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Dissipation and decoherence in a quantum register
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A model for a quantum registerR made ofN replicas of ad-dimensional quantum system~cell! coupled
with the environment is studied by means of a Born-Markov master equation~ME!. Dissipation and decoher-
ence are discussed in various cases in which a subdecoherent encoding can be rigorously found. For the
quantum-bit case (d52) we have solved, for smallN, the ME by numerical direct integration and studied, as
a function of the coherence lengthjc of the bath, fidelity and decoherence rates of states of the register. For
large enoughjc the singlet states of the global su~2! pseudo spin algebra of the register~noiseless atjc5`) are
shown to have a much smaller decoherence rates than the rest of the Hilbert space.@S1050-2947~98!05705-9#

PACS number~s!: 03.65.Bz, 05.30.Fk
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I. INTRODUCTION

Preserving coherence in a quantum system is one of
most demanding features required to be able to take prac
advantage of the implementation of the objects of quan
information and quantum computation theory@1#. Indeed all
the additional power, with respect to the classical case, a
ing from the quantum nature of the information-process
device depends on the complex linear structure of the s
space of a quantum system and on the invariance of su
structure under~unitary! time evolution. The system is there
fore endowed with a massive intrinsic parallelism and
capability of exhibiting interference. Unfortunately all of th
holds only for closed quantum systems. Real systems a
unavoidably coupled with the environment in which they a
embedded, hence they have to be considered asopen sys-
tems, no matter how weak is the interaction. The relev
state manifold now has aconvex structure@2#; the dynamics
in general is no longer unitary and the interference patte
may disappear. This set of effects is known as thedecoher-
enceproblem@3#. The protection of quantum-encoded info
mation against environmental noise has been, up to n
mainly addressed in the framework of the so-callederror
correcting codes@4#. These are essentially schemes to e
code redundant information in such a way that it can
recovered also when~a few! ‘‘errors’’ due to external
sources have occurred. Such schemes are often based on
able measurement protocols that have to be performed
quently enough to keep the error level within the scope of
given encoding. Of course this implies that quantu
information-processing systems have to be coupled wit
classical measurement apparatus: even leaving aside th
vious practical difficulties, such a necessity naturally lea
at least, to a severe slowdown of the computational sp
More recently in@5# ~see also@6,7#! the idea has been pu
forward that, conceptually, a more efficient quantum st
protection can be realized by encoding the information
subspaces that the~nonunitary! dynamics makesintrinsically
more robust against the perturbation due to the environm
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Here the attitude is, in some sense, opposite to that at
basis of error correcting codes: now one aims to enc
states that cannot be easily corrupted rather than to look
states that can be easily corrected. In this approach one h
assume explicit models of system-environment interact
and try to design the various ingredients in such a way t
the algebraic-dynamical structure of the global system gi
rise to the stable subspaces one is looking for. Since
typical environment consists of infinitely many degrees
freedom a direct Hamiltonian approach to the problem is
the most suitable except for some simplified situations@8#. In
this paper we address the problem of dynamically sta
quantum encoding within a master equation formalism t
allows us to deal directly with the marginal dynamics of t
computational degrees of freedom. The relevant informat
about the environment is contained in a few parameters
pearing in the master equation itself. The system conside
is the model of aquantum register: N replicas of a given
finite-dimensional quantum system~the cell!. If the cell is
two dimensional one obtains anN–quantum bit~qubit! reg-
ister. The key feature of the existence of the subdecohe
codes is the possibility of partitioning the register in cluste
~possibly coinciding with a single cell or with the whol
register! such that the cells within each cluster are colle
tively perturbed by the environment. It is the dynamical sy
metry of the cluster that allows one to single out collecti
~entangled! states that, at least on a short time scale,
unaffected by the noise and therefore evolve unitarily. T
mechanism has a well-known counterpart in quantum op
given by the phenomenon ofsubradiance@9#.

The paper is organized as follows: in Sec. II we introdu
the model, in Sec. III are discussed the general feature
both the master equation and the subdecoherent codes
cases of purely dephasing and dissipative coupling with
environment are analyzed respectively in Secs. IV and
Section VI contains some conclusions.

II. THE MODEL

We call a systemR a quantum registerwith N d cells, if
R is composed byN replicas of ad-level system. The Hil-
3276 © 1998 The American Physical Society
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57 3277DISSIPATION AND DECOHERENCE IN A QUANTUM REGISTER
bert space is given byHR5 ^ i 51
N Hi , where Hi>Cd ( i

51, . . . ,N) is the singled-cell Hilbert space. In particular
if d52 one has anN-qubit register. The set of thestates
~density matrices! of R is

SR5$rP End~HR!:r>0, r5r†, trRr51%. ~1!

SR is not a linear subspace of End(HR) but a convex sub-
manifold. The register is coupled with an uncontrollable e
vironmentB ~from now on thebath!. The time evolution of
the states of the closed systemR1B is generated by a
Hamiltonian of the formH5HR1HB1HI . We now dis-
cuss the structure of each of these terms. The bath wil
considered as a single bosonic field, namely,HB
5(kvkbk

†bk describes a set of noninteracting linear oscil
tor ~field modes!. The self-HamiltonianHR , of R, is as-
sumed, for the time being, to be the sum of single-c
HamiltoniansHi

C ~i.e., the register is an array of noninterac
ing cells!. The register-bath interaction is given by the su
of the bath-cell interactions:

HI5(
kia

~gkia bk
†Ai

a1H.c.!. ~2!

