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Bell’s inequality and detector inefficiency

Jan-Åke Larsson*
Department of Mathematics, Linko¨ping University, S-581 83 Linko¨ping, Sweden

~Received 9 December 1997!

In this paper, a method of generalizing the Bell inequality is presented that makes it possible to include
detector inefficiency directly in the original Bell inequality. To enable this, the concept of ‘‘change of en-
semble’’ will be presented, providing both qualitative and quantitative information on the nature of the ‘‘loop-
hole’’ in the proof of the original Bell inequality. In a local hidden-variable model lacking change of ensemble,
the generalized inequality reduces to an inequality that quantum mechanics violates as strongly as the original
Bell inequality, irrespective of the level of efficiency of the detectors. A model that contains change of
ensemble lowers the violation, and a bound for the level of change is obtained. The derivation of the bound in
this paper is not dependent upon any symmetry assumptions such as constant efficiency, or even the assump-
tion of independent errors.@S1050-2947~98!07405-8#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

The Bell inequality@1# and its descendants have been
main argument on the Einstein-Podolsky-Rosen para
@2,3# for the past 30 years. A new research field of ‘‘expe
mental metaphysics’’ has formed, where the goal is to sh
that the concept of local realism is inconsistent with quant
mechanics, and ultimately with the real world. The expe
ments that have been performed to verify this have not b
completely conclusive, but they point quite decisively in
certain direction: Nature cannot be described by a reali
local hidden-variable theory~see Refs.@4–6#, for instance!.

The reason for saying ‘‘not been completely conclusiv
is that there is an implicit assumption in the proof of the B
inequality that the detectors are 100% effective. There
been considerable discussion in the literature on this~see
Refs.@7–10#, among others!, and the main issue is to obtai
a limit for the detector inefficiency, but previously inequa
ties other than the original Bell inequality had to be used,
example, the Clauser-Horne inequality in@7#, which in itself
contains the case of inefficient detectors, or the Clau
Horne-Shimony-Holt~CHSH! inequality first presented in
@11#, which is generalized to the inefficient case in@9#.

Since a hidden-variable model is really a probabilis
model, formalism and terminology from probability theo
will be used in this paper~see, e.g., Ref.@12#!. The sample
spaceL is the mathematical analog to the state space use
physics, and a samplel is a point in that space correspon
ing to a certain value of the ‘‘hidden variable.’’ The me
surement results are described by random variables~RV’s!
X(l), which take their values in the value spaceV.

To be a probabilistic model, a probability measureP on
the spaceL is needed, by which we can define the expec
tion valueE as

E~X!5
defE

L
X~l!dP~l!5E

L
XdP, ~1!
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suppressing the parentheses in the last expression~this will
be done in the following when no confusion can arise!. Fur-
thermore,a,b,... are thedetector orientations used in th
various measurements, and to shorten the presentation a
tation will be used whereA,B,... are theRV’s correspond-
ing to the above orientations. The RV’s describe measu
ment results from one detector if it is unprimed (A), and
from the other when primed (A8), so thatE(AB8) is the
correlation betweenA andB8.

I have chosen the ‘‘deterministic’’ case here, and will n
discuss the ‘‘stochastic’’ case as the generalization
straightforward. In this formalism, the Bell inequality can b
stated as follows.

Theorem 1 (the Bell inequality).The following four pre-
requisites are assumed to hold except at a null set.

(i) Realism. Measurement results can be described
probability theory, using~two families of! RV’s,

A~a,b!: L→V

l°A~a,b,l!

B8~a,b!: L→V

l°B8~a,b,l!

;a,b.

(ii) Locality. A measurement result should be independ
of the detector orientation at the other particle,

A~a,l!5
def

A~a,b,l! independently ofb,

B8~b,l!5
def

B8~a,b,l! independently ofa.

(iii) Measurement result restriction.Only the results11
and21 should be possible:

V5$21,11%.

(iv) Perfect anticorrelation.A measurement with equally
oriented detectors must yield opposite results at the two
tectors,
3304 © 1998 The American Physical Society
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57 3305BELL’S INEQUALITY AND DETECTOR INEFFICIENCY
A52A8, ;a,l.

