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Eight-component two-fermion equations

Ruth Häckl, Viktor Hund, and Hartmut Pilkuhn
Institut für Theoretische Teilchenphysik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany

~Received 17 November 1997!

An eight-component formalism is proposed for the relativistic two-fermion problem. In QED it extends the
applicability of the Dirac equation with hyperfine interaction to the positronium case. The use of exact rela-
tivistic two-body kinematics entails aCP-invariant spectrum that is symmetric in the total center-of-mass
system energy. It allows the extension of recenta6 recoil corrections to the positronium case and implies recoil
corrections to the fine and hyperfine structures and to the Bethe logarithm.@S1050-2947~98!04705-2#

PACS number~s!: 03.65.Pm
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I. INTRODUCTION

The relativistic two-body problem for two spin-1/2 pa
ticles is based on 16-component wave functions that tra
form as the direct product of two four-component Dir
spinors c (16);c1^ c2. For unequal massesm2.m1, the
equations are simplified by the elimination of the small co
ponents of particle 2 and by a subsequent power-series
pansion about the nonrelativistic limit of this particle. O
thus obtains an effective Dirac equation for particle 1, with
hyperfine interaction that contains the Pauli matricess2 of
particle 2. Such an equation has 43258 components. It is
very powerful for hydrogen and muonium@1–4#. More re-
cently, a nonrelativistic quantum electrodynamics has b
elaborated that allows one to eliminate the small compon
of both particles, which is particularly useful for the equa
mass casem15m2 as in positronium@5,6#. One thus arrives
at an effective Schro¨dinger equation, in which the Pauli ma
trices s1 and s2 produce a four-component spin structur
However, the fact that the power-series expansions ina are
rapidly converging does not prevent technical difficultie
presently at ordera6 in the binding energies. Thesea6 terms
have only been calculated by the above eight-compon
strategy and only to first order inm1 /m2.

In this paper a different eight-component equation is
rived that does not eliminate small components and
penses with nonrelativistic expansions. It exploits the f
that the chirality operatorg1

5g2
5 commutes with the matrix

g1
0g2

0 of the parity transformation; a corresponding sepa
tion of components does not exist for a single Dirac partic
We begin with the rederivation of an eight-component eq
tion for two free spin-1/2 particles, in which the spin oper
tor of particle 2 is removed in the center-of-mass~c.m.! sys-
tem (p152p25p) @7–9# by means of a matrixc, given in
Eq. ~20! below. The spin dependence in the laboratory s
tem is generated by a boost, to be discussed in Sec. V.
removal matrixc also mixes large and small components v
a Dirac matrixb5g0. For the total c.m. system energyE,
the result is an effective single-particle Dirac equation, fo
free particle of reduced massm and reduced energye:

m5m1m2 /E, e5~E22m1
22m2

2!/2E,

E5m11m21Eb . ~1!
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In Sec. III the QED Born amplitude for c.m. system scatt
ing will be used to derive the interaction for this equatio
The equation with interaction is for two leptons~no anoma-
lous magnetic moments!

~e2mb2V!c5g5~s12 i s3V/E!pc, s35s13s2 .
~2!

Settingg5s15a5g0g, the equation has the appearance
the usual Dirac equation with hyperfine interaction, partic
larly as a3s2 /E may be approximated bya3s2 /(m1
1m2) to order a4. However, the complete operator2 i a
3s2Vp/E contains an anti-Hermitian part that ensures ex
relativistic two-body kinematics; form15m2, it produces the
correct spin structure to ordera4 @9#. A previous derivation
from the 16-component Dirac-Breit equation produced a d
ferent hyperfine operator, which is equivalent to the pres
one only near threshold,2Eb /E!1. The present hyperfine
operator is left invariant by thec transformation.~The pre-
vious derivation also had to assume a point Coulomb po
tial V52Za/r , a5e2, andZe the nuclear charge.!

The relativistic on-shell two-body kinematics has lon
been well known. One hase22m25E1

22m1
25E2

22m2
25k2

in the c.m. system, wherek252k2 is negative for bound
states, and the asymptotic forme2kr of c displaysk21 as a
multiple of the Bohr radius. The incorporation of relativist
two-body kinematics results in a spectrum that expressesE2

in terms ofm1
2 andm2

2. The combinationEm5m1m2 is al-
lowed in front of a square root~and possibly also with odd
powers ofZa, beginning withZ5a5). Our main nonpertur-
bative result is

E22m1
22m2

252m1m2~11Z2a2/n* 2!21/2, n* 5n2bd ,
~3!

