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Effective pure states for bulk quantum computation
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In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers
by parallel unitary operations and measure expectation values of certain observables with limited sensitivity.
The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure
input states by a series of manipulations have been described by Gershenfeld and @lgiealglabeling
[Science275 350(1997] and Coryet al. (spatial averaging Proc. Natl. Acad. Sci. USAR4, 1634(1997)] for
the case of quantum computation with nuclear magnetic resonance. We give a different technique called
temporal averaging. This method is based on classical randomization, requires no ancilla quantum bits, and can
be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal
averaging algorithms suitable for both high-temperature and low-temperature bulk quantum computing and
analyze the signal-to-noise behavior of each. Most of these algorithms require only a constant multiple of the
number of experiments needed by the other methods for creating effective pure states.
[S1050-294{®8)00305-9

PACS numbd(s): 03.67.Lx, 89.80+h

I. INTRODUCTION average value of{") over the ensemble of quantum comput-
ers. For our signal-to-noise analyses, we assume that the
Quantum computation involves the transformation of onenoise is unbiased with variancg.

known pure quantum state into another unknown state, Formally, a bulk quantum computation of an algorithm
which can be measured to provide a computationally usefuimplementing the unitary transformatid with preparation
output. Traditionally, it has been understood that an imporand postprocessing operatioRsand R transformsp, to
tant part of this process is the proper preparation of a fiducial
initial pure state such that the computational input is well
known and the output is thus meaningful. In particular, it has
usually been assumed that the input cannot be a stochastic
mixture. However, two groupfl—4] have recently shown where theR; and P; are the operators in a linear representa-
that by using a different technique, calledlk quantum com- tion of the quantum operatior® and R [5]. The measure-
putation the same computation can be performed but withment step of the readout procedure yidd%n(ggl)) with
an initial mixture state, which is often much easier to achievegise. In the methods investigated in this pafieis unitary,
experimentally. Bulk quantum computation is being imple-ysyally the identity. The purpose Bfis to create aeffective
mented for small numbers of qubits using nuclear magnetigyre state The simplest example of an effective pure state

resonancéNMR) techniques. is a density matrix of the form
Bulk quantum computation is performed on a large en-

semble of indistinguishable quantum computers. At the be- + q

ginning of a computation, each memleof the ensemble is 2 PipoPj=p |0)(0[ + ﬁ'- 2

in an initial statep. o such that the average,=~&(pco) of .

these states is know@ denotes the expectation operatax Here N=dim(l)=2", wheren is the number of qubits. If
bulk computation with such an ensemble can be divided intz = | | thenp,,= pC|0)(0|CT+ (/N)I, so that

three steps consisting of preparation, computation, and read-

out. Each of these steps is equivalent to an application of the tr(pouos”)=p tr(C|0)(0|CTaM). (3)
same quantum operation to each member of the ensembile.

The purpose of the preparation step is to transform the inpuf the excess probability of the ground stat¢0) is larger
state to areffective pure statevhich permits observation of than the smallest detectable signal, we are able to determine
the output of the algorithm. The computation is assumed tavhether the output of a standard algorithm is 0 or 1 by
be a fixed unitary operator derived from a standard quanturtearning whether the measurement yields a negative or a
algorithm, that is, an algorithm with a one-quantum4{pjti-  positive value. To achieve sufficient confidence in the an-
bit) answer. We wish to determine this answer on inf@it  swer or to learn more about the average answer, the bulk
(the state where every qubit [8)). The readout procedure computation is repeated several times. High confidence in
may include some postprocessing of the algorithm’s outputhe answer means a low prior probabilityof incorrectly

and terminates in the measurement of the observagik

the spin along the axis of the first qubit. In bulk quantum

computation, the measurement yields a noisy version of theCory et al.[3,4] call this apseudo pure state

pout=i2j RCP;poP/C'RT, 1)
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inferring the answer of a standard algorithm. At a signal-to-thermal states of noninteracting particles. Low-temperature
noise ratio ofS per experiment this requires In(1/c)/S? methods do not require special assumptions about the initial
experiments. state, but tend to use more operations to implement. Low-

Prior to the present work, there were two approaches ttemperature methods should be used if the high-temperature
implementing an effective pure state preparation procedureapproximation fails, but insufficient polarization is available
These approaches may be classified@atial averagingand  to efficiently obtain bits that are very near the ground state.
logical labeling Spatial averaging was introduced and Two low-temperature methods are of interest: randomization
implemented by Corgt al.[3,4]. In general, spatial averag- over a group and averaging by entanglement. The first de-
ing involves partitioning the ensemble of quantum computerpends on which unitary group is used. We will show that
into a number of subensembles and applying a different unithere are groups that yield good signal-to-noise behavior and
tary operator to each of them. Given enough subensemblesin be implemented in cubic time. Averaging by entangle-
and proper choices of unitary operators, the average densitpent has the advantage of requiring fewer experiments, but
matrix over the whole ensemble can be transformed into anecessitates discarding some of the qubits. This method may
effective pure state. This procedure requires methods for dide useful if some of the qubits are discarded anyway for the
tinguishing between quantum computers in the ensemble. Ipurpose of polarization enhancement by computational cool-
NMR this can be accomplished by using well-known gradi-ing, a family of techniques for statically or dynamically in-
ent pulse methods to address individual cells in a bulkcreasing polarization of the ground state for a subset of the
sample. The cells in the implementation of Cayal. are  available qubits.
two-dimensional slices of constant magnetic fields defined The different temporal averaging methods are introduced
by a transient gradient. The logical labeling technique ofand analyzed in the following sections. We begin with a
Gershenfeld and Chuand,2] is fundamentally different; it simple example borrowed from NMR, discuss exhaustive av-
avoids the use of explicit subensembles by exploiting ancileraging and the flip and swap methods, show how random-
lary qubits as labels. An initial unitary transformation is ap-ized averaging over a group can be used and give the method
plied that redistributes the states in such a way that condbased on entanglement. More detailed descriptions of the
tional on the state of the labels, an effective pure state iglgorithms and the mathematical analyses are in the Appen-
obtained in the qubits to be used for computation. Gersherdixes. It is assumed that the reader is familiar with the basic
feld and Chuang demonstrated that this can be done effgoncepts of quantum computati¢f—8] and nuclear mag-
ciently in the high-temperature limit for noninteracting qu- netic resonancg9].
bits, wherep, can be expressed as a small deviation from
(AMN)I.

Here we consider a different techniguemporal averag- Il. NMR EXAMPLE
ing. Rather than attempting to guarantee an effective pure . . ) .
state in a single experiment, this method uses several experi- 10 illustrate the ideas on which temporal averaging is
ments with different preparation steps chosen either systenf!@sed, consider a two-qubit example from room-temperature
atically or randomly. The measurements from each experiNMR with liquids. The density matrix of aAX system con-
ment are averaged to give the final answer. The preparatio®Sting of a proton and a carbon-13 nucleus in a 400-MHz
steps are chosen such that the average of the prepared inRRECtrometer is approximately given by
states is an effective pure state. The advantages of this
method are that no ancillary qubits are needed, it can be

implemented at any temperature, and it is not necessary to 1000 1.0 © 0
distinguish subensembles of quantum computers. In the 110 1. 0 0 0 06 O 0
high-temperature regime it can be implemented efficiently P=2l0 0 1 o +10°° 0 0 —06 0
with little overhead compared to the other methods. The :

signal-to-noise ratios are sufficiently well behaved to permit 0 0 0 1 0 O o -1

efficient determination of the desired answer to any given (4)
level of confidence, provided the optimal effective pure state
accessible from the initial state has sufficient signal.