Then,

uE~AB8!2E~AC8!u<11E~BC8!.

To include detector inefficiency in the above inequali
previously two approaches have been used. The first is to
probabilities instead of correlations and derive an inequa
on the probabilities~see Ref.@7#!. The second is toassignthe
measurement result 0~zero! to an undetected particle, whic
makes the original Bell inequality inappropriate because
prerequisite~iii ! in Theorem 1. Thus the CHSH inequalit
must be used and subsequently generalized to obtain a
equality valid in this case~see Ref.@9#!.

A third approach, presented here, uses correlations
makes no assignment of any measurement result to the
detected particles. Thus it is possible to obtain a direct g
eralization of the original Bell inequality.

II. GENERALIZATION OF THE ORIGINAL
BELL INEQUALITY

The measurement results are modeled as RV’s, whic
the ideal case would be defined as in prerequisite~i! in Theo-
rem 1. In the case with inefficiency the situation is qu
different, as there are now points ofL where the particle
would be undetected. To avoid the quite arbitrary assignm
used in the second approach above, the RV’s will be sai
beundefinedat these points, i.e., they will only be defined
subsets ofL, which will be denotedLA(a,b) andLB8(a,b),
respectively.

In this setting, a new expression for the expectation va
is needed. The averaging must be restricted to the set w
the RV in question is defined, and the probability meas
adjusted accordingly,

EX~X!5
defE

LX

XdPX , where PX~E!5P~EuLX!. ~2!

The correlation is in this caseEAB8(AB8), the expectation of
AB8 on the set at which both factors in the product are
fined, the setLAB85LAùLB8 . This is the correlation tha
would be obtained from an experimental setup where
coincidence counters are told to ignore single particle eve
In an experiment the pairs that are detected are the ones
l’s in LAB8 , so the ensemble is restricted fromL to LAB8 .

It is now easy to see what makes the proof of the origi
Bell theorem break down. The start of the proof is

uEAB8~AB8!2EAC8~AC8!u

5U E
LAB8

AB8dPAB82E
LAC8

AC8dPAC8U. ~3!

The integrals on the right-hand side cannot easily be ad
when LAB8ÞLAC8 , so a generalization of Theorem 1
needed.

Theorem 2 (the Bell inequality with ensemble chang
The following four prerequisites are assumed to hold exc
at aP-null set.
,
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(i) Realism. Measurement results can be described
probability theory, using~two families of! RV’s, which may
be undefined on some part ofL, corresponding to measure
ment inefficiency,

A~a,b!:LA~a,b!

l
B8~a,b!:LB8~a,b!

l

→V
°A~a,b,l!

→V
°B8~a,b,l!

;a,b.

(ii) Locality. A measurement result should be independ
of the detector orientation at the other particle,

A~a,l!5
def

A~a,b,l! on LA~a!5
def

LA~a,b!

independently ofb,

B8~b,l!5
def

B8~a,b,l! on LB8~b!5
def

LB8~a,b!

independently ofa.

(iii) Measurement result restriction.Only the results11
and21 should be possible,

V5$21,11%.

(iv) Perfect anticorrelation.A measurement with equally
oriented detector must yield opposite results if both partic
are detected,

A52A8, on LAA85LAùLA8 .

Define the bound on the ensemble change when the mea
ment setup is changed as

d5 inf
A,B8,C,D8

PAB8~LCD8! ~⇒0<d<1!.

Then,

uEAB8~AB8!2EAC8~AC8!u<322d1EBC8~BC8!.

Proof. The proof consists of two steps. The first part
similar to the proof of Theorem 1, using the ensemb
LABB8C8 , on which all the RV’sA, B, B8, andC8 are de-
fined. This is to avoid the problem mentioned above. T
ensemble may be empty, but only whend50 and then the
inequality is trivial, sod.0 can be assumed in the rest of th
proof. Now ~i!–~iv! yields

uEABB8C8~AB8!2EABB8C8~AC8!u<11EABB8C8~BC8!.
~4!