wheren* is an effective principal quantum number andbd is
a quantum defect. Except for the details ofbd , Eq. ~3! ap-
plies to any combinations of spins. It had been derived
two spinless particles@10#, where also its empirical applica
bility to parapositronium was noticed. It was then extend
to the case of one spin-1/2 and one spinless particle@11#. The
angular momentum defectb l52d l 52( l 82 l ) has been
discussed for two fermions of arbitrary magnetic moments
order Z4a4 @9#. It will be used in Sec. VIII to derive a
‘‘Barker-Glover’’ term in the fine structure. In Sec. IV
3268 © 1998 The American Physical Society
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57 3269EIGHT-COMPONENT TWO-FERMION EQUATIONS
rather general formula forZ6a6 recoil terms will be derived
that includes several different effects. In Sec. VI a vec
potential is included in Eq.~2! and evaluated in the dipol
approximation. It leads to two additional quantum defect

n* 5n1d l 2bB2b8d l0 , ~4!

where bB is caused by the Bethe logarithm andb8 is an
additional quantum defect ins states. Parts of the Salpet
correction@2# are not included in Eq.~4!; their mass depen
dence is examined in Sec. VII. Vacuum polarization a
nuclear charge distributions are also discussed in that
tion. For antiprotonic atoms, vacuum polarization must
included as a part ofV for low-l states. A method is pro
posed that extends the validity of Eq.~3! to such states
However, also in cases where Eq.~2! must be solved numeri
cally, theE2 dependence remains and adds ‘‘recoil’’ corre
tions to the binding energiesEb of Eq. ~1!.

It may be worth mentioning that theE2 dependence of the
spectrum is a very general consequence of theCPT theorem.
With the separate validity ofC, P, andT in QED, one may
also say that theE2 dependence follows fromC invariance,
but in the relativistic case theCP transformation is slightly
more convenient thanC alone. Of course, the states that w
calculate areCP eigenstates only in the case of positroniu
Muonium is transformed into antimuonium underCP.

II. FREE EIGHT-COMPONENT EQUATIONS

Let particlesi (51,2) satisfy the free Dirac equations,
units \5c51:

~ i ] i
02aipi2mib i !c i50, ai5g i

5si , b i5g i
0 ,

] i
05]/]t i . ~5!

The si are Pauli matrices andg i
5b i1b ig i

550. The direct
productc (16)5c1^ c2 satisfies both Eqs.~5! and thus also
their sum, in whichi ]1

01 i ]2
0 will be replaced by its eigen

valueK0, which is the total laboratory energy:

~K02g1
5p1s12g2

5p2s22m1b12m2b2!c~16!50. ~6!

c (16) is now divided into two octetscLP and xLP , which
haveg1

55g2
5[g5 andg1

552g2
55g5, respectively:

~K02g5p1s12g5p2s2!cLP5~m1b11m2b2!xLP , ~7!

~K02g5p1s11g5p2s2!xLP5~m1b11m2b2!cLP . ~8!

The coupling betweencLP and xLP arises because eachb i

reverses the eigenvalue ofg i
5 . In the chiral basis,g1

5 andg2
5

are diagonal:

g i
55S 1 0

0 21D , b i5S 0 1

1 0D , c i5S c ir

c i l
D ,

cLP5S c rr

c l l
D , xLP5S c rl

c lr
D , ~9!

where the indicesr and l ~denoting right-handed and left
handed, respectively! refer to the eigenvalues61 of g1

5 and
r

d
c-

e

-

.

g2
5. In the parity basis, theb i are diagonal, with eigenvalue

61 for the large and small componentsg and f , respec-
tively:

g i
55S 0 1

1 0D , b i5S 1 0

0 21D , c i5S c ig

c i f
D , ~10!

cLP5S cgg1c f f

c f g1cg f
D , xLP5S cgg2c f f

c f g2cg f
D . ~11!

In this eight-component space, we also define a matrixb:

b5b1b25S 1 0

0 21D , bg51g5b50 ~12!

~unit matrices are suppressed!. Whereasb i and g i
5 do not

commute,b does commute withg1
5g2

5 and both operators ar
diagonal in the representation~11!. As Lorentz transforma-
tions commute withg i

5 and parity transformations commut
with b i , the decomposition ofc (16) into cLP and xLP is
invariant under the extended group of Lorentz (L) and parity
(P) transformations. In the followingxLP will be eliminated.
We introduce a compact notation

p65p1s16p2s2 , m65m26bm1 ~13!

and observeb2cLP5xLP andb2xLP5cLP in the basis~11!
such that we may effectively setb251 andb15b in Eqs.
~7! and ~8! in this basis:

~K02g5p1!cLP5m1xLP , ~K02g5p2!xLP5m1cLP .
~14!

Using the first equation for the elimination ofxLP , one ob-
tains for the second

~K02g5p2!~m1!21~K02g5p1!cLP5m1cLP . ~15!

