correc-  other computational advantage in using layers is that the
tion to the ground energy and the second gives the leadinkgngth of termsO,, increases exponentially witm, and
contribution to the moment of inertia. If the rotational bandterminating the series im earlier reduces the amount of
in guestion is measured only to low spins<10), knowl-  algebra enormously. For example, in E§.6), terms to the
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second layer take only a few lines, and the bulk of the exwhere colons denote a normal-ordered operator. Here the
pression is occupied by th®q;, O4, terms from the third second term is an effective one-body operator that results
layer andOy, from the fourth layer. When one fits a rota- from the contraction of boson operators. Since its expecta-
tional band with the formCqy+C,L+C,L2, the coefficient tion value has already been evaluated in £38), we need

C, is determined most accurately and the others are increaf? do the calculation only for the first term. The projected

ingly less so. In a second-layer calculati@y, C,, andC,  expectation value foﬁf, is given by
are evaluated to orderN?, 1/N, and 1, respectively, which

meets this hierarchical requirement in accuracy perfectly. ~o 1 : L

From a practical point of view, the accuracy offered by the <np>L_2N! F(N,L) dp(sin B)doo B)
higher-order terms is never required. Thus, on both physical R R

and computational grounds, use of layers is a more sensible X(OIbN(:nS : +np)(b;2)”|0>. (3.11

approach than a complete calculation to a given orderfh 1/ ) ] .
The further utility of the layer approach will be seen later Using boson calculus, the matrix element for the first term in
when we discuss the variational problem. Eq. (3.11 can be evaluated as

B. Ground band (0]bM:n3: (bR)N[0)=NIN(N—1)[Z(8)IN~?(x3dgo) 2.

3.1
Rotational bands in diatomic molecules are measured up (312
to quite high spins I(>20), which necessitates calculation After substituting Eq(3.12 in Eq. (3.11) and coupling all
of the expectation value of the Hamiltonian to the third layer.thed functions to a singleléo, we again recover the standard

As the complexity of calculations increases substantiallyform for the 8 integral in Eq.(2.26 but with N—2 bosons.
with the order of the interaction, we will consider the One"Thus(ﬁf,},_ becomes

two-, and three-body terms in Eq2.3) and(2.4) separately,

in that order. The expectation value bfL gives L=L(L ., @2N(N—1) i ,

+1) as expected from rotational invariance. Since it does <”p>|.:m% (101Q10)*(L0I0|J0)*F(N—2,)

not play any role in the dynamics of the system, it is not ’

considered further in this section. +(Ny), . (3.13
The expectation value for a general one-body operator has P

already been discussed in detail in the last subsection. Hefgnhe rest of the algebraic manipulations in £8.13 can be

we present the result fcfrp, extended to the third layer: carried out USINgQUATHEMATICA, leading to the third-layer
result
(Ay) aN[1 2-a, (2-a)| 1+2(1-a)| =
ny=—11—-—— —-a —a)| — 2 _ _
LT AN T (any? an iy =N [, 2-a 22-a, 22-a)
_ LT 4 l aN ~ (aN)? * (aN)2
. 3-2a L2 2-mi-a|1+ 8—7a
- —-a)(l—-a T
@N)?) ] (an) aN oli l+a 2+a—2a° . 2 (2—a)
. aN (aN)? (aN)*
L
e 62(2—:;1)(1—@1)2]. (3.8 o4t 6a_7a?] L3
(aN) x| a+ - 2a(2—a)(1-a) .
aN (aN)®
Fora=1, Eq.(3.8 reduces to 3.14
<ﬁp>|_:ﬂ< 1— £+ L) (3.9 The second two-body term in E.3) is the dipole in-
2 N 2N2 teraction, which has the normal-ordered form
in agreement with the @) result given in Eq.(B7). Note D.D= :f)_[‘):JFSﬁSJFﬁp' (3.15

that after the substitution af,,,, in Eq. (3.6), all the compli-
catedOoy, terms withm>1 have vanished in Eq3.8), lead- 1,0 oy nectation value of, can be obtained from that of,

ing to a finite expansion qu: 0. This is a general featgre of using the conservation of boson number which stipulates
the ground energy that will emerge from the expectation val-

ues of all the other terms in the Hamiltonian. ~ ~
. . ; + =N. .
There are two two-body interaction terms in E2.3). We (ng)+(np) =N (316

first considern) as an example, to demonstrate the basicFollowing the steps outlined above, the expectation value of
technique involved in the evaluation of two-body terms. ToR .3 can be reduced to the form
simplify the calculations, we rewrité]f) in the normal-

ordered form a(2—a)N(N—1) !

(D-D), = SE(N.D) I1202<L0|0|J0>2F(N—2,J)

n2= :n2:+n,, :n2:=> ppl.p.p., (3.10 ) )
PR TR L e +3(Rg)+ (M) - (3.17
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MATHEMATICA evaluation of Eq.(3.17) to the third layer
gives

(D-DYy =aN?{ 2 el L (2—a)
. =a -a —a
L aN (aN)?
X|2a—1-2(1-a)? + 3-2a
a (1-a) aN  (aN)?
SRNPRRRIPIN P
- —a)(l—a
(aN)* aN
L3
+ 2(2—a)(1—-a)3;. 3.1
PG (3.18
Fora=1, Eq.(3.18 reduces to
(D-D) =N?+2N-L, (3.19

in agreement with Eq.B2), obtained from the @) Casimir
operator.
We next consider the three-body interactions in ).

Of the three terms in Eq2.4), n,L2 is the easiest to evaluate

because the states have good angular momentum. Its expec-

tation value is trivially given by
(npL?) =(ny). L. (3.20

Calculation of the expectation value aof follows similar

lines to the previous, lower-order ones. To establish the pat-
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(aN)®
5 l1+
L 2+a 10/3-2a+2a’

T aN T T @any?

(2-a)(2+a) L
(aN)? " (aN)?

3(2—a)

<ﬁ§>L=

L2
N)43(2—a)

Za} L3
x[1—=—|+

N| (aN)®

(2—a)(—2+2a+a2)] .

(3.29

Comparing Egs(3.5), (3.13), and(3.23), it should be fairly
clear how to generalize these results to even higher-order
interactions inﬁp. The last expectation value to be consid-
ered is the second term in E¢R.4). We simply quote the
final result here:

1 (2—a)(1+a?)

aN (aN)2

A N2 P2n — a2N18
(n,D*+D“ny) =a°N [2—a+ aN

1-a+a?

+
aN

l1—a+

3(2—a)

(aN)?

2(1—a)(4/3—-2a+a?
(aN)?

2
 (an)®

3(1-a)(3—4a+2a?)
aN

X(2—a)| 1+

13

— _ _ 2
+(aN)6(2 a)(l—a)(2 2a+a)].