The second step is to translate this into an expression
EAB8(AB8) and so on. Using~i!–~iii ! and the triangle in-
equality ~LBD8

C is the complement ofLBD8!,
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UEAC8~AC8!2dEABC8D8~AC8!U
<UP~LBD8

C
!EAC8~AC8uLBD8

C
!U

1UP~LBD8!EAC8~AC8uLBD8!2dEABC8D8~AC8!U
5PAC8~LBD8

C
!UEAC8~AC8uLBD8

C
!U

1@PAC8~LBD8!2d#UEABC8D8~AC8!U
<PAC8~LBD8

C
!EAC8~UAC8UuLBD8

C
!

1@PAC8~LBD8!2d#EABC8D8~UAC8U!
<12d. ~5!

The inequalities~4! and ~5! together with the triangle in-
equality yield the desired result.j

III. CHANGE OF ENSEMBLE

An important concept to understand the above inequa
is ‘‘change of ensemble.’’ Assume that a sequence of exp
ments is performed, where the ‘‘hidden variable’’ has t
valuesl1 ,l2 ,...,ln . If the orientations of the detectors we
a and b, the detected pairs would be the ones withl i ’s in
LAB8 . Now if the orientations instead werec and d, the
detected pairs would be the ones withl i ’s in LCD8 . Then, if
LAB8ÞLCD8 , different pairs would be detected if it wa
possible to do the same run ofl i ’s in different setups, i.e.
the ensemble would change.

The importance of this is most easily seen in the follo
ing example. Assume that the nondetections are distribu
independently of the detector orientations, i.e.,

LA is independent ofa,
LB8 is independent ofb, ~6!

which yieldsLAB85LCD8 and

d5PAB8~LCD8!51. ~7!

Now, it is easy to see that whend51, the result resemble
that of the original Bell inequality:

uEAB8~AB8!2EAC8~AC8!u<11EBC8~BC8!. ~8!

Evidently, for this kind of model, inequality~8! is valid at all
levels of inefficiency. But we have discarded all events
coincidences in the correlations, so quantum mechanics
detector inefficiency would violate inequality~8!. Thus, to
exploit the ‘‘loophole’’ in the Bell inequality, the nondetec
tions must be distributed in such a way that the ensem
changes. They cannot be simple independent errors, but
be included in the model at a deeper level.

IV. MEASUREMENT INEFFICIENCY

In Theorem 2,d.3/4 is sufficient for a violation to occu
from the quantum-mechanical correlation. But experim
does not yield an estimate ofd easily, so an inequality in-
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volving measurement inefficiency would be useful.
Corollary 3 (the Bell inequality with measurement inef

ciency). Assume that Theorem 2~i!–~iv! hold except on a
P-null set. Two ways of defining measurement efficiency a
used.

(a) Detector efficiency.The least probability that a par
ticle is detected is

h15
def

inf
A,i

P~LA~ i !!,

where the infimum is taken over all orientations of both d
tectors. Ifh1>3/4, then

uEAB8~AB8!2EAC8~AC8!u<
322h1

2h121
1EBC8~BC8!.

(b) Coincidence efficiency.The least probability that a
particle is detected at one detector given that it is detecte
the other one is

h2,15
def

inf
A,B,iÞ j

PA~ i !~LB~ j !!,

where the infimum is taken over all orientations ofA,B8 and
A8,B. If h2,1>2/3, then

uEAB8~AB8!2EAC8~AC8!u<
4

h2,1
231EBC8~BC8!.

Proof. First, to prove~b!, use the simple inequality

PAC8~LB!5
PC8~LAB!

PC8~LA!

5
PC8~LA!1PC8~LB!2PC8~LAøLB!

PC8~LA!

>11
h2,121

PC8~LA!
>22

1

h2,1
, ~9!

which gives

PAC8~LBD8!5PAC8~LB!1PAC8~LD8!2PAC8~LBøLD8!

>2S 22
1

h2,1
D21532

2

h2,1
. ~10!