Multiplying this equation bym1 and using

m1m25m2
22m1

2 , m1g55g5m2 , ~16!

one arrives at

K0cLP50, K05~K02g5p2m2 /m1!~K02g5p1!2m1
2 .

~17!

Equation~14! or ~17! can be Lorentz transformed to the c.m
system, where one hasK05E and p2p15p1

22p2
250. The

constants of Eq. ~17! are combined into
E22m1

22m2
252Ee, with e defined by Eq.~1!:

@2Ee2Eg5~psm2 /m11pDs!#cLP52m1m2bcLP ,

s5s11s2 , Ds5s12s2 , ~18!

wherem1m2 may also be written asEm according to Eq.~1!.
If ps were present without the factorm2 /m1 , one would
useps1pDs52ps1 and Eq.~18! would be identical to Eq.
~2! for V50, multiplied by 2E.

It is in fact possible to removem2 /m1 from Eq.~18!, by
a transformation
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3270 57RUTH HÄCKL, VIKTOR HUND, AND HARTMUT PILKUHN
cLP5cc, c21g55g5c, csc5sm1 /m2 ,

cDsc5Ds. ~19!

Explicit forms of c are

c5~m1m2!21/2@m21 1
2 m1b~11s1s2!#

5~m1m2!21/2~m122m1Ls!, ~20!

where Ls5(12s1s2)/4 is the projector on singlet spi
states. To verify Eq.~19!, one noticesLss5sLs50. In
summary, the 16-component equation~6! is now transformed
into a single free-Dirac equation (e2mb2g5s1p)c f ree50,
with no trace of the spin operators of particle 2. In the n
section it will be seen that the interaction for this equat
contains no mass factors at all.

III. ONE-PHOTON EXCHANGE INTERACTION

A connection between bound states and perturbative Q
rests on theS matrix S511 iT and the Born series for theT
matrix, T5T(1)1T(2)1•••. When this series is summed b
appropriate differential or integral equations, the bou
states appear as poles ofT. In detail, one takes plane wave
c i5uie

if i with f i5k ir i2Eit for the initial states,f i8
5k i8r i2Ei8t for the final states, and extracts the resulti
energy-momentum-conservingd function from theT-matrix
elements Si f 5 i (2p)4d(E2E8)d(k11k22k182k28)Ti f . In
analogy, we setcLP5veif and xLP5weif, with f5f1

1f2. The first Born approximation toTi f
(1) of the matrix

elementsTi f is ~with q152e, q25Ze, ande25a)

Ti f
~1!5

4pZa

t
u18

†u28
†~12a1a2!u1u2

5
4pZa

t
@v8†~12s1s2!v1w8†~11s1s2!w#,

~21!

with t5q02
2q2, q05K1

02K1
08, andq5k12k18 . Using Eq.

~14! for the elimination ofv8† in one term and ofw in the
other,Ti f

(1) is expressed in terms of an 838 matrix M :

w5
1

m1
~K02g5k1!v, v8†5w8†~K082g5k28 !

1

m1
,

Ti f
~1!5w8†Mv. ~22!

In the differential equation approach based on Eq.~5!, the
potentialV is the Fourier transform ofT(1), apart from cor-
rections from the Hermitian part ofT(2) @12#. Unitarity S†S
51 implies T(1)†5T(1) and thusV5V†, i.e., a Hermitian
potential. However, the asymmetric formw8†Mv implies a
non-Hermitian interactionKI in our differential equation
(K01KI)c50. The simultaneous validity of (K01KI

†)x
50 guarantees real eigenvalues, though. The ordinary D
equation fails to orderZ4a4 in the states withl 5 f ( l denotes
the orbital andf the total angular momentum! due to hyper-
fine mixing.
t

D

d

ac

We now restrict ourselves to the c.m. system,k11k2

5k181k2850 and call k15k and p15p52 i¹. The total
phasef containsk(r12r2)5kr , such that one hasp25
2p. Moreover,K05K085E. To orderZ4a4, one also has
q050 andt52q2:

2q2M /4pZa5~E2g5k28 !m1
21~12s1s2!

1m1
21~11s1s2!~E2g5k1!. ~23!

With k28 5k8s, one hask28 (12s1s2)54k8sLs50, as 1
2s1s2 vanishes for triplet states, whiles annihilates the
singlet state. Consequently,

2q2M /4pZa5m1
21@2E2g5~11s1s2!kDs#

52m1
21~E2 ig5ks3!. ~24!

Combining nowm1
21 with w81, the Fourier transform of

m1M will be KI :

KI5EV2 ig5Vps3, V52Za/r . ~25!

