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Effective pure states for bulk quantum computation

E. Knill,1 I. Chuang,2 and R. Laflamme2
1Computer Research and Applications CIC-3, MS B-265, Los Alamos National Laboratory, Los Alamos, New Mexico 8745

2Theoretical Astrophysics T-6, MS B-288, Los Alamos National Laboratory, Los Alamos, New Mexico 87455
~Received 3 September 1997!

In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers
by parallel unitary operations and measure expectation values of certain observables with limited sensitivity.
The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure
input states by a series of manipulations have been described by Gershenfeld and Chuang~logical labeling!
@Science275, 350~1997!# and Coryet al. ~spatial averaging! @Proc. Natl. Acad. Sci. USA94, 1634~1997!# for
the case of quantum computation with nuclear magnetic resonance. We give a different technique called
temporal averaging. This method is based on classical randomization, requires no ancilla quantum bits, and can
be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal
averaging algorithms suitable for both high-temperature and low-temperature bulk quantum computing and
analyze the signal-to-noise behavior of each. Most of these algorithms require only a constant multiple of the
number of experiments needed by the other methods for creating effective pure states.
@S1050-2947~98!00305-9#

PACS number~s!: 03.67.Lx, 89.80.1h
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I. INTRODUCTION

Quantum computation involves the transformation of o
known pure quantum state into another unknown st
which can be measured to provide a computationally us
output. Traditionally, it has been understood that an imp
tant part of this process is the proper preparation of a fidu
initial pure state such that the computational input is w
known and the output is thus meaningful. In particular, it h
usually been assumed that the input cannot be a stoch
mixture. However, two groups@1–4# have recently shown
that by using a different technique, calledbulk quantum com-
putation, the same computation can be performed but w
an initial mixture state, which is often much easier to achie
experimentally. Bulk quantum computation is being imp
mented for small numbers of qubits using nuclear magn
resonance~NMR! techniques.

Bulk quantum computation is performed on a large e
semble of indistinguishable quantum computers. At the
ginning of a computation, each memberc of the ensemble is
in an initial staterc,0 such that the averager08E(rc,0) of
these states is known~E denotes the expectation operator!. A
bulk computation with such an ensemble can be divided
three steps consisting of preparation, computation, and r
out. Each of these steps is equivalent to an application of
same quantum operation to each member of the ensem
The purpose of the preparation step is to transform the in
state to aneffective pure state, which permits observation o
the output of the algorithm. The computation is assumed
be a fixed unitary operator derived from a standard quan
algorithm, that is, an algorithm with a one-quantum-bit~qu-
bit! answer. We wish to determine this answer on inputu0&
~the state where every qubit isu0&). The readout procedur
may include some postprocessing of the algorithm’s out
and terminates in the measurement of the observablesz

(1) ,
the spin along thez axis of the first qubit. In bulk quantum
computation, the measurement yields a noisy version of
571050-2947/98/57~5!/3348~16!/$15.00
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average value ofsz
(1) over the ensemble of quantum compu

ers. For our signal-to-noise analyses, we assume that
noise is unbiased with variances2.

Formally, a bulk quantum computation of an algorith
implementing the unitary transformationC with preparation
and postprocessing operationsP andR transformsr0 to

rout5(
i , j

RiCPjr0Pj
†C†Ri

† , ~1!

where theRi andPj are the operators in a linear represen
tion of the quantum operationsP andR @5#. The measure-
ment step of the readout procedure yields tr(routsz

(1)) with
noise. In the methods investigated in this paper,R is unitary,
usually the identity. The purpose ofP is to create aneffective
pure state. The simplest example of an effective pure sta1

is a density matrix of the form

(
j

Pjr0Pj
†5p u0&^0u1

q

N
I . ~2!

Here N5dim(I )52n, wheren is the number of qubits. If
R5I , thenrout5pCu0&^0uC†1(q/N)I , so that

tr~routsz
~1!!5p tr~Cu0&^0uC†sz

~1!!. ~3!

If the excess probabilityp of the ground stateu0& is larger
than the smallest detectable signal, we are able to determ
whether the output of a standard algorithm is 0 or 1
learning whether the measurement yields a negative o
positive value. To achieve sufficient confidence in the a
swer or to learn more about the average answer, the b
computation is repeated several times. High confidence
the answer means a low prior probabilityc of incorrectly

1Cory et al. @3,4# call this apseudo pure state.
3348 © 1998 The American Physical Society
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57 3349EFFECTIVE PURE STATES FOR BULK QUANTUM . . .
inferring the answer of a standard algorithm. At a signal-
noise ratio ofS per experiment this requires; ln(1/c)/S2

experiments.
Prior to the present work, there were two approaches

implementing an effective pure state preparation proced
These approaches may be classified asspatial averagingand
logical labeling. Spatial averaging was introduced an
implemented by Coryet al. @3,4#. In general, spatial averag
ing involves partitioning the ensemble of quantum comput
into a number of subensembles and applying a different
tary operator to each of them. Given enough subensem
and proper choices of unitary operators, the average den
matrix over the whole ensemble can be transformed into
effective pure state. This procedure requires methods for
tinguishing between quantum computers in the ensemble
NMR this can be accomplished by using well-known gra
ent pulse methods to address individual cells in a b
sample. The cells in the implementation of Coryet al. are
two-dimensional slices of constant magnetic fields defin
by a transient gradient. The logical labeling technique
Gershenfeld and Chuang@1,2# is fundamentally different; it
avoids the use of explicit subensembles by exploiting an
lary qubits as labels. An initial unitary transformation is a
plied that redistributes the states in such a way that co
tional on the state of the labels, an effective pure state
obtained in the qubits to be used for computation. Gersh
feld and Chuang demonstrated that this can be done
ciently in the high-temperature limit for noninteracting q
bits, wherer0 can be expressed as a small deviation fr
(1/N)I .

Here we consider a different technique:temporal averag-
ing. Rather than attempting to guarantee an effective p
state in a single experiment, this method uses several ex
ments with different preparation steps chosen either syst
atically or randomly. The measurements from each exp
ment are averaged to give the final answer. The prepara
steps are chosen such that the average of the prepared
states is an effective pure state. The advantages of
method are that no ancillary qubits are needed, it can
implemented at any temperature, and it is not necessar
distinguish subensembles of quantum computers. In
high-temperature regime it can be implemented efficien
with little overhead compared to the other methods. T
signal-to-noise ratios are sufficiently well behaved to per
efficient determination of the desired answer to any giv
level of confidence, provided the optimal effective pure st
accessible from the initial state has sufficient signal.

We will describe several temporal averaging methods
discuss their properties. Temporal averaging methods ca
loosely categorized into high-temperature and lo
temperature methods. The high-temperature methods ten
be simpler and are the most efficient for NMR quantum co
putations involving small numbers of qubits. Three su
methods will be described: exhaustive averaging, labeled
and swap, and randomized flip and swap. The labeled
and swap method uses a limited form of logical labeling
obtain the desired answer in two experiments with only o
ancilla, while the randomized flip and swap method needs
ancillas but may require additional experiments to overco
noise from the randomization procedure. Flip and sw
methods rely on an inversion symmetry of high-temperat
-
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thermal states of noninteracting particles. Low-temperat
methods do not require special assumptions about the in
state, but tend to use more operations to implement. L
temperature methods should be used if the high-tempera
approximation fails, but insufficient polarization is availab
to efficiently obtain bits that are very near the ground sta
Two low-temperature methods are of interest: randomiza
over a group and averaging by entanglement. The first
pends on which unitary group is used. We will show th
there are groups that yield good signal-to-noise behavior
can be implemented in cubic time. Averaging by entang
ment has the advantage of requiring fewer experiments,
necessitates discarding some of the qubits. This method
be useful if some of the qubits are discarded anyway for
purpose of polarization enhancement by computational c
ing, a family of techniques for statically or dynamically in
creasing polarization of the ground state for a subset of
available qubits.

The different temporal averaging methods are introdu
and analyzed in the following sections. We begin with
simple example borrowed from NMR, discuss exhaustive
eraging and the flip and swap methods, show how rand
ized averaging over a group can be used and give the me
based on entanglement. More detailed descriptions of
algorithms and the mathematical analyses are in the App
dixes. It is assumed that the reader is familiar with the ba
concepts of quantum computation@6–8# and nuclear mag-
netic resonance@9#.

