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Limits for compression of quantum information carried by ensembles of mixed states
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We consider the problem of compression of the quantum information carried by ensemble of mixed states.
We prove that for arbitrary coding schemes the least number of quanturfyblits per message needed to
convey the signal states asymptotically faithfully is bounded from below by the Holevo fungtieh
—2ipiS(e;). We also show that a compression protocol can be composed with another one, provided that the
latter offersperfecttransmission. Such a compound protocol is applied to the case of binary source. It is
conjectured to reach the obtained bound. Finally, we point out that in the case of mixed signal states there
could be a difference between the maximal compression rates at the coding schemes that are “blind” to the
signal and the ones that assume the knowledge about the identities of the signal states.
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PACS numbd(s): 03.67.Hk

I. COMPRESSION OF QUANTUM INFORMATION carry the information asymptotically faithfully to Bob, i.e.,
so that the average distortion between the input and output
One of the important problems of information theory is states will tend to zerdor the average fidelity will tend to
the compression of information. A general limit for compres-oné in the limit of input signal block of infinite length.
sion rate of classical information is placed by the so-called Before we review the results obtained so far, let us men-
noiseless coding theorefi]. Suppose that a source gener-tion the fundamental difference between the quantum and
ates a messagewith probability p; and allow the subsequent classical case due to the no-cloning theorem for quantum
messages to cumulate into long sequences and then represetdteq 5]. It was shown that the theorem is equivalent to the
them (encodg as sequences of bits as economically as it iSmpossibility of measuring the state parameters of a single
possible(economically means here that we want to use thequantum systeni6]. Then we can imagine two scenarios
least possible average number of bits per megsdde task that, according to the above restriction for quantum informa-
of the receiver(Bob) is to convert(decod¢ the binary se- tion processing, could in principle produce different results
guences into the original sequences of messages. Here we [dg. Within the first scenario, we assume that Alice does not
not require perfect transmission but only an asymptoticalljknow the identities of the particular states produced by the
faithful one. This means that Bob may be unable to recovesource. Then, in accordance with the no-cloning theorem,
correctly each sequence, but the probability of error tends télice has no means to get this knowledge. Thus the most
zero if the length of input blocks tends to infinity. general of Alice’s coding protocol amounts to performing a
Now the noiseless coding theordih| says that the nec- quantum operation(trace preserving completely positive
essary and sufficient number of bits per message needed fotap—see the Appendix8] that depends only on the known
asymptotically faithful transmission is equal to the Shannorcharacteristics of the source, i.e., the form of the generated
entropy S= —2;p;logp; (in this paper we use base-2 loga- ensemblgp;,0;}. We will call it blind coding. If, however,
rithms) of the probability distribution characterizing the we allow Alice to know each of the produced states, we deal
source. Then this quantity says in fact how much informationwith the second scenari¢arbitrary or nonblind coding,
per message is actually produced by the source. Indeed, oméhere Alice’s coding amounts to replacing the sequences of
can imagine, that after the most economical compressiosignal states by completely arbitrary new states. It seems that
procedure, each piece of the compressed signal is equally some cases it will produce more efficient compression
essential as all redundancy was removed. Then the size dfian is possible within the previous scenario.
the maximally compressed signal can be interpreted as the Let us now review the results obtained so far in the do-
quantity of information contained in the inpduncom- main of compression of quantum information. For the en-
presseyone. semble of pure states, Schumacher shoW2H that, by
Let us now turn to the problem of compression of quan-means of blind coding, it is possible to reduce the needed
tum information, which was first considered by Schumachenumber of qubits to the value of the von Neumann entropy of
[2]. The role of messages is here played by quantum stateke total density matrix of ensembge=23;p;o; (in short, the
0; (signal statesand the bits are replaced by qubits, i.e.,von Neumann entropy of the ensembl&rhe proposed
two-level systems. The probability of error is generalized tocoding-decoding protocol was then simplified by Jozsa and
guantum case by means of chosen measures of fidelity @chumachef9] (we will refer to it as the SJ protocolTo
distortion[2—4] between two quantum states. Thus we will obtain the converse statement saying that this quantity is also
ask about the least number of two-level systems needed toecessary for faithful recovery of the signal, Barneiral.
[7] considered an arbitrary coding scheme. It turned out that
even in this case it is impossible to better compress the data,
*Electronic address: michalh@iftia.univ.gda.pl so that the obtained lower bound applied also for the first
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scenario. Thus for the ensemble of pure states the problem ebding. In the latter case we allow Alice to know even which
compression has been completely solved: the two scenaricdates are generated by the source, so that she can prepare
give the same degree of compression, and the informatiogeparately each of the statesfor eachi.