This is to be added toK0 @Eq. ~17!# and used in Eq.~18!. To
arrive at the form~2! of the differential equation,KI must be
replaced byc21KIc according to Eq.~19!. Fortunately, one
finds

cs3c5s3, c21KIc5KI ~26!

such that the same operator appears in fact in Eq.~2!. To
order Z4a4 in E, KI is equivalent to the operato
KIB5EV2g5( i s32s2)@V,p#/2 of the Dirac-Breit ap-
proach@8,9#, the transformation being

cB5es1s2V/2Ec ~27!

after the transformationc ~noticec21KIBc5” KIB).
For the ordersZ5a5 and Z6a6, the condition q050

should be replaced by the current conservation conditi
qmJi

m50 (i 51,2). This produces the spin operators1
's2

'

5s1s22(s1q)(s2q)/q2, which is equivalent to using the
Coulomb gauge. However, we have not yet performed
calculation. TheZ6a6 terms of Eq.~42! below result from
the use of relativistic kinematics in Eq.~2!.

IV. SOLVING THE EQUATION NONPERTURBATIVELY

The total angular momentumF5L1(s11s2)/25J1
1s2/2 is conserved. All eight components ofc have the
same eigenvaluesf ( f 11)5F2 of F2 andmf of Fz ; factors
1/r and i /r are extracted fromcg andc f as usual:

cgk5xk
f mf

1

r
ugk~r !, c f k5xk

f mf
i

r
uf k~r !, ~28!

~e2m2V!ug5 i p̃uf , ~e1m2V!uf52 i p̃ug ,

p̃5~s12 i s3V/E!rp/r . ~29!

The indexk assumes the four valuesk5s5( f ,0) ~singlet!,
k515( f ,1) ~triplet with orbital angular momentuml 5 f )
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57 3271EIGHT-COMPONENT TWO-FERMION EQUATIONS
andk511 k52 ~triplets with l 5” f and eigenvalues71 of
s1rs2r5s1r̂s2r̂ ) @8#. We arrange the radial wave function
as

ug~r !5S ug1

ug2

ug1

ugs

D , uf~r !5S uf 1

uf 2

uf 1

uf s

D ,

p̃

i
5S 0 0 2F/r f 2]2

0 0 ] r 2 f 2F/r

F/r ] r 0 0

f 1]1 f 1F/r 0 0

D , ~30!

with ]65] r61/r and f 65162V/E. The statesk56 with
l 5 f 61 havej 15 j 25 f 61/2 to ordera2. An analytic solu-
tion of the equations is obtained when the hyperfine oper
is replaced by an equivalentr 22 operator. At this level of
precision, the equation becomes equivalent to the one
rived from the Dirac-Breit equation@8,9#, where the replace
ment was achieved by the substitutionr 5r 82Zaa/2m ~see
Sec. VIII for a):

@e22m222eV2 L̃2/r 21] r
2#u50. ~31!

L̃25L22Z2a2(11a) comprises allr 22 operators. Its eigen
values will be denoted byl 8( l 811) to profit from the anal-
ogy with the Schro¨dinger equation. Defining moreover

e22m252k2, z522ikr 52kr , aZ5Za,

aZe/k[n* , ~32!

andu5e2z/2zl 8F(z), the equation becomes as usual an eq
tion for the confluent hypergeometric functionF,

@ l 8112z]z
22~2l 8122z!]z#F5n* F. ~33!

For unbound states,h52 in* is called the Sommerfeld pa
rameter. For bound states,n* 2 l 821 must be a non-negativ
integernr . With l 8 near an integerl , one defines

d l 5 l 82 l , n* 5nr1 l 8115n1d l , ~34!

wheren5nr1 l 11 is the principal quantum number andd l

is always negative. All four eigenvaluesl of L̃22F21aZ
2

are given by

l2@l222l24~F22aZ
2e/E!12aZ

2#22aZ
2l

2aZ
4~124e/E!50. ~35!

It contains the Dirac eigenvalues with recoil-corrected hyp
fine structure and hyperfine mixing near both static lim
@9#. For equal masses, the equation is reliable only to or
a2, but for l 5 f we nevertheless quote the result ford l to
ordera4. With 124e/E5a2/4n2, one solution of Eq.~35! is
l52a4/8n2. It belongs to parapositronium, as we shall s
The value of l 8 follows from l 81 1

2 5AF211/41l2a2

5A( l 1 1
2 )21l2a2,
or

e-

-

r-

er

.

2d l para5
a2

2l 11
1

a4

~2l 11!3
1

a4

8n2~2l 11!
. ~36!