(3.29

tern, we show a few key steps here. The normal-ordered

form for n3 is given by
n3=:n3:+3n3-2n,. (3.20)

The intrinsic matrix element for the normal-ordered part is

(0|bM:n3:(bR)N|0)y=NIN(N—1)(N—2)
X[Z(B)IN3(xidge)®. (3.22

After combining thed functions and substituting thg inte-
gral, the expectation value can be reduced to the form

a’N(N—1)(N—2)
8F(N,L)

<ﬁ;33>|_:

X >, (101410)%(10101"0)%(L0I’0]|J0)?
J

XF(N=3J)+3(n2) —2(np), . (3.23

Finally, MATHEMATICA evaluation of Eq.(3.23 gives the
following third-layer result:

We have already commented on the general form of the
1/N expressions in the last subsection. Here we compare the
projected energies for the one- and two-body terms with
those obtained in the mean-field theory, E311), and make
a few observations on common features of the expectation
values. Rewriting the energy surfa¢.1l) in terms ofa
yields

Ela)— aN  (aN)? 2—a
@=e5to—7 1t o8
X 3—-3a+a?
—kaN 2—a+T +«k’'aN. (3.26

Comparing EQgs.(3.8), (3.14), and (3.18 with the corre-
sponding terms in Eq3.26), it is seen that the leading terms

agree but the next-order () terms differ. Thel - L inter-
action forms an exceptional case in that its leading term van-
ishes and the remaining part in E®.26 is entirely spuri-
ous. The above example explicitly shows that the mean-field
theory is valid in the largé limit. Thus, one should con-
sider only the leading-order terms in the energy surface and
ignore the 1IN corrections that are not complete. An easy
way to achieve this is to use the Hamiltonian in normal-
ordered form in mean-field calculations. In this manner, one
automatically excludes the N/terms arising from the con-
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traction of boson operators, and thereby avoids potential pitC = —a(2—a)+27,a+ 7,82+ 27;a%3+ 2 75a%(2—a),
falls that could arise from odd-multipole interactions such as

C-LC. Co=—(1+2a—a?—27,(2—a)— pa(2—a)+27ia,
As remarked earlier, the ground enerdy=0) has a fi-

nite expansion in N, regardless of the type of interaction Cip=(2—a)[(2a—1)/a+2n,/a+279,+27na+67;]

used. A finite expansion is usually the hallmark of an exactly "

solvable model as in the case of dynamical symmetries. An- + 738, 329

other remark concerns the common factors of-@ in the

moment of inertia(MOI) terms. In the limit ofa—2, r

— oo, which corresponds to a dissociated molecule with a

where we have substituted the scaled parameters from Eqgs.
n(3.27). The minimum of the ground energy is obtained from

infinite MOI. Hence the factors of (2a) simply ensure that dE, ()
. . . . gL _
no rotational excitation of such a molecule is possible. These “da (3.30
factors arise directly from projection, and thus provide a
nontrivial check on the accuracy of calculations. which can be solved algebraically using an ansatz similar to
Eq. (3.28:
C. Variation after projection —\n
. . . . a L
Since there is only one variational parameter in the boson a=>, L:( —2) ) (3.3)
system, which is to be determined from the ground band, we nm NT\N

consider the variational problem before moving on to the o .
vibrational bands. The simplicity of the vibron model allows Usg 9f the Iayer. approach.ag_am simplifies solut_|on of the
an analytical solution for variation after projection, without Variational equation. Substituting the ans&&31) in Eq.
resorting to iterative numerical techniques as is usually thé3-30, it can be shown that each layer leads to an indepen-
case in Hartree-Bose problerfesg., the IBM. This, in turn, dent set of equations. Thus starting from the zeroth layer,
permits writing of the energy expressions directly in terms of2N€ ¢an construct the solution layer by layer. For the leading
the Hamiltonian parameters, an endowment which is nororder (zeroth layey, one has the Hartree-Bose equation

mally reserved for dynamical symmetries. In order to take dc
full advantage of the N expansion in the solution process, 20 _p, (3.32
we first scale the strength of the interactions, so that their da
expectation values have the saiedependence to leading

order. Further, since the dipole interaction dominates thén the following, we will denoteay, as a, for notational
Hamiltonian, its strength sets the energy scale of the spesonvenience. Using the expression 0§y, Egs.(3.29, in
trum. Thus, we factor outN? from the energy expressions, Eq. (3.32, we obtain the following quadratic equation for
and introduce the dimensionless strength parameters for tta:

other interactions as

a0

—1+ (14 pp+4np) a0+ (73— 375)a5=0.  (3.33
€ o 3N7;
M~aNk' 72720 T 1 Sincea=0, we take the positive root of this equation:

N'T2 ”_NT3

,){—(1+ 72+ 473)
MB=5 Mo 3

a e —
(3.27) ® 2(n3-37
+[(1+ o+ 4932+ 41— 1) (93— 37513, (3.39
his solution leads to an indeterminate result when the cubic

erms vanish. To obtain a more transparent result, we expand
it for small cubic strength:

The numerical factors in Eq$3.27) are chosen for conve-
nience to simplify the expressions. For small perturbations o
the O4) limit, the strength parameterg should all be much

less than 1.

Adding all the contributions from Eqgs(3.8), (3.14), 1— 1, [ (1= 7 (n3—375)
(3.18, (3.24), and (3.25, one obtains a rather lengthy ex- a0=1+ W) ,[ BT E—p—y.
pression for the ground-band energies. In discussing the 127773 (1+ 72+ 473)
variational problem, it will be more convenient to express it (1= 51)(93—375)\2
in a compact form. Thus, following the general form in Eq. 2( v ) } (3.39
(3.7), we rewrite the ground-band energy as (1+ 72+ 473)

For the one- and two-body parts of the Hamiltonian, i.e., for

73=15=0 in Eq.(3.35, one obtains a very simple result for
(3.28 ag.

L_ n

N2

Cnm

Nm

EgL(2)=xkN2Y,

nm

. _ ao=(1—n)/(1+ ;). (3.39
The coefficientC,,, in Eq. (3.28 can be read off from the
respective contributions in the last subsection. For examplé/Vhen all <1, corresponding to small perturbations of the
the coefficients for the zeroth and first layers are given by O(4) limit, Eq. (3.35 gives to leading order
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ao=1—n1— 75— 13— 13, (3.37 Taylor expansion ok (a) and the Hartree-Bose condition

(3.32, it is clear that the contribution of the first-layer mean

which explains the choice of the numerical factors in Eq.fields to the first layer in the ground energy vanishes, and

(3.27. With the exception ofy3, all the symmetry-breaking these correction terms due to VAP appear only at the second

terms with equal scaled strength lead to an equivalent and higher layers. This holds in general for all layers, in that

change in the size parameter. the corrections due to a given layer in the mean fields appear

Oncea, is determined, the next layers in the solutiag,  in the next and higher levels in the energy. Therefore, VAP

anda,g, are obtained by solving the respective set of equaand VBP give the same results for the first lagies., leading

tions for the first layer: terms in band excitation energies and moment of ingtiat
differ in the second and higher layers.

