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Solvable three-boson model with attractived-function interactions

J. G. Muga* and R. F. Snider
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

~Received 17 November 1997!

A one-parameter solvable model for three bosons subject tod-function attractive interactions in one dimen-
sion with periodic boundary conditions is studied. The energy levels and wave functions are classified and
given explicitly in terms of three momenta. In particular, eigenstates and eigenvalues are described as functions
of the model parameterc. Some of the states are given in terms of complex momenta and represent dimer or
trimer configurations for large negativec. The asymptotic behavior for small and large values of the parameter,
and at thresholds between real and complex momenta, is provided. The properties of the potential energy are
also discussed.@S1050-2947~98!08905-7#

PACS number~s!: 03.65.2w, 21.45.1v, 12.39.Pn, 36.90.1f
e
re
or

a
ex

bj
n
-

an
es
pa

a
h

te
u
r-
o
ts
n

o
se
o

r-
r-
a

od
In
ge
f

ons

se

-
eral
a-
ase

he
ous

ion
of

fs.

c-

te
r-
h a
not
he

ans

not
the

ss

-
ai
I. INTRODUCTION

Quantum solvable models, where the wave functions,
ergy eigenvalues, and other quantities of physical inte
can be obtained explicitly in terms of known functions
with minimum numerical effort~typically by solving a tran-
scendental equation or by quadratures! are useful to test and
refine concepts and/or numerical methods, and as first
proximations to more realistic systems. Occasionally, un
pected physical phenomena are revealed@1#. In this paper we
shall analyze a one-parameter model for three bosons su
to attractived-function pair interactions in one dimensio
with periodic boundary conditions~contrast this to three par
ticles ‘‘on a ring;’’ see Ref.@2#!. Our original motivation was
to examine a system with attractive forces where single
compound particles may coexist. This is of particular inter
when studying the kinetic theory of gases composed by
ticles that can form stable aggregates~such as dimers or tri-
mers!, especially when chemical reactions can occur@3#.
This paper deals exclusively with the model itself, which h
been found to be quite complex in mathematical detail. T
method of analyzing for all the possible states of the sys
involves following the eigenvalues as a function of the co
pling constantc, starting from the easily analyzed, noninte
acting case,c50. It is found that certain eigenvalues are n
analytic functions of the coupling constant at specific poin
Such nonanalyticity of the eigenvalues has also been rece
investigated@4,5# for certain polynomial potentials.

The literature on one-dimensional solvable models
three, and generallyN, particles is rather extensive. The
models could be primarily classified according to the type
interaction involved@6#. However, even with the same inte
action but with different boundary conditions, different fo
mal treatments are required, and very different results m
be found. Periodic boundary conditions are suitable for m
eling a gas or a crystal lattice in the thermodynamic limit.
contrast, in the limit where the box length becomes lar
information about the corresponding scattering problem o
one-dimensional system can be extracted@7,8#. Indeed these
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are the standard boundary conditions for actual calculati
of time-dependent wave-function scattering@9#. The model
studied here is a particular case of the ‘‘interacting Bo
gas’’ of Lieb and Liniger@10#, who examinedN particles
subject to two-bodyd-function interactions and boson sym
metry. Further analysis of this gas was carried out in sev
papers@11–14#, but, having different objectives and applic
tions in mind, in none of these works was the attractive c
examined, except for the appendix on theN52 case in Ref.
@10#. Lieb and Liniger found some unexpected effects of t
periodic confinement but did not investigate the analog
effects for N.2. In a series of papers@15–17#, McGuire
examined a related one-dimensional many-particle ferm
system with one particle having spin-down in a sea
spin-up particles, interacting viad-function potentials~both
repulsive and attractive!. For other models with periodic
boundary conditions but different interactions, see Re
@18–22#.

If the particles are not confined in a box, the wave fun
tion obeys the standard vanishing boundary conditions~for
bound states! or scattering boundary conditions, at infini
distances@23#. However, in most available models, rea
rangement processes where a bound pair collides wit
single particle to form a new pair are not allowed and can
be examined. An exception is the work of McGuire on t
attractive, two-body,d-function interaction describing the
scattering wave functions and the bound (N-body! states
@24#. This model has been generalized, examined by me
of several formalisms, or applied for different purposes@25–
30#. As stated before, the attractive case for bosons has
been examined with periodic boundary conditions and
present work fills this lacuna forN53.

II. MODEL DESCRIPTION

The stationary Schro¨dinger equation for three equal ma
particles in one dimension with two-bodyd-function interac-
tions reads

2
\2

2m(
i 51

3
]2c

]yi
2

12 c̃(
i , j

d~yi2yj !c5Ẽc, ~1!
n.
3317 © 1998 The American Physical Society
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3318 57J. G. MUGA AND R. F. SNIDER
whereyi( i 51,2,3) are the particle coordinates. If they a
enclosed in a box with lengthL, it is convenient to divide
this equation by\2/(2mL2), and use instead

2(
i 51

3
]2c

]xi
2

12c(
i , j

d~xi2xj !c5Ec, ~2!

expressed in terms of the dimensionless quantities

xi5yi /L, ~3!

E52mL2Ẽ/\2, ~4!

c52m c̃L/\2. ~5!

Note thatc is the only parameter of the model, and th
according to Eq.~5!, the effect of enlarging the box or mak
ing the interaction stronger are equivalent. This work a
dresses the attractive case in particular, correspondingc
<0. But the repulsive case (c>0) is also covered, since th
nature of the solutions for the repulsive case are the sam
one class of solutions for the attractive case. Of particu
interest is how the wave numbers associated with a w
function change, as the potential parameterc varies continu-
ously from repulsion to attraction.

The d-function potential produces a jump in the deriv
tives of the wave function where two particles meet. T
jump is proportional toc and to the wave function at tha
point,

S ]c

]xj
2

]c

]xk
D

xj 5xk1

2S ]c

]xj
2

]c

]xk
D

xj 5xk2

52ccuxj 5xk
.

~6!

Since thed-function interaction allows the particles to cro
each other, all orderings are possible, each ordering co
sponding to a particular ‘‘region’’ of coordinate space a
one of the permutations of the three particles. On the b
that the particles are bosons, it is sufficient to study the w
function in only one of these regions, specifically the ‘‘p
mary’’ region

R123:0<x1<x2<x3<1. ~7!

The wave function in any other regionRi jk of coordinate
space is then simply obtained from the wave function inR123
by interchanging the particle labels. In regionR123, Eqs.~2!
and ~6! can be written as

2(
i 51

3
]2

]xi
2
c5Ec ~8!

for x1Þx2Þx3Þx1, and the jump conditions

S ]

]xj 11
2

]

]xj
DcU

xj 115xj

5ccU
xj 115xj

. ~9!
,

-
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If periodic boundary conditions are also imposed, a displa
ment of 1 in any of the coordinatesxj leaves the function
unchanged. In particular, inR123 this means that the wav
function obeys

c~0,x2 ,x3!5c~x2 ,x3,1!. ~10!

