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Limits for compression of quantum information carried by ensembles of mixed states

Michał Horodecki*
Institute of Theoretical Physics and Astrophysics, University of Gdan´sk, 80-952 Gdan´sk, Poland

~Received 12 December 1997!

We consider the problem of compression of the quantum information carried by ensemble of mixed states.
We prove that for arbitrary coding schemes the least number of quantum bits~qubits! per message needed to
convey the signal states asymptotically faithfully is bounded from below by the Holevo functionS(%)
2( i piS(% i). We also show that a compression protocol can be composed with another one, provided that the
latter offersperfect transmission. Such a compound protocol is applied to the case of binary source. It is
conjectured to reach the obtained bound. Finally, we point out that in the case of mixed signal states there
could be a difference between the maximal compression rates at the coding schemes that are ‘‘blind’’ to the
signal and the ones that assume the knowledge about the identities of the signal states.
@S1050-2947~98!07105-4#
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I. COMPRESSION OF QUANTUM INFORMATION

One of the important problems of information theory
the compression of information. A general limit for compre
sion rate of classical information is placed by the so-cal
noiseless coding theorem@1#. Suppose that a source gene
ates a messagei with probabilitypi and allow the subsequen
messages to cumulate into long sequences and then repr
them ~encode! as sequences of bits as economically as i
possible~economically means here that we want to use
least possible average number of bits per message!. The task
of the receiver~Bob! is to convert~decode! the binary se-
quences into the original sequences of messages. Here w
not require perfect transmission but only an asymptotica
faithful one. This means that Bob may be unable to reco
correctly each sequence, but the probability of error tend
zero if the length of input blocks tends to infinity.

Now the noiseless coding theorem@1# says that the nec
essary and sufficient number of bits per message neede
asymptotically faithful transmission is equal to the Shann
entropy S52( i pi logpi ~in this paper we use base-2 log
rithms! of the probability distribution characterizing th
source. Then this quantity says in fact how much informat
per message is actually produced by the source. Indeed
can imagine, that after the most economical compress
procedure, each piece of the compressed signal is equ
essential as all redundancy was removed. Then the siz
the maximally compressed signal can be interpreted as
quantity of information contained in the input~uncom-
pressed! one.

Let us now turn to the problem of compression of qua
tum information, which was first considered by Schumac
@2#. The role of messages is here played by quantum st
% i ~signal states! and the bits are replaced by qubits, i.
two-level systems. The probability of error is generalized
quantum case by means of chosen measures of fidelit
distortion @2–4# between two quantum states. Thus we w
ask about the least number of two-level systems neede
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carry the information asymptotically faithfully to Bob, i.e
so that the average distortion between the input and ou
states will tend to zero~or the average fidelity will tend to
one! in the limit of input signal block of infinite length.

Before we review the results obtained so far, let us m
tion the fundamental difference between the quantum
classical case due to the no-cloning theorem for quan
states@5#. It was shown that the theorem is equivalent to t
impossibility of measuring the state parameters of a sin
quantum system@6#. Then we can imagine two scenario
that, according to the above restriction for quantum inform
tion processing, could in principle produce different resu
@7#. Within the first scenario, we assume that Alice does
know the identities of the particular states produced by
source. Then, in accordance with the no-cloning theore
Alice has no means to get this knowledge. Thus the m
general of Alice’s coding protocol amounts to performing
quantum operation~trace preserving completely positiv
map—see the Appendix! @8# that depends only on the know
characteristics of the source, i.e., the form of the genera
ensemble$pi ,% i%. We will call it blind coding. If, however,
we allow Alice to know each of the produced states, we d
with the second scenario~arbitrary or nonblind coding!,
where Alice’s coding amounts to replacing the sequence
signal states by completely arbitrary new states. It seems
in some cases it will produce more efficient compress
than is possible within the previous scenario.

Let us now review the results obtained so far in the d
main of compression of quantum information. For the e
semble of pure states, Schumacher showed@2# that, by
means of blind coding, it is possible to reduce the nee
number of qubits to the value of the von Neumann entropy
the total density matrix of ensemble%5( i pi% i ~in short, the
von Neumann entropy of the ensemble!. The proposed
coding-decoding protocol was then simplified by Jozsa a
Schumacher@9# ~we will refer to it as the SJ protocol!. To
obtain the converse statement saying that this quantity is
necessary for faithful recovery of the signal, Barnumet al.
@7# considered an arbitrary coding scheme. It turned out t
even in this case it is impossible to better compress the d
so that the obtained lower bound applied also for the fi
3364 © 1998 The American Physical Society



m
r
tio
o
s
ro

u
op

ith
m
a
-

he

ffi
e

es
. I
he

es
r

by
un

n

r
su
m
in
n
b
e

a
he
on
c

o

he

m
d

ch
epare

ch
ed

Bob.
the
b-
-

on
m.

