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Solvable three-boson model with attractived-function interactions
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A one-parameter solvable model for three bosons subjegtftmction attractive interactions in one dimen-
sion with periodic boundary conditions is studied. The energy levels and wave functions are classified and
given explicitly in terms of three momenta. In particular, eigenstates and eigenvalues are described as functions
of the model parametear. Some of the states are given in terms of complex momenta and represent dimer or
trimer configurations for large negatiee The asymptotic behavior for small and large values of the parameter,
and at thresholds between real and complex momenta, is provided. The properties of the potential energy are
also discussedS1050-294{08)08905-7
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[. INTRODUCTION are the standard boundary conditions for actual calculations
of time-dependent wave-function scatterir®y. The model
Quantum solvable models, where the wave functions, enstudied here is a particular case of the “interacting Bose
ergy eigenvalues, and other quantities of physical intereggas” of Lieb and Liniger[10], who examinedN particles
can be obtained explicitly in terms of known functions or subject to two-bodys-function interactions and boson sym-
with minimum numerical efforttypically by solving a tran- metry. Further analysis of this gas was carried out in several
scendental equation or by quadratyrase useful to test and paperd11-14, but, having different objectives and applica-
refine concepts and/or numerical methods, and as first ajions in mind, in none of these works was the attractive case
proximations to more realistic systems. Occasionally, unexexamined, except for the appendix on the-2 case in Ref.
pected physical phenomena are revefdddin this paper we [10]. Lieb and Liniger found some unexpected effects of the
shall analyze a one-parameter model for three bosons subjgegriodic confinement but did not investigate the analogous
to attractive 5-function pair interactions in one dimension effects forN>2. In a series of papergl5-17, McGuire
with periodic boundary conditiongontrast this to three par- examined a related one-dimensional many-particle fermion
ticles “on a ring;” see Ref[2]). Our original motivation was system with one particle having spin-down in a sea of
to examine a system with attractive forces where single andpin-up particles, interacting vid-function potentialgboth
compound particles may coexist. This is of particular interestepulsive and attractiye For other models with periodic
when studying the kinetic theory of gases composed by paboundary conditions but different interactions, see Refs.
ticles that can form stable aggregateach as dimers or tri- [18-22.
mer9, especially when chemical reactions can ocfBif. If the particles are not confined in a box, the wave func-
This paper deals exclusively with the model itself, which hastion obeys the standard vanishing boundary conditidos
been found to be quite complex in mathematical detail. Thédoound statgsor scattering boundary conditions, at infinite
method of analyzing for all the possible states of the systendistances[23]. However, in most available models, rear-
involves following the eigenvalues as a function of the cou-rangement processes where a bound pair collides with a
pling constant, starting from the easily analyzed, noninter- single particle to form a new pair are not allowed and cannot
acting case¢=0. It is found that certain eigenvalues are notbe examined. An exception is the work of McGuire on the
analytic functions of the coupling constant at specific pointsattractive, two-body,s-function interaction describing the
Such nonanalyticity of the eigenvalues has also been recentcattering wave functions and the bounN-lfody) states
investigated 4,5] for certain polynomial potentials. [24]. This model has been generalized, examined by means
The literature on one-dimensional solvable models ofof several formalisms, or applied for different purpog2s—
three, and generalliN, particles is rather extensive. These 30]. As stated before, the attractive case for bosons has not
models could be primarily classified according to the type ofbeen examined with periodic boundary conditions and the
interaction involved 6]. However, even with the same inter- present work fills this lacuna fai= 3.
action but with different boundary conditions, different for-
mal treatments are required, and very different results may
be found. Periodic boundary conditions are suitable for mod- Il. MODEL DESCRIPTION
eling a gas or a crystal lattice in the thermodynamic limit. In
contrast, in the limit where the box length becomes large
information about the corresponding scattering problem of

The stationary Schabinger equation for three equal mass
articles in one dimension with two-bodyfunction interac-

one-dimensional system can be extradtéd|. Indeed these lons reads
723 2y
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wherey;(i=1,2,3) are the particle coordinates. If they arelf periodic boundary conditions are also imposed, a displace-
enclosed in a box with length, it is convenient to divide ment of 1 in any of the coordinateg leaves the function
this equation by:?/(2mL?), and use instead unchanged. In particular, iR,,3 this means that the wave
function obeys
3 0,)2¢
—21 — +2¢Y, 8(xi—x) y=Ey, (2 #(0X2,X3) = th(X2,X3,1). (10)
i= i<j

ax?

Similarly, the derivatives satisfy
expressed in terms of the dimensionless quantities

J J
5¢(X1X21X3) x=0:&—x¢(X27X3,X) . (11)

x=1

Xi=yilL, ©)

In a two-body collision between particles of equal mass, the
S-function interaction can only interchange the momenta of
_ the incident particles or leave them unchanged. In other
c=2mcL/A2. (5  words, there is no diffraction, that is, no “new” momenta,
different from the initial ones, are created. For three equal
Note thatc is the only parameter of the model, and that, mass particles witt$ two-body interactions, the eigenstates
according to Eq(5), the effect of enlarging the box or mak- can thus be written in terms of only three plane waves with
ing the interaction stronger are equivalent. This work ad<(dimensionless“momenta” {k;},
dresses the attractive case in particular, correspondirg to 5
=<0. But the repulsive case£0) is also covered, since the )
nature of the solutions for the repulsive case are the same as P(Xy=Xp=X3) = ; a(P)P exp( 'J.Ztl kixi) (12
one class of solutions for the attractive case. Of particular
interest is how the wave numbers associated with a wav@here the sum is over all permutatioRsof the {k;}, and
function change, as the potential parameterries continu-  a(P) are coefficients to be fixed by the boundary conditions
ously from repulsion to attraction. determined by the periodicitjEqgs. (10) and (11)], and by
The s-function potential produces a jump in the deriva- the 5-function interactiofEq. (9)]. This wave function form
tives of the wave function where two particles meet. Th|S|S known as the “Bethe ansatz,” and it was first apphed to
jump is proportional toc and to the wave function at that spin chaing31]. In the context of the Bose gas, Yang and

E=2mL%E/#?, (4)

point, Yang[14] used a continuity argument to show that for posi-
tive ¢ all states are given by E@12) with realk’s, a result
Ay I Ay Y which was later established rigorously by Dorl&g]. In the
a_xj X - +_ 3_)(1. X - _= ZClMXj:Xk' present work, it is shown that all states for 0 are continu-
i (I ously connected te<0 states ik space, so we are confi-

