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Dissipation and decoherence in a quantum register
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A model for a quantum registé®R made ofN replicas of ad-dimensional quantum systetoell) coupled
with the environment is studied by means of a Born-Markov master equdiiin Dissipation and decoher-
ence are discussed in various cases in which a subdecoherent encoding can be rigorously found. For the
guantum-bit cased=2) we have solved, for smal, the ME by numerical direct integration and studied, as
a function of the coherence lengép of the bath, fidelity and decoherence rates of states of the register. For
large enougl. the singlet states of the global(@upseudo spin algebra of the registeoiseless af.=x) are
shown to have a much smaller decoherence rates than the rest of the Hilber{ Spaé&0-2947®8)05705-9

PACS numbd(ps): 03.65.Bz, 05.30.Fk

[. INTRODUCTION Here the attitude is, in some sense, opposite to that at the
basis of error correcting codes: now one aims to encode
Preserving coherence in a quantum system is one of thetates that cannot be easily corrupted rather than to look for
most demanding features required to be able to take practicatates that can be easily corrected. In this approach one has to
advantage of the implementation of the objects of quantunassume explicit models of system-environment interaction
information and quantum computation the¢fy. Indeed all and try to design the various ingredients in such a way that
the additional power, with respect to the classical case, arighe algebraic-dynamical structure of the global system gives
ing from the quantum nature of the information-processingrise to the stable subspaces one is looking for. Since the
device depends on the complex linear structure of the statgpical environment consists of infinitely many degrees of
space of a quantum system and on the invariance of suchfgeedom a direct Hamiltonian approach to the problem is not
structure undefunitary) time evolution. The system is there- the most suitable except for some simplified situati@jsin
fore endowed with a massive intrinsic parallelism and thethis paper we address the problem of dynamically stable
capability of exhibiting interference. Unfortunately all of this quantum encoding within a master equation formalism that
holds only for closed quantum systems. Real systems areallows us to deal directly with the marginal dynamics of the
unavoidably coupled with the environment in which they arecomputational degrees of freedom. The relevant information
embedded, hence they have to be consideredpa®isys-  about the environment is contained in a few parameters ap-
tems, no matter how weak is the interaction. The relevanpearing in the master equation itself. The system considered
state manifold now has @nvex structur¢2]; the dynamics s the model of aquantum registerN replicas of a given
in general is no longer unitary and the interference patternfinite-dimensional quantum systefthe cel). If the cell is
may disappear. This set of effects is known asdkeoher-  two dimensional one obtains af—quantum bit(qubit) reg-
enceproblem[3]. The protection of quantum-encoded infor- ister. The key feature of the existence of the subdecoherent
mation against environmental noise has been, up to nowodes is the possibility of partitioning the register in clusters
mainly addressed in the framework of the so-caleedor  (possibly coinciding with a single cell or with the whole
correcting codes[4]. These are essentially schemes to envyegistej such that the cells within each cluster are collec-
code redundant information in such a way that it can beijvely perturbed by the environment. It is the dynamical sym-
recovered also wherta few) “errors” due to external metry of the cluster that allows one to single out collective
sources have occurred. Such schemes are often based on S%@ntangleai states that, at least on a short time scale, are
able measurement protocols that have to be performed fregmaffected by the noise and therefore evolve unitarily. This
quently enough to keep the error level within the scope of thgnechanism has a well-known counterpart in quantum optics
given encoding. Of course this implies that quantumgiven by the phenomenon sfibradiance9].
information-processing systems have to be coupled with @ The paper is organized as follows: in Sec. Il we introduce
classical measurement apparatus: even leaving aside the ae model, in Sec. Il are discussed the general features of
vious practical difficulties, such a necessity naturally leadspoth the master equation and the subdecoherent codes. The
at least, to a severe slowdown of the computational spee@ases of purely dephasing and dissipative coupling with the

More recently in[5] (see alsd6,7]) the idea has been put environment are analyzed respectively in Secs. IV and V.
forward that, conceptually, a more efficient quantum statesection VI contains some conclusions.

protection can be realized by encoding the information in
subspaces that tHeonunitary dynamics makemtrinsically
more robust against the perturbation due to the environment. II. THE MODEL
We call a systenR a quantum registewith N d cells, if
*Electronic address: zanardi@isiosf.isi.it R is composed by replicas of ad-level system. The Hil-
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bert space is given b)HR=®iN:1Hi, where H;=CY (i =q(i), have a non-negligible variation; whef}=«, the
=1,... N) is the singled-cell Hilbert space. In particular, gy;'s no longer depend on the qubit indexThis limit will
if d=2 one has arN-qubit register. The set of thetates be referred to as theeplica symmetrigooint, in that foré&
(density matricesof R is =, the dynamics becomes invariant under the action of the

symmetric groupSy of the cell permutations and only the
Sr={pe EndHz):p=0, p=p', t"p=1}. (1)  collective operatord=S,A; are effectively coupled with the
) ) bath. This situation corresponds to the well-known Dicke
Sg is not a linear subspace of Erftz) but a convex sub-  |imijt of quantum optic§11]. To exemplify this situation let
manifold. The register is coupled with an uncontrollable en-,5 consider thet,=co, limit with A;=o7 . In this case, as
vironment5 (from now on thebath). The time evolution of ¢3¢ a5 the coupling with the environment is concerned, the
the states of the closed systeRi+ 5 is generated by a | qjevant register operators a@=3N 0% (a==*). Let