Similarly, the derivatives satisfy

]

]x
c~x,x2 ,x3!Ux505

]

]x
c~x2 ,x3 ,x!U

x51

. ~11!

In a two-body collision between particles of equal mass,
d-function interaction can only interchange the momenta
the incident particles or leave them unchanged. In ot
words, there is no diffraction, that is, no ‘‘new’’ moment
different from the initial ones, are created. For three eq
mass particles withd two-body interactions, the eigenstate
can thus be written in terms of only three plane waves w
~dimensionless! ‘‘momenta’’ $kj%,

c~x1<x2<x3!5(
P

a~P!P expS i (
j 51

3

kjxj D , ~12!

where the sum is over all permutationsP of the $kj%, and
a(P) are coefficients to be fixed by the boundary conditio
determined by the periodicity@Eqs. ~10! and ~11!#, and by
thed-function interaction@Eq. ~9!#. This wave function form
is known as the ‘‘Bethe ansatz,’’ and it was first applied
spin chains@31#. In the context of the Bose gas, Yang an
Yang @14# used a continuity argument to show that for po
tive c all states are given by Eq.~12! with real k’s, a result
which was later established rigorously by Dorlas@32#. In the
present work, it is shown that all states forc>0 are continu-
ously connected toc<0 states ink space, so we are confi
dent that the eigenstates discussed later form in fact a c
plete set. An important difference from the repulsive case
that for c,0 thek’s may become complex.

From Eqs.~8! and ~12!, the energy is simply obtained a

E5(
j 51

3

kj
2 , ~13!

but this should not be interpreted as purely kinetic ene
since there is generally a potential-energy contribution toE.
Note that Eq.~8! is the Schro¨dinger equation only when the
positions of the particles are all different. The true kine
energy has to take into account the jumps in the wa
function derivative at the region boundaries. The calculat
of the potential energy is, however, somewhat involved a
is discussed in the Appendix.

The structure of the coefficientsa(P) is imposed by the
jump boundary condition~9! as explained, e.g., in Ref.@10#:
The amplitudes for two permutations differing by a transp
sition of two particles are related by a factor2eiu j l ,

a~123!51,

a~213!52eiu21, ~14!

a~132!52eiu32,
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57 3319SOLVABLE THREE-BOSON MODEL WITH ATTRACTIVE- . . .
a~321!52ei ~u211u311u32!,

a~312!5ei ~u311u32!, ~15!

a~231!5ei ~u211u31!,

where

eiu j l [
c2 i ~kj2kl !

c1 i ~kj2kl !
. ~16!

By substituting Eqs.~12! and ~14! into the periodicity con-
ditions ~10! and ~11!, the following set of coupled transcen
dental equations is found:

e2 ik j5expF i (
s51

3

us jG , j 51,2,3, ~17!

where, by convention,u j j 50. Solving Eq.~17! for kj gives

k152pm12u212u31,

k252pm22u122u32, ~18!

k352pm32u232u13,

for some set of integers$mj%, while u j l is given in terms of
kj by

u j l 5 i lnFc1 i ~kj2kl !

c2 i ~kj2kl !G522 arctanS kj2kl

c D . ~19!

While it may appear to be natural to choose the princi
branch of the logarithm and the arctangent, another choic
more appropriate. Since a state is uniquely defined by the
of numbers$kj%, irrespective of the order, because the p
ticles are bosons, it is convenient to orderkj ’s, when they are
real, according to

k1<k2<k3 . ~20!

Consistent with this, the ranges ofu21,u32, andu31 are cho-
sen to satisfy

22p,Re~u j l !<0, ~21!

on the basis that the correspondingkj2kl are positive. In
this way, solving for the set of$kj% is equivalent to solving
for the set ofu j l , and it is noted that, for the above choic
for the range ofu j l ’s, u j l ’s vary continuously asc and/or
the kj ’s vary continuously over their allowed ranges. This
also true if some of thekj ’s and/oru j l ’s become complex, as
discussed in later sections. Thusmj provides a unique clas
sification of the energy levels, and for a given set ofmj , the
energy eigenvalue~and eigenvector! can be followed con-
tinuously as a function ofc, asc varies from` to 2`.

On taking the product of the three equations of the fo
of Eq. ~17!, it follows that the total momentump is quan-
tized,

p[(
j

kj52p~m11m21m3!52pnp . ~22!
l
is
et
-

This is the eigenvalue of the corresponding total moment
operator, which commutes with the HamiltonianH. It is
clear thatp is an invariant to the ‘‘motion’’ of an eigenvalue
asc varies continuously from̀ to 2`. For each solution se
$kj%, there is another set$kj8% that also solves Eq.~17!, and is
related to the former by

kj85kj12pn0 . ~23!

The transformation$kj%→$kj8% amounts to shifting the tota
momentum by 6pn0. This means that any state can b
mapped to another state in the central momentum s
23p,p<3p, and vice versa, by such a transformatio
Thus we shall limit ourselves to study only those states h
ing total momentum in this strip, namely,np521,0,1.

A convenient set of variables, especially when the th
k’s are real, that uniquely define the state isp, d1, andd2,
whered1 andd2 are, respectively, the relative momenta b
tween particles 12 and 23, namely,

d1[k22k1 , ~24!

d2[k32k2 . ~25!

Note that, when real, the order assumed forkj @Eq. ~20!#
implies thatd j>0. Thek’s are given in terms of these var
ables by

k15 1
3 ~p22d12d2!, ~26!

k25 1
3 ~p1d12d2!, ~27!

k35 1
3 ~p1d112d2!, ~28!

and the energy takes the form

E5 1
3 @p212~d1

21d2
21d1d2!#. ~29!