II. NMR EXAMPLE

To illustrate the ideas on which temporal averaging
based, consider a two-qubit example from room-tempera
NMR with liquids. The density matrix of anAX system con-
sisting of a proton and a carbon-13 nucleus in a 400-M
spectrometer is approximately given by

r5
1

4F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G11025F 1 0 0 0

0 0.6 0 0

0 0 20.6 0

0 0 0 21

G .

~4!

How to calculate these input states will be discussed bel
Because all relevant observables are traceless, we focus
attention on the second matrix, thedeviation density matrix.
Suppose our goal is to perform some computationC on the
ground stateu00&^00u and then to observesz on the proton.
For this observation, the statesu01&^01u, u10&^10u, and
u11&^11u constitute noise. To remove this noise we can e
ploit the fact that the computation and the observation
linear in the input. We perform three experiments, each w
a different preparation step that permutes the undesirable
put states, and then average the output. The first experim
uses the unmodified input, corresponding to preparation w
P05I . The second permutesu01&^01u→u10&^10u→u11&^11u
→u01&^01u using the unitary transformation
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P15F 1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

G . ~5!

This results in the input state

r15P1rP1
†5

1

4F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G
11025F 1 0 0 0

0 20.6 0 0

0 0 21 0

0 0 0 0.6

G . ~6!

The third preparation applies the inverse permutationP2

5P1
† to produce the input state

r25P2rP2
†5

1

4F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G
11025F 1 0 0 0

0 21 0 0

0 0 0.6 0

0 0 0 20.6

G . ~7!

The average of the input density matrices is then given b

r̄5
1

3(i
PirPi

†5
1

4F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G
11025F 1 0 0 0

0 20.333 0 0

0 0 20.333 0

0 0 0 20.333

G
5S 1

4
20.33331025D F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G
11025F 1.333 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

G . ~8!
The average of the measurements ofsz
(1) after a computation

gives tr(Cr̄C†sz
(1))51.33331025tr(Cu00&^00uC†sz

(1)). It
can be seen that the contributions to the measurements o
undesirable input states have been eliminated. In NMR,sz

(1)

is measured by applying a radio-frequency pulse to rotate
magnetization of the target spin into the plane and observ
the free induction decay as discussed in@2#.

III. EXHAUSTIVE AVERAGING

The example of the preceding section is an instance
exhaustive averaging. For n qubits, it involves cyclicly per-
muting the nonground states in 2n21 different ways such
that the average of the prepared states is given by (r00

2 p̄)u0&^0u1 p̄I . This method works for any initial state tha
is diagonal in the computational basis states. Although
number of experiments required grows exponentially, it
reasonable to consider implementing it for small numbers
qubits.

To design the quantum network for the preparation ste
one can exploit the structure of the Galois fieldF2n. If the
nonground initial states are labeled by elements ofF2n, mul-
tiplication by a nonzero elementx of this field implements
one of the cyclic permutations. Since multiplication can
implemented with a reasonable~quadratic! number of con-
trolled NOTs, each suchx yields a preparation operatorPx .
The seven networks needed to exhaustively average t
qubits are in Fig. 1.

The signal-to-noise ratio of exhaustive averaging is de
mined by the sensitivity of each measurement, the exc
probability in the ground state, and the number of expe
ments being performed. If the initial density matrix isr
5( ir i i u i &^ i u with 0< i<2n21, then the average densit
matrix over all experiments is given byr̄5(r002 p̄)u0&^0u
1 p̄I , wherep̄5@1/(2n21)#( i 51

2n21r i i . If the computation’s
output isx5tr(Cu0&^0uC†sz

(1)), then the observed averag

signal is (r002 p̄)x. Given that the variance of the noise
each measurement iss2, the standard deviation of the nois
in the average iss/A2n21, which gives an overall signal-to
noise ratio ofA2n21(r002 p̄)x/s. Typically, the density
matrix will describe a high-temperature, polarized system
noninteracting spins, in which caser00'nd/2n, whered is
the single spin polarization~see Sec. IV!. It is also conve-
nient to defineS15d/s as the signal-to-noise ratio from
single spin measurement such that we may express
signal-to-noise ratio of exhaustive averaging as

S>
n

2n
A2n21uxuS1 . ~9!

This argument assumes no bias in the individual meas
ments. To ensure that exhaustive averaging works corre
for standard quantum algorithms, the bias must be sm
compared to (r002 p̄)/2n.

IV. FLIP AND SWAP

Flip and swapis a method that exploits special properti
of the high-temperature thermal state for noninteracting p
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57 3351EFFECTIVE PURE STATES FOR BULK QUANTUM . . .
ticles to create an effective pure state with few experime
If the internal Hamiltonian of a collection ofn qubits is
given byH, then the thermal state is given by

r5
e2bH

Z , ~10!

whereb51/kBT is the usual Boltzmann factor and 1/Z is the
partition function normalization factor. At high temperature
a good approximation is to take

r in'
1

N
~ I 2bH!, ~11!

whereN52n and we have defined energies so that trH50.
Consider the case where the Hamiltonian for the qubit

that of noninteracting distinguishable particles with ene
eigenstatesu0& and u1& and energies2ei and 1ei , respec-
tively, for the i th qubit. This is a good approximation fo
many spin systems in NMR, provided the coupling consta
are small compared to the chemical shift differences betw
the different spins. In this case, the energy eigenstates
close to the standard computational basis states and the
ergy shifts due to coupling are small compared to the Larm
frequencies. The probability of the stateub& for bit string b
5b0b1•••bn21 is given by

FIG. 1. Networks required for state preparation when imp
menting exhaustive averaging for three qubits using controlledNOTs
and swaps. The networks shown perform the six nonidentity cy
permutations. Seven experiments are performed, one with no
cial preparation and six with the preparation networks above.% ’s
denote the target qubits of the controlledNOT gates andd ’s denote
the control.
s.
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rbb5 )
i 50

n21
1

2
@11~21!bid i #, ~12!

with

1

2
~11d i !5

ebei

ebei1e2bei
. ~13!

To first order,d i'bei is the polarization of thei th qubit.
Thus we can write

rbb5
1

NS 11 (
i 50

n21

~21!bid i D , ~14!

where this first-order approximation is valid as long
d t8( i 50

n21d i!1.
Given the linear approximation torbb , it can be seen tha

if b̄5(12b0)(12b1)•••(12bn21) is obtained fromb by
flipping each bit, thenr b̄b̄1rbb52/N. Thus, to obtain an
unbiased, uniform input from two experiments, it suffices
perform one experiment with no preparation step and
with all the qubits flipped in the preparation step, averag
the results. However, this eliminates effective polarization
the ground state as well as all the other states.

To retain the ground-state polarization we can perfo
two experiments. In the first, the thermal input state is u
without modification by applying preparation operatorP0
5I . In the second, the preparationP1 consists of first invert-
ing each qubit by applyingsx and then swapping the groun
stateu0& with the stateu1& ~all qubits in stateu1&). The av-
erage of the two prepared states is given by

rs5
1

N
@ I 1d t~ u0&^0u2u1&^1u!#. ~15!

There are two methods for eliminating the remaining pol
ization in u1&. The first, randomizedflip and swap method,
uses randomization to average this polarization over all n
ground states. The second,labeled flip and swap method,
uses one of the qubits as a logical label, following t
method of@1,2#.

The simplest randomization method involves first sele
ing a random nonground stateub& and applying a unitary
operationR that mapsu1&→ub& and leaves the ground sta
unchanged. Both preparation steps are modified by add
this unitary operation after the flip and swap and before
computation. To improve the signal-to-noise ratio, the wh
procedure can be repeated several times.R can be imple-
mented efficiently using at mostn21 controlledNOTs.

The signal-to-noise ratio for a randomized flip and sw
method now depends not only on the initial polarization
the ground state, the computation, and the sensitivity of
measurements, but also on the contribution to the varia
from the random choice ofR. The detailed calculations o
this variance will be given in Appendix A. If all the polar
izations d i are the samed i5d, we define S15d/s ~the
signal-to-noise ratio for a measurementsz

(1) of the thermal
state! and a lower bound on the signal-to-noise ratio is giv
by

-

ic
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S>
n

2n

uxuS1

A1/21n2S1
2/@2n~2n22!#

. ~16!

