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Bell's inequality and detector inefficiency
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In this paper, a method of generalizing the Bell inequality is presented that makes it possible to include
detector inefficiency directly in the original Bell inequality. To enable this, the concept of “change of en-
semble” will be presented, providing both qualitative and quantitative information on the nature of the “loop-
hole” in the proof of the original Bell inequality. In a local hidden-variable model lacking change of ensemble,
the generalized inequality reduces to an inequality that quantum mechanics violates as strongly as the original
Bell inequality, irrespective of the level of efficiency of the detectors. A model that contains change of
ensemble lowers the violation, and a bound for the level of change is obtained. The derivation of the bound in
this paper is not dependent upon any symmetry assumptions such as constant efficiency, or even the assump-
tion of independent error§S1050-294{@8)07405-9

PACS numbd(s): 03.65.Bz

[. INTRODUCTION suppressing the parentheses in the last expresgimwill
be done in the following when no confusion can arigeur-

The Bell inequality{1] and its descendants have been thethermore,a,b,... are thedetector orientations used in the
main argument on the Einstein-Podolsky-Rosen paradoxarious measurements, and to shorten the presentation a no-
[2,3] for the past 30 years. A new research field of “experi-tation will be used wherd\,B,... are theRV’s correspond-
mental metaphysics” has formed, where the goal is to shoving to the above orientations. The RV’s describe measure-
that the concept of local realism is inconsistent with quantumment results from one detector if it is unprimed)( and
mechanics, and ultimately with the real world. The experi-from the other when primedA(), so thatE(AB’) is the
ments that have been performed to verify this have not beecorrelation betweed andB’.
completely conclusive, but they point quite decisively in a | have chosen the “deterministic” case here, and will not
certain direction: Nature cannot be described by a realistidiscuss the “stochastic” case as the generalization is
local hidden-variable theorfsee Refs[4—6], for instance. straightforward. In this formalism, the Bell inequality can be

The reason for saying “not been completely conclusive” stated as follows.
is that there is an implicit assumption in the proof of the Bell Theorem 1 (the Bell inequalityXhe following four pre-
inequality that the detectors are 100% effective. There hagequisites are assumed to hold except at a null set.
been considerable discussion in the literature on thee (i) Realism.Measurement results can be described by
Refs.[7—-10], among othens and the main issue is to obtain probability theory, usindtwo families o RV'’s,

a limit for the detector inefficiency, but previously inequali-

ties other than the original Bell inequality had to be used, for A(a,b): A-V

example, the Clauser-Horne inequality[ifl, which in itself A—>A(a,b,\)

contains the case of inefficient detectors, or the Clauser- Y Ya,b.
Horne-Shimony-Holt(CHSH) inequality first presented in B'(a,b): A—V

[11], which is generalized to the inefficient case[&]. A—B’(a,b,\)

Since a hidden-variable model is really a probabilistic
model, formalism and terminology from probability theory (i) Locality. A measurement result should be independent
will be used in this papefsee, e.g., Ref12]). The sample of the detector orientation at the other particle,
spaceA is the mathematical analog to the state space used in

physics, and a sampbkeis a point in that space correspond- def
ing to a certain value of the “hidden variable.” The mea- A(a,\)=A(a,b,\) independently ofb,
surement results are described by random variatiags)
X(N\), which take their values in the value spa¢e def
To be a probabilistic model, a probability measten B’(b,\)=B’(a,b,\) independently ofa.
the space\ is needed, by which we can define the expecta-
tion valuek as (iii) Measurement result restrictiorOnly the results+ 1

and — 1 should be possible:
def
E(X)=f X()\)dP()\)=f XdP, (1) V={-1,+1}.
A A

(iv) Perfect anticorrelation A measurement with equally
oriented detectors must yield opposite results at the two de-
*Electronic address: jalar@mai.liu.se tectors,
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A=—A', Va,\. (i) Realism.Measurement results can be described by
probability theory, usingtwo families o RV’s, which may
Then, be undefined on some part &f corresponding to measure-
ment inefficiency,
|E(AB')—E(AC')|<1+E(BC').