Combinations of Eqs.~18! and ~19! give the two coupled
equations ford1 andd2,

d15 i lnF S c1 id1

c2 id1
D 2c2 id2

c1 id2

c1 i ~d11d2!

c2 i ~d11d2!G12pn1 ,

~30!

d25 i lnF S c1 id2

c2 id2
D 2c2 id1

c1 id1

c1 i ~d11d2!

c2 i ~d11d2!G12pn2 ,

~31!

where, on the basis that the principal part of the logarithm
taken,n1 is not necessarily equal tom22m1, nor isn2 nec-
essarily equal tom32m2. In fact, unlike mj , nj does not
have to remain constant as a given ‘‘root’’ of the coupl
equations$d1(c),d2(c)% changes continuously with a varia
tion of c. That is why we shall not classify the roots accor
ing to ‘‘local’’ values $n1(c),n2(c)%, but according to their
values$n1

0 ,n2
0% for no interaction, namely, forc50. These

are unambiguously related to the set of quantum numb
mj ; see Eqs.~35! and ~36! below. If, asc changes, the ar-
gument of one of the logarithms, sayzj , crosses the negativ
real axis~which is the branch cut for the principal part of th
logarithm!, its phase changes abruptly by62p, and the cor-
respondingnj has to jump up or down by one unit in order



ie
o
a

ng
u
he
he
is

es

on
h

ju

fo

n
ss

B
.
rm

.

th
sh
s

o
n
es
w
in

-
d

t o

ve

the

r a

this
d on

,2)

f

f
the

3320 57J. G. MUGA AND R. F. SNIDER
follow the root continuously. Of course, these discontinuit
have no physical consequence, and merely reflect the ch
made for the branch of the logarithm. For several form
manipulations and in particular for the object of obtaini
asymptotic expressions, it is useful to avoid the discontin
ties by continuing analytically the logarithm across t
branch cut, i.e., by passing to the contiguous Riemann s
when the argumentzj crosses the real, negative axis. Th
will be discussed further in Sec. IV to clarify the trajectori
of the kj ’s asc changes smoothly.

There are certain symmetries of the parametrizati
d1 , d2, and p which can lead to energy degeneracies. T
interchanged1
d2, together with the change in sign ofp,
are equivalent to the changesk1
2k3 andk2
2k2 which,
for real k’s, invert the order of Eq.~20! to 2k1.2k2
.2k3. This is also equivalent to taking the complex con
gate of the wave function. Thus, ifk1Þ2k3 and/ork2Þ0,
these are two different states with the same energy, a two
degeneracy. On the other hand, ifk152k3 and k250,
which is the special case thatd15d2 and p50, then this
symmetry reproduces the same state, the wave functio
real, and the state is nondegenerate. In terms of the cla
cation of the states of the central momentum strip bynj

0 , it
follows that interchangingn1

0 andn2
0 (n1

0Þn2
0) amounts to an

interchange ofd1 and d2, and @see Eq.~37! below#, to a
change of the sign ofp, so that all signs of thek’s are
changed and the complex conjugate state is obtained.
for the ‘‘diagonal’’ casen1

05n2
0, there is no degeneracy

These states are real and even under the parity transfo
tion xj→2xj .

A second symmetry of the parametrizationsd1 , d2, andp
is the interchanged1
2d2, while p remains unchanged
This is equivalent to the changesk1
k3 andk2
k2, which
invert the order of Eq.~20! to k1.k2.k3 but do not change
the momenta themselves. But since the order of thek’s is
immaterial, this is just another way of labeling the sam
state. In terms ofnj

0 , this means that (n1
0 ,n2

0) and (2n2
0 ,

2n1
0) are actually the same state.

Because of the stated symmetry relations and the fact
any eigenstate can be translated by the total momentum
~23! to the central momentum strip, an exhaustive analysi
all possible states is achieved by examining the casesn2

0

>n1
0>0, since any other case is either equivalent to one

them or obtained by a simple transformation. An understa
ing of the behavior of the roots and their limiting properti
for different ranges ofc requires a detailed analysis of ho
to carry out the analytical continuation of the logarithms
Eqs. ~30! and ~31! as c varies. This is provided in the fol
lowing sections. To keep track of the global picture, a han
summary of the results is provided in Sec. IX, and a se
figures illustrate the essential aspects.

III. REFERENCE CASE OF ‘‘NO INTERACTION’’

For c50 there is no interaction, and the particles mo
freely. In this case,

eiu j l 521, ~32!

and with the present choice for the range of theu j l ’s,
s
ice
l
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u215u325u3152p. ~33!

It follows that

a~ i jk !51, ~34!

d152pn1
052p~m22m121!, ~35!

d252pn2
052p~m32m221!. ~36!

Equivalently, thekj ’s are all real multiples of 2p. Due to the
conventional order~20!, only the case wherenj

0>0 needs to
be considered in order to account for all the states of
system.

The total momentum in the central momentum strip fo
state (n1

0 ,n2
0) is determined by noticing, from Eq.~27!, that if

k2 is to be a multiple of 2p, then p1d12d2 has to be a
multiple of 6p. For any pairn1

0 and n2
0, and p52pnp

(np50,61), there is only one possible solution fornp ,
namely,

np5H 0 if n1
02n2

053n

21 if n1
02n2

053n11

1 if n1
02n2

053n12, n50,61,62, . . . .
~37!

For the states where one of thenj
0’s is zero, twok’s are

equal. The equality of twok’s can occur only atc50, and at
certain criticalc values discussed in Sec. V.~In general, for
cÞ0, the wave function vanishes if twokj ’s are equal.! For
the ground state,n1

05n2
050, the threekj ’s are equal, and the

wave function is a constant.
The classification scheme used in the remainder of

paper, for the energy eigenvalues and states, is base
following d1 and d2 as continuous functions ofc from the
reference noninteracting system. A symbol such as (1
gives the values of the quantum numbersn1

0 and n2
0, and

identifies a given ‘‘root’’ $d1(c), d2(c)% of the transcen-
dental equations and the corresponding eigenstate~within the
central strip of total momentum!, irrespective of the value o
c. Note that the three ‘‘quantum numbers’’n1

0 , n2
0, andnp

are equivalent to the set of quantum numbers$mj%. The total
momentum given in Eq.~37! is independent of the value o
c, and the degeneracy of a root is also an invariant to
‘‘motion’’ of the root with c.

IV. REAL k SOLUTIONS

On the assumption that thekj ’s all remain finite ~and
real!, it follows that

u21

u32

u31

J →H 0 if c→`

22p if c→2`,
~38!

with the consequence@see Eq.~18!# that
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2`←c→`,

2p~m112!←k1→2pm1 ,

2pm2←k2→2pm2 , ~39!

2p~m322!←k3→2pm3 .

Bounds on thek differences can be narrowed by examini
separately the detailed properties of theu ’s for positive and
negativec, by the following reasoning: On the basis of th
chosen order forkj @Eq. ~20!#, it follows that

k32k1>k22k1 , k32k2 . ~40!

As a consequence, forc.0 and2p<u j l <0 for ( j .l ),

tanS u31

2 D<tanS u21

2 D ,tanS u32

2 D ~41!

and

u31<u21,u32, ~42!

so that

2p<u312u32<0 ~43!

and

2pn1
02p<2p~m22m1!2p12u21

<d15k22k152p~m22m1!12u211u312u32

<2p~m22m1!12u21<2p~n1
011!. ~44!