We will describe several temporal averaging methods andtiow to calculate these input states will be discussed below.
discuss their properties. Temporal averaging methods can tgecause all relevant observables are traceless, we focus our
loosely categorized into high-temperature and low-attention on the second matrix, tdeviation density matrix
temperature methods. The high-temperature methods tend &uppose our goal is to perform some computa@oon the
be simpler and are the most efficient for NMR quantum com-ground staté00){00 and then to observe, on the proton.
putations involving small numbers of qubits. Three suchFor this observation, the statg®1)(01], |10)(10/, and
methods will be described: exhaustive averaging, labeled flipl1){11 constitute noise. To remove this noise we can ex-
and swap, and randomized flip and swap. The labeled fliploit the fact that the computation and the observation are
and swap method uses a limited form of logical labeling tolinear in the input. We perform three experiments, each with
obtain the desired answer in two experiments with only onex different preparation step that permutes the undesirable in-
ancilla, while the randomized flip and swap method needs nput states, and then average the output. The first experiment
ancillas but may require additional experiments to overcomeises the unmodified input, corresponding to preparation with
noise from the randomization procedure. Flip and swagP,=1. The second permutd®1)(01—|10)(10—|11)(11
methods rely on an inversion symmetry of high-temperature—|01){01] using the unitary transformation
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The average of the measurements-§f after a computation
gives trCpCToM)=1.333x 10 5tr(C|00)(0Q CTolV). 1t

can be seen that the contributions to the measurements of the
undesirable input states have been eliminated. In NM),

is measured by applying a radio-frequency pulse to rotate the
magnetization of the target spin into the plane and observing
the free induction decay as discussedai

IIl. EXHAUSTIVE AVERAGING

The example of the preceding section is an instance of
exhaustive averagind-or n qubits, it involves cyclicly per-
muting the nonground states if'21 different ways such
that the average of the prepared states is given dyy (

—p)|0){0| + pl. This method works for any initial state that
is diagonal in the computational basis states. Although the
number of experiments required grows exponentially, it is
reasonable to consider implementing it for small numbers of
qubits.

To design the quantum network for the preparation steps,
one can exploit the structure of the Galois fiélgh. If the
nonground initial states are labeled by elements 6f mul-
tiplication by a nonzero element of this field implements
one of the cyclic permutations. Since multiplication can be
implemented with a reasonablquadrati¢ number of con-
trolled NOTs, each suclx yields a preparation operaté, .

The seven networks needed to exhaustively average three
qubits are in Fig. 1.

The signal-to-noise ratio of exhaustive averaging is deter-
mined by the sensitivity of each measurement, the excess
probability in the ground state, and the number of experi-
ments being performed. If the initial density matrix s
=3ip;iliXi| with 0<i<2"—1, then the average density
matrix over all experiments is given hy=(poo—p)|0){0|
+pl, wherep=[1/(2"-1)]3%7%p;i . If the computation’s
output isx=tr(C|0)(0|C oY), then the observed average

signal is (ooo—p_)x. Given that the variance of the noise in
each measurement $, the standard deviation of the noise
in the average is/\2"— 1, which gives an overall signal-to-

noise ratio of v2"—1(pgo— p)x/s. Typically, the density
matrix will describe a high-temperature, polarized system of
noninteracting spins, in which caggy~né/2", whered is

the single spin polarizatiofsee Sec. IV. It is also conve-
nient to defineS;= é/s as the signal-to-noise ratio from a
single spin measurement such that we may express the
signal-to-noise ratio of exhaustive averaging as

n

This argument assumes no bias in the individual measure-
ments. To ensure that exhaustive averaging works correctly
for standard quantum algorithms, the bias must be small

compared to goo— p)/2".

IV. FLIP AND SWAP

Flip and swapis a method that exploits special properties
of the high-temperature thermal state for noninteracting par-
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To first order, 5;=~ Be; is the polarization of theth qubit.
$ $ Thus we can write
Q, Q| &
I X & n—-1
D O _ b;
: pop=ng| 1+ > (1) '5i), (14)
QS Q3_€ N i=0
where this first-order approximation is valid as long as
=3 1s<1.
Q1 Q1_. Given the linear approximation ig,,, it can be seen that
if b=(1-bg)(1—b,y)---(1—b,_4) is obtained fromb by
Q o Q._ flipping each bit, therpy,=+ ppp,=2/N. Thus, to obtain an
2 [ 2 K unbiased, uniform input from two experiments, it suffices to
$ $ perform one experiment with no preparation step and one
Q3 &b Qaﬂ . with all the qubits flipped in the preparation step, averaging

the results. However, this eliminates effective polarization in
FIG. 1. Networks required for state preparation when imple-the ground state as well as all the other states.
menting exhaustive averaging for three qubits using controitet To retain the ground-state polarization we can perform
and swaps. The networks shown perform the six nonidentity cyclidwo experiments. In the first, the thermal input state is used
permutations. Seven experiments are performed, one with no spgithout modification by applying preparation operatey

cial preparation and six with the preparation networks abevs. =1 In the second, the preparati®q consists of first invert-
denote the target qubits of the controlledT gates and®’s denote  ing each qubit by applying, and then swapping the ground
the control. state|0) with the statg/1) (all qubits in statd1)). The av-

erage of the two prepared states is given by
ticles to create an effective pure state with few experiments.

If the internal Hamiltonian of a collection ofi qubits is 1
given byH, then the thermal state is given by ps_ﬁ[l +6:(10)(0 = [1)(1)]- (15
e BH There are two methods for eliminating the remaining polar-
=7 (100 ization in|1). The first,randomizedflip and swap method,

uses randomization to average this polarization over all non-
ground states. The seconidpeled flip and swap method,
whereB=1/kgT is the usual Boltzmann factor andZlis the = uses one of the qubits as a logical label, following the
partition function normalization factor. At high temperatures, method of{1,2].
a good approximation is to take The simplest randomization method involves first select-
ing a random nonground statb) and applying a unitary
1 operationR that mapg1)— |b) and leaves the ground state
pin~—(1—BH), (1D unchanged. Both preparation steps are modified by adding
N this unitary operation after the flip and swap and before the
computation. To improve the signal-to-noise ratio, the whole

whereN=2" and we have defined energies so thafr0.  procedure can be repeated several tinRsan be imple-
Consider the case where the Hamiltonian for the qubits ignented efficiently using at most—1 controlledNOTs.
that of noninteracting distinguishable particles with energy The signal-to-noise ratio for a randomized flip and swap
eigenstate$0) and|1) and energies-e; and +e¢;, respec- Mmethod now depends not only on the initial polarization of
tively, for the ith qubit. This is a good approximation for the ground state, the computation, and the sensitivity of the
many spin systems in NMR, provided the coupling constantgneasurements, but also on the contribution to the variance
are small compared to the chemical shift differences betweeffom the random choice oR. The detailed calculations of
the different spins. In this case, the energy eigenstates atbis variance will be given in Appendix A. If all the polar-
close to the standard computational basis states and the g@ations &; are the sames;=4J, we defineS,=d/s (the
ergy shifts due to coupling are small compared to the Larmosignal-to-noise ratio for a measuremergtl) of the thermal
frequencies. The probability of the stdte) for bit string b statg and a lower bound on the signal-to-noise ratio is given
=bgby---b,_4 is given by by
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FIG. 2. Graphs of lower bounds on the signal-to-noise ratio for
the different averaging methods for two or more identical noninter- |G, 3. Quantum networks for the two experiments to imple-
acting qubits at high temperature ajxgl= 1. The bounds hold fora ment the labeled flip and swap for three computational qubits. The
one-qubit signal-to-noise ratio of 10The signal-to-noise ratios are readout operation on qubi is shown explicitly as a triangle.