Here theAi
a’s are single-cell operators whose action is no

trivial only on thei th tensor factor ofHR , representing the
various interaction channels through which thei th cell can
be coupled with the bath. Although this kind of situation c
be suitably handled by resorting to the notion of dynami
algebra@10#, in the following we shall assume that there
just one dominant interaction, the corresponding operator
ing Ai . As is well known, the generic effect ofHI on the
marginal dynamics ofR is to induce dissipation and deco
herence. The first effect, of course, consists in the irrev
ible loss of register energy into the bath. Decoherence
pure quantum effect consisting in the destruction of ph
coherence of the register states: due to the entanglement
the bath the initial pure preparations of the register beco
mixed in a very short time scale. The interplay between th
two phenomena is strictly related to the nature of the ope
tors $Ai%. Now we make another simplifying assumptio
supposing that theAi ’s are eigenvectors of the adjoint actio
of HR ,

@HR ,Ai #52eAi~ePR0
1!. ~3!

This means that ife.0, the necessarily non-Hermitian an
tracelessAi ’s (Ai

†’s! are the destruction~creation! operators
of elementary cell excitationsof HR . Notice that the energy
e does not depend on the cell indexi , in that we are consid-
ering replicas of the same physical system. If one consid
the zero-temperature case, in which only the bath vacuu
involved, the effect ofHI , therefore, will be that of letting
the register relax to theA vacuumuA0&, (Ai uA0&50,; i ) by
exciting the bath modes. On the other hand, ife50 the pos-
sibly HermitianAi ’s belong to a symmetry algebra ofHR ,
and no energy exchange occurs at all: the effect of regis
bath interaction is pure decoherence. A quantity that w
play an essential role in the following is thebath coherence
lengthjc , which, in a Hamiltonian approach, can be defin
as the spatial scale over which the coupling constantsgki
-
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[gk(i), have a non-negligible variation; whenjc5`, the
gki’s no longer depend on the qubit indexi . This limit will
be referred to as thereplica symmetricpoint, in that forjc
5`, the dynamics becomes invariant under the action of
symmetric groupSN of the cell permutations and only th
collective operatorsA5( iAi are effectively coupled with the
bath. This situation corresponds to the well-known Dic
limit of quantum optics@11#. To exemplify this situation let
us consider thejc5`, limit with Ai5s i

2 . In this case, as
far as the coupling with the environment is concerned,
relevant register operators areSa5( i 51

N s i
a ,(a56). Let

HR5eSz1HR
1 , whereHR

1 is a qubit-qubit interaction term
and suppose that the latter is su~2! invariant @~i.e.,
@HR

1 ,Sa#50, (a56,z)]; one then has the commutation re
lation @HR ,S6#56eS6. It follows that for large time the
register relaxes to the lowestSz eigenstate allowed by the
total spin conservation. IfHR

1 50, this amounts to a ground
state relaxation, whereas ife50 and HR

1 Þ0, there is no
energy loss. This example will be discussed with greater
tail in Sec. V.

III. MASTER EQUATION

The quantum dynamics of the systemR1B is highly
nontrivial, and exact results are difficult to obtain. Neverth
less one is mostly interested in the register marginal dyn
ics ~i.e., forgetting about the bath degrees of freedom! in
order to study stability against external noise of t
information-coding states ofR. This issue can be conve
niently addressed in the framework of the Liouville–vo
Neumann equation for open systems, the so-called ma
equation~ME!. Following the standard Born-Markov schem
where one traces out the bath degrees of freedom, whic
assumed to be in the staterB , one obtains a closed equatio
for the marginal density matrix ofR, of the form

ṙ5L ~r![~ i adHR8 1L̃ !~r!, ~4!

where as usual adH(r)[@r,H#, denotes the adjoint action
of H. The superoperatorL is called the Liouvillian. The
action of the non-Hamiltonian~dissipative! part is

L̃ ~r!5 (
i j 50

N21 H G i j
~2 !AirAj

†2
G j i

~2 !

2
~Ai

†Ajr1rAi
†Aj !

1G i j
~1 !Ai

†rAj2
G j i

~1 !

2
~AiAj

†r1rAiAj
†!J , ~5!

where theG i j
(6)’s are temperature-dependent coupling co

stants containing all relevant information about the ba
They are respectively associated with the process of dee
tation and excitation of the qubit system. AtT50, one has
G i j

(1)50. The renormalized HamiltonianHR8 5HR1dHR ,
where, by introducing the Lamb-shift parametersD i j

(6) ,

dHR5(
i j

~D i j
~2 !Ai

†Aj1D j i
~1 !AiAj

†!. ~6!

At zero temperature the excitation termsD i j
(1) are vanishing.

Notice that these terms make the cells interacting e
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3278 57PAOLO ZANARDI
thoughHR is a free-cell Hamiltonian. On the other hand,
follows from relation ~3! that @dHR ,HR#50; this means
that, in this model, the Lamb shift terms are not respons
for additional register energy loss, but they are a source
dephasing. Letnk5 trB(b†bkrB) be the mean occupatio
number of the modek in the initial ~thermal! bath staterB .
The explicit form for the coefficients appearing in the M
~4! is

G i j
~6 !52p(

k
gkiḡk j@nk1u~7 !#d~vk2e!,

~7!