An analogous argument forc,0 leads to

2p~n1
021!,d15k22k1<2pn1

01p, ~45!

with the lower bound approached according to Eq.~39!.
Bounds ford2 involving n2

0 have the same structure.
It is thus seen that ifn1

0>2 andn2
0>2, then thesek dif-

ferences remain positive asc varies from` to 2`, with the
consequence that thekj ’s are real for allc under these con
ditions. This also implies that the energy tends to a cons
value forucu→`; see Fig. 1. For these states, thed-function
potential acts, for both very large positive and negativec,

FIG. 1. ^E& vs c for (n0,n0). From bottom to top,n050, 1, 2,
and 3. The lines forn050 and 1 extend to2` asc→2`.
nt

effectively as an impenetrable barrier. That is, the wa
function at the region boundaries,xi5xj , tends to zero. This
can also be deduced from the jump conditions@Eq. ~9!#,
since the derivatives produce only the finitekj while c be-
comes infinite, so that consistency requires thatc vanishes.
The potential energy as a function ofc decreases from zero
to an intermediate minimum and then grows again tow
zero asc→2`, and vice versa forc.0; see the Appendix
and Fig. 2.

The above-deduced limitations on howd ’s change withc
allow a more detailed discussion of these changes from
point of Eqs.~30! and ~31!. An appropriate starting point is
to consider the limit of these equations whenc→0, namely,

d15 i lnF S d12 ic

d11 ic D 2d21 ic

d22 ic

~d11d2!2 ic

~d11d2!1 ic G12pn1
0 ,

~46!

d25 i lnF S d22 ic

d21 ic D 2d11 ic

d12 ic

~d11d2!2 ic

~d11d2!1 ic G12pn2
0 ,

~47!

where the factors in the arguments have been rewritten
emphasize that thed ’s are in this limit the leading terms. Th
identification ofnj

0 is on the basis that, on expanding the
equations asc→0, Eqs.~35! and~36! are obtained, namely

d152pn1
01

2n1
0n2

012~n2
0!22~n1

0!2

n1
0n2

0~n1
01n2

0!p
c1•••, ~48!

with a symmetrical expression ford2 on interchangingn1
0

andn2
0. These expansions are valid only if bothnj

0Þ0, while
the exceptional cases are examined in Secs. VI and VII.

As c increases positively@always assuming the order o
Eq. ~20!#, the phases of the factors in the arguments of
logarithms change; compareu j l ’s of Eq. ~19!, and the dis-
cussion of their behavior. On tracing this behavior asc
→1`, it is seen that the phase of the argument of ea
logarithm decreases by 2p, so this can be taken into accou
when changing Eqs.~46! and~47! into Eqs.~30! and~31! by
settingnj (c→`)5nj

011. For negativec, the phase change
are the opposite, and Eqs.~46! and ~47! are appropriately
changed into

FIG. 2. ^V& vs c for (n0,n0). From bottom to top,n050, 1, 2,
and 3. The lines forn050 and 1 extend to2` asc→2`.
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3322 57J. G. MUGA AND R. F. SNIDER
d15 i lnF S 2c2 id1

2c1 id1
D 22c1 id2

2c2 id2

2c2 i ~d11d2!

2c1 i ~d11d2!G
12p~n1

021!, ~49!

d25 i lnF S 2c2 id2

2c1 id2
D 22c1 id1

2c2 id1

2c2 i ~d11d2!

2c1 i ~d11d2!G
12p~n2

021!. ~50!

These are appropriate for expansions whenc→2`, but may
of course be used for all values ofc by analytic continuation.
In the same vein, the related pair of equations withnj5nj

0

11 may be regarded as valid for all values ofc by analytic
continuation across the logarithm branch cut.

In summary, provided bothnj
0>0, then

d j ;
c→`

2p~nj
011!S12

6

c
D1O~c22!, ~51!

while, provided bothnj
0.1, then

d j ;
c→2`

2p~nj
02 !1S 11

6

2cD1O~c22!. ~52!

In contrast, ifn1
051, thend1 can approach 0 for finite nega

tive c; see Fig. 3. For more negative values ofc, thekj ’s can
become complex. The situation is similar forn2

051. Section
V discusses this situation. If anynj

050, thend j vanishes at
c50; see Sec. VI.

The case in whichn1
05n2

0 is particularly simple to ana
lyze. It follows from Eqs.~46! and~47!, analytically contin-
ued for all values ofc, thatd1 andd2 satisfy the same equa
tion and thus are equal, with the consequence that the t
k’s for such an eigenstate remain equally spaced asc varies.
After dropping the subscripts, and formally written forc
.0, the equation for the commond is

d5 i lnF ~c1 id!~c12id!

~c2 id!~c22id!G12p~n011!. ~53!

FIG. 3. d1 vs c. The numbers close to each line correspond ton1
0

andn2
0. The figure ford2 is identical by interchangingn1

0 andn2
0.

The lines are only drawn up to the critical values ofc whered1

50 @for ~1,1!, ~1,2!; and ~1,3!# or d250 @for ~2,1! and ~3,1!#. For
more negative values ofc, the a-g parametrization is used; se
Figs. 5 and 6.
ee

Figure 4 illustrates howd varies withc. By implicit differ-
entiation,

dd

dc
5

6d~c212d2!

c2~c215d2!14d416c~2d21c2!
. ~54!

If n1
05n2

0Þ0, Eq. ~48! is consistent with thec→0 limit of
this result.

V. STATES WITH AT LEAST ONE nj
051: DIMER STATES

If one nj
051, for definitenessn1

051, then, from Eqs.~44!
and ~45!, there is a possibility thatd1 becomes 0 for some
critical negative valueC(1,n2

0) of c. Note that the equations
for d1 and d2 are independent ofp, so the critical value
C(1,n2

0) has nothing to do with the value ofp. @The discus-
sion for the degenerate partner (n1

0,1) follows similar lines,
substitutingn1

0 with n2
0 , d1 with d2, andp with 2p; see

the discussion of the symmetries of this parametrization
Sec. II.# At a critical point C(1,n2

0), k1 and k2 become
equal~if n2

051 as well, all threek’s become equal!, and the
Bethe ansatz~12! form for the wave function is no longe
valid because it vanishes. Of course, the normalization c
stant also vanishes, so that the normalized wave func
does not vanish, but merely has a different functional fo
obtained by taking the limit asc→C(1,n2

0) using the rule of
l’Hospital. A similar case was found by Lieb and Liniger fo
one particular root in the caseN52 @10#.

Two different cases arise, according to whethern2
0.1, or

if n1
05n2

051. These cases are discussed in turn.

A. Case whenn2
0>1

The value of the critical pointC(1,n2
0) and the behavior in

its neighborhood, can be obtained by expanding Eqs.~49!
and ~50! for d1→0. For such a purpose it is useful to intro
duce the factorsuj[d j /c, j 51,2, and defineu0[u2(c
5C) as the critical value ofu2. After fairly extensive alge-
bra, it follows that

c5C~1,n2
0!1

21124u0
218u0

4

6~11u0
2!2 u1

21•••, ~55!

with

FIG. 4. d vs c for (n0,n0). From bottom to top,n050, 1, 2,
and 3.
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C~1,n2
0!5242

2

11u0
2 , ~56!

whereu0 is determined by the transcendental equation

3i ln
11 iu0

12 iu0
12p~n2

021!14u01
2u0

11u0
2 50. ~57!