dCog _1dCy The above argument indicates that for the third-layer ex-
‘da "N da |’ pansion considered here, one needs at most the second-layer
20* 201 /N % mean fieldsay,, a;;, anda,y. These are obtained from the
— set of equations
dCyq L dCy 339
rage N da| B3 acy __1dGy 1dGy
da ) N da da|_’
agtag /N+ag,/N agtag, /N ag
Upon substituting the mean fields in the derivatives in Egs.
(3.398), the leading order vanishes by virtue of the Hartree- dCo
Bose equatior(3.32. The next order leads to trivial linear da _ -
equations foray; anda;g that can be solved to give ag+agg/N2+ayl 2/N4
a A=yt 3= (14 mp)ag _ L dCy _L_chzo
o L+ myt i+ 2(n—3m3)a,” NZ daf e N AR
1—(1—2n)lag+ 7~ 2m3(1—ag) +3ns— 7 dc
aip= 7 7 . 00|
1+ 7t 4n3+2(n3—373)a da _ _
(3.39 ag+agy /IN+agol/N2+a,L/N3
Substitutinga, from Eq. (3.39), the coefficientsy; anda;g __ E diol _ L ﬁ)
can be determined directly in terms of the Hamiltonian pa- N da asaine N2 da
rameters. These general expressions are somewhat compli- 0 "0 3ot a0y /N
cated, and so we will not quote them here. When only the L dCyy
one- and two-body parts are considered, they reduce to par- NG da (3.4
ticularly simple forms given by ag
72 ni+ 2m1m2— 12 Again, after substituting the mean fields, the zeroth- and
a01:1+—772, alozw- (3.40 first-layer parts of these equations vanish by virtue of Egs.

(3.32 and (3.38), leaving behind trivial linear equations for
A question of general interest here is the the differenceghe second-layer mean fields.

between variation after and before projectiO/AP and The resulting mean fields and the energy expressions are
VBP) results. In VBP, one substitutes the leading-ordemrather lengthy when the cubic terms are included. Therefore,
mean field @), obtained from the Hartree-Bose equation, inin presenting the complete third-layer results, we prefer to
the energy expressiof8.28. Whereas in VAP, the full so- restrict ourselves to the one- and two-body terms in the
lution for the mean field3.31) is used. Thus, the difference Hamiltonian. This will make the comparisons between VAP
between VAP and VBP arises from the contribution of theand VBP easier. To this end, we first give the explicit ex-
higher-order mean fields to the ground energy. From theression forE,, (a):

2a—1

1 2 L 2-a
Eg,L(a):KN2| a(a—2+29,+an,)+ N[(—1—2a+a2)—2(2—a) m—a(2—a)p,]+ m(2—a) 7o+ A

2 2
+27n,+2an,— m[(l—a)(l—a—2n1)+a(l+a) 2] — W[(l—a)(S—Za)(l—a—znl)Jra(2+a

12

_0g2 L2 avi—a 2, 4 S r(1—a)(7— e _7g2
2a%) n,] +N4—af(1 a)(l—a—2ny)+a 772+aN[(1 a)(7—8a)(1—a—2ny,)ta(2+6a—7a%) n,]

2
- G2 ad-ali-ai-a-2m)atyl ) (342
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The solution of the variational problem for E@.42 has already been given in Eq8.36 and(3.40 for the zeroth and first
layers, respectively. Extending this solution oo the second layer gives
a= 1-m E m E {
1tn, N1tn N2(1-n)7”

1 2
TH2mmpm ot [ =LA it Ang) =t 7331 2)]

LL e (72+2 )72 3 ) (343
N4(1_771)5 71 2= 72)\ 11— 17172 71— 172)- .

When ;= 7,=0, Eq.(3.43 reduces tm=1, consistent with the @) limit. Thus, there is no difference between VAP and
VBP in the Q4) limit. Finally, substituting Eq(3.43 in Eq. (3.42, we obtain the following expression for the ground-band
energies, directly in terms of the Hamiltonian parameters:

N 1
N2 1—1n

1 1 1
(1= 70)?+ G2+ 21+ 7+ 27072+ 3m5) — 12 (24 214 3772) 12+ 1375 1+,

E,, =«N? !
gL K 1+ 7,

1 2 1 2

+2m+ — ——[(L+ ) e~ (2= m— 472 mo— (3= 4n) 93]+ — ———[ (L + ) (1+27,) 75— (1+3

72 Nl—nl[( ) n1— (2= n1—457) 72— ( 71) 175] N2(1_771)2[( 71)( 7)) 71— ( 71
12

2 3 2y 2 s L
—671—1277) 7, (3+69,—2091) 75— (5—8n1) 73] |- — ———
N* (1—71)

1+ m)2(ni+2mme— m)+ 1= o

X[(1+ 791+ 495 4793) 95— (1+ 75— 1397 — 313+ 1677) 9, — (3+ 179, — 5257+ 1693) 75— (6— 107;) 73]

L3 295 (1+ mp)*

ﬁw(ﬂ?rzmﬂz— 772)}- (3.49

Equation(3.44) is an exact result to the given order. We have As a final remark on the ground-band enerdigg4), we
carried out a numerical analysis of the diagonalization resultgliscuss the MOI systematics and its correlation with the size
for the Hamiltonian2.3), and directly verified that th and  parametera or r. [Note that for small perturbations of the

L dependence of the ground-band energies are as given fA(4) limit a~r.] From Eqs(3.39—(3.37), it is seen that the
Eq. (3.44). This agreement with the diagonalization resultséquilibrium size gets smaller for positive values pfand
also confirms that Eq(3.44) is free from computational er- larger for negative values. Inspection of the MOI term in Eq.
rors. (3.44 shows that it also gets smaller for positive and

The energy difference between VAP and VBP results idarger for negativep. Thus the two quantities are correlated
obtained by subtracting Eq3.42 with a=a, from Eq. as in the geometrical models; a larger size leads to a larger
(3.44). To the second layer, which is of most interest, it isMOI. The same correlation holds also for the cubic teﬁﬁs

given by andn,D2+D?n, but not for thel? andn,L? terms. In fact,
theL? term is completely divorced from the dynamics of the
EqL—Eg.L(a0) system(the MOI remains constant asor r changes and
) _ ) then,L2 term has the wrong dynamic dependence dthe
kN2 1 7 + L 212( 71+ 27172~ 72) MOI decreases asincreasep Thus caution should be exer-
NZ1+7, N3 (1—75y)? cised in phenomenological uses of these terms. It would be
o better if they could be avoided altogether, but certainly they
L? (1+ 772)(7754—27;1772— 7,)? should not play a dominant role in description of the MOI.
N FErAL (349