for one experiment in the case of randomization over a group, tW@|osed circles denote conditioning ft), while open circles denote
in the case of a flip and swap, an-21 in the case of exhaustive conditioning on|0).

averaging. The noise is due to both experimental sensitivity and
contributions from randomizatiofexcept for the labeled flip and
swap and exhaustive averaging, which involve no randomization

Repeating the experiments times with independent random Exhaustive averaging is useful for small numbers of qu-

V. RANDOMIZATION OVER GROUPS

choices increases the signal-to-noise ratios by a factéraf bits and the flip and swap method works for nearly noninter-
acting qubits at high temperatures. If the nhumber of qubits
n Ix|S; and the polarization satisfys~ 1 or if the initial state does

(16) not have approximate inversion symmetry, it is necessary to
consider other methods that are both reasonably efficient and
an be applied to arbitrary initial states. Randomization

ased on groups of unitary operators has this property.
In general, randomization involves choosing a preparation
operatorP according to a predetermined probability distri-
ution. To ensure that the expected value of the measure-
ent represents the output of the computation on an effective

pure state, we require th&s(PpPT) =p_iS an effective pure
State. The methods to be discussed satisfy that

= — .
2" \[1/2+n2S%[2"(2"-2)]

Graphs of the behavior of the signal-to-noise ratio of this an
the other methods are given in Fig. 2. For snmglthe lim-
ited number of possible random choices results in a signifi
cant reduction in the signal-to-noise ratio. However, a rea
sonable number of repetitions of the experiment can stil
reliably determine any bias iR, if x is not too small. An
improvement inS can also be obtained by using randomiza-
tion over the normalizer group as discussed in Sec. V. This i
called thefully randomizedlip and swap method.

The Ia_beled flip and swap method_ requires 1 qubits P_:(Poo—a)|0><0|+a, (18)
and applies the flip and swap operation to all of them. In-
stead of removing the polarization j&) by averaging, it is o
exploited by using then(+ 1)st qubit as a label similar to the with p=[1/(N—1)]Z;-1p;; . It is desirable that the initial
methods introduced ifi2]. This method was discovered in- statep has excess probability in the ground state. If possible,
dependently by Leung. Conditionally on the 1)st qubit the true initial state should be transformed by a unitary trans-
being in statg0), the firstn qubits are in an effective pure formation, which guarantees that the maximum probability
state with excess probability {©). Conditionally on the 1§ state is the ground state and that the density matrix is diag-
+1)st qubit being in stat¢l), the firstn qubits are in an onal in the computational basig-or nearly uniform mix-
effective pure state, but with a deficiency| k). Both experi-  tures of states and high sensitivity, it may be more efficient
ments’ preparation steps must be followed by an operatioto have a sufficiently large deficiency in the ground sjate.
that conditionally on the i{+1)st qubit flips all the other Let 0=CT0§1)C, so thatx=tr(|0)(0| o) = oqp. A single
qubits to turn the conditional deficiency |d) into one in  experiment with randomized preparation yields the measure-
|0). After the computation is complete, the deficiency can bementr (P)=tr(PpPTo) with variances?; the expectation of
turned into an effective excess by conditionally reversing thg (p) s given byr = (py,— p)x. The signal-to-noise ratio for

sign of the answer. The full network for=3 is given in Fig. 3 single run of the computation is determined by comparing

3. The signal-to-noise ratio for the labeled flip and swapy,e \ariance of r(P) to r2. Thus the signal-to-noise ratio is
method is given by

2 1)|x|S |
S V2(n+1)[x| L 17) S(P,C,p)= Irl _ (19
2n 52+U
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If, for example, we wish to learn the expectation ofto  St:|j)—i'"|j), with f(j) €{0,1,2,3. To ensure sufficiently

within r_(lie), the number of experiments required to small triyial eigenspaces for the representatimqsand P
achieve confidence c is proportional to In(id)/ we require that the following phase independence condition

[€2S(P,C,p)?] in the Gaussian regime. Due to the large n0lds: It f(j) —f(k)+(I)—f(m)=0mod(4) for allf, then
number of choices in the randomization, it is reasonable td ~K andl=m or j=m andk=1. We call a group with this
expect that this regime applies even for one experiment. [Property adiagonal group Randomization oveP is accom-
this were not the case, the average would need to be inferrddiiShed by choosing a member o uniformly and applying

by techniques robust against outliers. If we are only inter-t {0 the initial state. Although the expectation of the random-
ized density matrix is not yet an effective pure state, it does

reduce the off-diagonal contributions to the expectation and
éhe variance. For example,

ested in learning the sign ofwith confidencec, this can be
done with ~In(1/c)/S(P,C,p)? experiments, regardless of
the actual distribution. One method is to use the sign of th

median of the k; averages of the results from N-1
k,=max(1,4/S(P,Cp)?) independent experiments. Because EpepPpPT= 2 pyiliXil. (22
the probability of the event that the averagekgf experi- =0

ments has the wrong sign is bounded by 1/4, the pI’ObabIht)ﬁ_o obtain an effective pure state, additional randomization

of failure is <e °*. The constant in the exponent can be steps are required. The expectations needed for computin
obtained from the Chernoff-Hoeffding bounfi&0] for the P q : Xp . mputing
variances are calculated in the Appendixes. An efficiently

robability of having more than 1/2 heads kp flips of a . . ;
Eiased co%n with thgprobability of head givekr? byp1/4 implementable diagonal group can be obtained as a sub-
' group of the normalizer group introduced below.

To compute the variance of P), define

bip_gPPPPT:P_a _(Poo_a)|0><0|- (20) B. Two-transitive permutation groups
Let 7 be a two-transitive group of permutations acting on
Then the set of statefl), ... ,|N—1). By definition, for everyi
o #j and k#1, there is a permutationr e 7 such thatw(i)
v=Eptr(PpP o) 2= &t (PpPT@ PpPT) (0@ 0)] =k and(j)=I. Then
=t[&x(PpPT@PpP") (0@ 0)]. (1) Ep,ep.p,e7 P2P1pPIPI=(poo—P)|0)(0|+pl, (23

Thus, to ensure thatis as desired and to compuTewe first  which is the desired effective pure state. An effective pure

verify that &(PpPT)=0 and then computeSp(PpP!  State would be obtained on average even with a one-
2 PpP) transitive group, such as the cyclic permutations used for

In the algorithms described below,is a random product exhaustive averaging. However, the variance for one-
9 . ' om p Fransitive groups can be quite large and two-transitivity helps
of operators, each chosen uniformly from various groups o

unitary operators. The desired expectations can often be reducing it.

computed in closed form iP is a random element of a 10 9ive the upper bound on for randomization withD
unitary groupG. For this purpose, it is convenient to use the @d 7, define

representations ofc defined by ;(P)(A)=PAP'" and

m,(P)(A®B)=PAP'® PBP', wherem,(P) is linearly ex- pa= > paliNil. (24)
tended to all four-tensors. Both; and 7, are unitary rep- =1

resentations ofs for the usual inner product of operators

and four-tensors: (A,BY=tr(AB) and (A®B,C®D) 1hen

=tr(AC)tr(CD), with the latter inner product extended bi- 1

linearly to a_II four-tensors._Usmg this representatlon,_lﬁ)r v<tr(p3)+ mtr(pZ)_ (25)
sampled uniformly fromG, it follows that the expectations
can be obtained by projecting and p®p onto the trivial
eigenspaces af,; and,. Specifically, lell, andII, be the
projection superoperators onto the space ofAaBuch that