per message contained in such an ensemble is equal to the
von Neumann entrop$(o) of the ensemble. Note that this

establishes a precise sense of the von Neumann entro he di . f sub ied by the Saté th
within the quantum information theofy10]. the dimension of subspace occupied by the staté the

Now, the problem of ensemble ofixed states is stil ensemble and sent through the noiseless channel to Bob.

open. The SJ coding protocol allows one to compress suchow the state®; are to be decoded to become close to the
an ensemble down to the value of its von Neumann entropinitial statesg; . For this purpose Bob performs some estab-
[4,11] (see alsd12] in this contex}, but one knows that in lished quantum operatiohg, which of course does not de-
some cases the more efficient protocols are posfhlel. pend oni. Then the resulting states a@¢=AB(§i) and the
To illustrate it, let us consider the source producing withwhole scheme is the following:

certainty some established mixed state. Then the ensemble

The new stateg; represent the compressed signal, which
is then flipped into the suitable number of qubits determined

has entropy greater than zero but of course it does not carry Alice’scoding __ noiseless channel _

any information. This implies that the “information con- Qi — Qi — 0i

tent” of the ensembldfor any of the two scenarigsannot Aa I

be, in general, merely a function of the density matrix of the

ensemble. Instead, it must depend on the particular form of Bob's decoding

the ensemble. Moreover, it seems that for ensembles of — o, 1)
mixed states the arbitrary coding could produce more effi- Ag

cient compression than the blind one. Under this consider- _

ation it is desirable to investigate the problem of compresWhereg; ande/ act on the Hilbert space N7 while ¢; on

sion of information carried by ensembles of mixed states. Irthe channel Hilbert spadd,. Without loss of generality, we

particular, an important task is to provide some limits for thecan assumeas in Ref.[7]) that H.C ®"NH,. As a measure

compression rates for the two types of coding. of distortion characterizing the quality of the transmission
In this paper we provide the lower bound for the neces¢;— @{ we choose the metric induced by the trace norm.

sary number of quantum bitgubity per message needed for The latter is defined as

faithful transmission of the quantum information carried by

an ensemble of mixed states for arbitrary coding. The bound [All="TrlA] 2

is equal to the functior5(g)—=;p;S(0;) (we will call it ] N

Holevo information, which was shown by Holevo to be an With [A[=yATA. Thus the trace norm of the Hermitian op-

upper bound for accessible informatifiB,14). In particular ~ erator is simply the sum of absolute values of its eigenvalues.

it implies that for the ensembles of states of disjoint supportéonsequently, the distortion is defined as

the two considered types of coding produce the same result.

Further we investigate the problem of composing the com- D(¢,0)=[e—al. )

pression protocols. We consider a class of nonblind codin% . fth d £ di .
protocols, which involve composition of two protocols: an 7\ Important property of the proposed measure of distortion

ideal one, which amounts to replacing the input states by® the fact that it does not increase under the quantum opera-
new states, which, partially traced, reproduce the formefions (see Appendix Then the average distortioD
ones, and the SJ protoc@pplied to mixed statgsFinally, =~ =Z;piD(¢;,e{) will indicate the quality of the process of
we conjecture that if the arbitrary coding schemes are alrecovery of quantum information by Bob after compression
lowed then the Holevo information is in fact equal to the by Alice. Now, for a fixed source, determined by the en-
minimal number of qubits needed for faithful transmissionsemble&,, one considers the sequence of coding-decoding
and the bound can be reached by means of the proposed classirs (A,,Ag) with the property that lig_..D=0 (recall
of protocols. that the pair is implicitly indexed bil). Such sequences will
be called protocols.
Define now the quantitir, characterizing the asymptotic
Il. COMPRESSION PROTOCOLS degree of compression of the initial quantum data at a given