-
es.

ion
era-

f
ion
n-
ing

l

c
ven

ate
tity
its

y

57 3365LIMITS FOR COMPRESSION OF QUANTUM . . .
scenario. Thus for the ensemble of pure states the proble
compression has been completely solved: the two scena
give the same degree of compression, and the informa
per message contained in such an ensemble is equal t
von Neumann entropyS(%) of the ensemble. Note that thi
establishes a precise sense of the von Neumann ent
within the quantum information theory@10#.

Now, the problem of ensemble ofmixed states is still
open. The SJ coding protocol allows one to compress s
an ensemble down to the value of its von Neumann entr
@4,11# ~see also@12# in this context!, but one knows that in
some cases the more efficient protocols are possible@4,11#.
To illustrate it, let us consider the source producing w
certainty some established mixed state. Then the ense
has entropy greater than zero but of course it does not c
any information. This implies that the ‘‘information con
tent’’ of the ensemble~for any of the two scenarios! cannot
be, in general, merely a function of the density matrix of t
ensemble. Instead, it must depend on the particular form
the ensemble. Moreover, it seems that for ensembles
mixed states the arbitrary coding could produce more e
cient compression than the blind one. Under this consid
ation it is desirable to investigate the problem of compr
sion of information carried by ensembles of mixed states
particular, an important task is to provide some limits for t
compression rates for the two types of coding.

In this paper we provide the lower bound for the nec
sary number of quantum bits~qubits! per message needed fo
faithful transmission of the quantum information carried
an ensemble of mixed states for arbitrary coding. The bo
is equal to the functionS(%)2( i piS(% i) ~we will call it
Holevo information!, which was shown by Holevo to be a
upper bound for accessible information@13,14#. In particular
it implies that for the ensembles of states of disjoint suppo
the two considered types of coding produce the same re
Further we investigate the problem of composing the co
pression protocols. We consider a class of nonblind cod
protocols, which involve composition of two protocols: a
ideal one, which amounts to replacing the input states
new states, which, partially traced, reproduce the form
ones, and the SJ protocol~applied to mixed states!. Finally,
we conjecture that if the arbitrary coding schemes are
lowed then the Holevo information is in fact equal to t
minimal number of qubits needed for faithful transmissi
and the bound can be reached by means of the proposed
of protocols.

II. COMPRESSION PROTOCOLS

Suppose that Alice generates a signal state% i
0 ~acting on a

Hilbert spaceHQ) with probability pi
0 . The produced en-

sembleE05$pi
0 ,% i

0% has the density matrix%05( i pi
0% i

0 .
Denote now the product% i 1

0
^ •••^ % i N

0 by % i , wherei now

stands for multi-index~to avoid complicated notation we d
not write the indexN explicitly unless necessary!. The cor-
responding ensemble and state are denoted byE and%, re-
spectively. Now Alice performs a coding operation over t
initial ensembleE ascribing to any input state% i a new state
%̃ i . The map% i→%̃ i5LA(% i) is supposed to be a quantu
operation for blind coding or an arbitrary map for nonblin
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coding. In the latter case we allow Alice to know even whi
states are generated by the source, so that she can pr
separately each of the states%̃ i for eachi .

The new states%̃ i represent the compressed signal, whi
is then flipped into the suitable number of qubits determin
by the dimension of subspace occupied by the state%̃ of the
ensemble and sent through the noiseless channel to
Now the states%̃ i are to be decoded to become close to
initial states% i . For this purpose Bob performs some esta
lished quantum operationLB, which of course does not de
pend oni . Then the resulting states are% i85LB(%̃ i) and the
whole scheme is the following:

% i →
LA

Alice8s coding

%̃ i →
I

noiseless channel

%̃ i

→
LB

Bob8s decoding

% i8, ~1!

where% i and% i8 act on the Hilbert spacê NHQ while %̃ i on
the channel Hilbert spaceHC . Without loss of generality, we
can assume~as in Ref.@7#! thatHC# ^

NHQ . As a measure
of distortion characterizing the quality of the transmissi
% i→% i8 we choose the metric induced by the trace nor
The latter is defined as

iAi5TruAu ~2!

with uAu5AA†A. Thus the trace norm of the Hermitian op
erator is simply the sum of absolute values of its eigenvalu
Consequently, the distortion is defined as

D~%,s!5i%2si . ~3!