Graphs of the behavior of the signal-to-noise ratio of this a
the other methods are given in Fig. 2. For smalln, the lim-
ited number of possible random choices results in a sign
cant reduction in the signal-to-noise ratio. However, a r
sonable number of repetitions of the experiment can
reliably determine any bias inx, if x is not too small. An
improvement inS can also be obtained by using randomiz
tion over the normalizer group as discussed in Sec. V. Th
called thefully randomizedflip and swap method.

The labeled flip and swap method requiresn11 qubits
and applies the flip and swap operation to all of them.
stead of removing the polarization inu1& by averaging, it is
exploited by using the (n11)st qubit as a label similar to th
methods introduced in@2#. This method was discovered in
dependently by Leung. Conditionally on the (n11)st qubit
being in stateu0&, the firstn qubits are in an effective pur
state with excess probability inu0&. Conditionally on the (n
11)st qubit being in stateu1&, the first n qubits are in an
effective pure state, but with a deficiency inu1&. Both experi-
ments’ preparation steps must be followed by an opera
that conditionally on the (n11)st qubit flips all the other
qubits to turn the conditional deficiency inu1& into one in
u0&. After the computation is complete, the deficiency can
turned into an effective excess by conditionally reversing
sign of the answer. The full network forn53 is given in Fig.
3. The signal-to-noise ratio for the labeled flip and sw
method is given by

S5
A2~n11!uxuS1

2n
. ~17!

FIG. 2. Graphs of lower bounds on the signal-to-noise ratio
the different averaging methods for two or more identical nonin
acting qubits at high temperature anduxu51. The bounds hold for a
one-qubit signal-to-noise ratio of 103. The signal-to-noise ratios ar
for one experiment in the case of randomization over a group,
in the case of a flip and swap, and 2n21 in the case of exhaustiv
averaging. The noise is due to both experimental sensitivity
contributions from randomization~except for the labeled flip and
swap and exhaustive averaging, which involve no randomizati!.
Repeating the experimentsk times with independent random
choices increases the signal-to-noise ratios by a factor ofk1/2.
d

-
-
ll

-
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e
e
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V. RANDOMIZATION OVER GROUPS

Exhaustive averaging is useful for small numbers of q
bits and the flip and swap method works for nearly nonint
acting qubits at high temperatures. If the number of qub
and the polarization satisfynd;1 or if the initial state does
not have approximate inversion symmetry, it is necessar
consider other methods that are both reasonably efficient
can be applied to arbitrary initial states. Randomizat
based on groups of unitary operators has this property.

In general, randomization involves choosing a preparat
operatorP according to a predetermined probability dist
bution. To ensure that the expected value of the meas
ment represents the output of the computation on an effec
pure state, we require thatEP(PrP†)5 r̄ is an effective pure
state. The methods to be discussed satisfy that

r̄5~r002 p̄!u0&^0u1 p̄I , ~18!

with p̄5@1/(N21)#( i>1r i i . It is desirable that the initial
stater has excess probability in the ground state. If possib
the true initial state should be transformed by a unitary tra
formation, which guarantees that the maximum probabi
state is the ground state and that the density matrix is d
onal in the computational basis.~For nearly uniform mix-
tures of states and high sensitivity, it may be more effici
to have a sufficiently large deficiency in the ground state!

Let s5C†sz
(1)C, so thatx5tr(u0&^0us)5s00. A single

experiment with randomized preparation yields the meas
mentr (P)5tr(PrP†s) with variances2; the expectation of
r (P) is given by r̄ 5(r002 p̄)x. The signal-to-noise ratio for
a single run of the computation is determined by compar
the variancev̄ of r (P) to r̄ 2. Thus the signal-to-noise ratio i

S~P,C,r!5
u r̄ u

As21 v̄
. ~19!

r
-

o

d

FIG. 3. Quantum networks for the two experiments to imp
ment the labeled flip and swap for three computational qubits.
readout operation on qubitA is shown explicitly as a triangle
Closed circles denote conditioning onu1&, while open circles denote
conditioning onu0&.
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If, for example, we wish to learn the expectation ofr̄ to
within r̄ (16e), the number of experiments required
achieve confidence c is proportional to ln(1/c)/
@e2S(P,C,r)2# in the Gaussian regime. Due to the lar
number of choices in the randomization, it is reasonable
expect that this regime applies even for one experimen
this were not the case, the average would need to be infe
by techniques robust against outliers. If we are only int
ested in learning the sign ofr̄ with confidencec, this can be
done with ; ln(1/c)/S(P,C,r)2 experiments, regardless o
the actual distribution. One method is to use the sign of
median of the k1 averages of the results from
k28max„1,4/S(P,Cr)2

… independent experiments. Becau
the probability of the event that the average ofk2 experi-
ments has the wrong sign is bounded by 1/4, the probab
of failure is <e2O(k1). The constant in the exponent can
obtained from the Chernoff-Hoeffding bounds@10# for the
probability of having more than 1/2 heads ink1 flips of a
biased coin with the probability of head given by 1/4.

To compute the variance ofr (P), define

ř8r2EPPrP†5r2 p̄I 2~r002 p̄!u0&^0u. ~20!

Then

v̄5EPtr~PřP†s!25EPtr@~PřP†
^ PřP†!~s ^ s!#

5tr@EP~PřP†
^ PřP†!~s ^ s!#. ~21!

Thus, to ensure thatr̄ is as desired and to computev̄, we first
verify that EP(PřP†)50 and then computeEP(PřP†

^ PřP†).
In the algorithms described below,P is a random produc

of operators, each chosen uniformly from various groups
unitary operators. The desired expectations can often
computed in closed form ifP is a random element of a
unitary groupG. For this purpose, it is convenient to use t
representations ofG defined by p1(P)(A)5PAP† and
p2(P)(A^ B)5PAP†

^ PBP†, wherep2(P) is linearly ex-
tended to all four-tensors. Bothp1 and p2 are unitary rep-
resentations ofG for the usual inner product of operato
and four-tensors: ^A,B&5tr(AB) and ^A^ B,C^ D&
5tr(AC)tr(CD), with the latter inner product extended b
linearly to all four-tensors. Using this representation, forP
sampled uniformly fromG, it follows that the expectations
can be obtained by projectingr and r ^ r onto the trivial
eigenspaces ofp1 andp2. Specifically, letP1 andP2 be the
projection superoperators onto the space of allA such that
p1(P)A5A and onto the space of allB such thatp2(P)B
5B, respectively. Then EPPGp1(P)A†5P1A and
EPPGp2(P)B5P2B. We use this to calculate variances r
sulting from averaging over four groups, below.

A. Diagonal groups

If the initial density matrix is not diagonal and it is no
feasible to perform the unitary transformation that make
diagonal in the computational basis, one can use random
tion over a diagonal group to reduce the effect of the off
agonal entries. LetD be a group of diagonal operato
to
If
ed
-

e

ty

f
be

it
a-
-

Sf :u j &→ i f ( j )u j &, with f ( j )P$0,1,2,3%. To ensure sufficiently
small trivial eigenspaces for the representationsp1 andp2,
we require that the following phase independence condi
holds: If f ( j )2 f (k)1 f ( l )2 f (m)50 mod(4) for all f , then
j 5k and l 5m or j 5m andk5 l . We call a group with this
property adiagonal group. Randomization overD is accom-
plished by choosing a member ofD uniformly and applying
it to the initial state. Although the expectation of the rando
ized density matrix is not yet an effective pure state, it do
reduce the off-diagonal contributions to the expectation a
the variance. For example,

EPPDPrP†5 (
i 50

N21

r i i u i &^ i u. ~22!

To obtain an effective pure state, additional randomizat
steps are required. The expectations needed for compu
variances are calculated in the Appendixes. An efficien
implementable diagonal groupD can be obtained as a sub
group of the normalizer group introduced below.

B. Two-transitive permutation groups

Let T be a two-transitive group of permutations acting
the set of statesu1&, . . . ,uN21&. By definition, for everyi
Þ j and kÞ l , there is a permutationpPT such thatp( i )
5k andp( j )5 l . Then

EP1PD,P2PT P2P1rP1
†P2

†5~r002 p̄!u0&^0u1 p̄I , ~23!

which is the desired effective pure state. An effective pu
state would be obtained on average even with a o
transitive group, such as the cyclic permutations used
exhaustive averaging. However, the variance for o
transitive groups can be quite large and two-transitivity he
in reducing it.