Suppose that Alice generates a signal s@é‘t(aacting ona protocol P by

Hilbert space™ ) with probability p?. The produced en- 1 _

semble&y={p’,0%} has the density matrip®=3;p’e?. Rp= lim — log dimg. (4)
0 0 - N

Denote now the produ@il®~ OO by o;, wherei now N—oe

stands for multi-indeXto avoid complicated notation we do Y din% denotes the di . fth  of the stat
not write the indexN explicitly unless necessaryThe cor- nere ding denotes the dimension of the Support ot the state

responding ensemble and state are denoted bgd o, re- € given by the number of nonzero eigenvalues. The quantity
spectively. Now Alice performs a coding operation over thelog dimg has the interpretation of the number of qubits
initial ensemblet ascribing to any input state; a new state  needed to carry the stag@ undisturbed ¢ is to be trans-
©;. The mapg,— 0;=A(g;) is supposed to be a quantum ferred by a noiseless chanpel

operation for blind coding or an arbitrary map for nonblind  Now, given a clas$ of protocols, we define the quantity
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Ip=inf Rp, (5 |S(e)—S(e")|<Nlogd[e—¢'[[+n(le—e'l)
PeP
which is equal to the least number of qubits per message $N|09d§i: pilei—efl

needed for asymptotically faithful transmission of the initial

signal states from Alice to Bob within the considered class of

protocols(to be strict one needs,+ & qubits per message, Ty Z pi|9i_9i’”)

where 6 can be chosen arbitrarily smallAs discussed in

Sec. |, we are interested in two classes of protocols—the = eNlogd + 7(e€), 9
ones with blind and arbitrary coding schemes. Accordingly

we will consider two kinds of information—thpassive in- where we used the fact that the trace norm is convex and that
formation I,=1, whereP is the class of protocols with blind  the functiony is increasing on the interval (§),.

coding and theeffective information J with the infimum We also have

taken over protocols with arbitrary coding. The effective in-

formation represents the amount of information that seems t

be actually carried out by the ensemble while the passive2. PilS(€i)—S(e/)|

information|, represents the information that is “seen” by '

the quantum apparatus, which is “blind” to the signal. Al-

though the actual information contents of the ensemble could <2 Pi[Nlogdlle;—¢/[+ n([lei—e/I)]

be in fact lower, the apparatus cannot benefit it, as it cannot

in general read the identities of the signal states without dis- < eNlogd+ 7(e), (10
turbance. As a result the compression rate is restricted by the

value of passive information. Finally, it is convenient to in- where the concavity of the function was used. Now adding
troduce thenformation defect=1,—1.. This quantity tells  the two above inequalities we obtain the desired result.
us how the ensemble is “unkind” to us: while carrying little Now we can start to prove the theorem. For this purpose

information the ensemble requires to be processed as if jbt ys estimate the quantity log dim First, it is bounded

contained a large amount of mformatlon. Let u_s_r_ecall herefrom below byl (€). This follows from the obvious fact that
that for an ensemble of pure states the impossibility of read;

ing the input states does not decrease the compression elﬁ}e von Neumann entropy of a state is less than or equal to

ciency and the defect is equal to zero in soite of nonorthogod '€ logarithm of the dimension of the Hilbert space the state
ncy - q P 9%cts on. Now let us note 4,15 that the functior (£) can be
nality of the signal statesr].

written as the mean relative entropy between the components
o; of the ensemble and the density matpixof the latter,

Ill. THE BOUND FOR EFFECTIVE INFORMATION

In this section we will prove the main result of this paper. (&)= (0. 11
Theorem. The Holevo information |(&)=S(¢°) (&) Z Pis(eile), (1

—3:pS(e?) of the ensemble is the lower bound for its ef-

fective information: where the relative entropyl 7] is given by

le(E0)=1(&o). (6) S(e|o)=Tr(eloge —elogo). (12

Note that, since by definition we havg<lI, the theorem Then we can benefit from the Uhlmann monotonicity theo-
prOVIdes automatlca”y the lower bound for passive |nf0rma'rem [18], which states that the relative entropy does not in-
tion 1,. Note also that for ensembles of pure states therease under the action of completely positive trace preserv-

Holevo information is simply equal to the entropy of the jng map(quantum operation Thus we obtain the inequality
ensemble so that the theorem is compatible with the result of

Ref.[7] (up to the measure of the quality of transmisgion 1(B)=1(&) (13)
To prove the theorem we need the lemma saying that if
the average distortion between the two ensembles is smagl,5 the ensemblé’
then the difference between their Holevo informations pe
message is also small.
Lemma.let Z;pillei— o] = e<3. Then the following in-
equality is valid

is produced by Bob’s quantum operation

‘from the ensembl€. Using the inequality13) and applying
the lemma we get

log dimg=1(&)—2[DNlog dimHo+ 7(D)].  (14)

[1(E)=1(E")|<2[eNlogd+ 7n(e€)], (7)
Noting that I(£)=NI(&), dividing both sides of the ob-
where 7(x) = —xlogx with (0)=0, d=dimH,,. tained inequality byN, and taking the limitN— we obtain
Proof. We will use the following estimatgl6] the desired result.