©) dent that the eigenstates discussed later form in fact a com-
. L . . plete set. An important difference from the repulsive case is
Since thes-function interaction aIIov_vs the particles t0 Cross 4 -t forc<0 thek's may become complex.

each cher, all ord'erlngs“are.p0,§3|ble, eac_:h ordering corre- From Egs.(8) and(12), the energy is simply obtained as
sponding to a particular “region” of coordinate space and
one of the permutations of the three particles. On the basis 3
that the particles are bosons, it is sufficient to study the wave E= 2 ka, (13
function in only one of these regions, specifically the “pri- i=1

mary” region . : N
but this should not be interpreted as purely kinetic energy

since there is generally a potential-energy contributiok to
Note that Eq(8) is the Schrdinger equation only when the
positions of the particles are all different. The true kinetic
energy has to take into account the jumps in the wave-
function derivative at the region boundaries. The calculation
of the potential energy is, however, somewhat involved and
is discussed in the Appendix.
3 _ The structure of the coefficients(_P) is impo_sed by the
S 07_¢:E¢ ®) jump boundary conditioni9) as explame(_j, e.g. in RefL0]:
= The amplitudes for two permutations differing by a transpo-
' sition of two particles are related by a factere'?~,

R123:0$X1SX2$X3$1. (7)

The wave function in any other regidR;;, of coordinate
space is then simply obtained from the wave functioR{p;
by interchanging the particle labels. In regiBp,3, Egs.(2)
and(6) can be written as

for x; # X,# X3# X4, and the jump conditions a(123 =1

( A )¢ a(213) = —e'f2, (14
(?Xj+l 07XJ

=cy . 9

Xj 417 a(132=—¢'fx
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a(321) = — ¢/ (P21t fart b3 This is the eigenvalue of the corresponding total momentum
operator, which commutes with the Hamiltoni&h It is
a(312) =el(fa1t 032 (15)  clear thatp is an invariant to the “motion” of an eigenvalue
asc varies continuously frore to — . For each solution set
a(231) =g' (%217 30, {k;}, there is another s¢k; } that also solves Eq17), and is

related to the former by
where

_ ki =kj+2mn,. (23
g, CI (ki—k,)
= m (16 The transformatiorfk;}—{k;} amounts to shifting the total

momentum by Grng,. This means that any state can be

By substituting Egs(12) and (14) into the periodicity con- mapped to another state in the central momentum strip

ditions (10) and(11), the following set of coupled transcen- —37<p<3sr, and vice versa, by such a transformation.

dental equations is found: Thus we shall limit ourselves to study only those states hav-
ing total momentum in this strip, namelg,= —1,0,1.

3

e 'k’:eXF{'gl Osj|, 1=1.2,3, A7 ks are real, that uniquely define the statepisé,, and &5,
where §, and 6, are, respectively, the relative momenta be-

A convenient set of variables, especially when the three
where, by conventiond;;=0. Solving Eq.(17) for k; gives  tween particles 12 and 23, namely,

k1=277m1— 021_ 931, 5lEk2_kl1 (24)

k2: 27Tm2_ 012_ 032, (18) 525 k3_ k2 . (25)

Note that, when real, the order assumed Kpr{Eq. (20)]
implies thats;=0. Thek's are given in terms of these vari-

for some set of integeram;}, while 6;, is given in terms of ables by

K3=2mmMg— 03— 013,

i by ki=3(p—25,~ 8,), (26
+i(k—k k—k
6;,=ilIn % =—2arctar€ ]c /). (19 Ko=3(p+8,— 5), (27)
Zi(k—k,
ks=3(p+6,+25,), (28)

While it may appear to be natural to choose the principal

branch of the logarithm and the arctangent, another choice isnd the energy takes the form

more appropriate. Since a state is uniquely defined by the set

of numbers{k;}, irrespective of the order, because the par- E=3[p%+2(57+ 85+ 6.6,)]. (29
ticles are bosons, it is convenient to orét€is, when they are

real, according to Combinations of Eqs(18) and (19) give the two coupled

equations fors; and é,,

<k,=<ks. - ) i ) .
ki=ko=ks 20 5 il C+idy\2c—i8, CH+i(8+ 8,) Y
Consistent with this, the ranges &4, 65,, and 63, are cho- 1= n_ C—idy) C+idy Cc—i(61+ )] 71
sen to satisfy (30
—2mw<Re6;,)<0, (21) C [[c+id,\%c—id, ct+i(6,+6,)]
6,=iln - - - +2n,,
C—idy) C+idy c—i(d1+ 7))

on the basis that the correspondikg-k, are positive. In : (31)
this way, solving for the set dfk;} is equivalent to solving
for the set of6;,, and it is noted that, for the above choice where, on the basis that the principal part of the logarithm is
for the range oft; /s, 6;,'s vary continuously ag and/or  taken,n; is not necessarily equal tm,—m;, nor isn, nec-
thek;'s vary continuously over their allowed ranges. This isessarily equal tang—m,. In fact, unlikem;, n; does not
also true if some of thi;'s and/org,; ,'s become complex, as have to remain constant as a given “root” of the coupled
discussed in later sections. Thug provides a unique clas- equations{§;(c),,(c)} changes continuously with a varia-
sification of the energy levels, and for a given setgf the  tion of c. That is why we shall not classify the roots accord-
energy eigenvaluéand eigenvectgrcan be followed con- ing to “local” values {n;(c),n,(c)}, but according to their
tinuously as a function of, asc varies fromo to — . values{n?,nd} for no interaction, namely, foc=0. These
On taking the product of the three equations of the formare unambiguously related to the set of quantum numbers
of Eq. (17), it follows that the total momentump is quan- m; ; see Eqs(35) and(36) below. If, asc changes, the ar-
tized, gument of one of the logarithms, say, crosses the negative
real axis(which is the branch cut for the principal part of the
logarithm), its phase changes abruptly B2 7, and the cor-

=2, ki=2m(m+my,+mg)=2mn,. 22
P ; j=2m(My M+ mg) =27, 22 respondingy; has to jump up or down by one unit in order to
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follow the root continuously. Of course, these discontinuities 01= O3p= 031= — 7. (33
have no physical consequence, and merely reflect the choice

madg for_the brangh of t_he logarithm. qu several fc.)rmallt follows that
manipulations and in particular for the object of obtaining

asymptotic expressions, it is useful to avoid the discontinui-

ties by continuing analytically the logarithm across the

branch cut, i.e., by passing to the contiguous Riemann sheet

when the argument; crosses the real, negative axis. This 61=2mnd=27m(my—m;—1), (35
will be discussed further in Sec. IV to clarify the trajectories
of thek;’s asc changes smoothly.