To give the upper bound onv̄ for randomization withD
andT, define

řd8(
i>1

ř i i u i &^ i u. ~24!

Then

v̄<tr~ řd
2!1

1

N22
tr~ ř2!. ~25!

The derivation of this inequality is in Appendix A. In th
high-temperature regime, this implies a signal-to-noise ra
of at least

S>
n

2n

uxuS1

A11nS1
2/~2n22!

. ~26!

Efficiently implementable two-transitive permutation grou
can be obtained from the normalizer group.

C. Normalizer group

The normalizer groupN, more specifically, the normal
izer of the error group, consists of all unitary operationsU



y

er

r

s

n

up

e
al

itio

d.

io

r

he
ry

e

iv
ar

es
a-

n

g
r-

is
sity
The

-

are
t is
ze
st-
nce

the
ed to
are
ec-
l
fect
it-

ve

the

2

le-
-

nd
den-

3354 57E. KNILL, I. CHUANG, AND R. LAFLAMME
that satisfy that for any tensor product of Pauli operatorss,
UsU† is also a tensor product of Pauli operators~up to a
phase factor!. If the Pauli operators are labeled b
s008I , s018sz , s108sx , s118sy , and, for example,
s1011015s10^ s11^ s01, then the elements of the normaliz
group are characterized byUsbU†5(21)^x,b&i f (b,L)sLb ,
wherex is an arbitrary bit vector,̂x,b& denotes the inne
product mod 2 of bit vectors, andL is an arbitrary invertible
~mod 2! 0-1 matrix that satisfiesLTML5M , whereMb is
the bit vector obtained fromb by swapping adjacent bit
belonging to the same factor. The exponentf (b,L) depends
only on b and L; its values are not needed for the prese
analyses. The group of matricesL with this property acts
transitively on nonzero bit vectors. The normalizer gro
yields several subgroups useful for randomization.

1. Linear phase shifts

The groupD generated by controlled sign flips and th
operatorS5(0

1
i
0) acting on any qubit consists of diagon

operators with actionuk&→ i ^x,k&(21)^k,Bk&uk&, wherex is a
vector with entries in$0,1,2,3% and B is an arbitraryn3n,
0-1 matrix. To check that the phase independence cond
~Sec. V A! holds, suppose that for allx andB5yzT,

xT~k2 l 1m2n!12~kTyzTk2 l TyzTl 1mTyzTm2nTyzTn!

50 mod~4!. ~27!

This implies thatk2 l 1m2n50 mod(4). If k5m, then l
5n5k sincek, l , m, andn are all 0-1 vectors. If not, with-
out loss of generality, suppose thatkÞ0. To derive a con-
tradiction, suppose also thatkÞ l andkÞn. If k is not in the
span~mod 2! of l , m, andn, then there existsz orthogonal
~mod 2! to l , m, and n, but not k, which contradicts the
equality above. Thusk must be in the span ofl , m, andn. If
k is not in the span of two of them, sayl andm, then there
exists az orthogonal tol andm but notk and ay orthogonal
to n but notk. Again, we find that the equality cannot hol
Thus it must be the case thatk5 l 1m mod 2, k5 l
1n mod 2, andk5m1n mod 2. This implies thatm5n
5 l and k50. Thus the desired independence condit
holds.

2. Linear cyclic permutations

A group S acting cyclicly on the setu1&, . . . ,un& is ob-
tained by representing the fieldF2n as a vector space ove
F2n with elements represented by bit strings of lengthn in
some basis. Multiplication by nonzero elements ofF2n de-
fines a cyclic subgroup ofL of order 2n21.

3. Linear permutations

The groupT of linear permutations is generated by t
controlledNOT operations. The group consists of the unita
U ’s that satisfy Uub&5uLb&, where L is an invertible
~mod 2! 0-1 matrix. The group acts two-transitively on th
set u1&, . . . ,uN&.

D. Conditional normalizer group

Randomization over the normalizer group is as effect
for variance reduction as is randomization over the unit
t

n

n

e
y

group. The main difficulty is that the normalizer group do
not fix u0&. This can be remedied by alternating randomiz
tion with T and with the conditional normalizer groupN1
that acts on the firstn21 qubits given that the last one is i
stateu1&.

The first step in the procedure is to randomize withD ~if
needed! and T. Each following step involves randomizin
with N1 and then withT. The total number of steps dete
mines how effective the randomization is. The procedure
designed such that the expectation of the resulting den
matrix is the desired effective pure state after every step.
variancev̄k11 after thekth step can be estimated by~see
Appendix A!

v̄k11<lk
N

N22
tr~ řd

2!1
1

N22
ř2, ~28!

with l8e1/(N12)/2. In the high-temperature regime this im
plies a signal-to-noise ratio of

S>
n

2n

uxuS1

A112nS1
2/@2n~2n21!#

, ~29!

wherek was chosen such thatlk<1/@2(2n12)#.

VI. EFFECTIVE PURE STATES BY ENTANGLEMENT

The temporal randomization methods discussed above
useful when the device is qubit limited, in the sense that i
difficult to access additional qubits. It is important to reali
that ancillary qubits involved only in preparation and po
processing generally do not need to have long decohere
or relaxation times. For example, if they are used only in
preparation phase, their quantum coherence does not ne
be maintained in computation or readout. If such ancillas
available, they can and should be used to simplify the eff
tive pure state preparation. Interestingly, if an additionan
qubits are available, it is possible to prepare a nearly per
effective pure state for any diagonal initial state by explo
ing entanglement.

Here is an explicit algorithm that results in an effecti
pure state on the firstn qubits given 2n qubits. The basic
idea is to map the computational basis states other than
ground state on the firstn qubits to nearly maximally en-
tangled states. Write a computational basis state on then
qubits asua&ub&, wherea andb are lengthn bit vectors. Let
x be a generator of the multiplicative group of nonzero e
ments ofF2n. The desired unitary transformation is the com
position of the maps

P1 :ua&ub&→(
c

~21!^b,c&ua&uc&, ~30!

P2 :ua&ub&→uaxb&ub&, ~31!

whereb is interpreted as a bit vector in the first exponent a
as a binary number in the second. Consider the reduced
sity matrix %ab on the firstn qubits derived from the state
P2P1ua&ub&. If aÞ0,

%ab5
1

N
~ I 2u0&^0u1ua&^au!, ~32!
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%0b5u0&^0u. ~33!

This is nearly an effective pure state. Ifr is the reduced
initial density matrix on the firstn qubits andr is diagonal,
then after applyingP2P1, the reduced density matrix is

N21

N
@~r002 p̄!u0&^0u1 p̄I #1

1

N
r. ~34!

The deviation from the effective pure state is sufficien
small to be of no concern in most cases.

Entanglement can be exploited even if less thann addi-
tional bits are available. In fact, essentially the same al
rithm works. However, the deviation from an effective pu
state becomes larger and residual bias must be remove
another technique such as randomization. In general, if
cillary qubits are available, the effectiveness of averag
methods can be improved. For example, we can random
the statesua&ub& with aÞ0 with the subgroupLm of the
group of linear permutations that preserves the subsp
$u0&ub&%. If this does not reduce the variance enough, a v
sion of the conditional normalizer randomization method c
be used, whereLm is used instead of the full group of linea
permutations.

Ancillary qubits are likely to be available whenever
computational cooling method is used to increase the p
ability of the ground state in some of the available qub
Computational cooling uses ancillas and in-place operat
to transfer heat from the computational qubits to the ancil
The simplest such methods are based on decoding a clas
error-correcting code in place and exploiting the fact that
thermal state is equivalent to a noisy ground state.

VII. EXPERIMENTAL EVIDENCE

The temporal randomization methods can find immed
application in NMR quantum computation, even with simp
molecules, as we demonstrate with the following experim
tal results utilizing exhaustive averaging to extract an eff
tive pure state from a two spin system. Using a model tw
spin system, we prepared an effective state similar to tha
Eq. ~8! from a thermal state. This was done by implement
the quantum circuits shown in Fig. 4 to perform the perm
tation of Eq.~5! and its inverse.