In the neighborhood of the critical point,u2 changes accord
ing to

u25u02
1

2
u11

316u0
212u0

4

6u0~11u0
2!

u1
21•••. ~58!

It is seen thatd1(c) has a square-root singularity at the cri
cal point, being real forc.C(1,n2

0) and pure imaginary for
c,C(1,n2

0). An analytic connection between real and ima
nary branches ofd1 can be made by attributingc with a
small imaginary part. The association that is used in the
lowing parametrization is consistent withc having a small
negative imaginary part, essentially adding a small diss
tive contribution to the Hamiltonian. It is also noticed fro
Eq. ~56! that all the critical values ofc lie between26 and
24. Actually, to three decimal places, the lowest critic
value isC(1,2)524.163, increasing toward24 asu0 and
n2

0, increase. These aspects are illustrated in Fig. 3.
For c,C(1,n2

0), k1 and k2 become a complex conju
gate pair, whilek3 remains real. The discussion of the root
this region is better examined by using a new set of r
variablesa andg, defined by

d1522ia, ~59!

d25 ia23g,

so that

k15 ia1g1p/3,

k252 ia1g1p/3, ~60!

k3522g1p/3.

This is consistent with Eq.~58! for a→0, on the basis tha
both a andg are real. This parametrization could of cour
be used for allc @with a possibly imaginary#, since d1/2
52 ia has the physical meaning of the relative moment
between particles 1 and 2, while 2g is the relative momen-
tum between the pair 12 and particle 3:

2 ia5d1/25
k22k1

2
, ~61!

2g5k32
p

3
5

2

3S k32
k11k2

2 D . ~62!

For reala, 1/a gives a measure of the size of the ‘‘boun
states’’ formed. Of course, in a finite box all states a
strictly speaking, bound, i.e., their energies are discrete
their spatial extention is limited by the box length. But wh
a is real, the state is localized even further so that the pr
-

l-

a-

l

l

,
nd

b-

ability of a pair of particles being close together has be
significantly enhanced. In addition, the energy has a nega
contribution @see Eq.~63! below#, so that an energy gap
arises in the spectrum between states with real or imagin
a; see Fig. 1. Since these are all basic ingredients of pro
bound states, this terminology seems justified.

With this parametrization, the total energy is decompos
into separate quadratic contributions from the three v
ables,

E522a216g21p2/3, ~63!

and the system of transcendental equations takes the fo

22a5 lnF S 2c22a

2c12a D 22c2a23ig

2c1a13ig

2c2a13ig

2c1a23igG ,
~64!

ia23g5 i lnF S 2c1a13ig

2c2a23ig D 22c12a

2c22a

2c2a13ig

2c1a23igG
12p~n2

021!, ~65!

which corresponds to the correct phase form forc,0, ac-
cording to Eqs.~49! and ~50!. It is consistent to solve thes
equations maintaininga andg real, which is also consisten
with the local behavior Eq.~58!, asa→0. Before entering
into the detailed analysis of the equations, it is worth exa
ining Figs. 5 and 6 to quickly visualize the behavior of the

FIG. 5. a vs c. Solid lines:n1
050. Dashed lines:n1

051. The
number close to the lines isn2

0.

FIG. 6. g vs c. Solid lines:n1
050. Dashed lines:n1

051. The
number close to the lines isn2

0.
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3324 57J. G. MUGA AND R. F. SNIDER
two parameters withc. Solid lines correspond ton1
050 and

dashed lines ton1
051, whereas the numbers close to t

different lines given2
0. As c becomes more negative,a in-

creases. This concentrates the wave function to where
particles are close together, and^V& and ^E& become very
large and negative; see, in Figs. 1 and 2, the lines forn50, 1.
A prominent feature in Fig. 5 is the grouping into tw
asymptotic behaviors fora, asc→2`. These will be asso-
ciated later with dimer and trimer configurations. Note a
that all states withn1

050 have a common critical point atc
50 ~wherea50), while for n1

051 the critical points spread
from c526 to 24. Another interesting point is the quas
invariance ofa with respect ton2

0 for n2
0>2 at fixedc. These

states have essentially the same binding strength and d
only by pair-single relative momentum, and possibly by to
momentum. Figure 6 forg has a simpler structure based on
rather regular pattern of lines with equally spaced asympt
values. Except for the two cases~0,0! and ~1,1! with g50
for all c’s, which corresponds to no relative motion betwe
a particle pair and a single particle, whenc becomes more
negative,g varies smoothly and tends to a constant val
Wheng is essentially constant,c changes the strength of th
attraction between the pair~i.e., the value ofa), but not the
motion of the third particle with respect to the pair.

The structure of the spectrum of energy levels can
described in terms of how the energy varies as the th
quantum numbersn1

0 , n2
0, andnp change. This can be attrib

uted to several types of ‘‘elementary excitations’’ which a
associated with different physical effects. Within the cent
momentum strip, for states with complexkj ’s and for 2c
large, these are as follows.~a! As n2

0 varies, a change o
relative pair-single motion byDg'p/3, with a essentially
constant andupu constant. In Fig. 6, this is not possible b
tween all contiguous levels ofg, but only for those where
np51 andnp8521; see Eq.~37!. If one of the states ha
momentum zero, a jump to the nearest level necessarily
plies, in addition toDg , an elementary total momentum
jump Dp52p. ~b! Transitions between a trimer and a dim
state or from a dimer to a pair-absent state, withda'2c/2.
~c! A minimum total momentum jump by 2p, with a andg
constant. This may only occur between the states~0,0! and
~0,1! or ~1,0!. Any other transition changesg. But a andg
may also stay constant if the system changes to a diffe
momentum strip by a total momentum translation ofDp
56p. Of course, multiples or combinations of these elem
tary excitations are possible, and complicate the spect
considerably.

The detailed quantitative features ofa andg as functions
of c are now examined. On the basis thata andg are real,
the real part of Eq.~65! is

3

2
i lnF ~2c1a23ig!~2c2a23ig!

~2c1a13ig!~2c2a13ig!G53g12p~n2
021!.

~66!

This provides upper and lower bounds forg, namely,

2~4n2
021!p/6,g,2~4n2

027!p/6. ~67!

Equation~66! may also be written as
he

o

fer
l

ic

.

e
e

l

-

nt

-
m

arctanS 6gc

c229g22a2D 52g22p~n2
021!/3, ~68!

which is useful for the determination of the asymptotic b
havior of a andg.

It is also possible to solve forg2 in Eq. ~64! in terms ofa
andc:

g25
e2a~c22a!2~c2a!22ea~c12a!2~c1a!2

9@ea~c12a!22e2a~c22a!2#
.

~69!