The derivation of this inequality is in Appendix A. In the
high-temperature regime, this implies a signal-to-noise ratio

m1(P)A=A and onto the space of ai such thatw,(P)B of at least
=B, respectively. Then &p_gm(P)AT=II;A and S
Epem(P)B=II,B. We use this to calculate variances re- _n XIS, _ 26)
sulting from averaging over four groups, below. 2" Vi+ nﬁ/(Z”—Z)
A. Diagonal groups Efficiently implementable two-transitive permutation groups

- , . ) o can be obtained from the normalizer group.
If the initial density matrix is not diagonal and it is not

feasible to perform the unitary transformation that makes it

diagonal in the computational basis, one can use randomiza-
tion over a diagonal group to reduce the effect of the offdi- The normalizer groupV, more specifically, the normal-
agonal entries. LetD be a group of diagonal operators izer of the error group, consists of all unitary operatidhs

C. Normalizer group
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that satisfy that for any tensor product of Pauli operaters group. The main difficulty is that the normalizer group does
UoUT is also a tensor product of Pauli operatéup to a  not fix |0). This can be remedied by alternating randomiza-
phase factogr If the Pauli operators are labeled by tion with 7 and with the conditional normalizer group;
ooo=I, o01=0,, o10=0y, 011=0y, and, for example, that acts on the first—1 qubits given that the last one is in
T101105= T10® 011® 01, then the elements of the normalizer state|1).

group are characterized byo,UT=(—1)*Dif®G:L) g The first step in the procedure is to randomize vifittif
wherex is an arbitrary bit vector(x,b) denotes the inner needed and 7. Each following step involves randomizing
product mod 2 of bit vectors, aridis an arbitrary invertible with A; and then withZ. The total number of steps deter-
(mod 2 0-1 matrix that satisfiet TML=M, whereMb is mines how effective the randomization is. The procedure is
the bit vector obtained fronb by swapping adjacent bits designed such that the expectation of the resulting density
belonging to the same factor. The exponéfii,L) depends matrix is the desired effective pure state after every step. The
only onb andL; its values are not needed for the presentvariancev,., after thekth step can be estimated ligee
analyses. The group of matricés with this property acts Appendix A
tr_ansitively on nonzero bit vectors. The n(.)rm.alizer group \ L
yields several subgroups useful for randomization. vk+1gkatr(p§)+ mpz, 29

1. Linear phase shifts

with A=eYN*2)/2_|n the high-temperature regime this im-

The groupD generated by controlled sign flips and the plies a signak-to-noise ratio of

operatorS=(é ?) acting on any qubit consists of diagonal

operators with actiofk)—i>®(—1)&BR|k) wherex is a n XS,
vector with entries if{0,1,2,3 andB is an arbitrarynxn, =on —— , (29
0-1 matrix. To check that the phase independence condition \/1+2”§/[2 (2"-1)]

— T
(Sec. V A holds, suppose that for all andB=yz', wherek was chosen such that<1/[2(2"+2)].

x"(k—=l+m—n)+2(kTyzZ’k—1Tyz'l+m"yz'm—nTyz'n)

=0mod4). (27

VI. EFFECTIVE PURE STATES BY ENTANGLEMENT

The temporal randomization methods discussed above are
This implies thatk—I+m—n=0 mod(4). Ifk=m, then| useful when the device is qubit limited, in the sense that it is
=n=k sincek, |, m, andn are all 0-1 vectors. If not, with- difficult to access additional qubits. It is important to realize
out loss of generality, suppose that 0. To derive a con- that ancillary qubits involved only in preparation and post-
tradiction, suppose also thiat=| andk#n. If k is not in the ~ processing generally do not need to have long decoherence
span(mod 2 of I, m, andn, then there existg orthogonal  Or relaxation times. For example, if they are used only in the
(mod 2 to I, m, andn, but notk, which contradicts the Preparation phase, their quantum coherence does not need to
equality above. Thuk must be in the span ¢f m, andn. If be maintained in computation or readout. If such ancillas are
k is not in the span of two of them, sayandm, then there available, they can and should be used to simplify the effec-
exists az orthogonal td andm but notk and ay orthogonal ~ tive pure state preparation. Interestingly, if an additiomal
to n but notk. Again, we find that the equality cannot hold. qubits are available, it is possible to prepare a nearly perfect
Thus it must be the case thdt=1+m mod 2, k=I effective pure state for any diagonal initial state by exploit-
+n mod 2, andk=m-+n mod 2. This implies tham=n  ing entanglement.

=| and k=0. Thus the desired independence condition Here is an explicit algorithm that results in an effective
holds. pure state on the firgt qubits given 2 qubits. The basic

idea is to map the computational basis states other than the
2. Linear cyclic permutations ground state on the first qubits to nearly maximally en-
tangled states. Write a computational basis state on the 2
qubits aga)|b), wherea andb are lengthn bit vectors. Let
X be a generator of the multiplicative group of nonzero ele-
ments ofF,n. The desired unitary transformation is the com-
position of the maps

A group S acting cyclicly on the sefl), ... ,|n) is ob-
tained by representing the fiel,n as a vector space over
F,n with elements represented by bit strings of lengtim
some basis. Multiplication by nonzero elementsFgf de-
fines a cyclic subgroup of of order 2'—1.

3. Linear permutations P1:|a>|b>—>2 (=19 ay[c), (30
C
The group7 of linear permutations is generated by the
controlledNOT operations. The group consists of the unitary P,:|a)|b)—|axP)|b), (31

U’s that satisfy U|b)=|Lb), where L is an invertible . _ _ _
(mod 2 0-1 matrix. The group acts two-transitively on the whereb is interpreted as a bit vector in the first exponent and
set|1), ... |N). as a binary number in the second. Consider the reduced den-

sity matrix ¢ 5, on the firstn qubits derived from the state
D. Conditional normalizer group P2Pala)|b). If a#0,
Randomization over the normalizer group is as effective

1
for variance reduction as is randomization over the unitary Qab=1y (1=10)0]+|a)(al), (32)
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A A’ A A’ Cl

|
B B’ B B’ Cl—C—_Cl
I

Py P H
FIG. 4. Quantum circuit implementation of the permutatiéhs
andP,. FIG. 5. Molecule of chloroform: The two active spins in this
system are thé>C and the!H.

Con=10)(0|. (33 _ _
o . _ eters using standard probes. The resonance frequencies of the
This is nearly an effective pure state. gf is the reduced two proton lines(in the DRX-500 were measured to be at
initial density matrix on the firsh qubits andp is diagonal, 500.133 921 MHz and 500.134 136 MHz and the carbon

then after applyind®,P;, the reduced density matrix is lines were at 125.767 534 MHz and 125.767 749 MHz, with
N—1 1 errors of=1 Hz. The radio-frequenc§RF) excitation carrier