An important property of the proposed measure of distort
is the fact that it does not increase under the quantum op
tions ~see Appendix!. Then the average distortionD̄
[( i piD(% i ,% i8) will indicate the quality of the process o
recovery of quantum information by Bob after compress
by Alice. Now, for a fixed source, determined by the e
sembleE0, one considers the sequence of coding-decod
pairs (LA ,LB) with the property that limN→`D̄50 ~recall
that the pair is implicitly indexed byN). Such sequences wil
be called protocols.

Define now the quantityRP characterizing the asymptoti
degree of compression of the initial quantum data at a gi
protocolP by

RP5 lim
N→`

1

N
log dim%̃. ~4!

Here dim%̃ denotes the dimension of the support of the st
%̃ given by the number of nonzero eigenvalues. The quan
log dim%̃ has the interpretation of the number of qub
needed to carry the state%̃ undisturbed (%̃ is to be trans-
ferred by a noiseless channel!.

Now, given a classP of protocols, we define the quantit
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3366 57MICHAŁ HORODECKI
IP5 inf
PPP

RP , ~5!

which is equal to the least number of qubits per mess
needed for asymptotically faithful transmission of the init
signal states from Alice to Bob within the considered class
protocols~to be strict one needsIP1d qubits per message
where d can be chosen arbitrarily small!. As discussed in
Sec. I, we are interested in two classes of protocols—
ones with blind and arbitrary coding schemes. Accordin
we will consider two kinds of information—thepassive in-
formation Ip5IP whereP is the class of protocols with blind
coding and theeffective information Ie with the infimum
taken over protocols with arbitrary coding. The effective
formation represents the amount of information that seem
be actually carried out by the ensemble while the pass
information I p represents the information that is ‘‘seen’’ b
the quantum apparatus, which is ‘‘blind’’ to the signal. A
though the actual information contents of the ensemble co
be in fact lower, the apparatus cannot benefit it, as it can
in general read the identities of the signal states without
turbance. As a result the compression rate is restricted by
value of passive information. Finally, it is convenient to i
troduce theinformation defect Id5I p2I e . This quantity tells
us how the ensemble is ‘‘unkind’’ to us: while carrying littl
information the ensemble requires to be processed as
contained a large amount of information. Let us recall h
that for an ensemble of pure states the impossibility of re
ing the input states does not decrease the compression
ciency and the defect is equal to zero in spite of nonortho
nality of the signal states@7#.

III. THE BOUND FOR EFFECTIVE INFORMATION

In this section we will prove the main result of this pape
Theorem. The Holevo information I (E0)5S(%0)

2( i pi
0S(% i

0) of the ensemble is the lower bound for its e
fective information:

I e~E0!>I ~E0!. ~6!

Note that, since by definition we haveI e<I p the theorem
provides automatically the lower bound for passive inform
tion I p . Note also that for ensembles of pure states
Holevo information is simply equal to the entropy of th
ensemble so that the theorem is compatible with the resu
Ref. @7# ~up to the measure of the quality of transmission!.

To prove the theorem we need the lemma saying tha
the average distortion between the two ensembles is sm
then the difference between their Holevo informations
message is also small.

Lemma.Let ( i pi i% i2% i8i5e< 1
2. Then the following in-

equality is valid

uI ~E!2I ~E8!u<2@eNlogd1h~e!#, ~7!

whereh(x)52x logx with h(0)50, d5dimHQ .
Proof. We will use the following estimate@16#

uS~% !2S~s!u<i%2si log dimH1h~ i%2si ! ~8!

which is valid for states%, s acting on the Hilbert spaceH,
with i%2si< 1

2. Based on the above inequality, we obtai
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uS~% !2S~%8!u<Nlogdi%2%8i1h~ i%2%8i !

<Nlogd(
i

pi i% i2% i8i

1hS (
i

pi i% i2% i8i D
5eNlogd1h~e!, ~9!

where we used the fact that the trace norm is convex and

the functionh is increasing on the interval (0,1
2 ).

We also have

(
i

pi uS~% i !2S~% i8!u

<(
i

pi@Nlogdi% i2% i8i1h~ i% i2% i8i !#

<eNlogd1h~e!, ~10!

where the concavity of the functionh was used. Now adding
the two above inequalities we obtain the desired result.