Hamiltonian of the formH=H;+Hz+H;. We now dis- Ho= eSZ+ HL 1 ; o ;
. = +Hz, wh H bit-qubit int t t ,
cuss the structure of each of these terms. The bath will bgrﬁj EsupposRe Vtvhaetrethg Islait(eqru ils Cz;pl ilr1nvg:i’o;1(:r1{0r[](i eérm

c_ogsmebrTet()j das % single ?OSOD'C f|el_d, Inamelm,g_" [HE,S¥]=0, (= *,2)]; one then has the commutation re-
= 2Dy describes a set of noninteracting linear oscilla- |, [He,S"]=*€S". It follows that for large time the
tor (field modes. The seli-Hamiltoniar?iz , of &, is as- register relaxes to the loweS&F eigenstate allowed by the
sumed, for the time being, to be the sum of single-cell . : 1_ . i
ST C . . . . total spin conservation. K =0, this amounts to a ground
HamiltoniansH;~ (i.e., the register is an array of noninteract- ) . 1 .
state relaxation, whereas §&=0 and H;#0, there is no

Ic?fgtr::eeli)%tr;r-rc]:ilIrier?tls;[:(r:-t?oarfz' interaction is given by the Sumenergy loss. This example will be discussed with greater de-
’ tail in Sec. V.

Hz:% (Ukia DEAT+H.C). 2 IIl. MASTER EQUATION

i o The quantum dynamics of the systeRi+ 5 is highly
Here theA"s are single-cell operators whose action is non-pontrivial, and exact results are difficult to obtain. Neverthe-
trivial only on theith tensor factor off{y,, representing the |ess one is mostly interested in the register marginal dynam-
various interaction channels through which ftle cell can  jcg (j.e., forgetting about the bath degrees of freeflom
be Coupled W|th the bath Although th|S k|nd Of Situation Canorder to Study Stabmty against external noise of the
be suitably handled by resorting to the notion of dynamica‘information-coding states oR. This issue can be conve-
algebra[10], in the following we shall assume that there is niently addressed in the framework of the Liouville—von
ing A;. As is well known, the generic effect ¢f; on the  equation(ME). Following the standard Born-Markov scheme
marginal dynamics ofR is to induce dissipation and deco- where one traces out the bath degrees of freedom, which is
herence. The first effect, of course, consists in the irreverszssumed to be in the state, one obtains a closed equation

ible loss of register energy into the bath. Decoherence is gy the marginal density matrix oR, of the form
pure guantum effect consisting in the destruction of phase

coherence of the register states: due to the entanglement with p=L(p)=(i adHL+D)(p), (4)
the bath the initial pure preparations of the register become

mixed in a very short time scale. The interplay between thesghere as usual aH(p)=[p,H], denotes the adjoint action
two phenomena is strictly related to the nature of the operagf H. The superoperatorL is called the Liouvillian. The

tors {A;}. Now we make another simplifying assumption, action of the non-Hamiltoniardissipativé part is
supposing that thé,;’s are eigenvectors of the adjoint action
of Hg, B IR § ;
Cip)= 2 | T ApAl = ——(AlAp+pAlA)
[He,Al=—€Ai(eeRyg). € =0
ri
This means that it>0, the necessarily non-Hermitian and +Fi<].+)AiTij— %(AiAijijAiAjT) , (5)
tracelessA;’s (AiT’s) are the destructiofcreation operators
of elementary cell excitationsf Hx . Notice that the energy (+)» .
e does not depend on the cell indexn that we are consid- where thel’; s are temperature-dependent coupling con-

ering replicas of the same physical system. If one conside tﬁmts contalmngt;_ a:l releva_ntt |gf0(rtw;]attr|]on about th]? dbath._
the zero-temperature case, in which only the bath vacuum i €y are respeclively associated wi € process of deexci-

involved, the effect oH;, therefore, will be that of letting tation and excitation of the qubit system. At=0, one has

the register relax to thA vacuum|Ao), (Ai|Ag)=0Vi) by rij=o. The renormalized Hamllt_omahi;z:HRlL SHz.,
exciting the bath modes. On the other hand;=#0 the pos- Where, by introducing the Lamb-shift parametais”,

sibly HermitianA;’s belong to a symmetry algebra &f;,

and no energy e>_<change occurs at all: the effec_t of regist_er- 5H’R=E (Ai(f)AiTApLA,(i”AiAjT)- (6)
bath interaction is pure decoherence. A quantity that will ]

play an essential role in the following is tihath coherence

length&., which, in a Hamiltonian approach, can be definedAt zero temperature the excitation termﬁﬂ are vanishing.

as the spatial scale over which the coupling constgpts Notice that these terms make the cells interacting even
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thoughHy, is a free-cell Hamiltonian. On the other hand, it F o1 t)\"
follows from relation (3) that [dHz ,Hz]=0; this means o(t)=6(0)+ 21 n_'(r_> : (10)
that, in this model, the Lamb shift terms are not responsible e

for additional register energy loss, but they are a source of . 1y i
dephasing. Let, = tr’(b'bp,) be the mean occupation % the following 7, (7, ~) will be referred to as thath-order

number of the modé& in the initial (therma) bath statep;;. decoherence timgate. One straightforwardly finds

The explicit form for the coefficients appearing in the ME " in
(4) is 1/72=—tr7€[2 (k)Ln_k(p)Lk(p)} (n=1). (11
k=0
Ffji)ZZWEK: ki Gk Nk + O(F) 18w —€), Since in the followingr; will play a major role, here we

(7)  report explicitly the first decoherence rate
Ok 1 -
AF=PY, 2 ), Z=—2 t{pl(p)}. (12
k WK~ € T1