The two-spin physical system used in these experime
was carbon-13 labeled chloroform~Fig. 5! supplied by Cam-
bridge Isotope Laboratories, Inc.~catalog No. CLM-262! and
used without further purification. A 200-mM sample w
prepared with d6-acetone as a solvent, degassed, and
sealed in a standard 5-mm NMR sample tube, at the Uni
sity of California, Berkeley College of Chemistry.

Spectra were taken using Bruker AMX-400~University of
California, Berkeley! and DRX-500~Los Alamos! spectrom-

FIG. 4. Quantum circuit implementation of the permutationsP1

andP2.
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eters using standard probes. The resonance frequencies
two proton lines~in the DRX-500! were measured to be a
500.133 921 MHz and 500.134 136 MHz and the carb
lines were at 125.767 534 MHz and 125.767 749 MHz, w
errors of61 Hz. The radio-frequency~RF! excitation carrier
~and probe! frequencies were set at the midpoints of the
peaks, so that the chemical shift evolution could be s
pressed, leaving only the 215-HzJ coupling between the two
spins. TheT1 andT2 relaxation times were measured usin
standard inversion recovery and Carr-Purcell-Meiboom-G
pulse sequences. For the proton, it was found thatT1'7 sec
andT2'2 sec, and for carbon,T1'16 sec andT2'0.2 sec.
The short carbonT2 time is due to coupling with the thre
quadrupolar chlorine nuclei, which shortens the cohere
time. Nevertheless, these time scales were all much lon
than those of the operations applied, guaranteeing that
could implement quantum transforms and observe quan
dynamics.

We performedquantum state tomographyto systemati-
cally obtain the final quantum state; this procedure will
described in detail elsewhere@11#. In each tomography pro
cedure, nine experiments were performed, applying differ
pulses to measure all the possible elements in the den
matrix in a robust manner. The resulting deviation dens
matrix for the thermal state is shown in Fig. 6~a!. As ex-
pected, all the off-diagonal elements are nearly zero, w
the diagonal elements follow a pattern ofa1b, a2b, 2a
1b, and2a2b. An error of about 5% was observed in th
data, due primarily to imperfect calibration of the 90° pul
widths and inhomogeneity of the magnetic field.

The two permutation quantum circuits were implemen
using the pulse programs shown in Fig. 7. Because of
absence of phase correction steps in the controlledNOT gates
@2#, the actual transforms implemented were not exac
those of Eq.~5!, but rather

P̃15F i 0 0 0

0 0 21 0

0 0 0 1

0 i 0 0

G , ~35!

P̃25F i 0 0 0

0 0 0 1

0 21 0 0

0 0 i 0

G . ~36!

For the purposes of temporal randomization of an initia
diagonal density matrix, the phases of the transformati
can be ignored. We obtained the density matrices show

FIG. 5. Molecule of chloroform: The two active spins in th
system are the13C and the1H.
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FIG. 6. Experimentally measured deviation density matrices for the~a! thermal state,~b! state afterP1 operation,~c! state afterP2

operation, and~d! effective pure state~biased sum of the three!. Real components only are shown; all imaginary components are small
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Figs. 6~b! and 6~c! from these two transformations. The e
fective pure state we obtained was approximately

r̄5F 194 e e e

e 24 e e

e e e e

e e e 8

G257I , ~37!

where ueu,5.4. An error of65 was calculated, based o
analysis of the linewidth integration, least-squares fitt
used in the tomography procedure, and standard error pr
gation. This result compares favorably with the result e
pected from Eq.~8!. Further work has been done to use th
state as an input into a nontrivial computation; that wo
g
a-
-

demonstrates the creation and manipulation of effective p
states that are in superpositions and will be reported e
where@11#.

VIII. CONCLUSION

We have described techniques for creating effective p
states that complement the logical labeling and spatial a
aging techniques previously discovered. Ourtemporal aver-
aging methods are unique in their use of summation o
experiments carried out at different times and powerful
virtue of averaging over transformations chosen system
cally ~in the case of the labeled flip and swap method! or
randomly ~for randomization over a transformation group!.
The choice of temporal averaging method in an experim
depends on the number of qubits available, how many
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required for computation, the initial density matrix, and t
desired signal-to-noise ratio. A summary of our recomm
dations based on the analyses in this paper follows. For s
numbers of qubits exhaustive averaging can be used for
initial density matrix that is diagonal in the computation
basis. If the initial state is close to that of noninteracti
particles at high temperature, the flip and swap techniq
can be used. If a noncomputational qubit is available, t
the labeled flip and swap method is the simplest and m
efficiently implemented method. Asymptotically it requires
linear number of quantum operations and, unless high sig
to-noise ratios are needed, involves many fewer experim
than exhaustive averaging. In terms of quantum operati
exhaustive averaging appears to be more efficient up t
least four qubits. The actual minimum number of qubits
which the labeled flip and swap method uses fewer quan
operations per experiment than exhaustive averaging
pends on the implementation and remains to be determi
If every qubit is required for computation, then the rando
ized flip and swap method can be used at a cost of m
quantum operations per experiment. For large number
qubits where the high-temperature regime or the noninter
ing assumption fails, randomization over a group can
used. If ancillary qubits are available, randomization can
combined with entanglement. It remains to be seen whe
this situation will be encountered in practice.

Future theoretical work will investigate combinations
logical, spatial, and temporal labeling techniques and es
lish a connection between these procedures and error co
tion. Experiments will also be performed to demonstrate
different techniques with large molecules and to expl
their relative merits in practice.
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FIG. 7. NMR pulse program implementations of the permu
tions P1 and P2. Each RF pulse was about 10msec long and the
time between the pulses was about 2.3 msec. The horizontal a
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APPENDIX A: CALCULATIONS OF VARIANCE
FOR RANDOMIZATION OVER GROUPS

The expectation and variance of the outcome of an exp
ment using randomization over a groupG can be determined
from the trivial eigenspaces of the representationsp1,
p1(U)(A)8UAU†, and p2, p2(U)(A^ B)8UAU†

^ UBU†. In the following sections these eigenspaces are
termined and the resulting variances estimated. We be
with some calculations for the diagonal groups.

1. Diagonal groups

Let D be a diagonal group as defined in Sec. V A. Th
group is used to diagonalize the average density matrix
fore randomizing with more powerful groups. We compu
the projections onto the trivial eigenspaces of both repres
tationsp1 andp2:

EPPD Pu i &^ j uP†5d i , j u i &^ i u ~A1!

and

EPPD Pu i &^ i uP†
^ Puk&^kuP†5u i &^ i u ^ uk&^ku, ~A2!

EPPD Pu i &^kuP†
^ Puk&^ i uP†5u i &^ku ^ uk&^ i u. ~A3!

Other expectations ofu i &^ j u ^ uk&^ l u are 0. The projections o
ř and ř ^ ř onto the trivial eigenspaces ofp1 and p2 are
therefore given by

EPPD PřP†5(
i>0

ř i i u i &^ i u, ~A4!

EPPD PřP†
^ PřP†5 (

i , j >0
ř i i u i &^ i u ^ ř j j u j &^ j u

1 (
iÞ j >0

ř i j u i &^ j u ^ ř j i u j &^ i u.

~A5!

Unfortunately, it is impossible to completely eliminate th
contributions of the off-diagonal elements ofr to the vari-
ance by this method. As will be seen, to reduce the effec
these contributions it is necessary to ensure thatr is approxi-
mately diagonal by an initial unitary operation or to desi
the algorithm so thats is approximately diagonal~as will be
the case if the output of the algorithm is deterministic wh
given one of the computational basis states for input!.

The calculations for the other groups to be presented
low assume thatr has already been randomized by a diag
nal group. As a result, only the subspaces spanned byu i &^ i u
~for p1) and byu i &^ i u ^ u j &^ j u andu i &^ j u ^ u j &^ i u ~for p2) will
be considered in our analysis.

2. Two-transitive permutation groups

Let T be a two-transitive permutation group that fixesu0&.
It is straightforward to check that foriÞ j ,

EPPT Pu i &^ i uP†5
1

N21(i 8
u i 8&^ i 8u, ~A6!