Now we can start to prove the theorem. For this purpo
let us estimate the quantity log dim%̃. First, it is bounded
from below byI ( Ẽ). This follows from the obvious fact tha
the von Neumann entropy of a state is less than or equa
the logarithm of the dimension of the Hilbert space the st
acts on. Now let us note@14,15# that the functionI (E) can be
written as the mean relative entropy between the compon
% i of the ensemble and the density matrix% of the latter,

I ~E!5(
i

piS~% i u% !, ~11!

where the relative entropy@17# is given by

S~%us!5Tr~% log%2% logs!. ~12!

Then we can benefit from the Uhlmann monotonicity the
rem @18#, which states that the relative entropy does not
crease under the action of completely positive trace pres
ing map~quantum operation!. Thus we obtain the inequality

I ~ Ẽ!>I ~E8! ~13!

as the ensembleE8 is produced by Bob’s quantum operatio
from the ensembleẼ. Using the inequality~13! and applying
the lemma we get

log dim%̃>I ~E!22@D̄Nlog dimHQ1h~D̄ !#. ~14!

Noting that I (E)5NI(E0), dividing both sides of the ob-
tained inequality byN, and taking the limitN→` we obtain
the desired result.

Let us now summarize the idea of the proof. First, t
number of needed qubits per message is bounded from b
by I ( Ẽ)/N. Now Bob obtains the final ensembleE8 from the
ensembleẼ by means of quantum operation, which by th



tio

ve
g

d

th
t
nn

vo
en
o

e
-

e
fo

f
io
a

ng
a

io
n
b

a
n-
il
a

p

in

pe

c
t

r-

ver
ot

ol is
SJ

s
sult

me
it

the
en-

ple
of

).
heir

the
ted

of
of

-

is
a-

the
of

s it

57 3367LIMITS FOR COMPRESSION OF QUANTUM . . .
Uhlmann theorem can only decrease the Holevo informa
per message. Hence we haveI ( Ẽ)/N>I (E8)/N. But from the
lemma it follows that the initial and final ensembles ha
asymptotically equal Holevo information per messa
I (E)/N'I (E8)/N hence we obtainI ( Ẽ)/N>I (E)/N in the
limit of large N. Note here that if the bound is to be reache
then the asymptotic mean entropy of the ensembleẼ per
message must vanish. This follows from the fact that
estimate of the log dim%̃ by the Holevo information is no
too rough only if the latter amounts to the von Neuma
entropy.

Finally, note that for the case of blind coding the Hole
information per message must be equal for all three
semblesE, Ẽ, E8. In other words we can say that the Holev
information is invariant under the asymptotically reversibl
quantum operations. The samecannotbe stated for von Neu
mann entropy. Indeed, otherwise we would not be able
compress the signal more than indicated by the von N
mann entropy. However, we know that it is possible, e.g.,
a particular ensemble considered in Ref.@4#, which consists
of states of disjoint supports. Here the signal states can
measured and replaced by pure ones. Then the entropy o
ensemble decreases to the value of its Holevo informat
The reversal is done again by measuring the pure states
replacing them by the initial, possibly mixed ones. Applyi
the theorem we find that the passive and effective inform
tion are equal and take the value of the Holevo informat
of the ensemble. Then the information defect vanishes
only for the ensemble of pure states but also for the ensem
of mixed states with disjoint supports.

IV. COMPOSING PROTOCOLS

From the discussion of the previous section it follows th
the entropy of the density matrix of the ‘‘intermediate’’ e
sembleẼ should be as low as possible. In this section we w
present a particular class of nonblind protocols that aim
decreasing the entropy. Namely, Alice can replace the in
states% i with such new ones%̃ i , acting on larger Hilbert
spaceH5( ^

NHQ) ^H8, that TrH8%̃ i5% i . Then Bob’s de-
coding amounts to performing a partial trace, i.e., discard
the systems described by the Hilbert spaceH8. Then the
states%̃ i can produce the density matrix%̃ of lower entropy
than the initial one. Clearly, the above scheme provides
fect transmission. However, the matrix%̃, although of per-
haps small entropy, will usually occupy larger Hilbert spa
than the source space. To avoid it one could compose
present~ideal! protocol with the SJ protocol. Then the ove
all scheme is the following

% i 1
^ •••^ % i k

→
Alice8s coding

%̃ i 1
^ •••^ %̃ i k

→
SJ protocol

%̃ i 1••• i k
→

Bob8s partial trace

% i 1••• i k
8 .