For orthopositronium withl 5 f , one factorl is divided off
andl3 can be neglected to ordera4:

2d l ortho~ l 5 f !5
a2

2l 11F12
1

2F2
2

a2

2F6
2a2S 121/2F2

2l 11 D 2G
2

a4

8n2~2l 11!
. ~37!

We now arrive at our main point, namely, the calculation
E2. From Eq.~32! and the definition~1! of m and e, one
finds Eq.~3!. Expansion of the square root leads to a mo
practical series, which to orderaZ

8 is

E22m2

m1m2
52

aZ
2

n* 2F12
3

4

aZ
2

n* 2
1

5

8

aZ
4

n* 4S 12
7

8

aZ
2

n* 2D G ,

m5m11m2 . ~38!

Insertion ofn* 5n1d l yields, to orderaZ
6 ,

E22m2

m1m2
52

aZ
2

n2 S 11aZ
2b

nD ,

b52
2d l

aZ
2

2
3

4n
1

aZ
2

n S 5

8n2
13

d l

aZ
2n

13
d l 2

aZ
4 D . ~39!

This expression is still quite compact, in view of the fact th
d l contains both fine and hyperfine interactions. The res
for E is, again to orderaZ

6 ,

E5@m22m1m2aZ
2~11aZ

2b/n!/n2#1/2

5m2mnraZ
2~11aZ

2b/n!/2n2

2mnr
2 aZ

4~11aZ
2b/n!2/8n4m2mnr

3 aZ
6/16n6m2,

~40!

wheremnr5m1m2 /m is the nonrelativistic reduced mass an
the expression~39! for b remains to be inserted. The thir
term of Eq.~40!, with the approximationb50, is known as
the Bechert-Meixner recoil correction@8#. To orderaZ

6 , b
may be approximated by22d l /aZ

223/4n. For comparison
with the literature@13,4#, we split the reduced massmnr in a
rather unusual way,

mnr5mnr~11mnr /m!2mnr
2 /m'm1

2~12m1
2/m2!2mnr

2 /m.
~41!

In the orderaZ
6 , we may then combine all contributions from

Eq. ~40! with that of an additional operator;L2/r 4 @13#,
which makes the expression complete forl .0:

DE~aZ
6!5

mnr
2 aZ

6

2mn6 S 4nd l

aZ
2

112
mnr

8mD 1
aZ

2

2mnr
2 m

K L2

r 4 L .

~42!
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The last contribution has been symmetrized in the mas
and the expectation valuêr 24& refers to the solution of the
Schrödinger equation with reduced mass. This operator
been calculated from two-photon exchange, but the orde
exchange may be gauge dependent. Insertion of the D
quantum defect

d l D /aZ
25~g2 j 2 1

2 !/aZ
2'2@11aZ

2/~2 j 11!2#/~2 j 11!
~43!

reproduces the known result@13#. Equation~42! generalizes
this result to arbitrary masses and hyperfine interacti
~Sec. VIII!. However, we would like to advocate the dire
use of formula~39! for (E22m2)/m1m2 because it is more
compact for calculations and less mass dependent for m
surements.

V. BOOSTS AND COORDINATE TRANSFORMATIONS

Lorentz transformations can be constructed directly foc
andcLP , but it is more convenient to use the known tran
formations of the single free-particle spinorsc1 andc2. We
only need the boosts from the c.m. system to the labora
system (l ), where the system has a total four-momentumKm:

c i ,l5Aic i ,cm ,

Ai5~g1g i
5K̂si !

1/25~2g12!21/2~g111g i
5K̂si !,

~44!

K̂5K /E, g5K0/E5~11K̂2!1/2. ~45!

We also take thez axis alongK , K̂si5K̂s iz . Suppressing
the index LP , the eight-component laboratory spinor is

c l5Accm ,

A5~g1g5K̂s2z!
1/2~g1g5K̂s1z!

1/2

5~11 1
2 K̂2sz

21K̂szgg5!1/2, ~46!

A5g1 1
2 K̂g5sz2

1
2 K̂2Dsz

2/~2g12! ~47!

@in checking Eq.~47! by squaring Eq.~46!, use szDsz

50, (Dsz)
252(12s1zs2z), (Dsz)

454(Dsz)
2, and K̂4

5K̂2(g221)]. TheboostĀ for x follows from A by replac-
ing g5s2 by 2g5s2:

x l5Āxcm , Ā5g1 1
2 K̂g5Dsz2

1
2 K̂2sz

2/~2g12!.
~48!

The inverse boost hasK replaced by2K , which is equiva-
lent to a sign change ofg5:

Ab5bA21, Āb5bĀ21. ~49!

Insertion of Eq.~19!, ccm5cc, gives, in the laboratory sys
tem,c l5Acc, and for thec-transformedc l ,

c lc5c21c l5c21Acc5Acc, Ac5c21Ac, ~50!