There are certain symmetries of the parametrizations
61, 65, and p which can lead to energy degeneracies. The .
interchanges, = 3, together with the change in sign pf Equivalently, thek;’s are all real multiples of z-. Due to the
are equivalent to the changles= — ks andk,= —k, which, conventional ordef20), only the case WherBJQBO needs to
for real k’s, invert the order of Eq(20) to —k;>—k, be considered in order to account for all the states of the
> —kj. This is also equivalent to taking the complex conju- System.
gate of the wave function. Thus, k,# —ks; and/ork,#0, The total momentum in the central momentum strip for a
these are two different states with the same energy, a twofolgtate f2,n3) is determined by noticing, from E¢7), that if
degeneracy. On the other hand, kf=—k; and k,=0, K is to be a multiple of 2r, thenp+ J;— 5, has to be a
which is the special case tha@; =3, and p=0, then this multiple of 67. For any pairni and n3, and p=2mn,
symmetry reproduces the same state, the wave function §1,=0,+1), there is only one possible solution for,,
real, and the state is nondegenerate. In terms of the classifiamely,
cation of the states of the central momentum strimﬁy it
follows that interchanging? andn3 (n9# n9) amounts to an 0 if n%—n9=3n
interchange ofs; and &,, and[see EQ.(37) below], to a

a(ijk)=1, (39

8,=2mn9=2m(mz—m,—1). (36)

; 0_ 0
change of the sign op, so that all signs of th&'s are np=y —1 if ni—ny=3n+1
changed and the complex conjugate state is obtained. But, 1 if n({—n2=3n+2, n=0,+1,+2,....
for the “diagonal” caseni=n3, there is no degeneracy. (37)
These states are real and even under the parity transforma-
tion X;— —X; . For the states where one of thé’s is zero, twok’s are

A second symmetry of the parametrizatiols &5, andp  equal. The equality of twé’s can occur only at=0, and at
is the interchange’,= — &,, while p remains unchanged. certain criticalc values discussed in Sec. Un general, for
This is equivalent to the changks—=ks andk,=k,, which  c¢#0, the wave function vanishes if twiq’s are equa). For
invert the order of Eq(20) to k;>k,>k3 but do not change  the ground state)}=n3=0, the threek;’s are equal, and the
the momenta themselves. But since the order ofkiseis  \yave function is a constant.
immaterial, this is just another way of labeling the same The classification scheme used in the remainder of this
state. In terms of, this means thatr§,n3) and (—n3,  paper, for the energy eigenvalues and states, is based on
—n9) are actually the same state. following 8; and 8, as continuous functions af from the
Because of the stated symmetry relations and the fact thagference noninteracting system. A symbol such as (1,2)
any eigenstate can be translated by the total momentum shifives the values of the quantum numbe® and nd, and
(23) to the central momentum strip, an exhaustive analysis ofdentifies a given “root”{5,(c), 8,(c)} of the transcen-
all possible states is achieved by examining the cases dental equations and the corresponding eigenéiitkin the
;n({;o, since any other case is either equivalent to one o€entral strip of total momentumirrespective of the value of
them or obtained by a simple transformation. An understande. Note that the three “quantum numbersi®, ng, andn,
ing of the behavior of the roots and their limiting propertiesare equivalent to the set of quantum numbdens}. The total
for different ranges ot requires a detailed analysis of how momentum given in Eq(37) is independent of the value of
to carry out the analytical continuation of the logarithms inc, and the degeneracy of a root is also an invariant to the
Egs. (30) and (31) asc varies. This is provided in the fol- “motion” of the root with c.
lowing sections. To keep track of the global picture, a handy
summary of the results is provided in Sec. IX, and a set of

figures illustrate the essential aspects. IV. REAL k SOLUTIONS

On the assumption that thie’s all remain finite (and

Il. REFERENCE CASE OF “NO INTERACTION” real), it follows that
For c=0 there is no interaction, and the particles move 0,1
freely. In this case, p 0 if c—oo
. 38
) 2~ —27 if c——oo, (38)
efir=—1, (32 031

and with the present choice for the range of the's, with the consequendesee Eq(18)] that
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FIG. 2. (V) vsc for (n°n®). From bottom to topn®=0, 1, 2,
and 3. The lines fon®=0 and 1 extend to-% asc— — .

effectively as an impenetrable barrier. That is, the wave
function at the region boundarieg=x; , tends to zero. This
can also be deduced from the jump conditidigs. (9)],
since the derivatives produce only the finkewhile c be-
comes infinite, so that consistency requires thatanishes.
The potential energy as a function ofdecreases from zero
to an intermediate minimum and then grows again toward
zero asc— —, and vice versa foc>0; see the Appendix

Bounds on thek differences can be narrowed by examining and Fig. 2.

separately the detailed properties of #is for positive and

The above-deduced limitations on h@s change withc

negativec, by the following reasoning: On the basis of the gllow a more detailed discussion of these changes from the

chosen order fok; [Eq. (20)], it follows that

ka—k;=ko—Kq , Ks—Ky. (40)

As a consequence, fa>0 and—7<6;,<0 for (j>/),

tar( 0231) <ta r( 0221> ,tar( 67&) (41)
and
031= 01,03, (42
so that
—T< 03— 05,<0 (43
and
27— m<2m(my—my) — 7+ 26,
<51;=Ky—k;=2m(my—my) + 26051+ 03— O35
<27(mMy—my) +260,< 27r(n1+ 1). (44)
An analogous argument far<O leads to
2a(nf—1)<6,=k,—ky<27nd+, (45)

with the lower bound approached according to E89).
Bounds foré, involving n2 have the same structure.