9 is the customary Heaviside function, and P denotes th& particular, for a pure initial preparatiop=|#)(y|, one
principal part. From these relations it follows tH&t") and hasé(0)=0 and

A) are Hermitian. FurthermorE(*)=0 andI'(7)=1("),

It is important to notice that the assumpti¢8) plays an -1 — o —op |\ ol N2
essential role in the derivation of the ME, in that it allows m 1] 2#,02:: MACALLLEI D = AL,

one to move to the interaction pictufeith respect toHz) (13

A —Ae ', This is necessary in order to separate (flasd ) o

dynamics generated by the self-Hamiltonian from tsiew) vv_here_zb_y one notices tha; the Ham|lto_n|an component of the
one generated by the coupling with the bath. When only thé-louvillian does not contribute to the first-order decoherence
collective cell-operatora are coupled with the batlhj, has ~ time [this comes from {p adHz(p)}=0]. Of course

to Satisfy condition(3) 0n|y with respect to them. Given such these expressions obtained within the ME equation formal-
Hy one can obtain a family of new register Hamiltonians,ism (which relies on the Born-Markov assumptjodiffer
fulfiling the same constraint simply by adding terms com-from the ones that one could get by the exact temporal evo-
muting with {AA"}. Introducing the notationA’=¢ lution induced by the interaction Hamiltonig@) (see, for

(— o)A+ 0(U)A-T, Eq. (5) can be cast in the compact form example[13,14]). Nevertheless, as far as the issue of code
! stability classification is concerned, this is not crucial in that

the (exac first order decoherence rater{fis vanishing for
Fi(j")(ZAi"ij"’—{Aj"’Ai",p}). (8)  the pure initial state and5* essentially corresponds tq .

ij,o==*

L(p)=

N[ =

. . " . A. Codes
Diagonalizing the Hermitian matricd&® =||T"{"|| (o= *)

one obtains the following canonical form for the dissipative ~The ME with initial conditionp has the formal solution
part of the Liouvillian[12]: p(t)=e'"(p), obtained by exponentiation of the Liouville
superoperatok . Thestationarysolutionsp(t) =p are there-
_ 1 fore the states belonging to ker where ke ={p
Lip)=5 #;+ N[, L 1+ ILPL 7D, (9 e End(Hg):L(p)=0}. When(p)=0 it follows, from Eq.
T (13), that 8(t)=0(t?) [whereas for the fidelity one finds
. F(t)=1—0(t?)]. Such a state will be callesubdecoherent
o (o) o
where {)‘M} are the_ eigenvalues o™ More(_)ver Ly In general the adjoint action ofl, maps subdecoherent
=3uf*A7, u¥ denoting the components of the eigenvectors

of I'“). TheLY’s will be referred to as the Lindblad opera- states onto states such thp) #0; but whenSe N ker L is

. L : . adH,, invariant the Liouvillian evolution of each staje
tors. Given an initial pure preparatidu,) of the register, R_ i L ,
one definesF (t)={yolp(t)| o) fidelity. Such a quantity € kerL becomes Un'tafYP(t)=eXP(—'H7_z§)P exp(Hrt).
measures the degree of similarity with the initial preparation/n particular one hag(t)=0Vt>0 (i.e., 7, "=0,Vn). This
that a state maintains during its time evolution. Anotherkind of state will be callechoiselessA subspaceCCHz
quantity that one introduces in order to study the quantunguch that each density matrix over it is a subdecoherent
coherence loss due to the bath d6t)=tr[p(t)—p(t)?], (noiselesy state will be referred to as a subdecoherent
calledlinear entropy(or idempotency deficit This quantity ~ (noiselesscode.
shares with the von Neumann entropy —trp In p, the fun- Let us assumgy) is subdecoherent. First of all we notice
damental property[ p]=0<p?=p (i.e., they both vanish if that due to non-negativity of matricd&® and from the
p is a pure state On the other hand, since the linear entropySchwartz inequality, each term of the sum in Efj3) is
does not involve transcendent operatorial functions, it igion-negative. Therefore from; '[|#)]=0 it follows that
much simpler to evaluate th& To characterize the degree [IL7|)[[*=[(#|L|#)]? (¥ u,0), which in turn implies] )
of stability of the states it is useful to consider the short-to be a simultaneous eigenvectoraif the Lindblad opera-
times expansion tors. Conversely if ) is a simultaneous eigenvector of the
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L,’s then the subdecoherence constraint=0 is trivially sponding to different “effective” topologies oR. It is just
fulfilled. In other words a necessary and sufficient conditionfrom these topologies that constraints on the algebraic struc-
for the existence of a subdecoherent code is the existence tfre arise.

a simultaneous eigenspace of all Lindblad operaltdys (i) Ihj=T4;;,(Vi,j): this is the cell limit; the decoher-
" " ence process occurs independently in each cell. The Lindblad
Co={l¥) e Hr L )= a,|¥), Y u,0}. (14 operators coincide with tha”s (L=a, ;).