D. Vibrational bands

Calculations for the vibrational bands follow much the
Thus, as expected, VAP leads to a_lower gro_und energy thagy me lines as in the ground band:, namélymatrix element
VBP. Note also that fom,=0, the difference in the ground s 5 given interaction is evaluated in the intrinsic frame using
energy and MOI ) terms vanish. In fact, the equivalence of boson calculusji) all the resultingd functions are combined
VAP and VBP for these terms holds also in the higher layersig g singledgo, and (i) the normalization function2.32
Thus breaking of the @) limit with the ﬁp term constitutes  with the appropriatéN is substituted for the resulting in-
a special case, as it partially preserves the complete equivéegrals. The rest of the calculations require standard alge-
lence of VAP and VBP found in the @) limit. braic manipulations that can be carried out most efficiently



57 1/N EXPANSION IN THE VIBRON MODEL: DIATOMIC ... 3393

using MATHEMATICA . The only difference is that there are Substitutinga=1 in Eq. (3.46 reproduces the @) result
many more terms to be evaluated and the amount of angul@iven in Eq.(B7). For the two-body operators, we obtain
momentum algebra in each term gets longer. As a rule of )
thumb, the complexity of calculations grows exponentially <ﬁg> :(aN) J1+ 6—5a+ 2a N
with the vibrational number. Nevertheless, the final expres- pILLT g l aN  (aN)?" (aN)?
sions obtained are as compact as those for the ground band.
For reasons of economy, we skip all the lengthy technical
details of the intermediate steps, and present directly the final
results. o
Forv <N, the changes in structure between two neighbor- L2
ing bands are very similar, irrespective of the valuevof + (aN)*
Thus to get a picture of how the band structure changes with
increasingu, it is quite sufficient to compare=0 andv L3
=1 bands. To this end, we have repeated the ground-band - 62a(2—a)(1—a)], (3.4
calculations presented in Sec. Ill B for the=1 band. Be- (aN)
low, we present the third-layer results without further expla- 3- 108+ 582 C
nations. The expectation value of the one-body operator is <|5,|5>1‘L:aN2[ 2_a+ a

2(2—a)

3(1—a) 10-2la+6a®
1+ +

x aN (aN)?

a—

6—30a+ 13aT

(2-a) aN

given by aN a (aN)Z(Z_a)
~ aN 1 5 5—2a
<”p>1,L:7[1—N x| 2a-1-6(1-a)"| 75+ 2
T 72
L 2(3—a) 2(5—a)(3—2a) B (2-a)(1-a) 1+ 24—13a}
T e @n? (an)* aN
— 3
2 3(8—3a) 3]
_ _ _ ste—sd) + 2(2—a)(1—a)3}. (3.48
(aN)4(2 a)(l a)[l'f‘ aN (aN)G
3 Again, substitutinga=1 in Eqg. (3.48, one recovers the Ca-
+ 2(2—a)(1—a)?}. (3.46  sSimir result given in Eq(B2). The expectation values of the
(aN)® three-body operators are given by
|
- _(aN)3I1+ 6(3-2a) (4-18atlla®) 4a L [ 6-7a 2413-1%+7a%
(o)1= | aN (aN)? an)®" (aN)z( a) aN (aN)2
LY 3(2 ){1 2A5-3)] L (2—a)(—2+2a+a?) (3.49
—-a)|l- —-a)(— a+ta’), .
(aN)* N (aN)®
S 32525y — a2nel 2 3(5—10a+4a?) a(-15+28a—11a?) L 30 1 5—1la+7a®
(npD*+D%np)y =a —a+ aN - aN)? +(aN)2 (2—a) At ——

2(1—a)(34/3-18a+7a?) L2 33-7la+60a’—18a°
(aN)2 _(aN)4(2_a) 1+ aN
13
+(aN)ﬁ(Z—a)(l—a)(2—2a+az)]. (3.50

Combining the various expectation values above, and sub- Finally, we present similar results for te=2 band. Our
stituting the value ofa, Eq. (3.43), obtained from the VAP aim here is to confirm the conjecture made above about the
procedure, one obtains an analytical expression fowth@  change of structure in neighboring bands. Since the calcula-
band energieg,, similar to Eq.(3.44) for the ground band. tions are very laborious to carry out to the third layer, we
We do not present this long formula here because it is ofvill be content with the second-layer results. This will be
limited use and it can be easily reproduced. For purposes dafeen to be sufficient for our purposes. The expectation values
comparison of different bands, the original expressions irof the one- and two-body operators to the second layer are
terms ofa are actually more convenient. given by
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2(5—a) IV. ELECTROMAGNETIC TRANSITIONS

aN

. aN 2-3a L
<np>2L:_ 1+ +
-2 N (aN)?

(2—a)[1+ In this section, we use the projected states to derive ana-

lytic expressions for various electromagnetic transitions,

L2 which provide sensitive tests for the wave functions. In con-
TN J(2-a)(1-a), (3.5)  trast to energy levels, transition intensities are not measured
(aN) very accurately. Therefore, a first-layer calculation is usually
sufficient in most cases. Reduced matrix elements of a tensor
~ _(aN)ZJ 14—-1la 2(2—9a+6a?) operatorT® between projected intrinsic states wih=0
(Np)aL= 4 ll+ aN + (aN)? are calculated usinf#]
7-5a] L2 " L'[T%]v,L)
+ 2(2—a)| 1+ + a(2—a)y,
(aN)? aN | (aNn)* e
B L'(2L+1) E (Luk IL"0)
(352 2l M(N,o' LONN,u, L)% T H
(D-D)2, xf dB sin BdSe(B) (0’| TH, e #hv), (4.
0
) 5-22a+11a® 4a(l—6a+3a?
=aN“y 2—a+ - 5 .
aN (aN) where L=[2L+1]"2 Here and in the following, the\
quantum number is suppressed since it is a constant.
10(1—a)?
- s(2-a)|2a—1-——F—F—
(aN) aN A. Infrared transitions

12 We first discuss the in-band electric dipole transitions us-
(2-a)(1-a)%;. (3.53  ing the one-body operatdd. Applying the boson calculus
and projection techniques to E@l.1), we obtain for transi-

tions in the ground band

 (aN)®

Equations(3.51) and(3.53 reproduce the @) results given

in Egs.(B7) and(B2), respectively. (0,L’||I5||O,L>= Nﬁ(LOlq L’O)[a(Z—a)]l/z
In the remaining part of this section, we contrast the en-
ergy expressions obtained for the ground and vibrational F(N-1L)+F(N—1L")
bands, and comment on their general features. An immediate X . (42