Ac5g1 1
2 g5K̂szm1 /m22 1

2 K̂2Dsz
2/~2g12!. ~51!
es

s
of
ac

s

a-

-

ry

The corresponding boost forx, on the other hand, has
factor m1 extracted:

Āc5m1
21Am15g1 1

2 g5K̂Dszm1 /m22 1
2 K̂2sz

2/~2g12!.
~52!

The desired boosts forc andx areAc andĀc , respectively.
They are needed for the construction of Dirac-Breit eq
tions in the presence of external potentials.

In a covariant treatment, the interaction between two p
ticles at distancer l5r12r2 depends also on a time differ
ence x05t12t2 such thatxm5(x0,r l) is a four-vector. A
second independent four-vectorXm is defined such thatPm

5 i ]X
m becomes the total four-momentump1

m1p2
m , which is

conserved:

xm5x1
m2x2

m , Xm5Ê1x1
m1Ê2x2

m , p1
m5pm1Ê1Pm,

p2
m52pm1Ê2Pm, ~53!

Ê11Ê251, Pm5p1
m1p2

m , Pmc5Kmc. ~54!

The as yet open value ofÊ12Ê2 is chosen such thatp0

5 i ]/]x0 vanishes at asymptotic distances in the c.m. sys
where particles 1 and 2 are on their mass shells,E1

22k2

5m1
2 and E2

22k25m2
2 , i.e., E2

22E1
25m2

22m1
25m1m2 .

Using in additionE11E25E, one obtains

E15~E22m1m2!/2E, E25~E21m1m2!/2E. ~55!

Extracting now from Eq.~53!

pm5Ê2p1
m2Ê1p2

m ~56!

and inserting the asymptotic valuesEi of pi
0 in the c.m.

system, one finds thatp0 vanishes here for

Êi5Ei /E5 1
2 ~17m̂1m̂2!, m̂65m6 /E. ~57!

In the interaction region,p0 does not vanish, but in the con
text of a single integral equation~Bethe-Salpeter equation! it
cannot be treated as a dynamical variable. Instead, integ
involving p0 are treated as perturbations ond(p0) integrals
~Sec. VII!.

The space coordinate transformation of Eq.~53! is

r15R1Ê2r l , r25R2Ê1r l , ~58!

wherezl is Lorentz contracted,zl5z/g. The nonrelativistic
approximation yields the familiarÊi5mi /m.

VI. VECTOR POTENTIAL AND BETHE LOGARITHM

In the presence of a four-potentialAm, p1
m , and p2

m are
replaced by

p1
m5p1

m1eAm~x1!, p2
m5p2

m2ZeAm~x2!. ~59!

The coefficientsÊ1 andÊ2 of the transformation~53! to pm

andPm remain unchanged in a perturbative treatment ofAm.
In the dipole approximationA(x1)5A(x2), Eq. ~56! leads to
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p5Ê2p12Ê1p25p1reA, ~60!

wherere5r 3e is the dipole radiation charge@8#,

r 5 1
2 ~Z11!2 1

2 ~Z21!m̂1m̂2

511 1
2 ~Z21!~12m̂1m̂2!. ~61!

In the following, we use the Coulomb gauge in the c.
system and replacep by p in Eq. ~2!. To exhibit its E2

dependence, we also multiply the equation byE:

~Ee2EV2m1m2b!c5g5~s12 i s3V/E!Epc. ~62!

The substitution

r5Er, p5pr /E, p5pr /E ~63!

puts Eq.~62! into a form that contains only even powers
E. For the moment, we assumeV52Za/r and EV5
2Za/r5V(r). Deviations will be discussed in Sec. VII. Fo
the Lamb shift calculation, one neglects the hyperfine ope
tor and obtains an explicit eigenvalue equation forEe
5(E22m1

22m2
2)/2,

hc5Eec, h5m1m2b1V~r!1apr . ~64!

Its Coulomb Green’s functionG satisfies the usual equatio
@2#, taken in the variablesr,r8:

@¹r
21~Ee!22m1

2m2
212EeZa/r

1~Za1 i ar̂!Z2a2/r2#G~r,r8,Ee!5d~r2r8!. ~65!

Evidently, it is also independent of the signs ofm1 andm2.
The same remark applies tor @Eq. ~61!#, but that expression
uses the low-energy dipole approximation. Apart from th
the Bethe logarithm can depend only onE2, m1

2, andm2
2. Its

proportionality tor 2 has been noted previously@14,15#. In-
spection of the formulas collected in@2# reveals another
small s state correction, which is also proportional tor 2.
Moreover, both corrections are proportional tom1m2 and
therefore pushed under the square root in Eq.~3!, where they
appear as quantum defects:

bB5
4a3

3p
r 2lnk0~n,l !, b852

4a3

3p
r 2S 5

6
2 lna2D .