To include detector inefficiency in the above inequality, Aa,b):Ax(a,b) =V

previously two approaches have been used. The first is to use , _ A—>A(a,b,0) va,b.
probabilities instead of correlations and derive an inequality B'(a,b):Ag/(a,b)—V
on the probabilitiegsee Ref[7]). The second is tassignthe A—B'(a,b,\)

measurement result(@ero to an undetected particle, which
makes the original Bell inequality inappropriate because of (ii) Locality. A measurement result should be independent
prerequisite(iii) in Theorem 1. Thus the CHSH inequality of the detector orientation at the other particle,
must be used and subsequently generalized to obtain an in-
equality valid in this casésee Ref[9]). def def

A third approach, presented here, uses correlations but A(a,\)=A(a,b,\) on A(a)=Ax(a,b)
makes no assignment of any measurement result to the un-
detected particles. Thus it is possible to obtain a direct gen-

eralization of the original Bell inequality. independently ofb,

def def

Il. GENERALIZATION OF THE ORIGINAL B'(b,\)=B'(a,b,\) on Ag(b)=Ag(a,b)

BELL INEQUALITY

The measurement results are modeled as RV’s, which in independently ofa.
the ideal case would be defined as in prerequisite Theo-
rem 1. In the case with inefficiency the situation is quite
different, as there are now points d&f where the particle
would be undetected. To avoid the quite arbitrary assignme
used in the second approach above, the RV’s will be said to
be undefinedat these points, i.e., they will only be defined at
subsets of\, which will be denoted\ ,(a,b) andAg.(a,b), ) . ] )
respectively. (iv) Perfect anticorrelationA measurement with equally

In this setting, a new expression for the expectation valu@riented detector must yield opposite results if both particles
is needed. The averaging must be restricted to the set whefé€ detected,
the RV in question is defined, and the probability measure
adjusted accordingly, A=—A", on App=AsNA, .

(iif) Measurement result restrictiorOnly the results+ 1
r]a%nd—l should be possible,

V={-1-+1}.

def Define the bound on the ensemble change when the measure-
Ex(X)= A XdPy, where Py(E)=P(E[Ax). (2)  ment setup is changed as
X

The correlation is in this cade,g (AB’), the expectation of o= inf Pap(Acp) (=0=6<1).
AB’ on the set at which both factors in the product are de- AB’.CD’
fined, the setA ,gr=AANApg/. This is the correlation that
would be obtained from an experimental setup where thdhen,
coincidence counters are told to ignore single patrticle events.
In an experiment the pairs that are detected are the ones with  |Eag/(AB’)—Eac/(AC')|<3—26+Egc(BC').
N's in A g, SO the ensemble is restricted franto A 5g: .
It is now easy to see what makes the proof of the original  Proof. The proof consists of two steps. The first part is

Bell theorem break down. The start of the proof is similar to the proof of Theorem 1, using the ensemble
, , Aagprcr,» On which all the RV'sA, B, B, andC’ are de-
|Eas/(AB") —Eac/(AC)| fined. This is to avoid the problem mentioned above. This

ensemble may be empty, but only whés0 and then the
. 3 inequality is trivial, so5>0 can be assumed in the rest of the
proof. Now (i)—(iv) yields

:‘f AB,dPAB’_f AC,dPAcr
App’ Aac

The integrals on the right-hand side cannot easily be added , , ,
when Aag #Aacr, SO a generalization of Theorem 1 is [Ensercr(AB') ~Engercr(AC)|<1+Easmc/(BC )'(4)
needed.