~15!

Here i j ’s are multi-indices of lengthN; % i 1
^ •••^ % i k

and

% i 1••• i k
8 act on the Hilbert spacê k( ^

NH) while %̃ i 1
^ •••
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act on ^
k@( ^

NH) ^H8#. The latter two

states can be obtained from the former ones by tracing o
the spacê kH8. As the used distortion measure does n
increase under the partial trace operation~see the Appendix!,
the average distortion produced by the composed protoc
less than or equal to the one within the ‘‘intermediate’’
protocol. The latter distortion tends to zero ifN is kept fixed
and k tends to infinity~of courseN, although fixed, can be
chosen arbitrarily large!. Then composing the two protocol
we have obtained again a compression protocol. The re
can be immediately generalized as follows.Any protocol
providing perfect transmission can be composed with so
other protocol, so that the full one is again a protocol, i.e.,
offers asymptotically faithful transmission.

Turning back to the considered case, we see that since
SJ protocol compresses the signal down to the value of
tropy of the source ensemble per message@4,11#, the follow-
ing inequality holds:

I p< lim
N→`

1

N
S~ %̃ !, ~16!

where the infimum is taken over the states%̃ of ensembles,
which partially traced produce the input ensembleE.

Let us illustrate the above result by means of an exam
of binary source, i.e., the one that generates two kinds
messages%1

0 and %2
0 with probabilitiesp1

0 and p2
0, respec-

tively ~for convenience we will further omit the indices 0
Suppose that Alice replaces the single signal states by t
purificationsPi5uc i&^c i u acting on the Hilbert spaceHQ^

H8 @20#. As the source produces only two kinds of states,
entropy of the ensemble of purifications can be calcula
explicitly

S~ %̃ !5HF1

2
@11A~p12p2!214p1p2u^c1uc2&u2#G ,

~17!

whereH(x)52xlogx2(12x)log(12x) is the binary entropy
function. The minimal entropy is obtained if the overlap
c1 and c2 is the largest. The supremum of the overlaps
purifications of the two states%1 and %2 is given by the
fidelity of the states@19,3#

maxu^c1uc2&u2[F~%1 ,%2!5~TrAA%1%2A%1!2, ~18!

so that we obtain

I e<Smin~ %̃ !5HF1

2
@11A~p12p2!214p1p2F~%1 ,%2!#G .

~19!

Now if %1 and %2 have disjoint supports, thenF(%1 ,%2)
50 andSmin is equal to the Holevo information of the en
semble, which is compatible with discussion in Sec. III~and
discussion in Ref.@4#!. Note that the presented protocol
performedseparatelyon the single messages. It seems re
sonable to conjecture that if the protocol was applied to
blocks of messages then one could reach the bound
Holevo information for general ensembles. In other word
is very probable that in factI e5I (E0)5lim N→`~1/N!
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3368 57MICHAŁ HORODECKI
min %̃S(%̃). However, it is difficult to calculate the minima
asymptotic entropy per message even for the case of bi
source.

V. CONCLUSION

In conclusion, we have considered the problem of co
pression of quantum information carried by an ensemble
mixed states. We have proved that the minimal numbe
qubits per message needed for asymptotically faithful tra
mission is greater than the Holevo information of the init
ensemble. We have also showed that any protocol provid
perfect transmission can by successfully composed with
other protocol. We proposed a nonblind protocol involvi
composition of a perfect protocol with the Schumacher-Jo
one. The first stage is based on replacing the signal state
new states, which, partially traced, reproduce the initial on
The proposed scheme, if applied to blocks of message
conjectured to reach the bound. Then the Holevo informa
would acquire the physical sense within the quantum inf
mation theory, being a proper generalization of von Ne
mann entropy to the case of ensembles of mixed states
representing the actual quantity of quantum information p
duced by a source@21#. The problem whether the passiv
information ~equal to the number of needed qubits if t
blind coding schemes are considered! could be sometimes
strictly greater than the effective information associated w
arbitrary coding schemes, remains open. Finally, we beli
that the presented results will be useful in further investi
tions of the information content of ensemble of mixed stat

Note added: Recently the author received information th
similar results were also obtained by H. Barnum, C. Cav
Ch. Fuchs, R. Jozsa, and B. Schumacher~unpublished!.
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APPENDIX

Let L:S(H)→S(H) be a trace preserving complete
positive map, i.e., let it be of the following form@8#:

L~% !5(
i

Vi%Vi
† . ~A1!