D i j
~6 !5P(

k

gkiḡk j

vk2e
@nk1u~7 !#.

u is the customary Heaviside function, and P denotes
principal part. From these relations it follows thatG(6) and
D(6) are Hermitian. FurthermoreG(6)>0 andG(2)>G(1).
It is important to notice that the assumption~3! plays an
essential role in the derivation of the ME, in that it allow
one to move to the interaction picture~with respect toHR)
Ai→Aie

2 i et. This is necessary in order to separate the~fast!
dynamics generated by the self-Hamiltonian from the~slow!
one generated by the coupling with the bath. When only
collective cell-operatorsA are coupled with the bath,HR has
to satisfy condition~3! only with respect to them. Given suc
HR one can obtain a family of new register Hamiltonian
fulfilling the same constraint simply by adding terms co
muting with $A,A†%. Introducing the notationAi

s5u
(2s)Ai1u(s)Ai

† , Eq. ~5! can be cast in the compact form

L̃ ~r!5
1

2 (
i j ,s56

G i j
~s!~2Ai

srAj
2s2$Aj

2sAi
s ,r%!. ~8!

Diagonalizing the Hermitian matricesG(s)5iG i j
(s)i (s56)

one obtains the following canonical form for the dissipati
part of the Liouvillian@12#:

L̃ ~r!5
1

2 (
m,s56

lm
s~@Lm

sr,Lm
2s#1@Lm

s ,rLm
2s#!, ~9!

where $lm
s% are the eigenvalues ofG(s). Moreover Lm

s

5( iui
mAi

s , ui
m denoting the components of the eigenvect

of G(s). TheLm
s ’s will be referred to as the Lindblad opera

tors. Given an initial pure preparationuc0& of the register,
one definesF(t)[^c0ur(t)uc0& fidelity. Such a quantity
measures the degree of similarity with the initial preparat
that a state maintains during its time evolution. Anoth
quantity that one introduces in order to study the quant
coherence loss due to the bath isd(t)5tr@r(t)2r(t)2#,
called linear entropy~or idempotency deficit!. This quantity
shares with the von Neumann entropyS52trr ln r, the fun-
damental propertyd@r#50⇔r25r ~i.e., they both vanish if
r is a pure state!. On the other hand, since the linear entro
does not involve transcendent operatorial functions, it
much simpler to evaluate thanS. To characterize the degre
of stability of the states it is useful to consider the sho
times expansion
le
of

e

e

,
-

s
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m

s

-

d~ t !5d~0!1 (
n51

`
1

n! S t

tn
D n

. ~10!

In the followingtn (tn
21) will be referred to as thenth-order

decoherence time~rate!. One straightforwardly finds

1/tn
n52 trRH (

k50

n S n

kD Ln2k~r!L k~r!J ~n>1!. ~11!

Since in the followingt1 will play a major role, here we
report explicitly the first decoherence rate

1

t1
522 tr$rL̃ ~r!%. ~12!

In particular, for a pure initial preparationr5uc&^cu, one
hasd(0)50 and

t1
21@ uc&] 52 (

m,s56
lm

s~^cuLm
2sLm

s uc&2u^cuLm
s uc&u2!,

~13!

whereby one notices that the Hamiltonian component of
Liouvillian does not contribute to the first-order decoheren
time @this comes from trR$r ad HR8 (r)%50]. Of course
these expressions obtained within the ME equation form
ism ~which relies on the Born-Markov assumption! differ
from the ones that one could get by the exact temporal e
lution induced by the interaction Hamiltonian~2! ~see, for
example@13,14#!. Nevertheless, as far as the issue of co
stability classification is concerned, this is not crucial in th
the ~exact! first order decoherence rate 1/t1

ex is vanishing for
the pure initial state andt2

ex essentially corresponds tot1 .

A. Codes

The ME with initial conditionr has the formal solution
r(t)5etL(r), obtained by exponentiation of the Liouvill
superoperatorL . Thestationarysolutionsr(t)5r are there-
fore the states belonging to kerL , where kerL5$r
PEnd(HR):L (r)50%. When L̃ (r)50 it follows, from Eq.
~13!, that d(t)5O(t2) @whereas for the fidelity one find
F(t)512O(t2)]. Such a state will be calledsubdecoherent.
In general the adjoint action ofHR maps subdecoheren
states onto states such thatL̃ (r)Þ0; but whenSRù ker L̃ is
adHR8 invariant the Liouvillian evolution of each stater

P ker L̃ becomes unitary:r(t)5exp(2iHR8 t)r exp(iHR8 t).
In particular one hasd(t)50,;t.0 ~i.e., tn

2150,;n). This
kind of state will be callednoiseless.A subspaceC,HR
such that each density matrix over it is a subdecohe
~noiseless! state will be referred to as a subdecohere
~noiseless! code.

Let us assumeuc& is subdecoherent. First of all we notic
that due to non-negativity of matricesG(s) and from the
Schwartz inequality, each term of the sum in Eq.~13! is
non-negative. Therefore fromt1

21@ uc&] 50 it follows that
iLm

s uc&i25u^cuLm
s uc&u2,(;m,s), which in turn impliesuc&

to be a simultaneous eigenvector ofall the Lindblad opera-
tors. Conversely ifuc& is a simultaneous eigenvector of th
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57 3279DISSIPATION AND DECOHERENCE IN A QUANTUM REGISTER
Lm
s ’s then the subdecoherence constraintt1

2150 is trivially
fulfilled. In other words a necessary and sufficient condit
for the existence of a subdecoherent code is the existenc
a simultaneous eigenspace of all Lindblad operatorsLm

s :

Ca5$uc&PHR :Lm
s uc&5am

s uc&,;m,s%. ~14!