-
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EPPT Pu i &^ j uP†5
1

~N21!~N22! (
i 8Þ j 8

u i 8&^ j 8u, ~A7!

where the indices in the sums range from 1 toN21. This
convention for indices and labels will be in place for t
remainder of the appendix unless otherwise indicated.
relevant part of the trivial eigenspace ofp1 is spanned by
Ǐ 8( i 8>1u i 8&^ i 8u and an operator with no diagonal entrie
For iÞ j ,

EPPT Pu i &^ i uP†
^ Pu i &^ i uP†5

1

N21(i 8
u i 8&^ i 8u ^ u i 8&^ i 8u,

~A8!

EPPT Pu i &^ i uP†
^ Pu j &^ j uP†

5
1

~N21!~N22! (
i 8Þ j 8

u i 8&^ i 8u ^ u j 8&^ j 8u, ~A9!

EPPT Pu i &^ j uP†
^ Pu j &^ i uP†

5
1

~N21!~N22! (
i 8Þ j 8

u i 8&^ j 8u ^ u j 8&^ i 8u, ~A10!

EPPT Pu0&^ j uP†
^ Pu j &^0uP†5

1

N21(j 8
u0&^ j 8u ^ u j 8&^0u,

~A11!

EPPT Pu j &^0uP†
^ Pu0&^ j uP†5

1

N21(j 8
u j 8&^0u ^ u0&^ j 8u

~A12!

and expressions involving other combinations of indices w
be of no further concern. The relevant part of the triv
eigenspace ofp2 is therefore spanned~nonorthogonally! by

Ď8(
i 8

u i 8&^ i 8u ^ u i 8&^ i 8u, ~A13!

Ě8 (
i 8, j 8

u i 8&^ i 8u ^ u j 8&^ j 8u, ~A14!

J̌8 (
i 8, j 8

u i 8&^ j 8u ^ u j 8&^ i 8u, ~A15!

Ž18(
i 8

u0&^ i 8u ^ u i 8&^0u, ~A16!

Ž28(
i 8

u i 8&^0u ^ u0&^ i 8u. ~A17!

Define

ř08(
i>1

r0i u i &^0u1r i0u0&^ i u,

ř 0̄8 ř2 ř0 . ~A18!
e

.

ll
l

If P is a random product of operators inT and in a diagonal
groupD, then

EP1PD,P2PT P2P1řP1
†P2

†5
1

N21(i
ř i i Ǐ 50, ~A19!

EP1PD,P2PT P2P1řP1
†P2

†
^ P2P1řP1

†P2
†

5
1

N21(i
ř i i

2 Ď1
1

~N21!~N22!(iÞ j
ř i i ř j j ~Ě2Ď !

1
1

~N21!~N22!(iÞ j
ř i j ř j i ~ J̌2Ď !

1
1

N21(i
ř0i ř i0~ Ž11Ž2!

5
1

N21
tr~ řd

2!Ď1
1

~N21!~N22!

3@ tr~ ř 0̄!22tr~ řd
2!#~Ě2Ď !1

1

~N21!~N22!

3@ tr~ ř 0̄
2
!2tr~ řd

2!#~ J̌2Ď !1
1

2~N21!
tr~ ř0

2!~ Ž11Ž2!.

~A20!

The variancev̄ is obtained by taking the inner product of th
expression withs ^ s. Define

šd8(
i

s i i u i &^ i u, ~A21!

š08(
i

s0i u i &^0u1s i0u0&^ i u, ~A22!

š 0̄8s2š02s00u0&^0u. ~A23!

We will make use of the~in!equalities

trř5trř 0̄5trřd50, ~A24!

tr~r2!5tr~ ř 0̄
2
!1tr~ ř0

2!1r00
2 1~N21! p̄2<1, ~A25!

tr~ š 0̄!52s00, ~A26!

tr~s2!5tr~ š 0̄
2
!1tr~ š0

2!1s00
2 5N, ~A27!

tr~ š0
2!12s00

2 52, ~A28!

tr~ šd
2!<tr~ š 0̄

2
!<N21, ~A29!

where we used the properties of the trace inner product
the fact thats is unitary. The variance can now be estimat
by
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v̄5
1

N21
tr~ řd

2!tr~ šd
2!1

1

~N21!~N22!
@ tr~ řd!22tr~ řd

2!#@ tr~ šd!22tr~ šd
2!#1

1

~N21!~N22!
@ tr~ ř 0̄

2
!2tr~ řd

2!#@ tr~ š 0̄
2
!

2tr~ šd
2!#1

1

2~N21!
tr~ ř0

2!tr~ š0
2!<tr~ řd

2!1
1

N22
tr~ řd

2!1
1

N22
@ tr~ ř 0̄

2
!2tr~ řd

2!#1
1

N21
tr~ ř0

2!<tr~ řd
2!1

1

N22
tr~ ř2!.

~A30!
d
e
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e
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Both of the terms in this expression can be large compare
r̄ 2. The presence of the second term shows the importanc
ensuring thatr is initially in a nearly diagonal form and
implies a limit on the effectiveness of the diagonal grou
However, if s is diagonal in the computational basis, th
second term does not arise.

The signal-to-noise ratio for the thermal distribution c
now be obtained as follows. With the definitions from Se
IV,

tr~ ř2!5 (
i 51

N21

~r i i 2 p̄!2< (
i 50

N21 S r i i 2
1

ND 2

5 (
i 50

N21

r i i
2 2

1

N

5)
i 51

n
1

4
@~11d i !

21~12d i !
2#2

1

N

5
1

2nS )
i 51

n

~11d i
2!21D<

1

2nFexp S (
i

d i
221D G ,

~A31!

trř2>
1

2n(
i

d i
2 . ~A32!

This last expression is a good approximation as long
( id i

2!1. The probability of the ground state is given by

r005
1

2n)
i 51

~11d i !>
1

2nS 11(
i

d i D , ~A33!

which is a good approximation as long as( id i!1. Thus the
signal-to-noise ratio for randomization using a two-transit
group is bounded by

S>

(
i

d i us00u

A22ns12n@111/~2n22!#(
i

d i
2

. ~A34!

To understand the behavior of this expression, consider
case whered i5d is independent of the qubit. We expresss
in terms of the signal-to-noise ratioS1 for a single qubit
S18d/As. For a typical NMR experiment with protonsS1
;103. With these definitions,
to
of

.

.

s

he

S>
nus00ud

A22nd2/S1
212n@111/~2n22!#nd2

>
n

2n

S1us00u

A11nS1
2/~2n22!

. ~A35!

For smalln, S is dominated by the contribution to the var
ance from the randomization process, while for largen, it is
dominated by the reduction in excess probability in t
ground state.

3. Cyclic permutation groups

Consider using a cyclic groupS1 of permutations that
leaveu0& fixed. This was done for exhaustive averaging, b
can also be applied to randomization. As we will see,
main problem is that the variance of the measurements
not be guaranteed to be sufficiently small. Letp be a gen-
erator of the group of orderN21.

The trivial eigenspaces ofS1 can be computed as in th
preceding section. The relevant subspaces are spannedǏ
for p1 and

Ďk8(
i>1

u i &^ i u ^ upk~ i !&^pk~ i !u, ~A36!

J̌k8(
i>1

u i &^pk~ i !u ^ upk~ i !&^ i u, ~A37!

Ž1, Ž2, and a few others of no further concern forp2.
Let P be a random product of an element of a diago

groupD and the cyclic groupS1,

EP1PD,P2PS1
P2P1řP1

†P2
†50, ~A38!

EP1PD,P2PS1
P2P1řP1

†P2
†

^ P2P1řP1
†P2

†

5 (
k50

N22
1

N21(i
ř i i řpk~ i !pk~ i !Ďk

1 (
k51

N22
1

N21(i
ř ipk~ i !řpk~ i !i J̌k

1
1

2~N21!
tr~ ř0

2!~ Ž11Ž2!. ~A39!

To computev̄ we take the trace after multiplying bys ^ s,
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v̄5 (
k50

N22
1

N21(i
ř i i řpk~ i !pk~ i !(

i
s i i spk~ i !pk~ i !

1 (
k51

N22
1

N21(i
ř ipk~ i !

2 (
i

s ipk~ i !s ipk~ i !

1
1

N21
tr~ ř0

2!tr~ š0
2!. ~A40!

The sum involves off-diagonal expressions and products
correlations of the diagonals ofr ands. Although v̄ can be
much too high in the worst case, in practice one can expe
to be close to what was obtained for a two-transitive gro
However, since the known algorithms for the cyclic grou
are no more efficient than those for the linear group, ther
presently little to be gained by using cyclic groups.