. \11/2
observation is that the leading term in each powet di.e., 2AFNLIF(N.LY]
Cno) is the same in all bands. The next-order terGys, Equation(4.2) shows that, like in the case of band energies,

which provide the M co_rrectlon to the forme_r, dlffe_r from he transition matrix elements can also be reduced to forms
band to band, but the difference between neighboring ban Containing the normalization function. Thus, they can be
remains constant. That i€,;(v=1)—C,,1(v=0)=C1(v 9 i ' Y

oy _ . 2 : evaluated to any order inl/uSingMATHEMATICA . Here, we
2) Cfll(v 1). Only in the 1.N correction terms Cn2) resent the first-layer results as these are sufficiently accurate
do the differences between neighboring bands vary. For ex:

ample, for the one- and two-body Hamiltonid®.3), the or practical purposes:

second-order energy difference describing anharmonicity is A - 1
(OL"|D]O,LYy=NL(LO10L'0)[a(2—a)]

given by
EqL—2Ey +Ep =4x[1— 2 - 2 L (r-uy
gL 1L T By =4k[1-6a+3a°+ 7,(2—6a+3a%)]. X| 1+ ———(2a—1)|. (4.3
(3.54 N 8(aN)?
Substitutinga from Eqg. (3.40, we obtain In obtaining this expression, we have used the relationship

L'+L=(L"—L)?%?2 which holds forL’'=L=+1. Fora=1,
a2 _ _ Eq. (4.3 reproduces the @) result given in Eq(B8) to the
(2= 31+ ma(3=67m,1=277)]. given order. The final result follows upon substituting the
(3.59 VAP solution fora in Eq. (4.3. As the general result is
somewhat complicated, we give here the expression for the
Implications of these observations for level energies are agne-body symmetry breaking with’ =L +1:
follows: (i) Vibrational band energies increase linearly with
v to leading order, and there are small anharmonic effects o A _ U2 q _ 2\1/2
order 1N, and (ii) the MOI of all bands are the same to {0’L+1HD”O'L>_N(L+1) (1=m1)
leading order, and its variation among different bands is of 1 L(L+2) 1-25—7;
order 1N. Both of these features are in accordance with X1+ N~ 2N2 TETALET
experimental systematics, as will be discussed in more detail n N
in Sec. V. (4.9

—4k
1+,

Eg,L_ 2E1’|_+ E2’|_:
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For small perturbations of the(@® limit, a,=1—X;7; , and 1 L+1|n,D+Dnj0 L)
the above result can be easily generalized to include other ’ P P
symmetry-breaking terms. In-band transition matrix ele- - .
ments in vibrational bands exhibit a similar structure as in =N7HL+1)
the energy expectation values; namely, the leading term in

1
a(2a—3)+m

each power of spin remains the same and tiech'rrections 5

vary with bands. Thus, in going from the ground band to the X[2L(1-a)+(4-7a+2a%)]|, (4.9
vibrational band, the only change in Eq$4.3) and(4.4) is

that the term M is replaced by (+2v)/N. The effect of

symmetry breaking on in-band transitions is seen to be mar- A A _ 12 L
ginal. The change in the leading term in Ed.4) can be (2L T 1ND+Dny0L)= V2N(L+1)A(1-a) 1=2N1

absorbed in the dipole charge, and the small change in the (4.10
1/N? term does not have any experimental consequence.
We next discuss the interband transitions which are ve

sensitive to changes in the vibrational quantum number. Fglfhe relativeN dependence in the above expressions is now
the Av=1 transition from the ground band, a calculation COnsistent with the data so that one can attempt to use them

similar to Eq.(4.3) yields to describe the dipole transitions among the0, 1, and 2
bands. It should be emphasized that the intrinsic matrix ele-
. N ment of the two-body operator vanishes for the:8 transi-
(LL'[IBfloLy=yNL(LO1gL 0)(a~1) tion, and one needs a three-body operator for its description.
In general, av-body operator is required to describe the
) (4.5  v—0 transition. As suggested in R¢B], use of the expo-

nential form(2.6), which includes all the powers tﬁrfp in the
dipole operator, is the most practical way in dealing with
This expression vanishes in the4D limit whena=1. For  transitions involving higher-vibrational bands.
the one-body symmetry breaking with =L +1, Eq. (4.5 Here, it is of interest to comment on the spin-dependent
becomes terms in vibrational transitions which arise from rotation-
vibration interactions. These terms are represented by
2L+1+ 9, Mikhailov plots in collective nuclei and Herman-Wallis
ToN1T forms in molecules. The spin-dependent termsAin# 0
2N(1—7q) transit L o
(4.6) ansitions are seen_to vanish in thé_él%DIlmn in all cases,
even when the matrix element itself is nonzero. To generate
them in the @4) limit, one needs to include the term
i[LD'—D'L]™ in the dipole operator, wher®’ corre-
sponds to the conjugate momentum operator. In the IBM,
breaking of the S(B) symmetry was shown to provide a
4\/5775(1— n’f)l’z a natural explanation for spin-dependent terms in interband
NZ(1— 70) (L+1)”% (47  transitions of collective nucld22]. Further, these terms ex-
n hibit a characteristic N dependence as in Eq§t.9 and
(4.10 (which, incidentally, provide the best signatures for
Comparing the above matrix elements with those obtained ifinite N effects in the IBM. The 1N dependence of the
the mean-field theory, Eq2.16), it is seen that the leading- slope in Herman-Wallis form gives the right order of mag-
order results agree as in the case of energies. Projectiafitude when compared to the data. Hence breaking of the
yields a nonzero result for th&v =2 transition but this is O(4) symmetry may explain the spin dependence in vibra-
only in the 1N? term of the series, which is too small to have tional transitions without the need for an extra term in the
any practical value. Experimentally, the-0 transitions are dipole operator.
10° smaller than the ground ones which requires roughly a
drop of N2 in the matrix elements. That is, a leading term of -
order 1 is needed in E@4.7) to explain the data. B. Raman transitions
The preceding examples demonstrate that the one-body The available data on Raman transitions are rather scarce,
dipole operator is not sufficient to describe the vibrationaland so we limit their discussion to a few examples. The

transitions even with symmetry breaking. To show the effeciyround-band matrix element of the quadrupole oper@®
of the higher-order terms, we calculate the same matrix elecan be reduced to the form
ments with the two-body operator in E@.5):

X

1—m(L —L—a)

(AL+1BIOL) =~ [N(L+ 1) 1

The corresponding leading-order expression for she=2
transition from the ground band is given by

(2L+1|DJoL)=

5aNLL’
/5 > (10L'0]JO)

<01L ”QHO,L):2[F(N,L’)F(N,L)]l/2 3

(OL+1|n,D+DnyoL)
=N?(L+1)YJa(2—a)]'?