It is thus seen that i{=2 andn3=2, then thesé dif-
ferences remain positive asvaries frome to — o, with the
consequence that thg’s are real for allc under these con-

point of Egs.(30) and(31). An appropriate starting point is
to consider the limit of these equations wher0, namely,

. [ 51_|C 252+|C (51+ 52)_|C 0
o1=1IN| 5 5¢) 5,71c (8,4 8y tic T 2™
(46)
[ 8,—ic\28,+ic (8,+ 8,)—ic] 0
= . . — |+
% |In_ dptic) 6;—ic (8;+ 8,)+ic| 2mnz,
(47)

where the factors in the arguments have been rewritten to
emphasize that th&'s are in this limit the leading terms. The
identification ofn® is on the basis that, on expanding these
equations ag— 0, Eqgs.(35) and(36) are obtained, namely,

2nInd+2(n2)%—(n9)?

nInd(nd+nd)

&1=2mnd+ +., (49

with a symmetrical expression faf, on interchanging‘n?
andnj. These expansions are valid only if batfr 0, while
the exceptional cases are examined in Secs. VI and VII.
As c increases positiveljalways assuming the order of
Eq. (20)], the phases of the factors in the arguments of the
logarithms change; compa,'s of Eq. (19), and the dis-
cussion of their behavior. On tracing this behavior as
—+o, it is seen that the phase of the argument of each
logarithm decreases by so this can be taken into account
when changing Eq$46) and(47) into Egs.(30) and(31) by

ditions. This also implies that the energy tends to a constargettingn;(c—«)= n] + 1. For negative, the phase changes

value for|c|—«; see Fig. 1. For these states, #héunction
potential acts, for both very large positive and negatiye

are the opposite, and Eg&l6) and (47) are appropriately
changed into
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FIG. 3. 6, vsc. The numbers close to each line correspond®to
andn). The figure foré, is identical by interchanging$ andn).
The lines are only drawn up to the critical valuesafvhere §;
=0 [for (1,1), (1,2); and(1,3)] or 8,=0 [for (2,1 and(3,1)]. For
more negative values df, the a-y parametrization is used; see
Figs. 5 and 6.

sl [[—c—i8,\2—c+id, —c—i(8,+8,)]
1=V ZcH16,) —c—i6, —c+i(6,+6y))
+2m(nd-1), (49
sl [[—c—i8,\?—c+id, —c—i(Sy+6,)]
271N\ ZcH75,) —c=ioy —c+i(6,+5,)]
+27(n)—1). (50)

These are appropriate for expansions when—co, but may
of course be used for all values oby analytic continuation.
In the same vein, the related pair of equations witk- n?
+1 may be regarded as valid for all valuescoby analytic
continuation across the logarithm branch cut.

In summary, provided both?zo, then

+0(c7?), (52

o 6
5 ~ 2m(n{+1)|1- -

C—®
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FIG. 4. 6 vs ¢ for (n°n%. From bottom to topn®=0, 1, 2,
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Figure 4 illustrates hows varies withc. By implicit differ-
entiation,

dé

dc

65(c?+26%)
c?(c2+58%) +48*+6c(25%+c?)’

(54)

If n9=n%+0, Eq.(48) is consistent with the—0 limit of
this result.

V. STATES WITH AT LEAST ONE n-°=1: DIMER STATES

If one nj—l for deﬂmtenesx;l1 1, then, from Eqgs(44)
and (45), there is a possibility tha; becomes 0 for some
critical negative value?(l,ng) of c. Note that the equations
for §; and &, are independent op, so the critical value
C(l,ng) has nothing to do with the value @f [The discus-
sion for the degenerate partnen‘f(l) follows similar lines,
substitutingn$ with n§, &, with &,, andp with —p; see
the discussion of the symmetries of this parametrization in
Sec. II] At a critical pointC(l,n(Z’), k, and k, become
equal(if ngz 1 as well, all thre&’s become equal and the
Bethe ansat£12) form for the wave function is no longer

valid because it vanishes. Of course, the normalization con-
stant also vanishes, so that the normalized wave function

while, provided botm?>1, then , _ _
P ! does not vanish, but merely has a different functional form

+0(c7?). (52

0 ( 6
o ~ 2m(nj—)1 1+ —

I c
In contrast, |fnl 1, thené§; can approach 0 for finite nega-
tive c; see Fig. 3. For more negative valuescothek;’s can
become complex. The situation is similar fo}=1. Sectlon
V discusses this situation. If am{’ 0, theng; vanishes at
c=0; see Sec. VI.

The case in Whlcm0 n2 is particularly simple to ana-
lyze. It follows from Eqs (46) and (47), analytically contin-
ued for all values o€, that §; and 6, satisfy the same equa-

obtained by taking the limit as->C(1,n2) using the rule of
I'Hospital. A similar case was found by Lieb and Liniger for
one particular root in the case¢=2 [10].

Two different cases arise, according to wheth§1, or
if n9=n9=1. These cases are discussed in turn.

A. Case whenn9>1

The value of the critical poirﬁ:(l,ng) and the behavior in
its neighborhood, can be obtained by expanding E49)
and(50) for §;—0. For such a purpose it is useful to intro-
duce the factorsj=4;/c, j=1,2, and defineug=u,(c

tion and thus are equal, with the consequence that the threeC) as the critical value ofi,. After fairly extensive alge-

k’s for such an eigenstate remain equally spaced aries.
After dropping the subscripts, and formally written for
>0, the equation for the commahis

(c+id)(c+2id)

N CET =)

(53

}+27T(n0+ 1).

bra, it follows that

21+24u5+8ug

C=C(1,ng)+ 6(1+—LJ(2))2u1+ cee,

(55

with
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154

C(1n)=—4-—, 56
(1n3) s (56)
whereu, is determined by the transcendental equation 104
i 1+ iUO 0 2U0 o 1
3i Inl_iu0+27-r(n2—l)+4u0+1+—US—O. (57 ]
54

In the neighborhood of the critical point, changes accord-
ing to

19

1 3+6upt+2ug ,
SUpt ————— Ui+
2" Bug(1+ud) 1

U2:UO_ (58)
FIG. 5. a vs c. Solid lines:n{=0. Dashed linesn{=1. The

It is seen that;(c) has a square-root singularity at the criti- number close to the lines i,

cal point, being real foc>C(1,ng) and pure imaginary for

c<C(1,n2). An analytic connection between real and imagi- apility of a pair of particles being close together has been
nary branches ob; can be made by attributing with @ gjgnificantly enhanced. In addition, the energy has a negative
small imaginary part. The association that is used in the folgontribution [see Eq.(63) below], so that an energy gap
lowing parametrization is consistent withhaving a small  arises in the spectrum between states with real or imaginary
negative imaginary part, essentially adding a small dissipaz: see Fig. 1. Since these are all basic ingredients of proper
tive contribution to the Hamiltonian. It is also noticed from poyngd states, this terminology seems justified.