4. Unitary group

A spanning set of eigenvectors of the representationp2 of
the unitary groupU acting onu1&, . . . ,uN21& consists ofĚ,
J̌, Ž1, Ž2, andu0&^0u ^ u0&^0u. As a result one obtains

EPPUPřP†
^ PřP†

5
1

2N~N21!
@~ trřd!21tr~ ř 0̄

2
!#~Ě1 J̌!

1
1

2~N21!~N22!
@~ trřd!22tr~ ř 0̄

2
!#~Ě2 J̌!

1
1

2~N21!
tr~ ř0

2!~ Ž11Ž2!5
1

N~N22!
tr~ ř 0̄

2
!J̌

2
1

N~N21!~N22!
tr~ ř 0̄

2
!Ě1

1

2~N21!
tr~ ř0

2!~ Ž11Ž2!.

~A41!

Thus

v̄5
1

N~N22!
tr~ ř 0̄

2
!tr~ š 0̄

2
!2

1

N~N21!~N22!
tr~ ř 0̄

2
!tr~ šd!2

1
1

2~N21!
tr~ ř0

2!tr~ š0
2!

<
N21

N~N22!
tr~ ř 0̄

2
!1

1

N21
tr~ ř0

2!

<
1

N22
tr~ ř2!. ~A42!

By using the unitary group, it is possible to eliminate t
term trřd

2 that occurs in the expression forv̄ for the two-
transitive permutation groups. Although it is impossible
efficiently implement random elements of the unitary grou
there are effective methods for accomplishing the same
using the normalizer group.
of

it
.

s
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,
y

5. Normalizer group

The normalizer group is as effective at randomizi
u0&, . . . ,uN21& as the full unitary group, at least in terms o
expectations and variance. It is straightforward to determ
the trivial eigenspaces ofp1 and p2 in the Pauli operator
basis. ForiÞ j and j Þ0,

EPPNPs i P
†5d i ,0s0 , ~A43!

EPPNPs i P
†

^ Ps j P
†50, ~A44!

EPPNPs j P
†

^ Ps j P
†5

1

22m21
(

j 8Þ0

s j 8^ s j 8, ~A45!

wherem is the number of qubits. Using these identities,
can be verified that the trivial eigenspace ofp1 is spanned by
the identity and that ofp2 by E8I ^ I and J8( i , j >0u i &^ j u
^ u j &^ i u. To exploit the normalizer group without removin
the polarization inu0& requires conditioning it on one of th
qubits.

6. Conditional normalizer group

In this section we analyze the behavior of the algorith
based on alternate randomizations usingT and the condi-
tional normalizer groupN1. Let R̄k21 be the expectation o
PřP†

^ PřP† after thekth step of the conditional normalize
group algorithm. Using Eq.~A20!,

R̄05
1

~N21!~N22!
@Ntr~ řd

2!2tr~ ř 0̄
2
!#Ď

1
1

~N21!~N22!
@ tr~ ř 0̄

2
!2tr~ řd

2!# J̌

2
1

~N21!~N22!
tr~ řd

2!Ě1
1

2~N21!
tr~ ř0

2!~ Ž11Ž2!.

~A46!

Defineak , bk , gk , andd by R̄k8akĎ1bkJ̌1gkĚ1d(Ž1

1Ž2), where we have used the fact thatŽ11Ž2 is not af-
fected by randomization withT andN1.

BecauseN1 distinguishes the state of the first qubit, w
need to subdivide the tensors in the expression forR̄0. Write
Ď5Ď01Ď1, J̌5 J̌001 J̌011 J̌101 J̌11, and Ě5Ě001Ě01

1Ě101Ě11. For example, Ď05( i 51
N/221u i &^ i u ^ u i &^ i u, J̌01

5( i 51
N/221( j 5N/2

N21 u i &^ j u ^ u j &^ i u, and Ě105( i 5N/2
N21 ( j 51

N/221u i &^ i u
^ u j &^ j u, where we are using the convention that the indic
i>2n215N/2 are those referring to states with the first qu
in stateu1&. Randomizing overN1 preserves all but one o
these expressions:

EPPN1
p2~P!~Ď1!5

2

N12
J̌111

2

N12
Ě11. ~A47!

Hence
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EPPN1
p2~P!~R̄k!5akĎ01bkJ̌1

2

N12
akJ̌111gkĚ

1
2

N12
akĚ111d~ Ž11Ž2!. ~A48!

Randomizing overT gives

EPPTp2~P!~Ď0!5
N22

2~N21!
Ď, ~A49!

EPPTp2~P!~Ě11!5
N

2~N21!
Ď1

N

4~N21!
~Ě2Ď !

5
N

4~N21!
Ď1

N

4~N21!
Ě, ~A50!

EPPTp2~P!~ J̌11!5
N

2~N21!
Ď1

N

4~N21!
~ J̌2Ď !

5
N

4~N21!
Ď1

N

4~N21!
J̌, ~A51!

so that

R̄k115EP2PTEP1PN1
p2~P2P1!~R̄k!

5S 12
N2

2~N21!~N12! DakĎ

1S bk1
N

2~N12!~N21!
akD J̌

1S gk1
N

2~N12!~N21!
akD Ě1d~ Ž11Ž2!.

The variancev̄k11 after thekth step is given by

v̄k115tr~R̄k11s ^ s! ~A52!

5ak11tr~ šd
2!1bk11tr~s 0̄

2
!1gk11~ trsd!21dtr~s0

2!.
~A53!

We can estimate the coefficients as

a0tr~ šd
2!<

N

N22
tr~ řd

2!, ~A54!

b0tr~s 0̄
2
!<

1

N22
@ tr~ ř 0̄

2
!2tr~ řd

2!#, ~A55!

g0~ tršd!252
1

~N21!~N22!
tr~ řd

2!~ tršd!2<0,

~A56!

dtr~ š0
2!<

1

N21
trř0

2 , ~A57!
ak11tr~ šd
2!5

1

2S 11
N22

~N21!~N12! Daktr~ šd!2

<
1

2
e1/~N12!aktr~ šd

2!<
1

2k ek/~N12!
N

N22
tr~ řd

2!.

~A58!

Definel5e1/(N12)/2. The coefficientsbk andgk are mono-
tonically increasing. The limiting values are

b`tr~ š 0̄
2
!5S b01

1

N
a0D tr~ š 0̄

2
!<

1

N22
tr~ ř 0̄

2
!, ~A59!

g`tr~ šd!25S 1

N
a01g0D tr~ šd!2<0. ~A60!

Thus

v̄k11<lk
N

N22
tr~ řd

2!1
1

N22
tr~ ř2!. ~A61!

By choosingk large enough, the variance can be reduced
near that obtainable by randomizing over the whole unit
group. In fact, ifk is chosen so thatlk<1/@2(N12)#, then
the maximum contribution to the variance isv̄<@2/(N
21)#tr( ř2). Consider the case wherer is diagonal withr00

maximal,c8As/(r002 p̄), and the output of the algorithm i
deterministic ~i.e., s00

2 51). Then @2/(N21)#ř2<2p̄(r00

2 p̄) and

S>
r002 p̄

As12p̄~r002 p̄!
>

Ar002 p̄

Ac2r0012p̄
. ~A62!

Consequently, ifp̄!cr00, the signal-to-noise ratio is domi
nated by 1/c, the term due to measurement noise. Ifp̄
@cr00, then the signal-to-noise ratio is determined by t
contribution from the randomization method. As long asp̄ is
sufficiently smaller thanr00 andc<1 the signal-to-noise ra
tio is bounded below by a constant, which ensures tha
small number of experiments are required to determ
whethers0051 or s00521. However, in the case wher
p̄;r00, the signal-to-noise ratio can be very small, for e
ample, if r i i 50 or r i i 5r00 for all i . The situation wherep̄
;r00 is small arises in the high-temperature limit of NM
quantum computation. In this case the signal-to-noise r
can be estimated as

S>
n

2n

S1us00u

A112nS1
2/@2n~2n21!#

. ~A63!