)00l + bl 1+ —p. 34 (and probe frequencies were set at the midpoints of these

N L(Poo P)[0){0]+pl] NP 39 peaks, so that the chemical shift evolution could be sup-

o ) ) o pressed, leaving only the 215-Hzoupling between the two
The deviation from the effective pure state is sufficiently spins. TheT, and T, relaxation times were measured using
small to be of no concern in most cases. _ standard inversion recovery and Carr-Purcell-Meiboom-Gill
~ Entanglement can be exploited even if less thaaddi-  pyise sequences. For the proton, it was found That 7 sec
tional bits are available. In fact, essentially the same algozngT,~2 sec, and for carbor;;~16 sec and’,~0.2 sec.
rithm works. However, the deviation from an effective pure the short carborT,, time is due to coupling with the three
state becomes larger and residual bias must be removed y,adrupolar chlorine nuclei, which shortens the coherence

another technique such as randomization. In general, if alime. Nevertheless, these time scales were all much longer
cillary qubits are available, the effectiveness of averagingnhan those of the operations applied, guaranteeing that we
methods can be improved. For example, we can randomizgy g implement quantum transforms and observe quantum
the statega)|b) with a#0 with the subgrouply of the  gynamics.
group of linear permutations that preserves the subspace \yg performedquantum state tomographlp systemati-
{|0)[b)}. If this does not reduce the variance enough, a Verggly obtain the final quantum state; this procedure will be
sion of the conditional normalizer randomization method canyescribed in detail elsewhef&l]. In each tomography pro-
be used,_whereéjm is used instead of the full group of linear ¢edure, nine experiments were performed, applying different
permutations. _ _ pulses to measure all the possible elements in the density
Ancillary qubits are likely to be available whenever a matrix in a robust manner. The resulting deviation density
computatmnal cooling method is used to increase the pTObmatrix for the thermal state is shown in Fig@g As ex-
ability of the ground state in some of the available qubits.pected, all the off-diagonal elements are nearly zero, while
Computational cooling uses ancillas and in-place operationg,e dgiagonal elements follow a pattern @fb, a—b, —a
to transfer heat from the computational qubits to the ancillas.. , and—a—b. An error of about 5% was observed in the
The simplest such methods are based on decoding a classigia due primarily to imperfect calibration of the 90° pulse
error-correcting code in place and exploiting the fact that thyighs and inhomogeneity of the magnetic field.

thermal state is equivalent to a noisy ground state. The two permutation quantum circuits were implemented
using the pulse programs shown in Fig. 7. Because of the
VII. EXPERIMENTAL EVIDENCE absence of phase correction steps in the controletgates

The temporal randomization methods can find immediat(%z]' the actual transforms implemented were not exactly

application in NMR quantum computation, even with simple hose of Eq(5), but rather
molecules, as we demonstrate with the following experimen- -

o : . i 0 0 O

tal results utilizing exhaustive averaging to extract an effec-
tive pure state from a two spin system. Using a model two- -~ |00 -1 0
spin system, we prepared an effective state similar to that of P1= oo o 1’ (39
Eq. (8) from a thermal state. This was done by implementing ,
the quantum circuits shown in Fig. 4 to perform the permu- L0 i 0 0
tation of Eq.(5) and its inverse. _

The two-spin physical system used in these experiments [t 0 0 0]
was carbon-13 labeled chlorofortfig. 5 supplied by Cam- _ 0O 0 0 1
bridge Isotope Laboratories, In@atalog No. CLM-262and P,= . (36)
used without further purification. A 200-mM sample was 0 -100
prepared with d6-acetone as a solvent, degassed, and flame L0 0 i O]
sealed in a standard 5-mm NMR sample tube, at the Univer-
sity of California, Berkeley College of Chemistry. For the purposes of temporal randomization of an initially

Spectra were taken using Bruker AMX-400niversity of ~ diagonal density matrix, the phases of the transformations
California, Berkeley and DRX-500(Los Alamog spectrom-  can be ignored. We obtained the density matrices shown in
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()

FIG. 6. Experimentally measured deviation density matrices for(@héhermal state(b) state afterP; operation,(c) state afterP,
operation, andd) effective pure staté¢biased sum of the thregeReal components only are shown; all imaginary components are small.

Figs. 6b) and Gc) from these two transformations. The ef- demonstrates the creation and manipulation of effective pure

fective pure state we obtained was approximately states that are in superpositions and will be reported else-
where[11].
194 € € €
— € 24 € € VIIl. CONCLUSION
p= -57, (37) . . . .
€ € € € We have described techniques for creating effective pure

states that complement the logical labeling and spatial aver-
aging techniques previously discovered. @amporal aver-
aging methods are unique in their use of summation over
where |e|<5.4. An error of +5 was calculated, based on experiments carried out at different times and powerful by
analysis of the linewidth integration, least-squares fittingvirtue of averaging over transformations chosen systemati-
used in the tomography procedure, and standard error propaally (in the case of the labeled flip and swap method
gation. This result compares favorably with the result ex-randomly (for randomization over a transformation group
pected from Eq(8). Further work has been done to use thisThe choice of temporal averaging method in an experiment
state as an input into a nontrivial computation; that workdepends on the number of qubits available, how many are
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_l_l |_| /ag/u/; APPENDIX A: CALCULATIONS OF VARIANCE
A 7/acg
P, 90, 90, FOR RANDOMIZATION OVER GROUPS
B |_| |_[2£{9{,’/ The expectation and variance of the outcome of an experi-
90, 90, ment using randomization over a groGpcan be determined
from the trivial eigenspaces of the representatiomg
4 [ ] [ Vs, m(U)(A)=UAU', and m, m(U)(A®B)=UAU'
P, 90, 90, ®UBU'. In the following sections these eigenspaces are de-
i termined and the resulting variances estimated. We begin
BJ; |;| 72 with some calculations for the diagonal groups.
x y

FIG. 7. NMR pulse program implementations of the permuta- 1. Diagonal groups

tions P, and P,. Each RF pulse was about ksec long and the Let D be a diagonal group as defined in Sec. V A. This
time between the pulses was about 2.3 msec. The horizontal axis iroup is used to diagonalize the average density matrix be-
time. fore randomizing with more powerful groups. We compute

. . i . . the projections onto the trivial eigenspaces of both represen-
required for computation, the initial density matrix, and thetationsm and :

desired signal-to-noise ratio. A summary of our recommen-
dations based on the analy_ses in this paper follows. For small Epep PliN] pf= 5i,j|i>(i| (A1)
numbers of qubits exhaustive averaging can be used for any

initial density matrix that is diagonal in the computational and

basis. If the initial state is close to that of noninteracting o o

particles at high temperature, the flip and swap techniques Epep Plii|PT@Plk)(kIPT=i)(i[®[k)(kl, (A2)
can be used. If a nhoncomputational qubit is available, then ) ) _ )

the labeled flip and swap method is the simplest and most Epep PliYKIPT@PIK)(i[PT=]i)(k|®[k)(i|. (A3)
efficiently implemented method. Asymptotically it requires a . ) o
linear number of quantum operations and, unless high signaPther expectations gf)(j|@k)(I| are 0. The projections of
to-noise ratios are needed, involves many fewer experiments and p®p onto the trivial eigenspaces of; and m, are
than exhaustive averaging. In terms of quantum operationgherefore given by

exhaustive averaging appears to be more efficient up to at

least four qubits. The actual minimum number of qubits for & kaTZZ b--|i>(i| (A4)
which the labeled flip and swap method uses fewer quantum peb = '

operations per experiment than exhaustive averaging de-

pends on the implementation and remains to be determined. v b vt o e

If every qubit is required for computation, then the random-  ép<p PPP ' @PpP 2”220 piili)(il@pji 1)l

ized flip and swap method can be used at a cost of more '

guantum operations per experiment. For large numbers of o e

qubits where the high-temperature regime or the noninteract- ﬂ%o piil{il@pil ).

ing assumption fails, randomization over a group can be

used. If ancillary qubits are available, randomization can be (A5)
combined with entanglement. It remains to be seen wheth

this situation will be encountered in practice. L ) .
B contributions of the off-diagonal elements pfto the vari-