As a→0, g2(a50)5c2(61c)/@29(41c)#. This is
identical to Eq.~56! for the relation betweend2 and c at a
critical value ofc.

The asymptotic behavior asc→2` is now investigated.
According to Eq.~67!, g remains finite whilea satisfies Eq.
~64!. Both positive and negativea are solutions to this equa
tion, but since these just correspond to an interchange ok1
andk2, only the positive root is examined. Equation~64! can
be rewritten as an equation involving only real quantitie
namely,

22a5 lnF S 2c22a

2c12a D 2~2c2a!219g2

~2c1a!219g2G . ~70!

The obvious~but invalid! approach to try when making a
asymptotic expansion is to expand in powers ofg2, since the
other factors involvec. This implies thata must also remain
finite, and leads to the requirement thatc→26, an inconsis-
tency. It follows that either (2c22a)→0 or (2c2a)
→0 in the limit c→2`. But it is noticed that asc changes
from its critical valueC(1,n2

0) to 2`, a changes from 0
to its asymptotic behavior; however, the factors in the ar
ment of the logarithm,2c62a and (2c6a)219g2, must
remain positive, or an imaginary phase factor must be ad
to the right-hand side. Since such a case would imply thaa
becomes complex; this is not allowed. Another way to u
derstand the preservation of sign of all factors is that if o
of them becomes zero for a finitec ~anda), the logarithm,
and the left-hand side of the equation, would be infinite
absolute value, which is again inconsistent with the fin
value ofa on the right-hand side. The only form ofa that
maintains all factors positive isa52 1

2 c1b, with b,0 and
b/c→0 asymptotically. A straightforward expansion the
gives

b53cec/229c2ec1•••,
~71!

a52
1

2
c13cec/229c2ec1•••,

and, from Eq.~68!,

g52
2p

3
~n2

021!F12
8

c
1••• G , ~72!

as the asymptotic expansions for botha andg.
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B. Case whenn2
05n1

051

As previously mentioned, this implies thatd15d2 for all
c, and the commond is determined by Eq.~53!, which is
appropriate forc.0. Reexpressing this forc,0, retaining a
continuous relation for the phase, gives

d5 i lnF ~2c2 id!~2c22id!

~2c1 id!~2c12id!G , ~73!

and taking into account thatn051. Clearlyd50 is a solu-
tion of this equation. But to find the corresponding critic
valueC(1,1) of c, and the behavior in the neighborhood
this critical point, an expansion is needed. This is easily
complished to yield

c5261 1
6 d21•••. ~74!

This immediately shows that the critical value isC(1,1)
526, and that there is a square-root singularity ofd as a
function of c. For c,26, d52 ia is pure imaginary
~negative imaginary if the same connection around the
gularity is used as in Sec. V A!. It follows that thekj ’s are
given in terms of this parametrization by

k352 ia1p/3,

k25p/3, ~75!

k15 ia1p/3,

while a is determined by

a5 lnS 123a812a82

113a812a82D , ~76!

wherea85a/c. @Contrast this with Eq.~60!. The associa-
tions made for thekj in Eq. ~75! are more natural here, sinc
d15d2 and the threekj change continuously across the cri
cal point, but in fact Eq.~60!, with g50, could be used as
well because the state is defined by the three ‘‘momen
regardless of the ordering convention.#

Clearly, if a8→0 asc→2`, thena→0. But on expand-
ing to look at the correction terms, this assumption impl
that c→6, an inconsistent result. It follows thata grows to
` asymptotically. On the basis that onlya.0 solutions are
needed (a8,0), the vanishing of the denominator in th
argument of the logarithm requires eithera8→21 or a8→
2 1

2 as c→2`. Only the latter is consistent with no accu
mulation of phase, asc changes from26 to 2`, and the
reality of a. @Note that, by a similar argument to the on
below Eq.~70!, the numerator and denominator in Eq.~76!
must preserve their sign asc varies from26 to 2`, which
implies the bound 2a,2c.# On settinga52 1

2 c1h, it fol-
lows on expansion that

a52
1

2
c13cec/21•••, ~77!

as the asymptotic behavior ofa in this case.
l

-

-

’’

s

VI. STATES WITH ONE nj
050: DIMER AND TRIMER

STATES

This group of states are of the form (0,n2
0), and of course

their degenerate partners. Only the case (0,n2
0) is explicitly

treated here, since its corresponding partner state is sim
obtained by symmetry, specifically for the states whenc
,0 by changing the sign ofg. Forc→`, these states fit into
the formulation of Eq.~51!, so no further discussion of thi
limit is needed.

As c→0, the starting point for the analysis is the pair
equations~46! and ~47!. Sincen1

050, d1 and c are to ap-
proach 0 simultaneously, and it is to be expected by anal
with the other cases thatc will be proportional tod1

2. This is
confirmed by the following argument: Sinced1→0, then the
argument of the logarithm in Eq.~46! must approach 1. Fo
the ratios of the terms involvingd2, these approach 1, sinc
they are dominated by the common nonzero value ofd2.
That leaves the square term. For this to approach 1, e
factor must be dominated by the commond1, which implies
that it is the ratioc/d1 that is small and can be used as
variable for which the logarithm is expanded, as well as
ratiosc/d2 andd1 /d2, all of which vanish asc→0. Explic-
itly, the expansions of Eqs.~46! and ~47! are

d154
c

d1
2

4c3

3d1
322

cd1

d2
2 1O~d1

4!,

~78!

d252pn2
022

c

d1
1

2c3

3d1
316

c

d2
22

cd1

d2
2 1O~d1

4!.

It follows thatc is proportional tod1
2, as was to be deduced

Rearrangement of these series forc→0 gives the expansion
in powers ofd1 as

c5
1

4
d1

21F 1

192
1

1

32~pn2
0!2Gd1

41•••,

~79!

d252pn2
02

1

2
d11

3d1
2

4pn2
01•••.

For c,0, the parametrization of Eq.~59! is appropriate. In
the limit c→20, the ratioc/d1 transforms according to

c

d1
→

1

4
d1→2

1

2
ia← i

c

2a
, ~80!

with the consequence that Eqs.~46! and ~47! become

22a5 lnF S 2a1c

2a2cD 2~a1c!219g2

~a2c!219g2G , ~81!

ia23g5 i lnF S 2a2c

2a1cD S ia2 ic23g

ia1 ic23g D 2S 2 ia2 ic23g

2 ia1 ic23g D G
12pn2

0 . ~82!

It is also important to note that, as a consequence of
analytic continuation into thec,0 region, 2a1c.0 and
g→2d2/3,0. To avoid further singularities in the logarith
mic expressions~which would lead to inconsistency betwee
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3326 57J. G. MUGA AND R. F. SNIDER
right and left sides of the transcendental equations!, these
constraints must hold for allc,0.