Eqg. (56) that all the critical values of lie between—6 and With this parametrization, the total energy is decomposed

—4. Actually, to three decimal places, the lowest criticalinto separate quadratic contributions from the three vari-
value isC(1,2)=—4.163, increasing toware-4 asug and  gples,

ng, increase. These aspects are illustrated in Fig. 3. ) .
For c<C(1,n9), k; andk, become a complex conju- E=—2a"+6y"+p“/3, (63

gate pair, whil&k; remains real. The discussion of the root in .
this region is better examined by using a new set of reaf’md the system of transcendental equations takes the form

variablesa and vy, defined by —c—2a\?2—c—a—3iy —c—a+3iy
—2a=In - — |,
5,=-2ia, (59) —Cc+2a) —cta+3iy —cta—3iy
(64)
d,=1a—3y, _ ,
2oy 3] —cta+3iy\?—c+2a —c—a+3iy
so that ta—oy=1in —Cc—a—3iy] —¢c—2a —cta—3iy
ky=ia+y+p/3, +27(nY—1), (65)
k,=—ia+y+pl/3, (600  which corresponds to the correct phase form det0, ac-
cording to Eqs(49) and(50). It is consistent to solve these
ks=—2vy+p/3. equations maintaining andy real, which is also consistent

with the local behavior Eq(58), as a—0. Before entering
This is consistent with Eq:58) for «— 0, on the basis that into the detailed analysis of the equations, it is worth exam-
both « and y are real. This parametrization could of courseining Figs. 5 and 6 to quickly visualize the behavior of these
be used for allc [with « possibly imaginary; since §,/2
= —ia has the physical meaning of the relative momentum
between particles 1 and 2, whileyds the relative momen-
tum between the pair 12 and particle 3:

ka—kq

5 G
p 2 ki+Kks
3 3% 2 )

—ia=58,/2=

2y=kz— (62

For reala, 1/ gives a measure of the size of the “bound ~10 , : : : :
states” formed. Of course, in a finite box all states are, 100 80 %0 40 %0
strictly speaking, bound, i.e., their energies are discrete and

their spatial extention is limited by the box length. But when  FIG. 6. y vs c. Solid lines:n}=0. Dashed linesn{=1. The
a is real, the state is localized even further so that the probaumber close to the lines is.

o
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dashed lines tm=1, whereas the numbers close to the =—y—2m(n3—1)/3, (68
different lines giveng. As ¢ becomes more negative, in-
creases. This concentrates the wave function to where the . . L .
particles are close together, afd) and (E) become very whu_:h is useful for the determination of the asymptotic be-
large and negative; see, in Figs. 1 and 2, the lines fed, 1. havpr ofa and v 5. .

A prominent feature in Fig. 5 is the grouping into two It '_S also possible to solve foy” in Eq. (64) in terms ofa
asymptotic behaviors fotr, asc— — . These will be asso- andc:

ciated later with dimer and trimer configurations. Note also

two parameters witle. Solid lines correspond tn‘{=0 and 6yC
arcta
CZ 2

-9y°—a

that all states witm?=0 have a common critical point at ,_& “(c—2m)*(c—a)’—e(c+2a)%(c+a)?
=0 (wherea=0), while forn?=1 the critical points spread 9[e*(c+2a)’—e *(c—2a)?] '
from c=—6 to —4. Another interesting point is the quasi- (69

invariance ofa with respect ta3 for n3=2 at fixedc. These
states have essentially the same binding strength and difféss a—0, y*(a=0)=c?(6+c)/[—9(4+c)]. This is
only by pair-single relative momentum, and possibly by totalidentical to Eq.(56) for the relation betweed, andc at a
momentum. Figure 6 foy has a simpler structure based on acritical value ofc.
rather regular pattern of lines with equally spaced asymptotic The asymptotic behavior as— —o is now investigated.
values. Except for the two cas€8,0) and (1,1) with y=0  According to Eq.(67), y remains finite whilex satisfies Eq.
for all ¢’s, which corresponds to no relative motion between(64). Both positive and negative are solutions to this equa-
a particle pair and a single particle, wherbecomes more tion, but since these just correspond to an interchandg of
negative,y varies smoothly and tends to a constant valueandk,, only the positive root is examined. Equatit@#) can
Wheny is essentially constant, changes the strength of the be rewritten as an equation involving only real quantities,
attraction between the palie., the value ofx), but not the namely,
motion of the third particle with respect to the pair.

The structure of the spectrum of energy levels can be
described in terms of how the energy varies as the three —2a=In
guantum numbers?, nd, andn, change. This can be attrib-

uted to several types of “elementary excitations” which arepq obvious(but invalid) approach to try when making an
associated with different physical effects. Within the central ; vaid app o try . 9
asymptotic expansion is to expand in powers/of since the

momentum strip, for states with compléx's and for —c ) LT )
large, these are as followsa) As nd varies, a change of qther factors involve. This |mplles thate must aIsp remain
' 2 ' finite, and leads to the requirement tleat — 6, an inconsis-

relative pair-single motion b)A_7~77/3,_W_Ith a esser_mally tency. It follows that either £c—2a)—0 or (—c—a)
constant andlp] constant. In Fig. 6, this is not possible be- 5 the limit c— — 0. But it is noticed that as changes
tween all contiguous levels of, but only for those where from its critical valueC(l,ng) to —, a changes from 0

np=1 andn, = - 1;. see Eq(37). If one of the states has. to its asymptotic behavior; however, the factors in the argu-
momentum zero, a jump to the nearest level necessarily im-

R o ment of the logarithm;-c* 2« and (—c* a)?+ 972, must
plies, in addition toA,, an elementary total momentum : . . .
; B Y. . : remain positive, or an imaginary phase factor must be added
jump Ap,=2m. (b) Transitions between a trimer and a dimer

state or from a dimer to a pair-absent state, vdh- — /2. to the right-hand S|.de._S|.nce such a case would imply éhat
- X . becomes complex; this is not allowed. Another way to un-
(¢) A minimum total momentum jump by 2, with « andy

constant. This may only occur between the ste6) and derstand the preservation of sign of all factors is that if one
(0.1) or (1,0). Any other transition changes. But « and y of them becomes zero for a finite(and «), the logarithm,

mav also stav constant if the svstem chanaes to a differe atnd the left-hand side of the equation, would be infinite in
Y Y Y 9 . Whsolute value, which is again inconsistent with the finite
momentum strip by a total momentum translation

=67. Of course, multiples or combinations of these elemen—value ofa on the right-hand side. The only form of that

e ; ; maintains all factors positive is= — 3¢+ 8, with 8<0 and
tary excitations are possible, and complicate the spectrur%/cﬁo asymptotically. A straightforward expansion then
considerably. :

—C—Za)z(—c—a)2+9y2
—Ct+2a] (—c+a)?+9y?