Future theoretical work will investigate combinations of by thi hod. As will b d he eff f
logical, spatial, and temporal labeling techniques and estatfnce by t IS m_et 0d. AS will be seen, to re uc_:et €e eCt 0
ese contributions it is necessary to ensure ghiatapproxi-

lish a connection between these procedures and error correld ) L . . .
tion. Experiments will also be performed to demonstrate thdnately diagonal by an initial unitary operation or to design

different techniques with large molecules and to exploreN€ @lgorithm so thair is approximately diagondés will be
their relative merits in practice. the case if the output of the algorithm is deterministic when

given one of the computational basis states for ipput
The calculations for the other groups to be presented be-
low assume thap has already been randomized by a diago-
D. Leung independently discovered that labeling and temnal group. As a result, only the subspaces spannefdl)bi
poral averaging could be combined in the high-temperaturéfor 1) and by|i)(i|®|j)(j| and|i){j|®|j)i| (for m,) will
regime by labeled flip and swap. We thank W. Zurek forbe considered in our analysis.
encouraging our work on NMR quantum computation. We
profited from stimulating discussions with J. Anglin and D. 2. Two-transitive permutation groups
Divincenzo and acknowledge M. Kubinec, P. Catasti, and S. . . )
Velupillai for experimental assistance. In particular we thank -6t 7be & two-transitive permutation group that fix8}.
S. Velupillai for suggesting the use of labeled chloroform in't iS straightforward to check that far# j,
the experiment. We thank the NSA for financial support. 1
This work was performed under the auspices of the U.S. SPETP|i><i|PT=—Z li")i'], (AB)
Department of Energy under Contract No. W-7405-ENG-36. N—1%

r L . -
eIUnfortunater, it is impossible to completely eliminate the
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1
gPeTP|i><j|PT:m

where the indices in the sums range from 1INe- 1. This

convention for indices and labels will be in place for the
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If P is a random product of operatorsiand in a diagonal
group D, then

. 1 .
5P1eD,P257P2P1PPIP£=m2i piil =0, (A19)

remainder of the appendix unless otherwise indicated. The

relevant part of the trivial eigenspace of, is spanned by
1=3;,-4]i")(i’'| and an operator with no diagonal entries.
Fori#j,

&7 PIIP @ PP =7 3 1) li") (1,

(A8)

Epe 7 Pli)(iIPT@ PIj)(j|PT
“epwez S, el e

Eper PlIXIIPT®PIj)i|PT
=mi§,|i’><1'l®lj’><i’l, (A10)

1
€7 PlO)(j|PT@ PIj)OIPT==72 [0)(j’[®]]")(0],
! (A1)

1
Ep e PlI)(0IPT@ PIO)j|PT==72 [i)(0[®]0)(]'|
: (A12)

Ep,cD PyeT P,P1pPIPi®P,P1pPIP]

1 o oy 1 e

ZWZ PnD+m§j piipjj(E=D)
1 v v .
+m§] pijpji(J—D)

1 v v . “
+m2i poipio(Z1+2Z5)

1 o,
———tr(pHD+

N—1 (N=1)(N—-2)

X[tr(boﬁz—tr(ﬁﬁ)](é—b)+m
ey 1,

X[tr(pg)—tr(pd)](\]—D)+mtr(p0)(21+22).

(A20)

The variance is obtained by taking the inner product of this
expression withr® o. Define

and expressions involving other combinations of indices will

be of no further concern. The relevant part of the trivial
eigenspace ofr, is therefore spanneghonorthogonally by

bi; i) @), (A13)
B2 )11 (A14)
=2 I0a Il (A15)
Zli; |0)(i"|®li")(0l, (A16)
Zzi; [i")(0]®]0)(i"]. (A17)
Define
Boii; poil1)(0] + piol OX(il,
Po=p—Po- (A18)

&oizi: o0il i )(0] + 7ol 0)(il, (A22)
We will make use of thdin)equalities

trp=trpg=trp4=0, (A24)

2\ g 22 v2 2 _1\n2
tr(p®) =tr(py) +tr(pg) + poot (N—1)p°<1, (A25)
tr(og) = — g0, (A26)
tr(o?) =tr(oD) +tr(o3) + 05=N, (A27)
tr(od) +205,=2, (A28)
tr(&ﬁ)str(&ﬁﬂsN—l, (A29)

where we used the properties of the trace inner product and
the fact thato is unitary. The variance can now be estimated

by
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_=Ltr(v2)tr(c}2)+;[tr(v )2—tr(p3)][tr(o )2—tr<&2>]+;[tr<“2—)—tr<“2)][tr<&%
N—1 Pd d (N_l)(N_Z) Pd Pd d d (N_l)(N_Z) po Pq 0

. 1 . . . 1 . 1 . . 1 . . 1 .
(09 1+ 5P (D) <tr(pg) + T3t (p) + 5 () ~ (Y 1+ (Y <tr(p) + —5tr(p?)-

(A30)
|
Both of the terms in this expression can be large compared to N 6
r2. The presence of the second term shows the importance of S e >
ensuring thatp is initially in a nearly diagonal form and \/2 oS +271+1/2"-2)]né
implies a limit on the effectiveness of the diagonal group. n Sy|ooq
However, if o is diagonal in the computational basis, the >_ 11700 (A35)

second term does not arise. 2" J1+nS/(2"-2) .

The signal-to-noise ratio for the thermal distribution can
now be obtained as follows. With the definitions from Sec.For smalln, S is dominated by the contribution to the vari-
IV, ance from the randomization process, while for langét is
dominated by the reduction in excess probability in the

N-1 N-1 112 N2 1 ground state.
tr(PZ): Z:l (pii_p)zsiZ:0 (pll ) 2 pu

3. Cyclic permutation groups

) ) Consider using a cyclic groug; of permutations that
(1+6)"+(1=-8)7T- leave|0) fixed. This was done for exhaustive averaging, but
can also be applied to randomization. As we will see, the

-bIH

I3

1/.n 1 main problem is that the variance of the measurements can-
= H (1+8%)—1|<—exp E 5-1/], not be guaranteed to be sufficiently small. lzetbe a gen-
2n - I 2n - I
=1 : erator of the group of orded—1.
(A31) The trivial eigenspaces &, can be computed as in the
preceding section. The relevant subspaces are spannkd by
1 for 7, and
trp?= ?Z 5. (A32) o _ _
3 dilelm )=l (a3
This last expression is a good approximation as long as
2 ili is qi < . . S
2;0{<1. The probability of the ground state is given by Jkii>1 ||><7Tk(|)|®|ﬂ_k(|)><|| (A37)
1 1 .
pOO=FH (1+6)= on 1+2I 5i), (A33) Z4, Z,, and a few others of no further concern fos.

Let P be a random product of an element of a diagonal
groupD and the cyclic grous;,
which is a good approximation as long 8s5;<<1. Thus the .
signal-to-noise ratio for randomization using a two-transitive Ep, cDp,es,P2P1PPIPI=0, (A38)
group is bounded by

5P15D,P2551P2P113PIP]2L® P,P1pP1P}

2 il oo N2 4
| .o~
S= . (A34) :k o N— 2 Pii Pak(iymk(i) D
\/22"s+2n[1+1/(2”—2)]§_) & -
I
+ 2 E plwk(|)Pw |)|‘Jk

To understand the behavior of this expression, consider the 1
case wheres;= 6 i§ independgnt of Fhe qubit. We express +m’“(53)(21+ Z,). (A39)
in terms of the signal-to-noise rati§; for a single qubit ( )

S = 5l\/s. For a typical NMR experiment with protorts; L
~10°. With these definitions, To computey we take the trace after multiplying hy® o,
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N-2

v= 2 2 ;Ju;)vr k(i) k(i) E O5i O 7K(i) k(i)
N—

2 P,T,k(| 2 Tiak(i)Timk(i)

tr(Po)tr( 0'0) (A40)

Z
1

N

The sum involves off-diagonal expressions and products of

correlations of the diagonals pfando. Althoughv_can be
much too high in the worst case, in practice one can expect

to be close to what was obtained for a two-transitive group.