This means that

d5 inf
A,B8,C,D8

PAB8~LCD8!>32
2

h2,1
, ~11!

and when the right-hand side is non-negative (h2,1>2/3),
the ~b! part follows from Theorem 2. Now, to prove~a! the
same approach gives

h2,15 inf
A,B,iÞ j

PA~ i !~LB~ j !!>22
1

h1
. ~12!
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If h1>3/4, the above inequality yieldsh2,1>2/3, and~a!
then follows from~b!. j

The two different definitions of measurement efficien
are motivated by models for whichh1Þh2,1 ~see, e.g., Ref.
@10#, Chap. 6!, and as these results are aimed to be as gen
as possible, the definitions do not need auxiliary assu
tions. There is also the fact that it is possible to estimateh2,1
from coincidence data, whereash1 is more difficult to ob-
tain. A quantum-mechanical violation of these inequalities
obtained whenh1.9/10 orh2,1.8/9'0.889. Both of these
bounds are higher than the previous bound in Ref.@9#.

V. PREVIOUS RESULTS

The reason for the bound to be higher than previousl
that quantum mechanics violates the CHSH inequality m
strongly than Theorem 1. Using this inequality, the followi
is obtained.

Theorem 4 (the CHSH inequality with ensemble chang
The following three prerequisites are assumed to hold ex
at aP-null set.

(i) Realism.As in Theorem 2~i!.
(ii) Locality. As in Theorem 2~ii !.
(iii) Measurement result restriction.The results may only

range from21 to 11,

V5$xPR;21<x<11%.

With d as in Theorem 2, this yields

uEAC8~AC8!2EAD8~AD8!u1uEBC8~BC8!1EBD8~BD8!u

<422d.

The proof is similar to that of Theorem 2.
A quantum-mechanical violation of this inequality wou

demandd.22&'0.586. This is, as expected, significant
lower than obtained from Theorem 2. The measurement
efficiency result is as follows.

Corollary 5 (the CHSH inequality with measurement i
efficiency). Assume that Theorem 4~i!–~iii ! hold except on a
P-null set, and defineh1 and h2,1 as in Corollary 3. Then,
we get the following.

(a) Detector efficiency.

uEAC8~AC8!2EAD8~AD8!u1uEBC8~BC8!1EBD8~BD8!u

<
2

2h121
.
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(b) Coincidence efficiency.

uEAC8~AC8!2EAD8~AD8!u1uEBC8~BC8!1EBD8~BD8!u

<
4

h2,1
22.

The proof is simply to apply the inequalities~11! and~12! to
Theorem 4. The ‘‘coincidence efficiency’’ part in~b! is simi-
lar to the generalization presented Ref.@9# and the bound is
of the same size,h2,1.2(&21)'0.828. In Ref.@9#, the
assumptions of independent errors and constant detecto
ficiency are used, and thenh2,15h15h, and Corollary 5
yields the same bound as in Ref.@9#, h.2(&21)
'0.828. Note that these assumptions are not needed w
using the formal detector efficiency definitions above.

VI. CONCLUSIONS

The original Bell inequality is possible to generalize itse
to the inefficient case, although the bound on the inefficien
is not as low as obtained from the CHSH inequality. This
because of the stronger violation of the CHSH inequality
quantum mechanics. The generalization of the CHSH
equality in Ref.@9# is possible to obtain in this approach, an
the inefficiency bound is the same,h.82.8%.

The formal definition of the term ‘‘measurement ineffi
ciency’’ in this paper uses no auxiliary assumptions such
constant efficiency or independent errors. It is neverthe
possible to obtain the bounds. An estimate of the coincide
efficiency is possible to extract from the coincidence data
that an easy check of the boundh2,1.82.8% is possible.

‘‘Change of ensemble’’ is an essential property needed
the local hidden-variable model to enable it to approach
quantum-mechanical correlation. If the model does not h
this property, the generalized inequality reduces to the
equality ~8!, which resembles the original Bell inequality
The quantum-mechanical predictions including measurem
inefficiency violate that inequality as strongly as quantu
mechanics without measurement inefficiency violates
original Bell inequality. A quantitative bound on the chan
of ensemble for quantum-mechanical violation in Theorem
~generalized Bell inequality! is d.75% and in Theorem 4
~generalized CHSH inequality!, d.58.6%.
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