(ii) Ijj=T'(Vi,]): this is the replica symmetric point; the
The greated[ «]= dim C, is the more efficient the encod- decoherence is collective. The matridgs) have constant
ing. It is obvious that one has two quite different situations,entries, the only nonzero eigenvaluéNisaind the correspond-
depending on whether or not the’s are Hermitian. In fact, ing Lindblad operators are given by*=N"Y23,A" (L
if LZ=(L;‘L)Jr one has that the Lindblad operators commute=L;).
[LU,L;]:Eijuio—ujT[Ai ,A;1=0; then there exists a nontrivial The limit (i) is the one usually considered in error correc-
C,. furthermore Hzp=@,C,. On the other hand, ifL¢ tion literature. The caséii) corresponds to the so-called
# (L)' the Lindblad operators no longer span an abeliarPicke limit of quantum optics . o
algebra and cannot be simultaneously diagonalized. The only AN interesting intermediate case betwe@nand (ii) is
candidate of the subdecoherent cod€4sn . ker L” . In- when the register is part|t|one_d in clusters such _that in eac_h
deed the Lindblad operators satisfy relat(éjla from ‘which  cluster the cells are coupled in the same way with the envi-
one derives that the only allowed eigenvalu'e\&o The ronment and different clusters are far enough to feel corre-

. : lated environments. In other terms, lif(L) is the typical
. D
E;OS?; Ics;f?-[S f?'LOVTSE[%S_]'EthE{;E‘é}i:;?Ee agfg,{,g)]enssitr?éis intracluster (interclustey distance, we are assuminggé,
r (AR|Ei)=Ej|Ei), Eiy1=E;, D=07).

+ A (L>¢&.). More formally we assume that there exists a parti-
th+eL are raising ope_r:'ito_rs over the spe_ctrunh-lc_;@c one has tion {C)\};\\Azl of the cell index seNy, such that
L,|E)x|E;,), wherei">i, Ei=E+e [in particular the iyt 1 it j jeC,, 0 otherwise. The Lindblad op-
maximum eigenvalue vectorlEp) is annihilated by erators are the cluster one<= N;l’zzi o A”, with N,

Ly, (Vu)]. Let [¢)=S=2,c|E;) be an eigenvector of ; . . M
with eigenvalue A#0; then one must havel*|y) being the number cells in thath cluster C=®Z,L;).
! I = = i i
:EPJllCiLﬂEi>=7\EP=1Ci|Ei> hencec,=0. Acting on| ) \ell\r/%e(lr:;\/l N andM =1 we recover respectively the cagés
. . . —+ . _ .
Vi"th Increasing powers af, one analogously f'ndEZ_C?* For a clustered register the dynamics is invariant under
= -I._.t_sz_ Ot,htheLfefolfe 'g\?&o one \;V%Ug’ h;éﬁ’lﬂz—o-th the action of the groug=Sp, X - XSy, CSy; at the rep-

e e the Lie algebra generated by s (i.e., the . . . L B _

minimal subspace of operators closed under commutatioIICa symmetric point(cell limit) one hasg=Sy (G={1}).

. > . . . Zome comments are now in order. When the relati®n
containing{L ,},,) then the cod€ is nothing but thesinglet holds we see that both in the Hermitian and in the non-

sectorof L; each|y) e Cis a one-dimensional representation o mitian case the self-Hamiltonian leaves the code invari-

space ofL. Frﬁm the general form of the Lindblad operators gt heyertheless also in this rather special situation, due to
one hasCC @i, L; whereL; is the (local) Lie algebra gen-  he renormalizing termés) subdecoherence does not neces-

erated by the\’s. Generically one hag;= sl(d,C), there-  g4yjly imply noiselessness. The point is that H&)'s and

fore |f the aboVe inC|USi0n iS not Stl’iCt |t f0||OWS thﬂﬂ theA(i)’S in genera| cannot be diagona"zed Simu'taneous'y_

={0}, which has no use for quantum encoding. In order toThjs can be understood, for example, by looking at the ex-

obtain meaningful codes one has to impose constraints on tf]:ﬁicit form (7): in the matrix elementa (") appears a sum
algebraic structure generated by the Lindblad operators. Th !

Sver all the bath modes whereas in ti&™)'s only the
smaller L is the easier will be the task of findirgy repre- : . M .
sentation theorynontrivial C. Notice that, given such a sub- modes degenerate with the single cell eigenvaluare in

, > .~ _volved. On the other hand, we see, from E@ that the
decoherent code, ifi; belongs to the universal enveloping leading contribution toA(*) comes from the same bath
. ) . i
algebral/(L) thenC is also necessarily noiseless.

i ) i (+)
The matricesI{” and A" encode all the information modes involved inl;", therefore assuming tha;j ~ and

+ ) i
about the spatial correlations among the register cells inri(i ) ha_lve t.he same strgct_ure can be in many cases a good
duced by coupling with the bath. The actual form of thesg2PProximation. Wher_1 this is the case alfid; can be writ-
correlations dependsee Eq(7)] on the detailed form of the ten in terms of the Lmdblad_operr_altors, namely, each subde-
coupling functiongy,; , on the bath density of the states and coherent Cod€, is necessarily noiseless.
on temperature as well.

Leaving aside strongly model-dependent considerations
and in view of keeping the form of the ME here considered
as general as possible, in the following the matrices |n this section we consider the case in which the single-
'), A will be considered rather as priori data of the  cell operatorsA; in Eq. (5) are Hermitian. Although this case
problem defining the basic dynamical Ed). In other words  is essentially well known we think that it is worthwhile to
they are treated as parameters that have to be “engineeredinalyze it in that its exact solvability allows us to shed some
in order to realize an advantageous situation for quanturiight on the general features of the decoherence process of
encoding. In this context the bath coherence lenfiths  many replicas of a given system coupled with the same en-
better defined in relation to the spatial behavior ofﬂﬁjé). vironment. Here the ME is considered the starting point of
One can consider the following particular regimes, correthe analysis, we do not assume anpriori relation such as

IV. DECOHERENT COUPLING
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Eq. (3). For the time being we seHz=0. Let |a) +1/2. In case eved(*) is proportional to the unit matrix,