1L
x(L010J0 F(N-1J),
1-a L(L+2) (L01d >[L 1 2] ( :
Xlam—y~+ oz (574a), (48 (4.12)
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TABLE I. Experimental values for the ratios considered in Sec. V. The data are fromi23gand listed
in order of increasing MOI. The @) values(with k' =0) are shown at the top row for referen€®, is in

cm™ L.
Molecule N C, AE/INC, N?C,/C, N*C,/C, NAC,/C, NAC,/C,
0(4) K 4.00 0 0 0
H %k 44 20.6 4.38 —0.200 0.029 —1.65 -1.2
1H 3¢l 55 10.1 5.17 —-0.158 -1.60 —-0.70
1H 81Br 57 8.35 5.38 —0.134 0.010 —1.58 -0.51
2c %0 161 1.92 6.92 —0.0825 0.002 —1.51
°Be %0 124 1.64 7.19 —0.0768 0.002 —1.44 -0.15
825 160 202 0.718 7.85 —0.0642 -1.69
27p| 60 138 0.638 11.0 —0.0325 -1.30 2.5
2Tp| 19 166 0.550 8.68 —0.0526 -1.51 —-0.24
27p| 325 183 0.279 12.0 —0.0264 -1.31
27| 3¢l 245 0.243 8.02 —-0.0618 —0.001 -2.02 -0.52
2TAl 9By 293  0.158 8.11 —0.0613 —0.001 —-1.85 —-0.52

where the curly brackets denote thg 6ymbol. The angular E  =C.L+C,L2+C.L3

momentum algebra in evaluation of E4.11) is more com- gLt 2 o

licated due to the presence of the 8ymbol. For the first ST AT /T
aner, these are avaiFI)abﬂé], and oneqobit/ains from E¢4.11) E1 =AE+CiL+CoL%+Cal”, 6D
i aN. atl (L'-L0)? The other differential quantities are defined A€;=C;
(OL'||QloLy=—-L(L02QL'0)| 1+ ——— ————|. —C;. The data are extracted from the Dunham parameters
2 aN 16aN? given in Ref.[23]. The boson numbers are determined from

(412 the anharmonicity parameters using the relationskip2
I . =wel/weXe [3]. In a few cases where these parameters are
SubstitutingL’=L+2, L andL—2 in Eq. (4.12), expres- NP .
sions for the so-calle®, O, andQ branches in Raman in- not well determinede.g., AlO and A3, N appears to be

tensiti be obtained. A final | ve th underestimated. While use of a lard¢in these cases would
ensities can be oblained. AS a final example, We give I,y e ayoided the large fluctuations, leading to a smoother
first-layer result for the 30 Raman transition:

trend in the ratios, we have decided against it as it would be
A 1 a ratherad hocprocedure.
(1,L’||Q||O,L):7\/ﬁL<L02qL’O} The reasons for the particular way the data are presented
are as follows. As stressed befokeis a scale parameter and
1 it is best determined from the first vibrational eneryl. By
X|[1— Za—N(L’—L—a) . (413 using ratios of the quantities in E¢.1), we eliminate this
trivial scale parameter from the discussions. Second, the fac-
Equations(4.12 and (4.13 have a similar structure to the tors of N are _ch_osen such that the rat_ios are independent of
corresponding matrix elements for infrared transitions, Eqs\: (Here we limit ourselves to the leading-order terms iN 1/
(4.3 and(4.5). Neither expression vanishes in théDiimit, which is sufficient for a qualitative discussionThus the

and therefore, symmetry breaking does not play an importarf@tios provide universal parameters for a description of the
role in these Raman transitions. spectra of diatomic molecules, independent of the scale pa-

rameters. The usefulness of the ratios becomes apparent
when one contrasts their range of variation with thosél of
andC,. For example, whileC, (inverse of the MO varies

The analytical I expansion formulas derived in the pre- two orders of magnitude over the range of the molecules
vious sections greatly facilitate systematic study of diatomigpresented in Table I, the rat¥AC, /C; remains practically
molecules in the framework of the vibron model. As men-constant. Below, we discuss the experimental systematics for
tioned in the Introduction, past applications of the vibroneach ratio and contrast them with thé4Dpredictions.
model to molecular spectra have mostly followed the path of () AE/NC;: AE and C; are the two most important
the symmetry-preserving approach. A primary aim of thisspectroscopic quantities characterizing the vibrational and
study is to assess whether the alternative, symmetry-breakirtgtational excitations, respectively. Wheti=0, the Q4)
approach can provide a more economical and realistic repréimit has the parameter-free prediction of 4 for this ratio,
sentation of spectroscopic data. In order to establish a refewhich is smaller than the observed values listed in Table I.
ence point and motivate this study, we first compare a fewlhe halides are the closest to thédpvalue with some 10—
key observables in some typical diatomic molecules with the30 % deviation, but as one moves to heavier and more sym-
O(4) predictions(see Table)l The quantities in Table | fol- metric molecules, the difference becomes a factor of 2-3.
low from the definitions of the ground and first vibrational Clearly one needs a smalléy; (larger MOJ) than predicted
band energies as by the 4) limit. An easy way to achieve this is to introduce

V. APPLICATIONS TO MOLECULAR SPECTRA
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(d) NAC,/Cy: The differential change i€, as depicted
by this ratio remains remarkably constant for the diatomic
molecules listed in Table I. The negative sign reflects the fact
that the MOI of the molecules gets larger with increasing
vibrational number. In the @) limit, all the bands have the
same MOI, and hence this ratio vanishes. The observed
changes in the MOI can be reproduced by either including
the quartic termD-D L-L in the Hamiltonian or, more gen-
erally, by breaking the @) limit.

(e) NAC,/C,: This is similar to(d) above but for the
softness parametél,. The experimental values show more
variation but are generally negativexcept AlQ. It is inde-
terminate in the @) limit as C,=0 for all bands.

] As stressed earlier, the change in band structure is linear
U —— (to leading order for low-lying bands; therefore the above

: : . quantities provide a good overall representation for the spec-
m, troscopic data.

AE/NC,

FIG. 1. The effect of the one- and two-body symmetry-breaking - .
terms with strength parameters and 7, on the ratioAE/NC;. A. Minimal breaking of O (4)
The parameten, is varied from—0.3 to 0.3 in steps of 0.1. We first consider a minimal breaking of thé4Dlimit via

the Hamiltonian(2.3). The effect of then, andn? terms on

. - S : he ratios(a)—(e) introduced above are shown in Figs. 1-3.
stressed _earller, this is an artificial way to increase the_ MO}, each figure, a particular ratio is plotted against the param-
hecause It does not lead 1o a cqrrespondmg Increase in mg’[ernl for various values ofp,. Both parameters are varied
lecular size. A better and physically more appealing way e range of —0.3,0.3, », continuously andy, in steps

would be to break the @) limit in such a way that the size of 0.1. In Fig. 1, we show the effect of the symmetry break-
parameter (or a) gets larger than the @) value of 1 as the ing on the ratid E/NC,, which is seen to be coherent fgg