Theorem 2 (the Bell inequality with ensemble change)The second step is to translate this into an expression with
The following four prerequisites are assumed to hold excepEags'(AB’) and so on. Usindi)—(iii) and the triangle in-
at aP-null set. equality(A(B:D, is the complement o\ gp/),
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volving measurement inefficiency would be useful.
Corollary 3 (the Bell inequality with measurement ineffi-
ciency). Assume that Theorem(i2—(iv) hold except on a
P-null set. Two ways of defining measurement efficiency are
used.
+‘P(ABD,)EAC,(AC’|ABD,)—5EABC,D,(AC’)‘ (a) Detector efficiencyThe least probability that a par-
ticle is detected is

EAC’(AC,)_ (SEABC/D/(AC,)‘

<|P(A5p )Eac/(AC'|ASL)

=Pac(Agp)|Eac(AC'|AS,)) o
, n=inf P(Aam),
+[Pac/(Agp’) = 8]|Epgcrn (AC )‘ Al
c i e - . . . )
<Pac/(Agp/)Eac/(|AC |ABD,) Yéf;?gfstr;ﬁy;nirgamtﬁe;aken over all orientations of both de
. l/ y

+[Pac/(Agp) — 61Eagcp/(

cl)

, , 3_2771 ,
s © [Eaer(AB') ~Eaci(AC))|< 5 =71 +Eqc (BC').
The inequalities(4) and (5) together with the triangle in- (b) Coincidence efficiencyThe least probability that a
equality yield the desired resultl particle is detected at one detector given that it is detected at

the other one is
Ill. CHANGE OF ENSEMBLE

def
An important concept to understand the above inequality Nar= inf Pai(Agi)

is “change of ensemble.” Assume that a sequence of experi- AB,i#]

ments is performed, where the “hidden variable” has the

values\1,\,,...,\,. If the orientations of the detectors were where the infimum is taken over all orientations/gB’ and
a andb, the detected pairs would be the ones wiifs in  A’,B. If 7,,=>2/3, then

A g - Now if the orientations instead were and d, the
detected pairs would be the ones withs in Acp/. Then, if
Apg'#Acpr, different pairs would be detected if it was

4
|EAB/(AB,) — EAC/(AC,)| = E_3+ EBC/(BC,).
possible to do the same run &f's in different setups, i.e., '

the ensemble would change Proof. First, to prove(b), use the simple inequality
The importance of this is most easily seen in the follow-

ing example. Assume that the nondetections are distributed Pc/(Aag)
independently of the detector orientations, i.e., Pac/(Ag)= Por(Ap)

A, is independent ofa, Pc/(Ap)+Pei(Ag)—Pcer(ApUAR)

. (6) =

A/ is independent ofb, Po(Ap)

Wh|Ch yieIdSAAB/ :ACD’ a.nd N21— 1 1
=1+ 52—, 9)
o= PAB’(ACD’):]" (7) C,( A) 772'1

Now, it is easy to see that wheh= 1, the result resembles Which gives

that of the original Bell inequality:
PAC’(ABD’): PAC’(AB)+ PAC’(AD’) - PAC/(ABUAD/)
|Eas/(AB') —Eac/(AC')|<1+Egc(BC). (8)

1 2

. L . . . . =2|2——|—-1=3— —. 10
Evidently, for this kind of model, inequalit8) is valid at alll 721 721 (10
levels of inefficiency. But we have discarded all events but
coincidences in the correlations, so quantum mechanics witfihis means that
detector inefficiency would violate inequalit). Thus, to
exploit the “loophole” in the Bell inequality, the nondetec- . 2
tions must be distributed in such a way that the ensemble 5_AB',n; D/PAB’(ACD’)ZB’ N21’ (1)

changes. They cannot be simple independent errors, but must

be included in the model at a deeper level. and when the right-hand side is non-negativg {=2/3),

the (b) part follows from Theorem 2. Now, to prov@) the
IV. MEASUREMENT INEFFICIENCY same approach gives