=|ay, ... ay) denote a simultaneous eigenvector of thethen the unitary transformatiofi8) becomes trivial, being
A’s with Afa)=ei|a),(i=1,...N). The operators sa?=N/4,(Va). For the initial state|yo)=2""23 |o),
|a)(a'| are eigenvectors of the Liouvillian uniform linear superposition of all the basis states, one can

obtain explicit analytical expressions for the linear entropy

L(la)(a'[)=W(a,a")a)(a'], (15  and the fidelity

W(a,a’)=i(HaHi—Ha’Hi)—Ha—a’||12~, S(t)=1—e "Nt cosh!(T1), 20
where 1817 =(B.MB) [M=AT=%,_.T F(t)=e TNt cosV(I/2t).
e End(C),8e CN]. Notice that|O||y is a seminorm only
if M=0, and a norm only if kel’={0}. Each state ovellz  Fort— o one findsF~2 N andé~1-2"", results that can
can be written in the form=2, /R, /|@)(a’|, therefore  pe immediately understood frop(=)=2"NS |o)(a]. Let

the general solution of Ed5) is us turn to the caséi). The operatoA=3;A; plays the role
of pointer observabld16]: the diagonal elements with re-
p(t)= > R, peW@a Mg\ a'|, (16)  Spect to its eigenstate basis of the density matrix do not
aa decohere, whereas the off-diagonal decays with a rate that is

] . ) ~_ proportional to their distances from the diagonal. Now
whereby one derives the following expressions for fidelitydim kerr=N-1, and the no-damping condition becomes
and linear entropy Si@j=3ia/ . This means that in that case the spd¢g

spanned by the sd,={|a):=N ,a;=a} is decoherence-
F(t)=2, |R,,[2eW(@aet, free. In passing we note that, sindes an extensive observ-
aa’ 1 able, at the replica symmetric point the maximum decay rate
(17 ~ able at
is O(N9).
5(0:1_2 |Raa'|2e29%W(a,a')t' In cas_e(iii) the matrixI'" is block constant andv— a’
wa! e ke, if £j_c a=2jcc @j(N\=1,... M). Now the rel-

By EQq. (15) the set of subdecoherent and noiseless solutiongvant operators are the cluster operalofs-, e, A the

of the Liouville Eq.(5) is obviously related to the properties States built over a simultaneous eigenspace of lthis
of the matricesA andT. First at all notice that from the €Vvolve in a noiseless way. As usual, the situation is best
second of Eqs(17), the imaginary terms in Eq15) play no exemplified by the qubit case. Let us assume that o7,

role in decoherencén the restricted meaningindeed they ~andN even. At the{.= point the most efficient noiseless
give rise to the unitary transformation encoding is obtained by building states over the eigenspace

$*=0. If I is partitioned in blocks ofm (even elements one

i a2 can encode in the subspace with zero clugtspin. Such a
Uas(t)=e MHR:; el a)(al. (18 code has dimension
It is straightforward to verify that the linear entropy is a d(M) = m \M 21)
monotonic nondecreasing function of time, indeed (M)= m/2)
-5(,{):22 |Rw,|2||a—a’||%20, (19) This encoding, withm=2 is essentially that proposed in

[14]. Until now we have assumed that the self-Hamiltonian
was vanishing. If this is not the case, one has that for an
the inequality following from the non-negativity &f. Cases initial noiseless preparation the state evolves infinitesimally
(i) and(ii) imply, from W(a,a)=0, that the diagonal states in a unitary fashion. For finite time th@ossibl¢ noncom-
p.=|a)(a| are fixed points of the Liouvillian evolution. mutativity betweerH , and the relevant Lindblagtell, clus-
Furthermore ifa—a’ € kerI', one has that the real part of ter, register operators, destroys the coherencepofWhen
W(a,a") vanishes. Casé) corresponds to a solution that relation (3) holds (e=0) Hz commutes with the Lindbald
one could obtain assuming that each cell is interacting wittoperators. Working in a basis that simultaneously diagonal-
its own independent environment. From E#j5) it follows izesHy and theA”’s one sees thatl ,(t) —exp(—itHy), the
that the maximum decay rate B(N). In case(i) kerI'  evolution will remain unitary for finite times; the initial pure
={0} and onlya=a" survives. If the single-cell eigenval- states never get mixed.

uesa; are nondegenerate the eigenspaf{é«;}) is one di-
mensional and therefore useless for quantum encoding. If
instead the a;'s are m;-fold degenerate, thend[«]

= dimH({e;}) =1L ;m;. The density matrix corresponding In this section we consider the case of non-Hermi#an
to |¢) e H({ei}) evolves according the unitary transforma- namely, the case when the relati(8) holds with >0. At
tion U, (t): these states are noiseless. The largest dimensiorero temperature the eigenvalu)eg are vanishing. On the
for the noiseless code H({«;}) is obtained for ¢; other hand sinc&(7)=0, \,=0,(V u) one can immediately
=ay, (Vi) whereay, is the single-cell eigenvalue with the check that the register enerdyz(t)= tr*[p(t)Hz] is a
maximum degeneracy. In the qubit case=o? and a;= monotonic nonincreasing function. Indeed

’
aa

V. DISSIPATIVE COUPLING
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) - From (i)—(iv) it follows that the Hilbert spac&t, splits
Er(t)= t[C(p)Hrl=—€eX N, (L L, p)<0, dynamically according the Clebsch-Gordan decomposition
a 22) of the n-fold tensor representation of @J:
He=8% eNTH(S), (23

where we have used the irrelevance of the Hamiltonian com- ;
ponent of L (that is tF(Hg,[H%,p])=0) the relation whereS,;=0 (Snin=21/2) if N is even(odd). The subspace
[LyL, 7 Hz]=0 [which follows from Eq.(3), which holds  #(S) is an irreducible s(2) module corresponding to the
for the Lindblad operators as wgland the non-negativity of total spin eigenvalu§(S+ 1), the latter occurring with mul-
operatord ;L , andp. As observed in Sec. Il in the present tiplicity
ié{sgz}.a subdecoherent code can be obtain€e:if, kel , . (25+1)N!