The greaterd@a#[ dim Ca is the more efficient the encod
ing. It is obvious that one has two quite different situatio
depending on whether or not theLm

s ’s are Hermitian. In fact,
if Lm

s5(Lm
s)† one has that the Lindblad operators commu

@Lm
s ,Ln

t #5( i j ui
suj

t@Ai ,Aj #50; then there exists a nontrivia
Ca , furthermoreHR5 % aCa . On the other hand, ifLm

s

Þ(Lm
s)† the Lindblad operators no longer span an abel

algebra and cannot be simultaneously diagonalized. The
candidate of the subdecoherent code isC5ùms ker Lm

s . In-
deed the Lindblad operators satisfy relation~3!, from which
one derives that the only allowed eigenvalue islm

s50. The
proof is as follows@15#: let $uEi&% i 51

D be aHR eigenstates
basis ofHR (HRuEi&5Ei uEi&, Ei 11>Ei , D5dN). Since
theLm

1 are raising operators over the spectrum ofHR one has
Lm

1uEi&}uEi 8&, where i 8. i , Ei 85Ei1e @in particular the
maximum eigenvalue vectoruED& is annihilated by
Lm

1 ,(;m)]. Let uc&5( i 51
D ci uEi& be an eigenvector ofLm

1

with eigenvalue lÞ0; then one must haveLm
1uc&

5( i 51
D21ciLm

1uEi&5l( i 51
D ci uEi& hencec150. Acting onuc&

with increasing powers ofLm
1 one analogously findsc25c3

5•••5cD50, therefore iflÞ0 one would haveuc&50.
Let L be the Lie algebra generated by theLm

s ’s ~i.e., the
minimal subspace of operators closed under commuta
containing$Lm

s%ms) then the codeC is nothing but thesinglet
sectorof L; eachuc&PC is a one-dimensional representatio
space ofL. From the general form of the Lindblad operato
one hasL, % i 51

N Li whereLi is the~local! Lie algebra gen-
erated by theAi

s’s. Generically one hasLi> sl(d,C), there-
fore if the above inclusion is not strict it follows thatC
5$0%, which has no use for quantum encoding. In order
obtain meaningful codes one has to impose constraints on
algebraic structure generated by the Lindblad operators.
smallerL is the easier will be the task of finding~by repre-
sentation theory! nontrivial C. Notice that, given such a sub
decoherent code, ifHR8 belongs to the universal envelopin
algebraU(L) thenC is also necessarily noiseless.

The matricesGi j
(s) and Di j

(s) encode all the information
about the spatial correlations among the register cells
duced by coupling with the bath. The actual form of the
correlations depends@see Eq.~7!# on the detailed form of the
coupling functionsgki , on the bath density of the states a
on temperature as well.

Leaving aside strongly model-dependent considerati
and in view of keeping the form of the ME here consider
as general as possible, in the following the matric
G(6),D(6) will be considered rather asa priori data of the
problem defining the basic dynamical Eq.~4!. In other words
they are treated as parameters that have to be ‘‘enginee
in order to realize an advantageous situation for quan
encoding. In this context the bath coherence lengthjc is
better defined in relation to the spatial behavior of theG i j

(6) .
One can consider the following particular regimes, cor
n
of

,

,
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n
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he
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e
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s

d’’
m

-

sponding to different ‘‘effective’’ topologies ofR. It is just
from these topologies that constraints on the algebraic st
ture arise.

~i! Gi j 5Gd i j ,(; i , j ): this is the cell limit; the decoher
ence process occurs independently in each cell. The Lind
operators coincide with theAi

s’s (L5 % i 51
N Li).

~ii ! Gi j 5G(; i , j ): this is the replica symmetric point; th
decoherence is collective. The matricesG(s) have constant
entries, the only nonzero eigenvalue isN and the correspond
ing Lindblad operators are given byL65N21/2( iAi

6 (L
>Li).

The limit ~i! is the one usually considered in error corre
tion literature. The case~ii ! corresponds to the so-calle
Dicke limit of quantum optics

An interesting intermediate case between~i! and ~ii ! is
when the register is partitioned in clusters such that in e
cluster the cells are coupled in the same way with the en
ronment and different clusters are far enough to feel co
lated environments. In other terms, ifl (L) is the typical
intracluster ~intercluster! distance, we are assumingl !jc
(L@jc). More formally we assume that there exists a pa
tion $Cl%l51

M of the cell index setNN , such that
~iii ! G i j 5G0 if i , j PCl , 0 otherwise. The Lindblad op

erators are the cluster onesLl
s5Nl

21/2( i PCl
Ai

s , with Nl

being the number cells in thelth cluster (L> % i 51
M Li).

WhenM5N andM51 we recover respectively the cases~i!
and ~ii !.

For a clustered register the dynamics is invariant un
the action of the groupG[Sm1

3•••3SmM
,SN ; at the rep-

lica symmetric point~cell limit! one hasG5SN (G5$1%).
Some comments are now in order. When the relation~3!
holds we see that both in the Hermitian and in the no
Hermitian case the self-Hamiltonian leaves the code inv
ant; nevertheless also in this rather special situation, du
the renormalizing terms~6! subdecoherence does not nece
sarily imply noiselessness. The point is that theG(6)’s and
theD(6)’s in general cannot be diagonalized simultaneous
This can be understood, for example, by looking at the
plicit form ~7!: in the matrix elementsD i j

(6) appears a sum
over all the bath modes whereas in theG i j

(6)’s only the
modes degenerate with the single cell eigenvaluee are in-
volved. On the other hand, we see, from Eq.~7! that the
leading contribution toD i j

(6) comes from the same bat
modes involved inG i j

(6) , therefore assuming thatD i j
(6) and

G i j
(6) have the same structure can be in many cases a g

approximation. When this is the case alsodHR can be writ-
ten in terms of the Lindblad operators, namely, each sub
coherent codeCa is necessarily noiseless.