HereS(H) is the set of density matrices acting on the fin
dimensional Hilbert spaceH, Vi ’s are operators satisfying
( iVi

†Vi5I . It is known thatL is of the form~A1! if and only
if it can be implemented by means of a unitary transform
tion over a larger system@8#

L~% !5TrH8U~% ^ P!U†. ~A2!

HereP is a pure state acting on the additional Hilbert spa
H8; U is unitary transformation over the whole spaceH^

H8. The form~A2! justifies the fact that the completely pos
tive trace preserving maps are identified with quantum
erations.

Here we will prove the following proposition.
Proposition.The distortionD(%,s) does not increase un

der quantum operations, i.e., we have

D„L~% !,L~s!…<D~%,s!. ~A3!

Proof. In view of the form ~A2! it suffices to check
whetherD does not increase under the three component
the quantum operation: unitary transformation, partial tra
and the operation%→% ^ P. As D(%,s)5i%2si depends
only on the eigenvalues of the operatorA[%2s, then it is
unitarily invariant. Subsequently, the operatorsA andA^ P
have the same positive eigenvalues, so thatD(% ^ P,s ^ P)
5D(%,s). Finally, suppose thatA acts on the Hilbert space
H^H8 and has the spectral decompositionA5( il i Pi . Let
us estimate the trace norm of its partial trace

iTrH8Ai5i(
i

l i% i i<(
i

ul i u i% i i5(
i

ul i u5iAi ,

~A4!

where% i5TrH8Pi . Here we used triangle inequality for th
norm and the fact thati% i i51. This completes the proof
The proposition holds also in the case where the operatioL
mapsS(H1) into S(H2) with different Hilbert spacesH1 and
H2.
he
an

t

@1# E. Shannon, Bell Syst. Tech. J.27, 379 ~1948!.
@2# B. Schumacher, Phys. Rev. A51, 2738~1995!.
@3# R. Jozsa, J. Mod. Opt.41, 2315~1994!.
@4# Hoi-Kwong Lo, Opt. Commun.119, 552 ~1995!.
@5# W. K. Wooters and W. H. Zurek, Nature~London! 299, 802

~1982!.
@6# G. M. D’Adriano and H. P. Yuen, Phys. Rev. Lett.76, 2832

~1996!.
@7# H. Barnum, Ch. Fuchs, R. Jozsa, and B. Schumacher, P

Rev. A 54, 4707~1996!.
@8# K. Kraus, States, Effects and Operations: Fundamental N

tions of Quantum Theory~Wiley, New York, 1991!.
s.

-

@9# R. Jozsa and B. Schumacher, J. Mod. Opt.41, 2343
~1994!.

@10# There are troubles with thermodynamical justification of t
von Neumann entropy formula, see, e.g., D. Dieks and V. v
Dijk, Am. J. Phys.56, 430 ~1988!.

@11# R. Jozsa~unpublished!.
@12# A. E. Allahverdyan and D. B. Saakian, e-prin

quant-ph/9702034.
@13# A. S. Holevo, Probl. Peredachi Inf.8, 63 ~1973!.
@14# H. Yuen and M. Ozawa, Phys. Rev. Lett.70, 363 ~1993!.
@15# H. Scutaru, Phys. Rev. Lett.75, 773 ~1995!.
@16# M. Fannes, Commun. Math. Phys.31, 291~1973!; see also M.



of
cal
, R.
ers,

nd,

57 3369LIMITS FOR COMPRESSION OF QUANTUM . . .
Ohya and D. Petz,Quantum Entropy and Its Use~Springer-
Verlag, Berlin, 1993!, p. 22.

@17# H. Umegaki, Kodai. Math. Sem. Rep.14, 59 ~1962!.
@18# G. Lindblad, Commun. Math. Phys.39, 111 ~1974!; A. Uhl-

mann, Commun. Math. Phys.54, 21 ~1977!.
@19# A. Uhlmann, Rep. Math. Phys.9, 273 ~1976!.
@20# Recall that the purification of a state% acting onH is a pure

stateP acting onH^H8 such that% is its partial trace over
the spaceH8.
@21# Note that the Holevo information is a proper generalization

von Neumann entropy for the problem of sending classi
information via quantum signal states, see P. Hauslanden
Jozsa, B. Schumacher, M. Westmoreland, and W. K. Woot
Phys. Rev. A 54, 1869 ~1996!; A. S. Holevo, e-print
quant-ph/9708046; B. Schumacher and M. Westmorela
Phys. Rev. A56, 131 ~1997!.