Restated in this formalism, the essence of the result of N (N/2+ S+ 1)1 (N2=9)!
Ref. [5] for the qubit case is that at th&.=c point the
Lindblad operatordand the renormalized self-Hamiltonjan
belong to anN-fold tensor representation of a semisimple
(dynamical Lie algebra, out of which a nontrividl can be
built whenN is large enough. In the cell limif) if one can
find a subspac& CH annihilated by bothA{™) and A{™)
thenC=C;®- - - ®Cy. An analog construction can be made
in the cluster limit. An important example is given by the
qubit case. One can design a register that supports noiseless +2FB+)(<¢| S S* |y)—|(y| St |¢>|2()2'6

(24)

The general state overH,(S) has the form p

=Syum=—sPmm/|SMY{SM'|,  where S?SM)=S(S

+1)|SM), SSMy=M|SM) (M=-S, ...,S) and analo-
gously for|SM’). For a pure state one has

() r=2T5 (¢l ST S |y =yl S [¥)]?),
(25)

encodings if one is able to builR in such a way thatiii) is

satisfied withm=4 qubits for a cluster. Then, according to

Ref.[5], a logical qubit can be encoded in each cluster. Itisin particular, if |)=|SM) one obtains ()1

important to note that the dimension Gfdecreases passing =1, c?(S, M)+I'{") C2(S, M), where C2(S, M)

from (ii) to (iii), and fromiii) to (i). =S(S+1)-M (M=1). Let us consider the zero-
In general one hak{[”)=T"(*)(i, ). The first-order ime  temperature casd’{")=0) when only the deexcitation pro-

scaler; is a functional ofl), depending orZ. The optimal  esses with strength proportionallt§ ) are active. Iff ) is
states, with respect to the storage reliability on short times

- = [ee}
are those that minimize this functional for a given bath co—ig\.,visl‘:igv ?é%zﬁpilg tsrhaéeggre.éﬁ Jéngh(éZénogee t?nizr;( A)t
herence length. Let us assume thigt=I'gy(i —]), whe+re finite temperature théexcitations terms weighted by'{")
7¢(Xx)—1, when {c—o and yg(x)— dyo, when £—0". re present as well. On the (& singlets |¢)eC=
The latter situation corresponds to the case in which each cel nn(0) N
is coupled with an independent bath, therefgtes (0c) ~ ©r=1 /t(0), one hasS |¢>—.S I’.M_O’ anld OHr )
interpolates between the independent bath lifitand the ~ =0; furthermore from the @) invariance ofHy, it follows
infinite coherence length bath ca@e. that the unitary part o maps the singlet sector onto itself,
namely, C is noiseless. From Eq24) it follows that the
minimum cluster size to encode a noiseless logical qubit is

A. Qubit case N=4. Defining (in obvious binary notationthe stategA)
Now we specialize to the=2 case:A" =0 . Let the ~=|001D+[1100, |B)=|0110+|1003, |C)=[1010
self-Hamiltonian be of the forn,=eS*+ H%, where the 0103, an orthonormal basis @ is given by
se_cond term i_s a qubit-qubit inter_action: In quantum compu- 10)=2"1 (|B)—|A))
tation applications such a term might arise, for example, dur- ' (27)
ing the gate processing. If we assume thdf, ,S*]=0 (« |1)=3"Y2(|C)—2"1 |A)—2"1 |B)).

=z,*) then Eq.(3) holds. Now we briefly recall the result

of Ref.[5] at the replica symmetric point. Wheg==, one |t 41 =0 these two states are energy degenerate; for nonva-

finds the following. e e nishing qubit-qubit interaction the degeneracy is lifted. For
(i) The total spin operatos”= (S*) +1/S",S7}, is a example, if

constant of the motion.
(i) Defining in the obvious way a8y actionT over the

density matrices manifol&, one hasT, L Tl =L, (Vo H%:J% {ofof+12(0] o] +oi o)} (29
€ SN) .

(iii) The Lie algebral generated by the Lindblad opera- is a Heisenberg coupling between nearest-neighbor qubits
tors S* is nothing but the global £0). arranged on a ring topology, one finds th@x and|1) are

(iv) Since at¢.=«= the coupling functiongy,; are as- energy eigenstates with eigenvalues respectively given by
sumed to bestrictly qubit independent also the Lamb-shift E,=J andE,;=—J. SinceH% is su2) invariant it is always
matricesAi(,-i) have constant entrigg.e., Ai(ji)=Agi)Vi ,J).  possible to choose the singlet) among its eigenvectors. It
The renormalizing term can then be written &1z  should be emphasized that theZusinglet sector is noise-
=Ay,S'S +AgS S". less for a wider class of ME’s, with Lindblad operat¢esmd
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FIG. 1. First-order time scale for the symmetric sta#é”™) FIG. 3. Linear entropy as a function of the time for t§&=0
=(S")?|0), and a singlet statdy=4 T'(i,j)=0.1e~-1I"¢, singlet and triplet stateN=2, T;=0.1e~ '~ il/¢).

self-Hamiltonian given by arbitrary functions of the global self-Hamiltonian renormalization. In Fig. 1 is reported the
operatorsS®, (a==*,z) [17]. Indeed if these operators have pehavior ofr,(&.) for aN=4 singlet and the highest-weight
the form su(2) vector belonging th&=2 multiplet. We see that for a

" wide range of¢. the decoherence time of the singlet state is

X=c, I+F({S"), (29 much larger than that of the symmetric state.