IV. DECOHERENT COUPLING

In this section we consider the case in which the sing
cell operatorsAi in Eq. ~5! are Hermitian. Although this cas
is essentially well known we think that it is worthwhile t
analyze it in that its exact solvability allows us to shed so
light on the general features of the decoherence proces
many replicas of a given system coupled with the same
vironment. Here the ME is considered the starting point
the analysis, we do not assume anya priori relation such as
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3280 57PAOLO ZANARDI
Eq. ~3!. For the time being we setHR50. Let ua&
[ua1 , . . . ,aN& denote a simultaneous eigenvector of t
Ai ’s with Ai ua&5a i ua&,(i 51, . . . ,N). The operators
ua&^a8u are eigenvectors of the Liouvillian

L ~ ua&^a8u!5W~a,a8!ua&^a8u,
~15!

W~a,a8!5 i ~ iaiD
2 2ia8iD

2 !2ia2a8iG
2 ,

where ibiM
2 5^b,Mb& @M5D,G[(s56G(s)

P End(CN),bPCN#. Notice thatisiM is a seminorm only
if M>0, and a norm only if kerG5$0%. Each state overHR
can be written in the formr5(a,a8Ra,a8ua&^a8u, therefore
the general solution of Eq.~5! is

r~ t !5 (
a,a8

Ra,a8e
W~a,a8!tua&^a8u, ~16!

whereby one derives the following expressions for fide
and linear entropy

F~ t !5(
aa8

uRaa8u
2eW~a,a8!t,

~17!

d~ t !512(
aa8

uRaa8u
2e2 R W~a,a8!t.

By Eq. ~15! the set of subdecoherent and noiseless solut
of the Liouville Eq.~5! is obviously related to the propertie
of the matricesD and G. First at all notice that from the
second of Eqs.~17!, the imaginary terms in Eq.~15! play no
role in decoherence~in the restricted meaning!: indeed they
give rise to the unitary transformation

UD~ t !5e2 i tdHR5(
a

ei iaiD
2 tua&^au. ~18!

It is straightforward to verify that the linear entropy is
monotonic nondecreasing function of time, indeed

ḋ~ t !52(
aa8

uRaa8u
2ia2a8iG

2>0, ~19!

the inequality following from the non-negativity ofG. Cases
~i! and ~ii ! imply, from W(a,a)50, that the diagonal state
ra[ua&^au are fixed points of the Liouvillian evolution
Furthermore ifa2a8P ker G, one has that the real part o
W(a,a8) vanishes. Case~i! corresponds to a solution tha
one could obtain assuming that each cell is interacting w
its own independent environment. From Eq.~15! it follows
that the maximum decay rate isO(N). In case~i! ker G
5$0% and onlya5a8 survives. If the single-cell eigenval
uesa i are nondegenerate the eigenspaceH($a i%) is one di-
mensional and therefore useless for quantum encoding
instead the a i ’s are mi-fold degenerate, thend@a#
[ dimH($a i%)5) i 51

N mi . The density matrix correspondin
to uc&PH($a i%) evolves according the unitary transform
tion UD(t): these states are noiseless. The largest dimen
for the noiseless code H($a i%) is obtained for a i
5aM ,(; i ) whereaM is the single-cell eigenvalue with th
maximum degeneracy. In the qubit caseAi5s i

z and a i5
s

h

If

on

61/2. In case evenD(6) is proportional to the unit matrix,
then the unitary transformation~18! becomes trivial, being
( ia i

25N/4,(;a). For the initial stateuc0&522N/2(sus&,
uniform linear superposition of all the basis states, one
obtain explicit analytical expressions for the linear entro
and the fidelity

d~ t !512e2GNt coshN~Gt !,
~20!

F~ t !5e2G/2Nt coshN~G/2t !.

For t→` one findsF;22N andd;1222N, results that can
be immediately understood fromr(`)522N(sus&^su. Let
us turn to the case~ii !. The operatorA5( iAi plays the role
of pointer observable@16#: the diagonal elements with re
spect to its eigenstate basis of the density matrix do
decohere, whereas the off-diagonal decays with a rate th
proportional to their distances from the diagonal. No
dim ker G5N21, and the no-damping condition becom
( ia i5( ia i8 . This means that in that case the spaceHa

spanned by the setBa5$ua&:( i 51
N a i5a% is decoherence-

free. In passing we note that, sinceA is an extensive observ
able, at the replica symmetric point the maximum decay r
is O(N2).

In case~iii ! the matrix G is block constant anda2a8
P kerG, if ( j PCl

a5( j PCl
a j8(l51, . . . ,M ). Now the rel-

evant operators are the cluster operatorsLl5( j PCl
Ai , the

states built over a simultaneous eigenspace of theLl’s
evolve in a noiseless way. As usual, the situation is b
exemplified by the qubit case. Let us assume thatAi5s i

z ,
andN even. At thejc5` point the most efficient noiseles
encoding is obtained by building states over the eigensp
Sz50. If G is partitioned in blocks ofm ~even! elements one
can encode in the subspace with zero clusterz spin. Such a
code has dimension

d~M !5S m

m/2D
M

. ~21!