MOI increases. - . . .
P S . and 7,. That is, they both reduce this ratio from itq4D
(b) N°C,/Cy: This ratio measures the softness of a rOtor'value of 4 for positive values and, conversely, increase it for

that is, the ability of a molecule to stretch while it rotates negative values. The latter range is preferred by the experi-
faster and faster in the ground band. The_experime_ntal Valu%‘ﬁental values quoted in Table I, which require a larger MOI
n Tabl<_a | cover a w@e range, fromo._z In the. halides to than that provided by the dipole interaction alone. Note that
—0.02 in AIS'. _It vanishes in the @)' limit, which corre- _for negativer, or 7,, a (or r) gets larger than the @)
sponds to a_rlgld rotor. But as seen in Sec. III,_any breakmg/alue[see Eq(3.37)]. Thus the increase in the MOI is asso-
of the O(4) limit leads to nonzero values for this ratio, and ciated with a corresponding increase in molecular size. We
hence they could provide a more natural e>§pI§1nat|on for th‘f“emark that the situation in the IBM description of deformed
softness parameter than including the terml()> in the  nuclei is exactly the opposite; namely, the dominant
Hamiltonian. quadrupole-quadrupole interaction there leads to a too large
(c) N*C3/Cy: This ratio provides a correction to the soft- MO that needs to be reduced by the addition(pdsitive
ness at high spins, and it is usually positive. Again it van-one-body energief24]. This choice of sign in the IBM has
ishes in the @) limit. One can accommodate the experi- fiym microscopic foundations in the pairing property of the
mental values by either breaking thé4Dlimit or including  nycleon-nucleon interaction. In the case of diatomic mol-
(L-L)® term in the Hamiltonian. ecules, there is no microscopic basis for the bosons, and the

the-L term in the Hamiltonian with a negative'. But as

N — (R —
03

02 0.05F

N2C,/C,
N*C,/C,

-0.05

FIG. 2. Same as Fig. 1 but for the ratidéC,/C; andN*C5/C;.
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FIG. 3. Same as Fig. 1 but for the ratiN\C,/C; andNAC,/C,.

choice of sign for the symmetry-breaking terms is purelyratio calls for higher-order terms in the Hamiltonian.
motivated by phenomenology. As already mentioned in Sec. IV, the one-body dipole
In Fig. 2, we study the variation of the ground-band MOI operator is not sufficient to describe the infrared transitions
with spin. The two ratiosN“C,/C; and N*C3/Cy, which  beyondAv=1. Here we discuss the case &6 =1 dipole
measure the deviation from the rigid-rotor behavior, are plottransitions, where symmetry breaking provides the right or-
ted in Figs. 2a) and 2b), respectively. Symmetry breaking der of magnitude as far as tie dependence is concerned.
by 7, gives the correct sign fdi”C,/C, but the magnitude  From Eqs.(4.6) and(4.4) the ratio of a 10 to 0—0 tran-
IS not_Iarge enough o accommo‘?"’?‘te the observed valuegygp, js roughly given byz;/N. Since the dynamic con-
especially for the halides. The positive rangespfleads 1o gigerations above limit the valuesto about 0.2, symmetry

the wrong sign; thus they are excluded by this set of datg, g aying could provide only a fraction of the experimental

The n_egat|ve range of, on the other ha_md, gives the cor- ratio. This again underscores the importance of higher-order
rect sign and they are much more effective thann repro-  oms in the transition operator.

ducing the experimental range. The raN8C;/C; has the
wrong sign in most cases when bafh and 7, are negative.
Nevertheless, a small positive; and a larger negativey,
could still explain all three ratios discussed so far. Here we discuss the symmetry breaking due to the higher-
The change in the MOI among different bands is illus-order terms, namely, three-body interactions in the Hamil-
trated in Fig. 3. The ratiodNNAC,/C,; and NAC,/C, are tonian and two-body terms in the dipole transition operator.
plotted in Figs. 8a) and 3b), respectively. The former can The effect of the three cubic terms on the ratias-(e) are
be described by a band value satisfying+ 7,~—0.2, shown in Figs. 4-8. The presentation is similar to Figs. 1-3
which is still consistent with the previous ratios. But the with 7, being replaced by,; in (a), 73 in (b), and 7 in (c)
latter ratio, which is indeterminate in the4) limit, exhibits ~ of each figure. The effect of the cubic terms on the ratio
large variations far outside the experimental range for anAE/NC,; is shown in Fig. 4. The curves in Fig. 4 exhibit
value of the symmetry-breaking terms. Explanation of thisbroadly similar features as in the casef in Fig. 1; thus

B. Higher-order terms

10'"''I""I""I""I""I"" Trrrr v T T T T T T T T T T T T
[ Ny =-02 (a) (b)
8| 3 =-03
_ 6h
&)
Z. b
i B
< 4_
[ m3=03
2| S
[ '3 =03
O....!un||I||||l||A|I||||I|||| PR YO SO0 YN TV T YO Y SR WY N WO T I W O O O METSTEN N EPSETET S SRS EC T WA S SR N A
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FIG. 4. The effect of the cubic terms with strength parameigrsy;, and %4 on the ratioAE/NC;. The parameters are varied from
—0.31to0 0.3 in steps of 0.1, except fgr which is varied from— 0.1 to 0.3. Lowery; values are excluded because they lead to excessive
fluctuations in the graphs.
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N2C,/C,

FIG. 5. Same as Fig. 4 but for the rati*C,/C;.

the same comments apply here. In details,shelependence above. From Eqgs(4.9) and (4.8), the 1-0/0—0 ratio is

is more uniform and weaker compared to the others. given by 1A/N, consistent with the data. However, the same
In Fig. 5, we study the dependence of the r&lkC,/C;  ratio for theAv =2 transition is still proportional tey; hence

on the cubic terms. Again, the curves in Fig. 5 exhibit similarit suffers from the same problem. This again can be resolved

patterns as in Fig. (& showing the», dependence. Two by either including the three-body term in E@.5) or, more
important differences are thaj is even more effective than practically, using the exponential for(a.6).

77, in inducing changes in this ratio, and the sign dependence

for 73 is reversgd cqmpareq to the others. These fegtures VI. CONCLUSIONS
would be helpful in a fine-tuning of the parameters. In Fig. 6, _ . . .
we repeat the same study for the ratiéC5/C;. In this case, In this article, we have developed analytidNléxpansion

there are no common features among different figures. Notesolutions for the vibron model of diatomic molecules and
worthy is then; dependence, which is very sensitive to thisused the results in a systematic study of symmetry-breaking
ratio, and hencey; would be best determined by fits to the effects in energy levels and electric transitions among them.
C; coefficient of the ground-band MOI. We have shown that the (@ results can be improved by
The variation in MOI with bands is studied in Figs. 7 and including symmetry-breaking terms in the Hamiltonian.
8. In Fig. 7, the dependence of the raNAC,/C; on the = Symmetry breaking could offer a more economical and
cubic terms is seen to be similar to thatygfin Fig. 3a), but  physical description of spectroscopic data compared to the
much weaker in its effect. Thus this ratio should be fitted bysymmetry-preserving approach, and should be considered in
the », and n, parameters. The unstable nature of the ratiodetailed studies in the future.
NAC,/C, encountered in Fig.(®) is cured by the addition A unique aspect of the formalism that is worthwhile em-
of the cubic termgFig. 8). The 75 range is still outside the phasizing is that the solutions obtained for the ground-band
experimental range but the other two could explain the dateenergies and transitions are exact for arbitrary Hamiltonians
Clearly, in order to reproduce this ratio, one has to balancand parameters. For the vibrational bands, the ang83),
the cubic parameters carefully. generalized from the @) wave functions, reproduces the
Inclusion of the two-body term in the dipole operator numerical diagonalization results for the energies and in-
clearly cures the problem in thiey =1 transitions mentioned band transitions, but leads to small discrepancies in spin-

0.05

N4Cy /G

-0.05|

0.1 L
.03

FIG. 6. Same as Fig. 4 but for the raff'C3/C;.
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FIG. 7. Same as Fig. 4 but for the ratAC, /C;.

dependent terms of interband transitions. While this has no APPENDIX A: NORMALIZATION COEFFICIENTS
practical consequences, it suggests that the vibrational bands
are likely to have more complicated forms in the intrinsic
frame than given in Eg2.33.