. . : . In Figs. 2 and 3 is compared the behavior of the fidelity
where F_ is an arbitrary operator-valued analyt_lc function, and linear entropy of th&l=2 singlet and §=0) triplet
then—since F |¢)=0,(V |¢)eCy)—one obtains Xle,  ciates at finitet.. Figures 4 and 5 show, as a function of
=Cq |. This latter condition is sufficient to preserve the Sub'time' the difference of f|de||ty and linear entropy, between
decoherence afy . Another way to understand this result is gne of theN=4 singlets and the symmetric stat&%(?0)
that the operators described by H@9) coincide with the  c4/,(2), for various bath coherence length. These simple
Sy-invariant sector (symmetric subspageof End(Hz).  calculations strongly suggest that theiseless encoding at
SinceCy is an irreducibleSy module from the Schur lemma jnfinite coherence length remains, for sufficiently lage
it follows thatX|CNocl. Turning back to the general cage more robust than all other states.
€(0,»), if N=2, for the initial state11), [l |), |¢ts)

—_n—1/2 i i 1
=27 (|11)%=]lT1)), one immediately finds B. Gauge transformation

Ale=2riH=1 #Ale=eriH1, We end this section by showing that for a class of non-
(30 trivial qubit couplings, connected to the limits) and (iii)
(O ={2()+T{ )1+ v} via a local gauge transformation, it is possible to build sub-

spaces annihilated by the dissipative component of the Liou-

These equations show that in the generic ca¥é)# 0) for villian. This transformation is a generalization of the one
finite coherence length all the first-order decoherence times considered in[11]. Here we give proof for the replica-

are finite as well, whereas faf— the singletrj(¢) di- syn;manc case, the cluster 06156;1 b?lin)gl_ a (Sir)ali?%];g%?]rd gen-
verges with ¢&. Of course for this latter state, since €ralization. Let us suppose thdti’=I""e™ "%,
Le—(|#5)(47) =0, all the r,’s diverge. where ') e R,: Ny—R. This kind of situation is not

In the general case when the matrid&$) are not block ~completely fictitious: forg,;~e™*"i when there is just one
constant one has to resort to numerical calculations. We haath modek degenerate with the qubit energy from the
solved Eq.(4) by direct numerical integration in the qubit first of Egs.(7) follows thatI"{”)~e'(i =" Introducing the
case withHz= e S%. Rather than using the forii¥) for the  operatorsL =3[, e'*WA7 the dissipative Liouvillian has
ME parameters, we have chosen a phenomenological parartike canonical forn(9) with {)\Z}z{l“(")} and Lindblad op-
etrization such ad"{")=T§") e I"1/% and neglected the

T T T T T T
singlet —
triplet - - - -

—

B

=
COCOooCoo0o0O
O = oW DT N 00 o -
LI B B B R W

5 10 15 20 25 30 35 40 45 50
t

<

FIG. 4. Fidelity difference, betweenNi=4 singlet and the state
FIG. 2. Fidelity as a function of the time for tH&#=0 singlet (S*)2|OR, for different bath coherence lengthg (I'g

and triplet state =2, ['y=0.1e~ I 7il/é) =0.1e lI-1l%),
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FIG. 5. Linear entropy difference, between the sts8&)¢|0),
and aN=4 singlet, for different bath coherence lengthy(I'y
=0.1e7 -1l

erators given by thé 3's. The operatorglL 3}, spanning a
Lie algebra.A, isomorphic to.A generated byL},, are
obtained from the latter by means of tHecal) U(1) gauge
transformation:

T,: EndHzg)— End Hz): X—U XU},

N
Ud,:exp{ielz ¢(j)Hf]E®}\‘—1U(1)j, (31
j=i

where we recall thaH is the single-cell Hamiltonian ful-
filling relation Eq. (3) with the A;'s. The unitary operator
U e End(Hy) maps the singlet sectcrof A onto the one of
A,. Thereforepe C=L(T,p)=0. The new codeJ 4(C) is
noiseless depending on the transformation propertigs;of
underT,. If Hz=T,(Hz) (local gauge invariangsit fol-
lows thatU 4(C) is noiseless undek , if and only if C is
noiseless under 4 (replica independent casé.et us con-
sider, for example, the qubit case with=2 and ¢(j)

=¢j(deR) andH,=€S" The noiseless state is now the

singlet [¢r)=2"Y4(|1|)—|11)). It is mapped byT, onto
Uylwe)=2"Y2(e'*21|)—e "®2| 1)), in particular for ¢
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an irreversible component describing the decay processes.
The latter can be cast in canonical Lindblad form by diago-
nalizing theN x N matricesI'™, which contain all informa-

tion about the effective spatial structure &f in the given
environment state. Three situations that appear to be relevant
for quantum encoding have been discusg@dall the cells

are coupled with the environment in the same w@y, dif-
ferent cells feel different environmentsij ) the register can

be decomposed in uncorrelated clusters, such that the cells
within each cluster satisf{i). In each of these cases one can
show the existence of subspadgsuch that an initial pure
preparation ¢) e C has vanishing linear entropy production
rate. The states i€ therefore—on a short time scale—
maintain quantum coherenc@:can be thought of as a sub-
decoherent code. The latter is obtained as a simultaneous
eigenspacé€ of the Lindblad operatork ,, given by linear
functions of theA’s associated with the register cells. De-
pending on the structure of the Lie algebfagenerated by

the L,’s one has to face rather different situations. Por
Hermitian £ is Abelian, the Hilbert space splits in a direct
sum of the simultaneous eigenspaceshe ME is exactly
solvable. Analytical expressions for decoherence rates can be
found in the qubit case. In the non-Hermitian c#se non-
Abelian, the Hilbert space splits according to therreps,C

is the common null space of the,’s (singlet sector off).