_ ) Let us now summarize the idea of the proof. First, the
S(e)~S(a)|<[e~olllog dimH+n(le—al) @  umber of needed qubits per message is bounded from below

which is valid for state, o acting on the Hilbert spack, by (E)/N;NOW Bob obtains the final ensemkfe from the
with ||¢ — o] <3. Based on the above inequality, we obtain ensembleS by means of quantum operation, which by the
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Uhlmann theorem can only decrease the Holevo informatiorag)"é_ and 'é act on ®k[(®NH)®H/] The latter two
I [P .

per message. Hence we ha(€)/N=1(£")/N. But from the states can be obtained from the former ones by tracing over

fsrgrrr?gtcl)ttiglll?/wseézztl tf|1_|eo||en\|/t(|)al iﬁ?(;jrrzgfillor?nf)eerrnb:ﬁ;zg\ézhe space® “H'. As the_ used distortion measure does not
o~ ) increase under the partial trace operaiisee the Appendix

1(E)/N~1(E)IN hence we obtairl (£)/N=1(£)/N in the  {he average distortion produced by the composed protocol is

limit of large N. Note here that if the bound is to beieached,|eSS than or equal to the one within the “intermediate” SJ

then the asymptotic mean entropy of the ensen®lper  protocol. The latter distortion tends to zerd\fis kept fixed

message must vanish. This follows from the fact that theandk tends to infinity(of courseN, although fixed, can be

estimate of the log dim by the Holevo information is not chosen arbitrarily large Then composing the two protocols

too rough only if the latter amounts to the von Neumannwe have obtained again a compression protocol. The result

entropy. can be immediately generalized as followsny protocol
Finally, note that for the case of blind coding the Holevo providing perfect transmission can be composed with some

information per message must be equal for all three enother protocol, so that the full one is_ag_ain a protocol, i.e., it

semblest, &, €. In other words we can say that the Holevo ©fférs asymptotically faithful transmission. .

information isinvariant under the asymptotically reversible __Turning back to the considered case, we see that since the

quantum operations. The samannotbe stated for von Neu- SJ protocol compresses the signal down to the value of en-

mann entropy. Indeed, otherwise we would not be able tdfOPY of the source ensemble per messiagge1], the follow-

compress the signal more than indicated by the von Neud inequality holds:

mann entropy. However, we know that it is possible, e.g., for 1

a particular ensemble considered in Réf,, which consists lp=< lim —S(E), (16

of states of disjoint supports. Here the signal states can be Now N

measured and replaced by pure ones. Then the entropy of the _

ensemble decreases to the value of its Holevo informationwhere the infimum is taken over the staeo©f ensembles,

The reversal is done again by measuring the pure states amchich partially traced produce the input enseméile

replacing them by the initial, possibly mixed ones. Applying  Let us illustrate the above result by means of an example

the theorem we find that the passive and effective informaef binary source, i.e., the one that generates two kinds of

tion are equal and take the value of the Holevo informatiormessage®? and @3 with probabilitiesp? and p3, respec-

of the ensemble. Then the information defect vanishes naively (for convenience we will further omit the indices 0).

only for the ensemble of pure states but also for the ensemblBuppose that Alice replaces the single signal states by their

of mixed states with disjoint supports. purifications P; =|y; (4| acting on the Hilbert space(,®
‘H' [20]. As the source produces only two kinds of states, the
IV. COMPOSING PROTOCOLS entropy of the ensemble of purifications can be calculated
explicitly

From the discussion of the previous section it follows that
the entropy of the density matrix of the “intermediate” en-

~ 1
= —H|Z )2 2
semble€ should be as low as possible. In this section we will S(e) H[2[1+ V(p1=p2)*+4pspal(yal )] |,
present a particular class of nonblind protocols that aim at a7
decreasing the entropy. Namely, Alice can replace the input