~66!

After the extraction ofbB andb8, there remains a somewha
reduced Salpeter shift

DESal8 52
mnr

2 Z5a5

mpn3 F7

3
an81

1

m1m2
d l0

3S m2
2ln

m2

m2
2

2m1
2ln

m2

m1
2D G , ~67!

an8522d l0F ln
2a

n
1(

i 51

n
1

i
1

1

2
2

1

2nG1
12d l0

l ~ l 11!~2l 11!
,

~68!
.

a-

t,

with a18522ln(2a)22. The denominatorm1m2 in Eq. ~67!
will be discussed in the next section. The factor 1/m in front
disappears in the expression forE2, asE2'm212mEb ac-
cording to Eq.~1!.

VII. BETHE-SALPETER EQUATION, VACUUM
POLARIZATION, AND FORM FACTOR

Continuing with theT matrix of Sec. III, the two-photon
exchange partT(2) may be used to derive corrections to th
main interaction, including the Salpeter shift~67!. However,
here we consider instead the more commonly used Be
Salpeter~BS! equation. It is formulated in the c.m. system
where Eq.~53! reduces to

p1
m5pm1E1gm0 , p2

m52pm1E2gm0 , ~69!

and pm is an integration variable. Suppressing the integ
tion, the BS equation applies to the two-fermion Gree
function G5G(16),

G~16!5S~16!1S~16!K ~16!G~16!, ~70!

whereS(16) is the product of two free fermion propagators
momentum space

S~16!5~p” 12m1!21
^ ~p” 22m2!21

5~p” 11m1! ^ ~p” 21m2!/D1D2 , ~71!

D15p1
22m1

21 i«5p212E1p01k21 i«,

D25p2
22m2

21 i«5p222E2p01k21 i«, ~72!

and the kernelK (16) is the sum of all irreducible Feynma
diagrams. Our proposed eight-component formalism sim
fies S at the expense ofK. Taking K from the matrix ele-
mentsx†Kc analogous to the 838 matrix M in Eq. ~22!,
one has

S~16!K ~16!5S~8!K ~8!, S~8!5( vLPwLP
† /D1D2 . ~73!

In a matrix notation whereg05b and g5 are identical for
particles 1 and 2, the spin summation is now

( vLPwLP
† 5m2E11m1bE22m2p0

2g5p~m2s12m1bs2!. ~74!

It is only a first-order polynomial inp1 ,p2. Consequently,
the numerator ofS(8) is linear in the integration variables
whereasS(16) is quadratic. One may in fact go one step fu
ther and use irreducible representations of the Lorentz gro
in which case one arrives atS(4)51/D1D2. This amounts to
the elimination of the dotted spinor components fromc @16#;
it is widely used in QCD calculations@17#. For bound states
however, it has the disadvantage of suppressing explicit
ity invariance.

The term in parentheses in Eq.~74! is (m2s 1m1Ds)/2
in the notation of Eq.~18! andm2s may be converted into
m1s by the transformation~20!,
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3274 57RUTH HÄCKL, VIKTOR HUND, AND HARTMUT PILKUHN
vLP5cv, wLP5c21w,

( vw†5~e2g5s1p1mb1p0m2 /m1!m1 . ~75!

To handle thep0 integration, one may use the formula 1/(x
2 i«)5P/x1 ipd(x) (P is the principal value!,

2E/D1D252ipd~p0!/~p22k2!21/D1~p01 i«!

11/D2~p02 i«!, ~76!

and treat allp0 integrals except the first one as perturbatio
of the Green’s function. In these integrals, the spin summ
tion ~75! reduces to(vw†/m15e2ap1mb, which is sim-
ply the expression for a single-particle spin summation.
the remaining integrals, the complete two-fermion propa
tor has the more explicit numerator

2E( vw†/m15E22~m1
21m2

222m1m2b!

3~12Ep0/m1m2!22g5prs1 .

~77!