. (70)

The detailed quantitative features @fand y as functions gives
of ¢ are now examined. On the basis thatind y are real, anatl2_ Qp2aCa .
the real part of Eq(65) is A=3cemocte (72)
. . 1
3. [(—=ct+a—-3iy)(—c—a—3iy) 0 a=— —c+3ce2—9c2eC+ . . .
2 M Ccrarsip(—o—ar3iy 2721 2
(66)
and, from Eq.(68),
This provides upper and lower bounds fgrnamely, g
o
= — — 0— —_—— ..
—(4n9—1) 7/6< y<—(4n3—7)m/6. (67) y==g (=) I, (72

Equation(66) may also be written as as the asymptotic expansions for bathand y.
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B. Case whenn=n%=1 VI. STATES WITH ONE n{=0: DIMER AND TRIMER

As previously mentioned, this implies that= &, for all STATES

¢, and the commor is determined by Eq(53), which is This group of states are of the form (), and of course
appropriate foc>0. Reexpressing this far<0, retaining @  thejr degenerate partners. Only the casa{0js explicitly
continuous relation for the phase, gives treated here, since its corresponding partner state is simply

(—c—i8)(—c—2id) obtained by symmetry, specifically for the states wieen
S=iln : —|, (73 <0 by changing the sign of. Forc— «, these states fit into
(—ctid)(—c+2id) the formulation of Eq(51), so no further discussion of this

limit is needed.

As c—0, the starting point for the analysis is the pair of
equations(46) and (47). Since n(l’=0, 61 andc are to ap-
proach 0 simultaneously, and it is to be expected by analogy
with the other cases thatwill be proportional toéﬁ. This is
confirmed by the following argument: Siné&g— 0, then the
argument of the logarithm in E¢46) must approach 1. For
the ratios of the terms involving,, these approach 1, since
they are dominated by the common nonzero valuesof
_ . : . That leaves the square term. For this to approach 1, each
=—6, and that there is a square-root singularitydoés a factor must be dominated by the commép which implies

function of c. For c<—6, &6=—ia is pure imaginary o . .
(negative imaginary if the same connection around the sinthat itis the ratioc/, that is small and can be used as a

o . K variable for which the logarithm is expanded, as well as the
gwggt?/nlfelrjriido??hlig S:fér;/gﬁ:;;zgzwl)sythat thek;'s are ratiosc/ 6, and 6,/ 85, all of which vanish ag— 0. Explic-

itly, the expansions of Eqg46) and (47) are

and taking into account that’°=1. Clearly =0 is a solu-
tion of this equation. But to find the corresponding critical
value C(1,1) of ¢, and the behavior in the neighborhood of
this critical point, an expansion is needed. This is easily ac
complished to yield

C=—6+28°+---. (74

This immediately shows that the critical value &4(1,1)

kg=—ia+p/3, c 4c® ¢y
S1=d5 ~ 3525 +O(8),
ko= p/3, (75 v (79
ky=ia+p/3 8,=2 n°—2£+2—03+6£—20—61+0(54)
el IR A

while « is determined by It follows thatc is proportional tos?, as was to be deduced.

Rearrangement of these series ¢or0 gives the expansion

_ (l—3a'+2a’2> 76 in powers ofé; as
1+3a’'+2a'?]’ 1 1 1
C=—+| ot =5 | S+ - -,
where a’ = a/c. [Contrast this with Eq(60). The associa- 471 [192° 32(wny)?| Tt (79
tions made for thé; in Eq. (75) are more natural here, since )
61= 8, and the thred; change continuously across the criti- So= 20— = 5. + 361 n
cal point, but in fact Eq(60), with y=0, could be used as 2= em2™ 591 47nd

well because the state is defined by the three “momenta”

regardless of the ordering conventipn. For c<0, the parametrization of E¢59) is appropriate. In
Clearly, if ' —0 asc— — o, thena—0. But on expand- the limit c— —0, the ratioc/ §, transforms according to

ing to look at the correction terms, this assumption implies

thatc—6, an inconsistent result. It follows that grows to c 1 1 . C

. . . —— -0~ zla—i—, (80)
o asymptotically. On the basis that ordy>0 solutions are 6, 4 2 2a
needed &’ <0), the vanishing of the denominator in the
argument of the logarithm requires eithet— —1 ora’—  With the consequence that Eqé6) and (47) become
-3 a; c— —o, Only the latter is consistent with no accu- 2a+¢\2(a+c)2+92
mulation of phase, as changes from-6 to —, and the —2a=In S 02192 (81)
reality of . [Note that, by a similar argument to the one a—c/ (a=c) 4
below Eq.(70), the numerator and denominator in E@6) L Y

L . ; ] ) 2a—c\(ia—ic—3y\°[ —ia—ic—3y

must preserve their sign asvaries from—6 to —, which ia—3y=iIn i i
implies the bound @< —c.] On settinga= — 3¢+ 7, it fol- 2atc/\iatic=3y) | —latic—3y
lows on expansion that +27mc2)_ 82)

It is also important to note that, as a consequence of the
analytic continuation into the<0 region, 2x+c¢>0 and
v— — 6,/3<0. To avoid further singularities in the logarith-
as the asymptotic behavior of in this case. mic expressiongwhich would lead to inconsistency between

1 cl2
a=—§c+30e +---, (77)
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right and left sides of the transcendental equaliotisese _ 4
constraints must hold for ai<0. lim arctaréﬁ) =\gzn2—1|7 (88)
For exploring the behavior as— —«, Eq.(81) for a has =

an appropriate form for expansion about large and a. must be satisfied. Since the magnitude of the arctangent is

But if one term in each of the factors is to dominate the . . e g
expansion, then the result would imply that the Iogarithmic.boundeOI bym/2, this identity can only be satlsfledmg— 1,

expression becomes finite, a result inconsistent with the left] which case the limiting ratio ofy and y is detergnmed by
hand side approaching . As a consequence, sinae the conditionn= — 3y tan(w/3). In summary, fon;>1 the
> _¢/2. eithera— —c/2 or the combinatione— —c and  asymptotic behavior of is «— —c/2, which gives states of

) . - 0__ _
y—0 must occur. The first alternative is now shown to beth® dimer type, while fom;=1, a—-—c, and all three
valid only for n9>1, while the second alternative is valid particles are forced to be close to one another, a trimer state.
only if nd=1 == These associations will be discussed in Sec. VIIL.