This encoding, withm52 is essentially that proposed i
@14#. Until now we have assumed that the self-Hamiltoni
was vanishing. If this is not the case, one has that for
initial noiseless preparation the state evolves infinitesima
in a unitary fashion. For finite time the~possible! noncom-
mutativity betweenHR and the relevant Lindblad~cell, clus-
ter, register! operators, destroys the coherence ofr. When
relation ~3! holds (e50) HR commutes with the Lindbald
operators. Working in a basis that simultaneously diagon
izesHR and theAi

s’s one sees thatUD(t)→exp(2it HR), the
evolution will remain unitary for finite times; the initial pur
states never get mixed.

V. DISSIPATIVE COUPLING

In this section we consider the case of non-HermitianAi ;
namely, the case when the relation~3! holds with e.0. At
zero temperature the eigenvalueslm

1 are vanishing. On the
other hand sinceG(2)>0, lm

2>0,(;m) one can immediately
check that the register energyER(t)5 trR@r(t)HR# is a
monotonic nonincreasing function. Indeed
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57 3281DISSIPATION AND DECOHERENCE IN A QUANTUM REGISTER
ĖR~ t !5 trR@ L̃ ~r!HR#52e(
m

lm
2 trR~Lm

1Lm
2r!<0,

~22!

where we have used the irrelevance of the Hamiltonian c
ponent of L ~that is trR(HR ,@HR8 ,r#)50) the relation
@Lm

sLm
2s ,HR#50 @which follows from Eq.~3!, which holds

for the Lindblad operators as well#, and the non-negativity o
operatorsLm

1Lm
2 andr. As observed in Sec. III in the prese

case a subdecoherent code can be obtained ifC[ùm kerLm
Þ$0%.

Restated in this formalism, the essence of the resul
Ref. @5# for the qubit case is that at thejc5` point the
Lindblad operators~and the renormalized self-Hamiltonian!
belong to anN-fold tensor representation of a semisimp
~dynamical! Lie algebra, out of which a nontrivialC can be
built whenN is large enough. In the cell limit~i! if one can
find a subspaceCi,H annihilated by bothAi

(1) and Ai
(2)

thenC[C1^ •••^CN . An analog construction can be mad
in the cluster limit. An important example is given by th
qubit case. One can design a register that supports nois
encodings if one is able to buildR in such a way that~iii ! is
satisfied withm54 qubits for a cluster. Then, according
Ref. @5#, a logical qubit can be encoded in each cluster. I
important to note that the dimension ofC decreases passin
from ~ii ! to ~iii !, and from~iii ! to ~i!.

In general one hasG i j
(6)5G (6)( i , j ). The first-order time

scalet1 is a functional ofuc&, depending onj. The optimal
states, with respect to the storage reliability on short tim
are those that minimize this functional for a given bath c
herence length. Let us assume thatG i j 5G0gj( i 2 j ), where
gj(x)→1, when jc→` and gj(x)→dx,0 , when jc→01.
The latter situation corresponds to the case in which each
is coupled with an independent bath, thereforejcP(0,̀ )
interpolates between the independent bath limit~i! and the
infinite coherence length bath case~ii !.

A. Qubit case

Now we specialize to thed52 case:Ai
65s i

6 . Let the
self-Hamiltonian be of the formHR5eSz1HR

1 , where the
second term is a qubit-qubit interaction. In quantum com
tation applications such a term might arise, for example, d
ing the gate processing. If we assume that@HR

1 ,Sa#50 (a
5z,6) then Eq.~3! holds. Now we briefly recall the resu
of Ref. @5# at the replica symmetric point. Whenjc5`, one
finds the following.

~i! The total spin operatorS25(Sz)211/2$S1,S2%, is a
constant of the motion.

~ii ! Defining in the obvious way anSN actionT over the
density matrices manifoldSR , one hasTs L Ts

†5L , (;s
PSN).

~iii ! The Lie algebraL generated by the Lindblad opera
tors S6 is nothing but the global su~2!.

~iv! Since atjc5` the coupling functionsgki are as-
sumed to bestrictly qubit independent also the Lamb-sh
matricesD i j

(6) have constant entries~i.e., D i j
(6)5D0

(6); i , j ).
The renormalizing term can then be written asdHR
5D0

2S1S21D0
1S2S1.
-

of

ess

s

s,
-

ell

-
r-

From ~i!–~iv! it follows that the Hilbert spaceHR splits
dynamically according the Clebsch-Gordan decomposit
of the n-fold tensor representation of su~2!:

HR5 % S5Smin

N/2
% r 51

nN~S!Hr~S!, ~23!

whereSmin50 (Smin51/2) if N is even~odd!. The subspace
Hr(S) is an irreducible su~2! module corresponding to th
total spin eigenvalueS(S11), the latter occurring with mul-
tiplicity

nN~S!5
~2S11!N!

~N/21S11!! ~N/22S!!
. ~24!

The general state overHr(S) has the form r
5(M ,M852SrM ,M8uSM&^SM8u, where S2uSM&5S(S
11)uSM&, SzuSM&5M uSM& (M52S, . . . ,S) and analo-
gously for uSM8&. For a pure state one has

t1~`!2152 G0
~2 !~ ^cu S1 S2 uc&2u^cu S2 uc&u2!,

~25!

12 G0
~1 !~ ^cu S2 S1 uc&2u^cu S1 uc&u2!.

~26!