For exploring the behavior asc→2`, Eq. ~81! for a has
an appropriate form for expansion about large2c and a.
But if one term in each of the factors is to dominate t
expansion, then the result would imply that the logarithm
expression becomes finite, a result inconsistent with the
hand side approaching2`. As a consequence, sincea
.2c/2, either a→2c/2 or the combinationa→2c and
g→0 must occur. The first alternative is now shown to
valid only for n2

0.1, while the second alternative is vali
only if n2

051.

The limiting casea52 1
2 c1b leads to a straightforward

expansion of Eq.~81!,

22a5c22b52lnS b

23cD1
22b

3c
1•••, ~83!

which can be rewritten as the equation

b523cec/219c2ec1••• ~84!

for b. As c→2`, this vanishes exponentially. The behavi
of g is to be obtained from Eq.~82!. But the dominant quan
tity c is multiplied by the phase factors6 i , so that an
asymptotic expansion carries along a phase change for
logarithm. On carefully analyzing how the various facto
change asc changes from 0 to2`, a phase change ofe3p i

in the argument of the logarithm is found. The real part
Eq. ~82! determinesg, which after expanding and rewritin
gives

g52S 2

3
n2

021DpS 12
8

c
••• D . ~85!

Since it is required thatg,0, it is seen that this expansion
only valid for n2

0.1.
The limiting casea52c1h also allows a straightfor-

ward expansion of Eq.~81!, but in this case the resultin
equation forh involvesg in the lowest-order term, namely

h21g2536e22hc2e2cS 12
5h

3c
••• D . ~86!

Since bothh and g are real, this implies that both thes
quantities must vanish asymptotically asc→2`. In this
case, Eq.~82! accumulates a phasee3p i /2 in the argument of
the logarithm when transforming the factors, so that they w
be dominated by a positive real part in the limit. What
crucially different in this case from the previous one is t
presence of finite complex factors23g7 ih. As a result, the
real part of Eq.~82! has the asymptotic expansion

23g5
3

2
arctanS 2h

23g D1S 2n2
02

3

2Dp2
9g

2c
1•••.

~87!

As c→2`, g must vanish for this case, as was deduc
from the expansion of thea equation. Thus, in the limit, the
identity
c
ft-

he

f

ll

d

lim
c→2`

arctanS h

23g D5S 4

3
n2

021Dp ~88!

must be satisfied. Since the magnitude of the arctangen
bounded byp/2, this identity can only be satisfied ifn2

051,
in which case the limiting ratio ofh andg is determined by
the conditionh523g tan(p/3). In summary, forn2

0.1 the
asymptotic behavior ofa is a→2c/2, which gives states o
the dimer type, while forn2

051, a→2c, and all three
particles are forced to be close to one another, a trimer s
These associations will be discussed in Sec. VIII.

VII. GROUND STATE: n1
05n2

050

Sincen1
0 andn2

0 are equal, it follows thatd15d2[d. Near
c50 and forc.0, the appropriate equation for determinin
d is Eq. ~46!, which is modified for equald ’s to be

d5 i lnF ~d2 ic !~2d2 ic !

~d1 ic !~2d1 ic !G . ~89!

The behavior asc→` is covered by the expansion of Eq
~53!, with an asymptotic form identical to Eq.~51!. Sinced
→0 asc→0, it is necessary that the argument of the log
rithm must approach 1, which requires thatc→0 faster than
doesd. Thus the expansion parameter isc/d, so that, after
expansion and rearrangement,

c5 1
3 d21 1

108d41•••. ~90!

For c,0, the parametrization of Eq.~75! is used, this being
equivalent to d52 ia with a.0. The ratio 2 ic/d for
c.0 thus becomesc/a for c,0, and Eq.~89! becomes

a5 lnF ~a2c!~2a2c!

~a1c!~2a1c!G . ~91!

This is identical to Eq.~76!, but now the constraint is tha
a.2c. This constraint requires that asc→2`, a must
become infinite, and the expansion of the logarithm is ab
a singular point of the logarithm. The only possible form
a52c1h, with h.0 approaching zero. After rearrange
ment, the resulting expansion gives

h526cec236c2e2c1•••. ~92!

which is consistent withh being positive.

VIII. TYPES OF STATES AND THEIR REPRESENTATION

The states are best represented as contour plots of
probability density~and of the phase if required! in a ‘‘ter-
nary phase diagram’’ for the variables

r 125x22x1 ,

r 235x32x2 , ~93!

r 31511x12x3 ,

constrained to the regionR123, 0<r i j <1. Note that these
three coordinates always add up to 1. In this diagram
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coordinate points are represented in an equilateral trian
Each of the base lines corresponds to one of the coordin
r i j being zero, and each point in the base line correspond
a particular location of the third particle at the right or le
side of the pairi j ~the closer to the vertex, the closer th
third particle is to the pair!. The lines parallel to the base a
lines of constantr i j . The value ofr i j increases from zero a
the base to 1 at the opposite vertex~labeled asr i j in the
figures!. The center of the triangle is the point where t
three distances are equal to1

3. Near the vertexr i j , the dis-
tance between particlesj and i is also small~and tends to
zero at the vertex itself!; the difference from the basis regio
is that now the third particle isbetweenthe particlesj and i .

In summary, bases are associated with two particles b
together~dimer configurations!, and vertices with the three
particles being together~trimers!. However, in a general stat
with three realk’s, there is no bias toward these configur
tions. Recall that the wave functions inR123 are linear com-
binations of six exponentials that can be obtained from
~123! form,

ei ~k1x11k2x21k3x3!, ~94!

by permuting thek’s in all possible manners. The probabilit
density~square modulus! of any of these realk plane-wave
terms is constant; in other words, in these plane waves n
of the particle configurations is favored. The interference
tween the six different plane waves, however, destroys
spatial homogeneity~except for the ground state atc50),
and provides some structure with maxima and minima;
Fig. 7. The complexk case is different, see Figs. 8 and 9 f
examples of trimer and dimer states. Equation~94! for the
(123) exponential may now be written, using the parame
zation in Eq.~60!, as

ei ~x11x21x3!p/3eig~x11x222x3!ea~x22x1!, ~95!

where the plane wave for the center-of-mass motion, a p
wave for relative motion of the pair 12 with respect to pa
ticle 3, and a real exponential can be recognized; fora.0,

FIG. 7. Contour plot of the probability density of the state~3,3!
at c51. The interpretation of a ‘‘ternary phase’’ type of diagram
explained in the text.
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the exponent is positive, and it favors the trimer configu
tion of the vertex (r 1251). By permutingk1 and k2, one
finds instead, in the term (213), a negative exponent
favors the dimer configurationsr 1250. Of course the other
two pairs, 13 and 23, also have a corresponding set of di
and trimer contributions, so that the six terms of the wa
function can be separated into two groups: Three of the
(123), (231), and (312), represent trimer configurations,
the other three,~213!, ~132!, and~321!, represent dimer con
figurations. The relative weights among them are determi
by the amplitudesai jk . For ‘‘trimer states,’’ the three trimer
terms dominate the linear combination, and the energy
comes, asc→2`, the energy of an actual trimer state~for
three particles on an infinite line!. For ‘‘dimer states,’’ there
is also significant density along the edges of the triangle~not
only at the vertices!, and the energy tends to the energy
the actual dimer~on the infinite line!, plus the contributions
from relative motion of the dimer with the free particle an

FIG. 8. Contour plot of the probability density of the state~0,0!
at c529.