2_ .

. .y _ l .
The !|m|t|ng casew= — 5 c+ B3 leads to a straightforward VII. GROUND STATE: n%=n%=0
expansion of Eq(81),
Sincen? andn are equal, it follows thaf, = 6,= 6. Near
22B ¢=0 and forc>0, the appropriate equation for determining

Tt @3 sis Eq. (46), which is modified for equab’s to be

_ _ B
—Za’—C—Z,B—Zh'](_—SC

(6—ic)(26—ic)
(6+ic)(28+ic)

which can be rewritten as the equation

S=iln . (89)

B=—3ce’?+9c%+ - - - (84)
The behavior ag—= is covered by the expansion of Eg.

for B. As c— — =, this vanishes exponentially. The behavior (53), with an asymptotic form identical to E¢51). Sinced
of y is to be obtained from Eq82). But the dominant quan- —0 asc—0, it is necessary that the argument of the loga-
tity ¢ is multiplied by the phase factorsi, so that an rithm must approach 1, which requires tliat:0 faster than
asymptotic expansion carries along a phase change for tldoess. Thus the expansion parametercis, so that, after
logarithm. On carefully analyzing how the various factorsexpansion and rearrangement,
change ag changes from 0 te- <, a phase change ef™ . .
in the argument of the logarithm is found. The real part of c=38"+ 3550+ -. (90
Eq. (82) determinesy, which after expanding and rewriting

gives For c<0, the parametrization of E@75) is used, this being

equivalent to d=—ia with «>0. The ratio —ic/é for
¢>0 thus becomes/a for c<0, and Eq.(89) becomes
(85)

Y=— §n2— T _E .

Since it is required thay<<0, it is seen that this expansion is

only valid for ng>1. This is identical to Eq(76), but now the constraint is that
The limiting casea=—c+ » also allows a straightfor- > —¢. This constraint requires that as——o, a must
ward expansion of Eq(81), but in this case the resulting pecome infinite, and the expansion of the logarithm is about
equation fory involves y in the lowest-order term, namely, ga singular point of the logarithm. The only possible form is
a=—c+ 5, with >0 approaching zero. After rearrange-
- y2=36e2’702ezc( 1— 2_;7 ) ) 86) ment, the resulting expansion gives

(a—c)(2a—c)

(a+c)(2a+c) | (91)

a=In

n=—6ce°—36c%e%°+ . . .. (92
Since bothn and y are real, this implies that both these
guantities must vanish asymptotically as-—. In this
case, Eq(82) accumulates a phagd™’? in the argument of
the logarithm when transforming the factors, so that they willV!ll: TYPES OF STATES AND THEIR REPRESENTATION
be dominated by a positive real part in the limit. What is
crucially different in this case from the previous one is the
presence of finite complex factors3y=i». As a result, the
real part of Eq(82) has the asymptotic expansion

which is consistent withy being positive.

The states are best represented as contour plots of the
probability density(and of the phase if requirgdn a “ter-
nary phase diagram” for the variables

l12=X2—= Xy,

9y

s 3
+ 20— |7 =+

2 2c ' r23= X3~ X3, (93
(87)

As c— —o, y must vanish for this case, as was deduced
from the expansion of the equation. Thus, in the limit, the constrained to the regioR;,3, O0<r;;<1. Note that these
identity three coordinates always add up to 1. In this diagram the

3y > tr{ﬂ’
—3y=—arctag ——
Y72 -3y

r3=1+x;—Xs,
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T31

Y&
8%

ADA
WaVa Vs

FIG. 7. Contour plot of the probability density of the st&Be3) FIG. 8. Contour plot of the probability density of the stéde0)
atc=1. The interpretation of a “ternary phase” type of diagram is atc=—9.
explained in the text.

T12 23 T2

, . , ) ) the exponent is positive, and it favors the trimer configura-
coordinate points are represented in an equilateral triangle; of the vertex (,,=1). By permutingk, and k,, one

Each of the base lines corresponds to one of the coordinates, ¢ instead, in the term (213), a negative exponent that
rij being zero, and each point in the base line corresponds {95 the dimer configurations,=0. Of course the other
a particular Ioc_a_lFion of the third particle at the right or left ., pairs, 13 and 23, also have a corresponding set of dimer
side of the pairij (the closer to the vertex, the closer the g trimer contributions, so that the six terms of the wave
th|rd particle is to the pajr The I|nes'paraIIeI to the base are ,nction can be separated into two groups: Three of them,
lines of constant;; . The value ofr;; increases from zero at (153) (231), and (312), represent trimer configurations, and
the base to 1 at the opposite vert@abeled asrj; in the  he gther three(213), (132, and(321), represent dimer con-
figures. The center of the triangle is the point where thefjgrations. The relative weights among them are determined
three distances are equal 30Near the vertex;;, the dis- by the amplitudesy, . For “trimer states,” the three trimer

tance between particlgsandi is also small(and tends t0  (ermgs dominate the linear combination, and the energy be-
zero at the vertex itselfthe difference from the basis region comes, ag— —<, the energy of an actual trimer stafer

is that now the third particle isetweerthe particleg andi.  hree particles on an infinite lifeFor “dimer states,” there
In summary, bases are associated with two particles being 4150 significant density along the edges of the triatigte

together(dlmer conflgurgtlon)s and vertices with the three only at the vertices and the energy tends to the energy of

particles being togethétrimers. However, in a general state hg"actyal dimefon the infinite ling, plus the contributions

with three realk’s, there is no bias toward these configura- from relative motion of the dimer with the free particle and
tions. Recall that the wave functions Ry ,5 are linear com-

binations of six exponentials that can be obtained from the
(123 form,

ei(klx1+ Koxo+ k3x3), (94)

by permuting thek’s in all possible manners. The probability
density (square modulysof any of these reak plane-wave
terms is constant; in other words, in these plane waves none
of the particle configurations is favored. The interference be-
tween the six different plane waves, however, destroys the
spatial homogeneityexcept for the ground state at=0),

and provides some structure with maxima and minima; see
Fig. 7. The complek case is different, see Figs. 8 and 9 for
examples of trimer and dimer states. Equat{®d) for the
(123) exponential may now be written, using the parametri-
zation in Eq.(60), as

ei (Xq+Xo+ x3)p/3ei Y(Xp+Xo— 2x3)ea(x27 xl), (95)

: 712 T23
where the plane wave for the center-of-mass motion, a plane

wave for relative motion of the pair 12 with respect to par-  FIG. 9. Contour plot for the probability density of the stéle2)
ticle 3, and a real exponential can be recognized;afor0, atc=-9.
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of the center-of-mass motion. This is consistent with our (i) 5]-—>27r(n19+ 1) asc—oo.

expectation of reproducing infinite line results in the limit of  The different particular cases are characterized by the fol-
a large box. As a concrete example, thennormalized  lowing properties:

stateg(0,0) and(1,1) for c=<—6 are examined: In both cases (i) (0,0): C(0,0)=0, p=0, y=0, anda~—c asc
vy=p=0, and they can be written, using Eqd.2), (15, — —«. The ground state is a nondegenerate state with trimer
(16), and(91), as character.