7. Randomized flip and swap method

For the fully randomized flip and swap method, each e
perimental determination of the output of the computat
consists of two experiments. First a sequence ofk random
operators implementing the conditional normalizer method
chosen. For the present purposes we choosek so thatlk

<1/2(N12). Next two experiments are performed. In th
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first the chosen sequence of operators is applied before m
surings. In the second, the flip and swap operation is us
before applying the same sequence of random operators
measurings. The measurements are added to obtain the
sired answer.

This algorithm behaves exactly like a single randomiz
experiment with inputrs @Eq. ~15!# and measurement var
ance s/2. The variance of the randomization is therefo
given by

v̄<
2

N21
tr~ řs

2! ~A64!

<
2n2d2

N2~N21!
. ~A65!

Substituting in the expression for the signal-to-noise ra
gives

S>
n

2n

S1us00u

A1/212n2S1
2/@22n~2n21!#

, ~A66!

where we have taken into account the fact that two exp
ments contributed to the signal.

Instead of using the conditional normalizer group, one c
use any set of permutation operators$Pi% i 51

N21 with Pi u0&
5u0& andPi uN21&5u i &. For example, a cyclic linear grou
can be relabeled to have this property. Because of the s
metries ofrs , this is as effective as using a two-transitiv
group. Since tr(řs

2)<n2d2/N2,

v̄<
~2n21!n2d2

22n~2n22!
~A67!

and

S>
n

2n

S1us00u

A1/21n2S1
2/@2n~2n22!#

. ~A68!

APPENDIX B: IMPLEMENTATIONS
OF TEMPORAL AVERAGING ALGORITHMS

1. Flip and swap method

The implementation of the labeled flip and swap meth
for three qubits and an ancilla is shown in Fig. 3. The fl
and swap is the first group of gates, consisting of aNOT

applied to each qubit, followed by controlledNOTs from the
first to each of the other qubits, ann21 controlled NOT

conditioned on the lastn21 qubits beingu0&, and finally a
reversal of the first set of controlledNOTs. Efficient quantum
networks for then21 controlledNOT ~generalized Toffoli
gates! are given in@12#. Note that for diagonal initial states
phase variants are equivalent, so we can use an SU va
of the Toffoli gate to avoid ancillas while still having a
O(n) implementation. Also, the computation can be arrang
so that it is O(n) even if controlled operations can only b
performed between adjacent qubits in a linear ordering.

An efficient method for implementing a randomized fl
and swap is to choose for eachub&Þu0& an ‘‘easy’’ linear
ea-
d
nd
e-

d

o

i-

n

m-

d

ant

d

operatorL mod 2 such thatL15b. If b hasw one’s, such an
operator with at mostn2w off-diagonal ones exists. The
corresponding unitary operator in the group of linear perm
tations can be implemented withn2w controlledNOTs.

2. Normalizer group

Every element of the normalizer groupN operating onn
qubits can be implemented by O(n2) controlled NOTs and
p/2 or p rotations of single qubits. For the purposes of ra
domly choosing one of the members ofN, the natural repre-
sentation ofUPN is

U:sb→UsbU†5~21!^x,b&i f ~b,L !sLb . ~B1!

A uniform random element can be obtained by choosingx
and L uniformly subject toLTML5M ~see Sec. V C!. The
vector x is obtained by setting each of the 2n entries ofx
independently and uniformly to 0 or 1. To obtain uniform
distributed validL ’s one can constructL column by column.
Write

M5F0 I

I 0G , ~B2!

where the entries aren3n matrices and the partitioning i
based on writing the indexb of sb in the formb5b0b1, with
b0 and b1 containing the indices coming from the first an
second members of each qubit’s pair, respectively.

If L<k is the 2n3k matrix consisting of the firstk col-
umns ofL, thenL<k

T ML<k5M<k,<k , whereM<k,<k is the
k3k matrix submatrix ofM in the upper left corner. The
columns ofL<k are linearly independent~mod 2!. Suppose
L<k has been constructed and we wish to add another
umn to obtainL<k11. The new columnLk11 has to satisfy

Lk11
T MLk1150, ~B3!

Lk11
T ML<k5Mk11,<k . ~B4!

The first equality is satisfied for anyLk11, so we wish to
chooseLk11 randomly, not in the span ofL<k and subject to
the second equality. The dimension of the affine space
solutions to this equality is 2n2k, while the dimension of
the span ofL<k is k. We consider two cases. Ifk,n, then
Mk11,<k50 and the span ofL<k is contained in the space o
solutions. Because 2n2k.k, suitableLk11 can be found.
To pick Lk11 uniformly one can use any algorithm~e.g., one
based on Gaussian elimination mod 2! to obtain 2n22k vec-
tors S1 , . . . ,S2n22k independent of the columns ofL<k ,
which together withL<k span the solution space. A rando
Lk11 is obtained by choosing a random nonzero linear co
bination of theS1 , . . . ,S2n22k and adding it to a random
linear combination of the columns ofL<k .

If k>n, then Mk11,<k is nonzero. Ify is in the span of
L<k , then the (k2n11)st entry ofyTML<k is zero. Since
that entry ofMk11,<k is 1, the set of solutions toyTML<k
5Mk11,<k does not contain any elementy in the span of
L<k . We can therefore pick a random element in this affi
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subspace of dimension 2n2k. An affine basis for this sub
space can again be obtained by a Gaussian elimina
method.

The above construction shows that the number of va
L ’s is )k50

n21(22n2k22k))k50
n212n2k. In view of the technique

for constructing random invertible matrices overZ2 given in
@13#, there are probably more efficient methods for constru
ing randomL ’s.

To obtain a quantum network that implements the unit
operator defined by (x,L) requires decomposingL into el-
ementary operations corresponding to controlledNOTs and
single qubit rotations. This can be done by adapting
methods described in@14#. The basic idea is to multiplyL on
the left and right by the linear operators corresponding
controlledNOTs and rotations. Since controlledNOTs corre-
spond to elementary row or column operations in then by n
subblocks, one can apply Gaussian elimination method
convert the first~say! subblock to standard form. Thep/2
rotations around the different axes permit elementary row
column operations between corresponding rows or colum
of different subblocks. This can be used to transformL to I .
The representation of the resulting sequence of contro
NOTs and rotations is of the form (x8,L). To correct the first
component, one can applysM (x2x8) to the qubits. The tota
number of gates needed to implement an operator inN is
O(n2) @14#.

a. ImplementingD

Being a subgroup ofN, it is clear that each operator inD
has an efficient quantum network. The random phase s
of D are described by operatorsD(x,B) defined by
D(x,B)(uk&)5 i ^x,k&(21)^k,Bk&. A random such operator i
obtained by choosingx randomly and uniformly from all
n-dimensional vectors over$0,1,2,3% andB uniformly from
the set of strictly upper triangularn3n, 0-1 matrices. Given
n

d.
on
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t-

y

e

o

to

r
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such anx and B, the phase shifts are implemented by fir
applying phase shifts byi xj of u1& to the j th qubit and then
performing a sequence of controlled sign flips. The seque
of controlled sign flips can be read off the entries ofB by the
following procedure: IfBi j 51, apply a controlled sign flip
between bitsi and j . The number of operations required
apply the random phase shift is at mostn(n21)/2.

b. ImplementingT

A unitary operatorU in T is defined byUub&5uLb& for
an invertible~mod 2! n3n matrix L. Any such unitary op-
erator can be implemented using only controlledNOTs. Since
a controlledNOT corresponds to an elementary row or co
umn operation, a decomposition ofL into such operations
yields the desired quantum network. The decomposition
be accomplished by the usual Gaussian elimination meth
A random invertibleL can be generated column by colum
using a simpler version of the method described for the n
malizer group. A more efficient algorithm that can be used
construct the decomposition into elementary operations
the same time is described in@13#.

3. Entanglement

The operationsP1 and P2 required to implement the
method for effective pure states by entanglement are im
mented as follows. A phase variant equivalent toP1 for di-
agonal initial states is obtained by applying ap/2 rotation
around they axis to each of the second groups ofn qubits.
The operation P2 is decomposed into the product o
P2,i ua&ub&→uaxbi2

i
&ub& for i 50, . . . ,n21. Multiplication

by xbi2
i
in F2n is a linear map mod 2 and defines an elem

of T that can be implemented with O(n2) controlledNOTs.
EachP2,i can therefore be implemented with O(n2) Toffoli
gates andP2P1 takes O(n3) operations.
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