In particular, if uc&5uSM& one obtains (2t1)21

5G0 C2
2 (S, M )1G0

(1) C1
2 (S, M ), where C6

2 (S, M )
5S (S11)2M (M61). Let us consider the zero
temperature case (G0

(1)50) when only the deexcitation pro
cesses with strength proportional toG0

(2) are active. Ifuc& is
a lowest-weightspin state~i.e., S2uc&50), one hast1(`)
5`. This result is true for all decoherence timestn . At
finite temperature the~excitations! terms weighted byG0

(1)

are present as well. On the su~2! singlets uc&PC[
% r 51

nN(0)Hr(0), one hasS1uc&5S2uc&50, and dHR uc&
50; furthermore from the su~2! invariance ofHR

1 it follows
that the unitary part ofL maps the singlet sector onto itsel
namely, C is noiseless. From Eq.~24! it follows that the
minimum cluster size to encode a noiseless logical qubi
N54. Defining ~in obvious binary notation! the statesuA&
[u0011&1u1100&, uB&[u0110&1u1001&, uC&[u1010&
1u0101&, an orthonormal basis ofC is given by

u0&[221 ~ uB&2uA&),
~27!

u1&[321/2 ~ uC&2221 uA&2221 uB&).

If HR
1 50 these two states are energy degenerate; for no

nishing qubit-qubit interaction the degeneracy is lifted. F
example, if

HR
1 5J(̂

i j &
$s i

zs j
z11/2 ~s i

1 s j
21s i

2 s j
1!% ~28!

is a Heisenberg coupling between nearest-neighbor qu
arranged on a ring topology, one finds thatu0& and u1& are
energy eigenstates with eigenvalues respectively given
E05J andE152J. SinceHR

1 is su~2! invariant it is always
possible to choose the singletuc& among its eigenvectors. I
should be emphasized that the su~2! singlet sector is noise
less for a wider class of ME’s, with Lindblad operators~and
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3282 57PAOLO ZANARDI
self-Hamiltonian! given by arbitrary functions of the globa
operatorsSa, (a56,z) @17#. Indeed if these operators hav
the form

X5c1 I1F~$Sa%!, ~29!

where F is an arbitrary operator-valued analytic functio
then—since F uc&50,(; uc&PCN)—one obtains XuCN
5c1 I . This latter condition is sufficient to preserve the su
decoherence ofCN . Another way to understand this result
that the operators described by Eq.~29! coincide with the
SN-invariant sector ~symmetric subspace! of End(HR).
SinceCN is an irreducibleSN module from the Schur lemm
it follows that XuCN}I . Turning back to the general casej

P(0, `), if N52, for the initial statesu↑↑&, u↓↓&, uc t,s&
5221/2 (u↑↓&6u↓↑&), one immediately finds

t1
↑↑~j!5~2 G0

~2 !!21, t1
↓↓~j!5~2 G0

~1 !!21,
~30!

t1
t,s~j!5$2 ~G0

~2 !1G0
~1 !!@16gj~1!#%21.

These equations show that in the generic case (G (6)Þ0) for
finite coherence lengthj all the first-order decoherence time
are finite as well, whereas forj→` the singlett1

s(j) di-
verges with j. Of course for this latter state, sinc
L j5`(ucs&^csu)50, all thetn’s diverge.

In the general case when the matricesG(6) are not block
constant one has to resort to numerical calculations. We h
solved Eq.~4! by direct numerical integration in the qub
case withHR5e Sz. Rather than using the form~7! for the
ME parameters, we have chosen a phenomenological pa
etrization such asG i j

(6)5G0
(6) e2u i 2 j u/jc and neglected the

FIG. 1. First-order time scale for the symmetric stateucsym&
5(S1)2u0&, and a singlet state,N54 G( i , j )50.1e2u i 2 j u/j.

FIG. 2. Fidelity as a function of the time for theSz50 singlet
and triplet state (N52, G050.1e2u i 2 j u/j).
-

ve

m-

self-Hamiltonian renormalization. In Fig. 1 is reported t
behavior oft1(jc) for a N54 singlet and the highest-weigh
su~2! vector belonging theS52 multiplet. We see that for a
wide range ofjc the decoherence time of the singlet state
much larger than that of the symmetric state.

In Figs. 2 and 3 is compared the behavior of the fidel
and linear entropy of theN52 singlet and (Sz50) triplet
states at finitejc . Figures 4 and 5 show, as a function
time, the difference of fidelity and linear entropy, betwe
one of theN54 singlets and the symmetric state (S1)2u0&
PH1(2), for various bath coherence length. These sim
calculations strongly suggest that thenoiseless encoding a
infinite coherence length remains, for sufficiently largejc ,
more robust than all other states.

B. Gauge transformation

We end this section by showing that for a class of no
trivial qubit couplings, connected to the limits~ii ! and ~iii !
via a local gauge transformation, it is possible to build su
spaces annihilated by the dissipative component of the L
villian. This transformation is a generalization of the o
considered in@11#. Here we give proof for the replica
symmetric case, the cluster case being a straightforward
eralization. Let us suppose thatG i j

(6)5G (6)ei @f( i )2f( j )] ,
where G (6),PR,f: NN→R. This kind of situation is not
completely fictitious: forgki;eikr i when there is just one
bath modek degenerate with the qubit energye, from the
first of Eqs.~7! follows thatG i j

(6);eik(r i2r j ). Introducing the
operatorsLf

s5( j 51
N eif( j )Aj

s the dissipative Liouvillian has
the canonical form~9! with $lm

s%5$G (s)% and Lindblad op-

FIG. 3. Linear entropy as a function of the time for theSz50
singlet and triplet state (N52, G050.1e2u i 2 j u/j).