FIG. 9. Contour plot for the probability density of the state~0,2!
at c529.
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of the center-of-mass motion. This is consistent with o
expectation of reproducing infinite line results in the limit
a large box. As a concrete example, the~unnormalized!
states~0,0! and~1,1! for c<26 are examined: In both case
g5p50, and they can be written, using Eqs.~12!, ~15!,
~16!, and~91!, as

c5ear 121ear 231ear 311
2a2c

2a1c
~e2ar 121e2ar 231e2ar 31!.

~96!

As c→2`, the factor multiplying the dimer terms in paren
theses tends to 3 for (0,0)~which makes this contribution
negligible! but to ` for (1,1). Figure 8 shows the groun
state (0,0) for negativec.

An important aspect of these associations is that the
mer or dimer character changes continuously along a g
root asc varies, and only asymptotically (c→2`) is the
separation between trimer and dimer states unambigu
For any finite negativec, the complexk roots have nonzero
dimer and trimer components. Note, for example, how
state (0,1) goes from dimer-dominated to trimer-domina
behavior asc becomes more negative in Fig. 5. In the sa
vein, even though the threshold between real and complek
is well defined, and it occurs at a critical value ofc, there are
no dramatic~discontinuous! changes in the wave function
and the energy varies smoothly withc ~see Fig. 1! in the
neighborhood of the criticalc values. However, a differen
qualitative behavior~of the energy and state probability de
sity! becomes clear when comparing the states below
above the critical point as the distance fromC increases.
Thus the critical values indicate a transition of the root fro
one character, without pair formation, to another wh
dimers or trimers can be recognized.

IX. SUMMARY

A model of three bosons subject tod-function interactions
and periodic boundary conditions has been analyzed. In
ticular, a description of the eigenstates and their behavior
been given in terms of three momentaki , i 51,2,3, or two
sets of alternative parametrizations,d1 , d2, andp anda, g,
and p, convenient, respectively, for the cases where thek’s
are real or complex. The roots can be primarily classifi
according to whether the three momenta remain real, or
for all c. In the second case the wave function tends to c
centrate asymptotically around dimer or trimer configu
tions, and the energy decreases quadratically withc as c
→2`. The critical values ofc required to form the bound
~go from real to complexk’s! have been provided.

The main features of the root behavior asc varies are now
summarized.@Using the symmetry properties or total m
mentum translations, the behavior of any other state is
tained from the ones we consider explicitly, namely sta
(n1

0 ,n2
0), n1

0<n2
0, in the central momentum strip,np50,

61.# Relations satisfied by all roots are as follows.
~i! The total momentump ~within the central strip! is

given fromn1
0 andn2

0 by Eq. ~37!. It is constant asc varies
for a given root. The total energy varies according to~29! or
~63!.

~ii ! d j (c50)52pnj
0 .
r

i-
n

s.

e
d
e

d

e

r-
as

d
t,
-

-

b-
s

~iii ! d j→2p(nj
011) asc→`.

The different particular cases are characterized by the
lowing properties:

~i! ~0,0!: C(0,0)50, p50, g50, and a;2c as c
→2`. The ground state is a nondegenerate state with tri
character.

~ii ! ~0,1!: C(0,1)50, a;2c, and g→0 as c→2`.
Asymptotic trimer character. Similar to the ground state,
it has a degenerate partner andpÞ0.

~iii ! (0,n2
0.1):C(0,n2

0)50, g→(22/3n2
011)p, anda

;2c/2 asc→2`. Dimer character.
~iv! (1,n1

0>1):26<C(1,n2
0),24, g→22p/3(n2

0

21), anda;2c/2 asc→2`. Also dimer character, but i
takes a stronger interaction to achieve in comparison to
previous group.

~v! (n1
0.1,n2

0>n1
0): Real ki for all c’s, d j (6`)52pnj

0

61. The energy tends to a constant value asucu→`.
It is hoped that the root structure found and the techniq

developed for its study will be useful for an examination
variants of the model involving different interactions and/
an arbitrary number of particles. Since all eigenstates can
obtained for a givenc, one of the possible applications of th
present work is the simulation of time-dependent rearran
ment processes using a discretized basis. In this contex
may serve as a reference exact model to compare with
proximate wave-function propagation methods based on
riodic boundary conditions@9#. The model may also permi
an explicit comparison between the classical concepts
‘‘bound pair’’ and ‘‘free’’ particles, and their collisional re-
arrangements with their quantum counterparts. The origin
the difficulties in the quantum case is that the Hamilton
for the three~or N-! body system does not commute with th
Hamiltonian of a pair, so that using the concept of the bou
pair in a gas~or in a box! is a delicate matter@33#.
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APPENDIX: NORMALIZATION AND POTENTIAL
ENERGY

Expression~12! for the wave function is not normalized
For the analysis of the energy spectrum, this does not h
any effect. However, the calculation of physical expectat
values, and in particular of the potential energy, require
normalized function. This requires the evaluation of the inn
product ^cuc&, where uc& is the unnormalized total wave
function given explicitly by Eq.~12! in the regionR123. The
contribution of the six regions is identical, so

^cuc&56E
0

1

dx3E
0

x3
dx2E

0

x2
dx1uc~k1 ,k2 ,k3 ;x1 ,x2 ,x3!u2.

~A1!
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This integral is decomposed into 36 terms with integrals
the general form

E
0

1

dx3E
0

x3
dx2E

0

x2
dx1ei ~a1x11a2x11a3x1!, ~A2!

where thea ’s are combinations of momenta of the for
2kj* 1ki , (i , j 51,2,3). These integrals can of course
solved explicitly, but the result is so lengthy that it is n
reported here. In order to handle all terms efficiently, it
useful to classify the possible types of integrals. There
m.
f

re

three cases: (a j50,j 51,2,3), (a j50,ak1a i50), and
(a jÞ0,j 51,2,3). In all cases the sum of thea ’s is zero,
( ja j5p2p50.

Once^cuc& is obtained, the~dimensionless! potential en-
ergy involves a simpler integration because of thed func-
tions, namely,

^V&5
6c

^cuc&E0

1

dx3E
0

x3
dx1uc~x1 ,x1 ,x3!u2. ~A3!

Again, all integrals involved can be carried out.
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