However, since the known algorithms for the cyclic groups

E. KNILL, I. CHUANG, AND R. LAFLAMME

5. Normalizer group

The normalizer group is as effective at randomizing
|0), ... |N—1) as the full unitary group, at least in terms of
expectations and variance. It is straightforward to determine
the trivial eigenspaces of, and w5 in the Pauli operator
basis. Foii#j andj#0,

Epe AP oiPT= 6 o0, (A43)

EpcpPoiPT@PoPT=0, (A44)

it

EpeaPoiPT@PoPT= > 0®a), (A45)

22m 1 20

are no more efficient than those for the linear group, there is

presently little to be gained by using cyclic groups.

4. Unitary group

A spanning set of eigenvectors of the representatigof
the unitary groupJ acting on|1), ... ,|N—1) consists oE,
J, 24, Z,, and|0)(0|®|0)(0|. As a result one obtains

EpouPpPToPpPT
+r(p1(E+J)

1 Y N2
m[(tfpd)

e (thg—t(BIE-T)
2(N—1)(N—2)-'"Pd Po

.o v~ 1 o~
+ mtr(Pg)(Zﬁ Z,) Imtf(PgﬁJ
1 N S,
- mtr(Po)EJr mtr(f)o)(zﬁ Zy).
(A41)
Thus
v D) - ()2
N(N—2) P/ %" N(N=1)(N—2) ‘Po/"0d

b tr(pg)tr(od)
Z(N—l) Po 0

1 1
g— —) _—T

— 2tr(,32). (A42)

By using the unitary group, it is possible to eliminate the

term trf;ﬁ that occurs in the expression for for the two-
transitive permutation groups. Although it is impossible to
efficiently implement random elements of the unitary group

wherem is the number of qubits. Using these identities, it
can be verified that the trivial eigenspacemfis spanned by
the identity and that ofr, by E=1®1 andJ=X; j-oli (]|
®|j)(i|. To exploit the normalizer group without removing
the polarization if0) requires conditioning it on one of the
qubits.

6. Conditional normalizer group
In this section we analyze the behavior of the algorithm
based on alternate randomizations usiAgnd the condi-
tional normalizer groupV;. Let R,_; be the expectation of

PpPT@PpPT after thekth step of the conditional normalizer
group algorithm. Using EqA20),

ﬁ=;[Ntr(v2)—tr(v2—)]D

+;[tr(v2ﬁ—tr(vz)]f]
(N=1)(N—2)- P/ TP

1 vox 1 PN
- mtr(pd)E'i‘ mtr(po)(z:ﬁ‘ Zz).

(A46)

Deﬁne ay, ,Bk y Yk and 1) by Ek: akf) + IBkj+ ’ykE+ 5(21
+7,), where we have used the fact thag+Z, is not af-
fected by randomization witi and V.

BecauseN; distinguishes the state of the first qubit, we
need to subdivide the tensors in the expressiorRfprWrite
D:DO+DL j:jOO+jol+le+jll’ al’ld E_Eoo+ EOl
+E ot Ey;. For example, Dy=3MN2" 1||)(||®||><|| Jos
—EN/Z 12] N/2||><J|®|J Xil, and E10 EI N/ le 1|'><'|
®|j><]|, where we are using the convention that the indices
i=2""1=N/2 are those referring to states with the first qubit
in state|1). Randomizing overV; preserves all but one of
these expressions:

. 2 . .
Epen;m2(P)(D1) =759t yoFu (A47)

there are effective methods for accomplishing the same by

using the normalizer group.

Hence



The variancev_k+ , after thekth step is given by

U 1=tr(Ry1 100 0) (A52)

v 2
= oy 111(03) + Brsatl(05) + yir 1(trog) 2+ Str( o).

(A53)
We can estimate the coefficients as
vy N -
aptr(og) < N= 2tr(pd), (A54)
2 1 v2 v
Botr(ag)< g5 Ltr(pp) —tr(pa) ], (AS55)

;tr(vz)(trv )2<0
(N=—1)(N—2) PaTod =5
(A56)

Yo(trag)?=—

. 1 .
otr( O'S) = mtrpé , (A57)
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— . . 2 1 - v
Epen;2(P) (RO = aDot Bid+ 5 adit nE s atr(og) =5 1+ T IN=I)(N<2) atr(oq)
2 1 w2 oL ey N o
t g et 821+2,). (A48) <5e adr(o3) =< sxe 5t (PY)-
Randomizing ovefl gives (AS8)
Definex=eYN*2)2. The coefficientss, and y, are mono-
v —Z tonically increasing. The limiting values are
Ep7ma(P)(Do) = 51=7;D: (A49) y 9 9
. 1 1
Bwtr(o )=| Bot Olo)tf(tfo)\ N_ ZU(P—) (A59)
. N . N ..
5P67’7T2(P)(E11):Z(N_l)D+4(N_1)(E_D) )
N . . 'yoctr(:)'d)2= ( Na0+ Yo tr((;'d)zso. (AGO)
= D+ E, A50
4(N—-1) 4(N—-1) ( ) Thus
< N . N . . N .
EpermaP) 1) = 5P =y VD) k1 SNGSI(P) T 5. (AD)
__N D+ N J (A51) By choosingk large enough, the variance can be reduced to
4(N-1)" 4(N-1)" near that obtainable by randomizing over the whole unitary
group. In fact, ifk is chosen so that“<1[2(N+2)], then
so that the maximum contribution to the variance is<[2/(N
_ _ —1)]tr(p?). Consider the case whepeis diagonal withpgg
Rir1=Ep, e €p e A, T2 P2P1) (Ry) maximal,c= \/s/(poo— P), and the output of the algorithm is
N2 5 deterministic (i.e., 02,=1). Then [2/(N—1)]p?<2p(poo
=\ aNC DN AP —p) and
2 Poo_p_ VPOO_E
At aNT D (N=T) %)Y S= —= —.  (A62)
Vs+ 2p(poo—P) \/Czpoo"‘ 2p
+| yet+ mak)é-f— 8(Z,+2,). Consequently, ip<cpg, the signal-to-noise ratio is domi-

nated by 1¢, the term due to measurement noise.ﬁf
>Cpgo, then the signal-to-noise ratio is determined by the

contribution from the randomization method. As longpais
sufficiently smaller thampyg andc=<1 the signal-to-noise ra-
tio is bounded below by a constant, which ensures that a
small number of experiments are required to determine
whetheroy=1 or og=—1. However, in the case where

E~poo, the signal-to-noise ratio can be very small, for ex-

ample, if p;j=0 or p;;=pgo for all i. The situation wherg

~ poo IS small arises in the high-temperature limit of NMR
gquantum computation. In this case the signal-to-noise ratio
can be estimated as

S=

n Silood
n

2" 1+2nSi[2"(2"-1)] (A63)

7. Randomized flip and swap method

For the fully randomized flip and swap method, each ex-
perimental determination of the output of the computation
consists of two experiments. First a sequenc& edandom
operators implementing the conditional normalizer method is
chosen. For the present purposes we chdos® that\k
<1/2(N+2). Next two experiments are performed. In the
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first the chosen sequence of operators is applied before megperator. mod 2 such that 1=b. If b hasw one’s, such an

suringo-. In the second, the flip and swap operation is usegperator with at mosh—w off-diagonal ones exists. The
before applying the same sequence of random operators ap@responding unitary operator in the group of linear permu-

measuringr. The measurements are added to obtain the degtions can be implemented with-w controlledNoTs.
sired answer.