FIG. 4. Fidelity difference, between aN54 singlet and the state
(S1)2u0&, for different bath coherence lengthsj (G0

50.1e2u i 2 j u/j).
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57 3283DISSIPATION AND DECOHERENCE IN A QUANTUM REGISTER
erators given by theLf
s ’s. The operators$Lf

s%s , spanning a
Lie algebraAf isomorphic toA generated by$Ls%s , are
obtained from the latter by means of the~local! U~1! gauge
transformation:

Tf : End~HR!→ End~HR!:X→UfXUf
† ,

Uf5expH i e21(
j 5 i

N

f~ j !H j
CJ P ^ j 51

N U~1! j , ~31!

where we recall thatHi
C is the single-cell Hamiltonian ful-

filling relation Eq. ~3! with the Ai ’s. The unitary operator
UP End(HR) maps the singlet sectorC of A onto the one of
Ãf . ThereforerPC⇒L̃ (Tfr)50. The new codeUf(C) is
noiseless depending on the transformation properties ofHR8
underTf . If HR5Tf(HR) ~local gauge invariance! it fol-
lows that Uf(C) is noiseless underLf if and only if C is
noiseless underLf50 ~replica independent case!. Let us con-
sider, for example, the qubit case withN52 and f( j )
5f j (fPR) and HR8 5eSz. The noiseless state is now th
singlet ucs&5221/2(u↑↓&2u↓↑&). It is mapped byTf onto
Ufucs&5221/2(eif/2u↑↓&2e2 if/2u↓↑&), in particular for f
5p, one hasUpucs&5uc t&, that is the triplet state become
the noiseless one. ForfP(0,p) one has a smooth interpola
tion from ucs& to uc t&. It should be emphasized that even
Tf(HR)5HR , generally one has that the many-qubit corre
tion dHR is not invariant. Nevertheless the Hamiltonian p
of L does not affect the first-order decoherence rate: Uf(C)
is subdecoherent.

VI. CONCLUSIONS

In this paper we have studied a model of quantum regi
R with N cells made of replicas of ad-dimensional quantum
system. The registerR is coupled with the environment
modeled by a thermal bath of harmonic oscillators, throu
single-cell operatorsAi . The latter are step operators ov
the spectrum of the cell Hamiltonian. The reduced dynam
of R is studied by a master equation~ME! obtained in the
Born-Markov approximation. The ME provides a very nat
ral and powerful tool to discuss, in a unified way, the vario
aspects of decoherence and dissipation phenomena ind
in R by the bath. The effect of the environment splits in
two contributions: a renormalization of the register se
Hamiltonian, that makes the cells effectively interacting, a

FIG. 5. Linear entropy difference, between the state (S1)2u0&,
and a N54 singlet, for different bath coherence lengthsj (G0

50.1e2u i 2 j u/j).
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an irreversible component describing the decay proces
The latter can be cast in canonical Lindblad form by diag
nalizing theN3N matricesG(6), which contain all informa-
tion about the effective spatial structure ofR in the given
environment state. Three situations that appear to be rele
for quantum encoding have been discussed:~i! all the cells
are coupled with the environment in the same way,~ii ! dif-
ferent cells feel different environments,~iii ! the register can
be decomposed in uncorrelated clusters, such that the
within each cluster satisfy~i!. In each of these cases one c
show the existence of subspacesC such that an initial pure
preparationuc&PC has vanishing linear entropy productio
rate. The states inC therefore—on a short time scale—
maintain quantum coherence:C can be thought of as a sub
decoherent code. The latter is obtained as a simultane
eigenspaceC of the Lindblad operatorsLm , given by linear
functions of theA’s associated with the register cells. D
pending on the structure of the Lie algebraL generated by
the Lm’s one has to face rather different situations. ForA
HermitianL is Abelian, the Hilbert space splits in a dire
sum of the simultaneous eigenspacesC: the ME is exactly
solvable. Analytical expressions for decoherence rates ca
found in the qubit case. In the non-Hermitian caseL is non-
Abelian, the Hilbert space splits according to theL irreps,C
is the common null space of theLm’s ~singlet sector ofL).
The latter exists, according to Ref.@5#, if the size of the
clusters satisfying~i! is large enough. For the qubit case th
minimum cluster size required to encode one logical qubi
N54: a register made ofM clusters of four qubit each sup
ports a 2M-dimensional subdecoherent space. IfC is left in-
variant by the renormalized self-HamiltonianHR8 of R the
time evolution of the subdecoherent states is unitary:
code is noiseless. In this case the relevant algebra isL8 gen-
erated by the Lindblad operatorsplus HR8 . Furthermore we
have shown that there exist cases with nontrivial cell dep
dence that can be mapped onto~ii ! and ~iii ! by a suitable
local gauge transformation. The degree of stability of t
resulting codes depends on the covariance properties o
renormalized self-Hamiltonian. When theG(6)’s are not
block diagonal one has to resort to numerical calculatio
We have integrated the dissipative ME of a qubit regist
The results show that for a wide range of bath cohere
lengthsjc the singlet states~noiseless atjc5`) are more
robust, namely, their entropy increases more slowly on
time scale of decoherence.

The problems related to the practical realizations of
registers satisfying the constraints for the suggested en
ings, the preparation as well as the gate manipulations of
code words necessary in the quantum computation app
tions, are of course open issues that deserve further inv
gations.
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