. ~ . . whereH (x) = — xlogx—(1—x)log(1—x) is the binary entropy
statese; W'thNSUCh ne,w onee; ,f\ctlng on larger I:hlbert function. The minimal entropy is obtained if the overlap of
spapeH=(® Ho)®H', thqt TrH’Qiz,Qi ' Then_ BOb,S de-. 1 and ¢, is the largest. The supremum of the overlaps of
coding amounts to performmg a p_art|al trace, i.e., d'scard'n%‘urifications of the two stateg, and o, is given by the
the systems described by the Hilbert spd¢é Then the fidelity of the state§19,3]

statesg; can produce the density matri of lower entropy

than the initial one. Clearly, the above scheme provides per-  max( | ¥,)|>=F (01,0, =(TrVVe10,vVe1)? (18
fect transmission. However, the matrix although of per- )

haps small entropy, will usually occupy larger Hilbert spaceSC that we obtain

than the source space. To avoid it one could compose the

present(idea_lb protocol with the SJ protocol. Then the over- le<Smin(0)=H
all scheme is the following

1
§[1+ V(pi— p2)2+4p1p2F(91,92)]}.
(19

Alice’s coding
0, ® --®Q, — 5i1®"'® Eik Now if o, ar_1d ¢, have disjoint supports, theﬁ(gl,gz)
=0 andS,,, is equal to the Holevo information of the en-
. ) semble, which is compatible with discussion in Sec(aihd
SJ protocol Bob's partialtrace discussion in Ref[4]). Note that the presented protocol is
= Qi - Qip iy performedseparatelyon the single messages. It seems rea-
(15 sonable to conjecture that if the protocol was applied to the
blocks of messages then one could reach the bound of
. Holevo information for general ensembles. In other words it
i, acton the Hilbert space*(®"NH) while 0i ®: - is very probable that in factl,=1(&)=Ilimy_.(1/N)

Herei;'s are multi-indices of lengtiN; 0i,® - @0 and

4

Qil"'
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minES('Q'). However, it is difficult to calculate the minimal APPENDIX
asymptotic entropy per message even for the case of binary | o A:S(H)—S(H) be a trace preserving completely
source. positive map, i.e., let it be of the following forfi8]:

_ T
V. CONCLUSION Ale)= Z VieV; . (A1)

In conclusion, we have considered the problem of comjere 5(%) is the set of density matrices acting on the finite
pression of quantum information carried by an ensemble Ofjimensional Hilbert spac@t, Vi's are operators satisfying
mlxt_ad states. We have proved that the mlmmal_number 0 iViTViZI- It is known thatA is of the form(A1) if and only
qubits per message needed for asymptotically faithful tranSg it can be implemented by means of a unitary transforma-
mission is greater than the Holevo information of the initial tion over a larger systeifg]
ensemble. We have also showed that any protocol providing
perfect transmission can by successfully composed with an- A(@)=Tr,U(e®P)U". (A2)
other protocol. We proposed a nonblind protocol involving . ) » )
composition of a perfect protocol with the Schumacher-Jozshlere P is a pure state acting on the additional Hilbert space
one. The first stage is based on replacing the signal states By ; U is unitary transformation over the whole spaki®
new states, which, partially traced, reproduce the initial onest’- The form(A2) justifies the fact that the completely posi-
The proposed scheme, if applied to blocks of messages, lie trace preserving maps are identified with quantum op-
conjectured to reach the bound. Then the Holevo informatiof@rations. _ _ .
would acquire the physical sense within the quantum infor- Here we will prove the following proposition.
mation theory, being a proper generalization of von Neu- Proposition.The distortionD(¢, o) does not increase un-
mann entropy to the case of ensembles of mixed states afft¢r quantum operations, i.e., we have
representing the actual quantity of quantum information pro-
duced by a sourcg2l]. The problem whether the passive D(A(e).A(e))<D(e,0). (A3)
information (equal to the number of needed qubits if the Proof. In view of the form (A2) it suffices to check
blind coding schemes are consideretuld be sometimes whetherD does not increase under the three components of
strictly greater than the effective information associated withthe quantum operation: unitary transformation, partial trace,
arbitrary coding schemes, remains open. Finally, we believand the operatiop —o®P. As D(¢,0)=| ¢ — 0| depends
that the presented results will be useful in further investigaonly on the eigenvalues of the operafo= — o, then it is
tions of the information content of ensemble of mixed statesynitarily invariant. Subsequently, the operat&rand A P

Note addedRecently the author received information that have the same positive eigenvalues, so Dig¢ ® P,oc® P)
similar results were also obtained by H. Barnum, C. Caves=Dp(p,s). Finally, suppose thak acts on the Hilbert space

Ch. Fuchs, R. Jozsa, and B. Schumadhepublished H®H' and has the spectral decompositis: =\ P; . Let
us estimate the trace norm of its partial trace
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