This algorithm behaves exactly like a single randomized
experiment with inpuips [Eq. (15)] and measurement vari-

ance s/2. The variance of the randomization is therefore ~Every element of the normalizer grouy operating om
given by qubits can be implemented by @%) controlledNOTs and

/2 or 1 rotations of single qubits. For the purposes of ran-
2 - domly choosing one of the members/gf the natural repre-
2
N_1U(ps) (AB4)  sentation ofU e Vs

2. Normalizer group

v<

2252 Uiop—UopUT= (1) bg, . (B1)
= m (A65)
A uniform random element can be obtained by choosing
Substituting in the expression for the signal-to-noise raticndL uniformly subject toL 'ML=M (see Sec. V € The

gives vector x is obtained by setting each of then Zntries ofx
independently and uniformly to O or 1. To obtain uniformly
n S| ood distributed validL's one can construdt column by column.
S= —+ , (AB6)  Write
2" J1/2+2n2S3/[22"(2"-1)]
where we have taken into account the fact that two experi- M :[O | } B2)
ments contributed to the signal. I 0]

Instead of using the conditional normalizer group, one can

. N_l .
use any set of permutation operatdf;}i=;" with Pi|0)  \here the entries arexn matrices and the partitioning is
=|0) andP;|N—1)=i). For example, a cyclic linear group pased on writing the index of o, in the formb=bgb,, with
can be relabeled to have this property. Because of the syny, andb, containing the indices coming from the first and
metries Ofps, this is as effective as using a two-transitive second members of each qubit's pair, respective'y_

group. Since tr§2)<n?6%/N?, If L_, is the 2nxXk matrix consisting of the firsk col-
umns ofL, thenLLkM L<k=M<y <k, WhereM . < is the
— (2"—1)n?%5? (A67) kxk matrix submatrix ofM in the upper left corner. The

columns ofL . are linearly independerimod 2. Suppose

)
L., has been constructed and we wish to add another col-

and umn to obtainL ., ,,. The new columrL,, ; has to satisfy
T
. in Si|ood . (A68) Ly+1MLx+1=0, (B3)
2" \[1/2+n?Si/[2"(2"- 2)]
Lics ML =Mic 1 <k (B4)
APPENDIX B: IMPLEMENTATIONS _ o o .
OF TEMPORAL AVERAGING ALGORITHMS The first equality is satisfied for anly,,;, SO we wish to
) choose.,, 1 randomly, not in the span &f., and subject to
1. Flip and swap method the second equality. The dimension of the affine space of

The implementation of the labeled flip and swap methodsolutions to this equality is 12—k, while the dimension of
for three qubits and an ancilla is shown in Fig. 3. The flipthe span ofL_ is k. We consider two cases. K<n, then
and swap is the first group of gates, consisting afiar M1 <=0 and the span df_, is contained in the space of
applied to each qubit, followed by controllesbTs from the  solutions. Becauser2-k>k, suitableL,,; can be found.
first to each of the other qubits, am—1 controllednoT  To pick Ly, ; uniformly one can use any algorithfa.g., one
conditioned on the last—1 qubits being0), and finally a  based on Gaussian elimination mod@ obtain 2 — 2k vec-
reversal of the first set of controlledbTs. Efficient quantum tors Sy, ... ,S;n_» independent of the columns df,,
networks for then—1 controlledNoT (generalized Toffoli ~ which together with -, span the solution space. A random
gate$ are given in[12]. Note that for diagonal initial states, Ly, is obtained by choosing a random nonzero linear com-
phase variants are equivalent, so we can use an SU variabination of theS,, ... ,S,,_,¢ and adding it to a random
of the Toffoli gate to avoid ancillas while still having an linear combination of the columns &f_,.

O(n) implementation. Also, the computation can be arranged If k=n, thenM,; < is nonzero. Ify is in the span of
so that it is Of) even if controlled operations can only be L-, then the k—n-+1)st entry ofy’"ML_, is zero. Since
performed between adjacent qubits in a linear ordering.  that entry ofM,; < is 1, the set of solutions tp'ML_,

An efficient method for implementing a randomized flip =M, ; < does not contain any elementin the span of
and swap is to choose for ea¢h)+|0) an “easy” linear L. We can therefore pick a random element in this affine
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subspace of dimensionn2-k. An affine basis for this sub- such anx andB, the phase shifts are implemented by first
space can again be obtained by a Gaussian eliminatioapplying phase shifts bi*i of |1) to the jth qubit and then
method. performing a sequence of controlled sign flips. The sequence

The above construction shows that the number of valicbf controlled sign flips can be read off the entrieBay the
L's is IIRZ5(22" k= 2T13Zg2" X, In view of the technique following procedure: IfB;;=1, apply a controlled sign flip
for constructing random invertible matrices oy given in  between bits andj. The number of operations required to
[13], there are probably more efficient methods for constructapply the random phase shift is at mogn—1)/2.
ing randomL’s.

To obtain a quantum network that implements the unitary
operator defined byx(L) requires decomposing into el- A unitary operatoiJ in T'is defined byU|b)=|Lb) for
ementary operations corresponding to controlieris and ~ an invertible(mod 2 nxn matrix L. Any such unitary op-
single qubit rotations. This can be done by adapting theerator can be implemented using only controlleaf's. Since
methods described i14]. The basic idea is to multipliy on & controlledNOT corresponds to an elementary row or col-
the left and right by the linear operators corresponding td/mn operation, a decomposition bfinto such operations
controlledNOTs and rotations. Since controlledTs corre-  Yields the desired quantum network. The decomposition can
Spond to e|ementary row or column operations in mk@ n be accomplished by the usual Gaussian elimination methods.
subblocks, one can apply Gaussian elimination methods t4 random invertibleL can be generated column by column
convert the first(say subblock to standard form. The/2 ~ using a simpler version of the method described for the nor-
rotations around the different axes permit elementary row ofalizer group. A more efficient algorithm that can be used to
column operations between corresponding rows or columngonstruct the decomposition into elementary operations at
of different subblocks. This can be used to transfarto |, the same time is described [ih3].

The representation of the resulting sequence of controlled
NOTs and rotations is of the fornx(,L). To correct the first
component, one can applyy x—x to the qubits. The total

b. ImplementingZ

3. Entanglement

number of gates needed to implement an operatoNiis The operationsP; and P, required to implement the
0o(n?) [14]. method for effective pure states by entanglement are imple-
mented as follows. A phase variant equivalenftpfor di-
a. ImplementingD agonal initial states is obtained by applyingm#2 rotation

Being a subgroup o/, it is clear that each operator i around thw_axis to_each of the second groupsrofjubits.
has an efficient quantum network. The random phase shifth€ OPerationP, is decomposed into the product of
of D are described by operatorB(x,B) defined by Pajlay[b)—|ax®?)[b) for i=0,...n—1. Multiplication
D(x,B)(|k))=i*®(—1)Bk A random such operator is by x%? in F,n is a linear map mod 2 and defines an element
obtained by choosing randomly and uniformly from all of 7 that can be implemented with @) controlledNOTs.
n-dimensional vectors ovel0,1,2,3 andB uniformly from  EachP,; can therefore be implemented with i3] Toffoli
the set of strictly upper triangularx n, 0-1 matrices. Given gates andP,P, takes O(®) operations.
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