The latter exists, according to Rdb], if the size of the
clusters satisfyindi) is large enough. For the qubit case the
minimum cluster size required to encode one logical qubit is
N=4: a register made d¥l clusters of four qubit each sup-
ports a 2'-dimensional subdecoherent spaceC i left in-
variant by the renormalized self-Hamiltoniaty, of R the

time evolution of the subdecoherent states is unitary: the
code is noiseless. In this case the relevant algebfa gen-
erated by the Lindblad operatoptus Hy. Furthermore we
have shown that there exist cases with nontrivial cell depen-
dence that can be mapped orito and (iii) by a suitable
local gauge transformation. The degree of stability of the
resulting codes depends on the covariance properties of the

=, one hadl ;| ¢/s)=|4y), that is the triplet state becomes renormalized self-Hamiltonian. When thE)'s are not
the noiseless one. Fefe (0,7) one has a smooth interpola- plock diagonal one has to resort to numerical calculations.
tion from [) to [¢). It should be emphasized that even if we have integrated the dissipative ME of a qubit register.
T4(Hg)=Hz, generally one has that the many-qubit correc-The results show that for a wide range of bath coherence
tion SHy, is not invariant. Nevertheless the Hamiltonian partiengths £, the singlet stategnoiseless at.=x) are more

of L does not affect the first-order decoherence ratg({)
is subdecoherent.

VI. CONCLUSIONS

robust, namely, their entropy increases more slowly on the
time scale of decoherence.

The problems related to the practical realizations of the
registers satisfying the constraints for the suggested encod-
ings, the preparation as well as the gate manipulations of the

In this paper we have studied a model of quantum registeggge words necessary in the quantum computation applica-

R with N cells made of replicas of d-dimensional quantum tions, are of course open issues that deserve further investi-
system. The registeR is coupled with the environment, gations.

modeled by a thermal bath of harmonic oscillators, through
single-cell operatorg\;. The latter are step operators over
the spectrum of the cell Hamiltonian. The reduced dynamics
of R is studied by a master equati¢NIE) obtained in the
Born-Markov approximation. The ME provides a very natu- The author thanks M. Rasetti for stimulating discussions
ral and powerful tool to discuss, in a unified way, the variousand a careful reading of the manuscript and G. M. Palma and
aspects of decoherence and dissipation phenomena induc€d Macchiavello for comments and suggestions. Thanks are
in R by the bath. The effect of the environment splits intodue to C. Calandra and G. Santoro for providing access to
two contributions: a renormalization of the register self-CICAIA of Modena University, and to Elsag-Bailey for fi-
Hamiltonian, that makes the cells effectively interacting, andhancial support.

ACKNOWLEDGMENTS



3284 PAOLO ZANARDI 57

[1] For reviews, see D. P. DiVincenzo, Scier@g0, 255 (1995; [10] Dynamical Groups and Spectrum Generating Algebeaited

A. Ekert and R. Josza, Rev. Mod. Phg& 733(1996. by A. Bohm, Y. Neman, and A. O. BarufWorld Scientific,
[2] E. B. Davies,Quantum Theory of Open Systef#sademic Singapore, 1988
Press, London, 1976 [11] R. Dicke, Phys. Rev93, 99 (1954.

[3] W. G. Unruh, Phys. Rev. A1, 992(1995; P. W Shor, W.H.  [12] G. Lindblad, Commun. Math. Phyd8, 119(1976.
Zurek, I. L. Chuang, and R. Laflamme, Scienzé0 1633  [13]J. I. Kim, M. C. Nemes, A. F. R. de Toledo Piza, and H. E.

(1995. Borges, Phys. Rev. Let?.7, 207 (19986.
[4] P. W. Shor, Phys. Rev. A2, 2493(1995; A. Ekertand C.  [14] | Duan and G. Guo, e-print quant-ph/9703036; e-print
Macchiavello, Phys. Rev. A7, 2585(1996. quant-ph/9703040.

[5] P. Zanardi and M. Rasetti, Phys. Rev. L&, 3306(1997). [15] This result also follows simply by observing in view of E§)
[6] G. Palma, K. Suominen, and A. Ekert, Proc. R. Soc. London, _ . . . o .
and the finite-dimensionality dftr, theL;’s must be nilpo-

Ser. A452 567 (1996. tent

[7JL. Duan and G. Guo, e-print quant-ph/9612003. [16] W. H. Zurek, Phys. Rev. [24, 1516(1981); 26, 1862(1982.

[8] P. Zanardi, Phys. Rev. A6, 4445(1997. ) . . o
[9] For a review, see M. Gross and S. Haroche, Phys. 8&801 [17] More technically it suffices that thej’s andHy, belong to the
' ' N-fold tensor representation of the universal enveloping alge-

(1982; A. Crubellier, S. Libermann, D. Pavolini, and P. Pillet,
J. Phys. B18, 3811(1985. brat(su(2)).