The simplicity of the vibron model also allowed us to go
beyond the usual boundaries of the IBM, and explore, fo
example, the effects many-body terms in the Hamiltonian
and transition operators, as well as multiphonon bands. Since firstlayer: «,,=1;
the formalism in both models is very similar, one could ex-
tract lessons for the IBM from the present results. The varia-
tion of the MOI with bands provides a relevant example. In
both collective nuclei and molecules, the MOI &=0
bands gets larger with increasing phonon number. Reproduc- a;=202a—1), as,=75a—40,
ing this feature in the IBM has been an outstanding problem
[25]. Inspection of Fig. @) shows that the positive one-body
term ﬁd could be the source of the problem, and an attractive
two-body terrrﬁﬁ is needed to compensate for it and to make
the MOI in the 8 band larger. third layer: @y =2a a3=6(7a’-6a+2),

Finally, the formalism for the (1) SGA provides the ba-
sis for extension of the W expansion technique to poly-
atomic molecules, which will be pursued in future articles.

Below, we tabulate the coefficients,, in Eq. (2.32 up

to the order IX® in a layer format. Layers are defined such
that a,, with n—m+ 1=k belongs to theth layer; that is,
@nn forms the first layerp,,—; second, etc.:

second layer: ajp=a, ay=6a—2, «@3,=18a—8,

ags=14(9a—5);

a,=4(75a%—80a+27),

ACKNOWLEDGMENT as3=4(325%—375+127),

This research was supported in part by the Australian Re-
search Council. aps=28(150a%—180a+ 61);

10

-10 L

FIG. 8. Same as Fig. 4 but for the ratAC,/C,. The curves forp3=0, 73=0, and3=0 lie outside the figurekcf. Fig. 3Ib)].
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fourth layer: azy=6a3,
a=24(15a%—25a°+20a—6),
as,=4(13503%— 2602+ 2025 — 576),

agz=24(1750°%— 35002+ 266 7a— 731);

fifth layer:  a,o=24a%,
ag;=120(31a*—90a°+ 130a°— 90a + 24),
agr=24(451%%— 14003+ 1890
— 12096+ 3000);
sixth layer: aso=120°,

ag=720(63a°— 301a*+ 70083 — 8402

+504a— 120). (A1)

3401
third layer: a,,=2(5a%—32a+48),
ag3=6(23a%— 108+ 130),
a,=4(1533%— 6722+ 739). (A3)

APPENDIX B: O (4) RESULTS

The O4) limit of the vibron model has been solved ex-
actly using group theoretical techniquk3]. Since it pro-
vides a valuable reference point in both formulation of the
1/N expansion and checking the accuracy of the analytical
formulas, we collect here some of the relevant results. The
O(4) Casimir operator and its expectation value in a state
IN,v,L) are given by

|

C,(0(4))=D-D+L-

(N,v,L|C,(0(4))IN,v,Ly=N(N+2) - 4(N+1)v+4v2.
(B1)

Normalizations for the vibrational bands have exactly theThus the energy eigenvalues of the4DHamiltonian (2.1)

same form as Eq2.32 but the coefficientsy,,, have dif-
ferent values. The exception is the first-layer coefficients

) _ 2
which remain the same, i.ex,=1. For thev=1 band, the  (N-v:L[Ho@[N.v,L)=—«[N(N+2)—4(N+1)v +4v°]

second- and third-layer coefficients are given by
second layer: «a,9o=2a—4,

ay=8a— 14,

azp=21a— 32,

4= 44a— 60,

as4=20(4a-5),

ags=132a— 154;

third layer: a,,=6(a’—4a+4),

ay=185a%—17a+ 14),
a=4(11422— 3522+ 263),
as3=4(470a°— 1330+ 907)

@ =4(120%2-309(+1957).  (A2)

For thev =2 band, the same coefficients to poweN4are

second layer: a,,=3a—38,
ay1= 2(5a_ 13),
azp=8(3a~-7),

3= 4( 12a— 25),

+(k+«'")L. (B2)
Explicit expressions for the @) wave functions, both in
coordinate space and second-quantized form, are available in
the literature[ 3]. Here we quote a particularly useful recur-
sion relation that allows construction of the vibrational bands
from the ground band of systems with lower boson number,

IN,v,Ly=Cpn,(s's"=p"-p"?IN-20v,0L), (B3)
whereCy, is a normalization factor:

oo —(—oy-e (N-20+1)! 2 54

= (=2 TN D! B4

Rewriting the ground-band state as a projection from the
condensatéN—2v,0,L )= P5N—2v,0), and noting that the
projection operator commutes with the scalar operator
(s's"—pf.ph), it is clear that intrinsic states have the same
form as in Eq.(B3):
IN,v)=Cryp(s's"=pT-pH?|N—20,0). (B5)
In terms of the intrinsic boson operatobs=(s+ po)/\/i,

b’ =(s—po)/+/2, the vibrational bands in EqB5) can be
written as

IN,v)=2"Cy,[(N=20)!] 2

x[b'b'T+plpt 2(bHN-22|0).  (B6)

Matrix elements of various operators have been calculated
in the O4) limit [2,3]. Here we quote a few of them that are
used in checking the I/ expansion results:
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N-1 (N+2)L

2 T2(N-20)(N-20+2)’
(B7)

(N,u,L|ny|N,v,L)y=

(N,v,L+1|D|N,v,L)

=[(L+1)(N—-2v+L+2)(N-2v—L)]*2 (B9
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These sums can be evaluated using the techniques described
in Appendix B of Ref.[4]. Here we quote the results for the
casem=m’'=n=n'=0, which are encountered most in this
paper:

sn=2 (LOL'0]J0)2J". (C2)

The first few of the sums are given by

In evaluating matrix elements, one often needs to couple

thed functions with Clebsch-Gordan coefficients using

(CD

m'n’

dt d-’ —; (LmL'm’[Jp)Lnl'n’[Ju"yd? .

After the angular integration, EC1) leads to angular mo-
mentum sums with thd function replaced by powers df.

So=1, S;=L+L’, S,=L2+4LL'+L'?

Sy=L3+LL'(9L+9L'—4)+L'3,

S,=L*+4LL'[4L2+9LL' +4L'2—5(L+L")+4]+L"%
(C3)
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