(i) (0,): C(0,2)=0, a~-—c, and y—0 asc— —oo,
Asymptotic trimer character. Similar to the ground state, but
it has a degenerate partner gne 0.

(96) (i) (0n3>1):C(0N9)=0, y—(—2/3n0+1)7, anda
o ) . ~ —cl/2 asc— —x. Dimer character.
As c— —, the factor muItlpIyl_ng the dimer _terms in paren- () (1,n2> 1):—6< C(l,ng)< -4, y—-— 277/3(ng
theses tends to 3 for (0,Qhich makes this contribution —1), anda~ —c/2 asc— — . Also dimer character, but it

negligible but to = fpr (1,1). Figure 8 shows the ground (gues g stronger interaction to achieve in comparison to the
state (0,0) for negative. previous group.

An important aspect of these associations is that the tri- (v) (°>1n9=n0): Realk; for all ¢'s, & (=o)=2mn°
mer or dimer character changes continuously along a given 1 Thelenérgzy telr1&s to a é:onstant va{Iuéc:;s»oo !

root astp vatglets, andto_nly asyr(;lpéptlcallylt:ﬁ—oo) IS g}e It is hoped that the root structure found and the techniques
'S;epara |c;.n it € wee? ”Tﬁr an IIZI](er sta ﬁs unam Iguouaeveloped for its study will be useful for an examination of
orany finite negative, the CompIeX roots Nave NONZEr0  4ants of the model involving different interactions and/or

dimer gnld trlmerfcom%(?nentg. N_ote, 1:;)r exc’?\mpled, hO.W th n arbitrary number of particles. Since all eigenstates can be
state ( 1) goes from dimer- ominated to trimer-dominateq,, ;nq for a givere, one of the possible applications of the
behavior ax becomes more negative in Fig. 5. In the same

. houah the threshold b | and I present work is the simulation of time-dependent rearrange-
vein, even though the threshold between real and complex ot processes using a discretized basis. In this context, it
is well defined, and it occurs at a critical valuemfthere are

d io(di ) h i th ; X may serve as a reference exact model to compare with ap-
no dramatic(discontinuous changes in the wave function, o imate wave-function propagation methods based on pe-
and the energy varies smoothly with(see Fig. 1 in the

. > ) riodic boundary condition§9]. The model may also permit
neighborhood of the criticat values. However, a different o, eypjicit comparison between the classical concepts of
qualitative behaviofof the energy and state probability den- «pnqg pair’ and “free” particles, and their collisional re-

sity) becomes clear when comparing the states below angyangements with their quantum counterparts. The origin of
above the critical point as the distance franincreases. e difficulties in the quantum case is that the Hamiltonian
Thus the critical values indicate a transition of the root frome, . iha threg(or N-) body system does not commute with the

one character, without pair formation, to another whereamijtonian of a pair, so that using the concept of the bound
dimers or trimers can be recognized. pair in a gas(or in a box is a delicate mattef33].

¢:emu+emm+ewm+2a ¢
2a+cC

(e—ar12+ e~ 234 @ 31),

IX. SUMMARY
ACKNOWLEDGMENTS

A model of three bosons subject #&function interactions
and periodic boundary conditions has been analyzed. In par-
ticular, a description of the eigenstates and their behavior ha%n
been given in terms of three mometa i=1,2,3, or two n
sets of alternative parametrizatior,, 6,, andp ande, v,
andp, convenient, respectively, for the cases wherekise
are real or complex. The roots can be primarily classifie
according to whether the three momenta remain real, or no
for all c. In the second case the wave function tends to con-
centrate asymptotically around dimer or trimer configura-  APPENDIX: NORMALIZATION AND POTENTIAL
tions, and the energy decreases quadratically withs c ENERGY
— —oo, The critical values ot required to form the bounds
(go from real to complek’s) have been provided.

The main features of the root behaviorcagaries are now
summarized[Using the symmetry properties or total mo-
mentum translations, the behavior of any other state is o
tained from the ones we consider explicitly, namely state
(n$,n9), nf=<nj, in the central momentum strim,=0,
+1.] Relations satisfied by all roots are as follows.

(i) The total momentunp (within the central strip is
given from n(l’ and ng by Eg.(37). It is constant ag varies . § y

i i i 3 2
Egrs)é given root. The total energy varies according28) or (Y] ‘/’>=6j0 ngJO dxzfo dxy| Ky Ky, KaiXq %0, X5)| 2.
(i) 8;(c=0)=2mmn]. (A1)
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Expression(12) for the wave function is not normalized.
For the analysis of the energy spectrum, this does not have
any effect. However, the calculation of physical expectation

byalues, and in particular of the potential energy, requires a
Qormalized function. This requires the evaluation of the inner
product (| ¢), where|y) is the unnormalized total wave
function given explicitly by Eq(12) in the regionR;,3. The
contribution of the six regions is identical, so
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This integral is decomposed into 36 terms with integrals ofthree cases: «;=0,j=1,2,3), (¢j=0,ay+;=0), and
the general form (2;j#0,j=1,2,3). In all cases the sum of theés is zero,
2] o= pPp—p= 0.

Once(y|y) is obtained, thédimensionlesspotential en-
ergy involves a simpler integration because of théunc-

o tions, namely,
where thea's are combinations of momenta of the form

—k]*+ki, (i,j=1,2,3). These integrals can of course be
solved explicitly, but the result is so lengthy that it is not
reported here. In order to handle all terms efficiently, it is
useful to classify the possible types of integrals. There arégain, all integrals involved can be carried out.

1 X3 Xo .
f dxsj dx2f dxge'leratezatesa) — (A2)
0 0 0

3 6c (1 X3 2
<V>_ <¢|¢>f0 dxsfo dX1|l,//(X1,X1,X3)| . (A3)
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