In Theorem 2,6>3/4 is sufficient for a violation to occur 1
from the quantum-mechanical correlation. But experiment 7p1= inf Pai(Agi)=2——. (12
does not yield an estimate @f easily, so an inequality in- " AB.#] m
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If »,=3/4, the above inequality yields,,=2/3, and(a) (b) Coincidence efficiency.
then follows from(b). W
The two different definitions of measurement efficiency |Eac'(AC")=Eap/(AD")|+|Egc/(BC') +Egp/ (BD')|
are motivated by models for which, # 7, ; (see, e.g., Ref.
[10], Chap. 6, and as these results are aimed to be as general =<-—-2.
as possible, the definitions do not need auxiliary assump- 72,1

tions. There is also the fact that it is possible to estimgte  The proof is simply to apply the inequaliti€s1) and(12) to
from coincidence data, whereag is more difficult to ob-  Theorem 4. The “coincidence efficiency” part {b) is simi-
tain. A quantum-meChanical violation of these inequa”ties iqar to the genera"zation presented F{gj and the bound is
obtained WhenI71> 9/10 or 7]2’1>8/9~0889 Both of these of the same sizeﬂz 1>2(ﬁ_1)%0828 In Ref[g], the
bounds are higher than the previous bound in R&f. assumptions of independent errors and constant detector ef-
ficiency are used, and then, = n;= 7, and Corollary 5
yields the same bound as in Ref9], »>2(v2—-1)
V. PREVIOUS RESULTS ~0.828. Note that these assumptions are not needed when

The reason for the bound to be higher than previously iéjsing the formal detector efficiency definitions above.

that quantum mechanics violates the CHSH inequality more
strongly than Theorem 1. Using this inequality, the following VI. CONCLUSIONS
is obtained.
The original Bell inequality is possible to generalize itself
the inefficient case, although the bound on the inefficiency
not as low as obtained from the CHSH inequality. This is
because of the stronger violation of the CHSH inequality by
quantum mechanics. The generalization of the CHSH in-
equality in Ref[9] is possible to obtain in this approach, and
the inefficiency bound is the samg>82.8%.

The formal definition of the term “measurement ineffi-

Theorem 4 (the CHSH inequality with ensemble change)ro
The following three prerequisites are assumed to hold except
at aP-null set.

(i) Realism.As in Theorem #).

(i) Locality. As in Theorem &i).

(i) Measurement result restrictiorThe results may only
range from—1 to +1,

V={xeR;—1<x=+1}. ciency” in this paper uses no auxiliary assumptions such as
constant efficiency or independent errors. It is nevertheless
With & as in Theorem 2, this yields possible to obtain the bounds. An estimate of the coincidence
efficiency is possible to extract from the coincidence data, so
|Eac/(AC')—Eap/(AD")|+|Egc(BC')+Egp/ (BD')| that an easy check of the bound ;>82.8% is possible.

“Change of ensemble” is an essential property needed in
the local hidden-variable model to enable it to approach the
guantum-mechanical correlation. If the model does not have
this property, the generalized inequality reduces to the in-

A guantum-mechanical violation of this inequality would ) . - . )
demands>2—v2~0.586. This is, as expected, significantly equality (8), which resembles the original Bell inequality.
! X The guantum-mechanical predictions including measurement

lower than obtained from Theorem 2. The measurement in-' 1 . . .
efficiency result is as follows. inefficiency violate that inequality as strongly as quantum

Corollary 5 (the CHSH inequality with measurement in- mechanics without measurement inefficiency violates the

efficiency). Assume that Theorem(—(iii ) hold except on a original Bell inequality. A quantitative bound on the change
P-null set.and define, and 7,4 as in Corollary 3. Then of ensemble for quantum-mechanical violation in Theorem 2
- ; 1 21 : .

we get the followin (generalized Bell inequalilyis 6>75% and in Theorem 4
(g) Detector effigéncy (generalized CHSH inequality5>58.6%.

<4-26.

The proof is similar to that of Theorem 2.
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