After integration, thisp0 dependence produces factors (m1
2

1m2
2)/m1m2 and m1m2b/m1m2 . Such factors may also

arise from the denominators 1/D1D2
X of the crossed graph

which contain the combinationp0(E12E2)5Ep0m̂1m̂2 .
To check the mass dependence in thed l0 piece ofDESal8 @Eq.
~67!#, notice m2

2ln(m2/m2
2)2m1

2ln(m2/m1
2)5m1m2ln(m1m2 /

m2)1(m1
21m2

2)ln(m2/m1m2).
We conclude with a discussion of the potentialEV(r )

→V(r) in the presence of vacuum polarization and nucl
charge distribution. For a heavy particle 1 (m2 or p̄), elec-
tronic vacuum polarization is so large in low-l states that it
must be added to the Coulomb potentialVC , in the form of
the Uehling potential

V5VC1VU , VU52
Za2

3pr E0

`

dl2e2lrS~l2!, ~78!

with Se5(124me
2/l2)1/2(112me

2/l2)/l2Q(4me
2) in the

electronic part ofVU . At fixed l, ther dependence is easil
converted to ar dependence (E/r )e2lr5r21e2lEr:

VU~r!52
Za2

3prE0

`

dl2e2lErS~l2!. ~79!

The substitutionlE5l8 shows that the integral depend
only on E2. There is also a second-order recoil correcti
VUr

(2) which is spin independent@18#. For antiprotonic atoms
the radius of the vacuum polarization cloud is much lar
than the Bohr radius (Zam)21: Below a critical valuel c of
the orbital angular momentuml , vacuum polarization ex-
ceeds all relativistic effects~protonium p̄p and p̄3He have
l c53 and 7, respectively! for all values ofn @19#. For these
orbitals, V is best constructed numerically from Eq.~79!,
particularly for the calculation of annihilation that is loca
ized at very smallr. However, for the calculation of the fin
s
-

n
-

r

r

and hyperfine structure of these inner orbitals, the form~79!
suggests the introduction of a running electric coupling c
stantae :

V5Ve1dVU , Ve52Zae /r,

dVU5VU1Z~ae2a!/r, ^dVU&50. ~80!

In this manner, the nonperturbative result~3! remains appli-
cable, withae.a.

Recoil corrections to an extended nuclear charge distr
tion rc(r ) are particularly large for muonic atoms:

V~r!52ZaE d3r ur2r /Eu21rc~r !,

rc~r !5E d3qe2 iq rF~q2!. ~81!

Again, V(r) is E2 dependent.

VIII. ANGULAR-MOMENTUM DEFECTS
AND BARKER-GLOVER TERM

To order aZ
25Z2a2, d l is easily found for particles of

arbitrary massesmi andg factorsgi52(11k i).d l is conve-
niently expressed as

d l /aZ
252~11a!/~2l 11!. ~82!

With the abbreviationsm̂i5mi /E and ê5e/E and the com-
binations

c1
2512m̂1

22 ê12k1m̂2 , c2
2512m̂2

22 ê12k2m̂1 ,
~83!

c25112k1m̂212k2m̂112ê~12g1g2/4!, ~84!

one finds

a~ l 5 f 61!56c2/~2 j 11!6g1g2ê/~4 f 12! ~85!

~where a sign error of@9# for l 5 f 11 is corrected! and

a~ l 5 f !56
c2

4F2FA~2 f 11!2216F2
c1

2c2
2

c4
71G

'6
c2

2 j 11
7

2c1
2c2

2

c2~2 f 11!
F11

4F2c1
2c2

2

c4~2 f 11!2G .

~86!

In Eq. ~85!, l 5 f 61 implies j 5 j 15 f 6 1
2 5 l 7 1

2. For g1
5g252, c51 leads exactly to the Dirac fine structure com
ponent ~43! of d l for all values ofm1 and m2, including
m15m2 as in positronium. The casel 5 f is more compli-
cated because the two valuesj 5 l 1 1

2 and j 5 l 2 1
2 are mixed

by the hyperfine interaction. We therefore definej as that
value in the integer 2j 11 that appears in the main term
c2/(2 j 11) of a( l 5 f ) after expansion of the square root.
is frequently said that the fine structure contains
‘‘Barker-Glover’’ term ~for l .0) @2,3#
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EBG5aZ
4m3~ l 2 j !/@~2 j 11!~2l 11!m2n3#. ~87!

This is true for a spinless nucleus, except that the electro
anomalous magnetic moment frequently reverses the e
@11#. On the other hand, the weighted average over the
perfine structure produces a more complicated expressio

ā5~ l 2 j !$2c21g1g2ê/222~c1
2c2

2/c2!

3@114L2c1
2c2

2/c4

3~2l 11!2#%/~2 j 11!. ~88!

This is the final result and as a rule it is much larger than
.
d,
’s
ct

y-

e

Barker-Glover term. Forg15g252, however,c1
2c2

2'm/m

'ê to this order ina and the main terms cancel in Eq.~88!.
There remains a small rest

DĒ5aZ
2mnrd̄ l /~2l 11!n352mnraZ

4ā/n3

54mnr
3 aZ

4~ l 2 j !L2/~2l 11!3~2 j 11!m2n3, ~89!

which replacesEBG in the case of muonium.
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