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Eight-component two-fermion equations
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An eight-component formalism is proposed for the relativistic two-fermion problem. In QED it extends the
applicability of the Dirac equation with hyperfine interaction to the positronium case. The use of exact rela-
tivistic two-body kinematics entails & P-invariant spectrum that is symmetric in the total center-of-mass
system energy. It allows the extension of recehtecoil corrections to the positronium case and implies recoil
corrections to the fine and hyperfine structures and to the Bethe logafBid50-2947®8)04705-7

PACS numbdss): 03.65.Pm

I. INTRODUCTION In Sec. Il the QED Born amplitude for c.m. system scatter-
ing will be used to derive the interaction for this equation.

The relativistic two-body problem for two spin-1/2 par- The equation with interaction is for two leptofiso anoma-
ticles is based on 16-component wave functions that trandous magnetic moments
form as the direct product of two four-component Dirac
spinors 9~y ® ¢,. For unequal masses,>m,, the (e—uB—V)y=vys(o1—1"VIE)pY, " =01X0,.
equations are simplified by the elimination of the small com- (2
ponents of particle 2 and by a subsequent power-series ex- 0 )
pansion about the nonrelativistic limit of this particle. One Setting yso,=a=y"y, the equation has the appearance of
thus obtains an effective Dirac equation for particle 1, with ath® usual Dirac equation with hyperfine interaction, particu-
hyperfine interaction that contains the Pauli matriogsof ~ larly as aX "'2/E4 may be approximated byrX o, /(my
particle 2. Such an equation hax2=8 components. It is +my) to orderc_y . Howe\_/er, tht_e_complete operateri a
very powerful for hydrogen and muoniufi—4]. More re- erz_\/_p/!E contains an antl-l-!erm|t|an part that ensures exact
cently, a nonrelativistic quantum electrodynamics has beefglativistic two-body kinematics; fan, =m,, it produces the
elaborated that allows one to eliminate the small component@0ITect spin structure to order* [9]. A previous derivation
of both particles, which is particularly useful for the equal- from the 16-component Dirac-Breit equation produced a dif-
mass cas@n; =m, as in positroniuni5,6]. One thus arrives ferent hyperfine operator, which is equivalent to the prgsent
at an effective Sclidinger equation, in which the Pauli ma- one only near threshold; E,/E<1. The present hyperfine
trices o, and o, produce a four-component spin structure. OPerator is left invariant by the transformation(The pre-
However, the fact that the power-series expansions are ~ VioUS derivation also had to assume a point Coulomb poten-
rapidly converging does not prevent technical difficulties,tidl V=—Za/r, a=¢?, andZe the nuclear chargg.

presently at ordex® in the binding energies. Thes€ terms The relativistic on-shell tWO'ZbOd% kinematics has 2Iong
have only been calculated by the above eight-componerfteen well known. One has’— u®=E{—mj=E;—m;=k
strategy and only to first order im; /m,. in the c.m. system, wherk?=— «? is negative for bound

In this paper a different eight-component equation is destates, and the asymptotic foren " of ¢ displaysk* as a
rived that does not eliminate small components and dismultiple of the Bohr radius. The incorporation of relativistic
penses with nonrelativistic expansions. It exploits the factwo-body kinematics results in a spectrum that expre&ses
that the chirality operatory3 commutes with the matrix in terms ofmf andm3. The combinatiorE x=m;m, is al-
299 of the parity transformation; a corresponding separalowed in front of a square rodaind possibly also with odd
tion of components does not exist for a single Dirac particlePowers ofZa, beginning withZ°«®). Our main nonpertur-
We begin with the rederivation of an eight-component equabative result is
tion for two free spin-1/2 particles, in which the spin opera- s 2 o s 2 w1
tor of particle 2 is removed in the center-of-mdssn) sys- ~ E“—mi—m;=2mimy(1+Z%a/n*%) "7 n*=n—pgy,
tem (p,=—p,=p) [7-9] by means of a matrix, given in (©)
Eqg. (20) below. The spin dependence in the laboratory sys- . , e .
tem is generated by a boost, to be discussed in Sec. V. THEheren™ is an effective principal quantum number afgis
removal matrixc also mixes large and small components via@ quantum defect. Except for the details&f, Eq. (3) ap-

a Dirac matrix@=1°. For the total c.m. system energ; plies to any com_blnatlons of spins. It had bggn derlvgd for
the result is an effective single-particle Dirac equation, for 8WO Spinless particlegl0], where also its empirical applica-

free particle of reduced mags and reduced energy. bility to parapositroni_um was noticed._lt was then extended
to the case of one spin-1/2 and one spinless paftidE The

angular momentum defecB;=—68l=—(I'—1) has been
discussed for two fermions of arbitrary magnetic moments to
order Z*a* [9]. It will be used in Sec. VIl to derive a
E=m;+my+E,. (1)  “Barker-Glover” term in the fine structure. In Sec. IV a

u=mm,/E, e=(E*-m?—m3)/2E,
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rather general formula faZ®«® recoil terms will be derived 5. In the parity basis, th@; are diagonal, with eigenvalues
that includes several different effects. In Sec. VI a vector+1 for the large and small componergsand f, respec-
potential is included in Eq(2) and evaluated in the dipole tively:

approximation. It leads to two additional quantum defects

(o ol aolo Sl well) a
* — _ _ ’ — - =
n n+ (Sl ﬁB B 6|0, (4) ’)/. 1 O ’ ﬁl 0 -1 ' ¢| l//if ’ ( )
where Bg is caused by the Bethe logarithm apd is an
additional quantum defect ia states. Parts of the Salpeter _ Pagt Pt _ Yag~ Y1

) . (11

correction[2] are not included in Eq4); their mass depen- Lp— Yrgt Ygr)’ XLp= ( Yrg— Yyt

dence is examined in Sec. VII. Vacuum polarization and

nuclear charge distributions are also discussed in that setn this eight-component space, we also define a marix

tion. For antiprotonic atoms, vacuum polarization must be

included as a part of for low-lI states. A method is pro- 1 0

posed that extends the validity of E¢B) to such states. B=PB1p2= 0o -1/ Byst vsB=0 (12)

However, also in cases where E8) must be solved numeri-

cally, theE? dependence remains and adds “recoil” correc- (unit matrices are suppres$edVhereasgs; and %5 do not

tions to the binding energies, of Eq. (1). commute,3 does commute with3y3 and both operators are
It may be worth mentioning that tH&” dependence of the diagonal in the representatiqal). As Lorentz transforma-

spectrum is a very general consequence ofaRel theorem.  tions commute withy? and parity transformations commute

With the separate validity o, P, andT in QED, one may \ith B:, the decomposition of*® into i p and y.p is

also say that th&€?2 dependence follows fror@ invariance, invariant under the extended group of Lorenitd @nd parity

but in the relativistic case th€ P transformation is slightly (P) transformations. In the following, » will be eliminated.
more convenient tha@ alone. Of course, the states that we \y/e introduce a compact notation

calculate areC P eigenstates only in the case of positronium.
Muonium is transformed into antimuonium undep. PL=Pr01EPr0,, Mi=my,*=Bm; (13

Il. FREE EIGHT-COMPONENT EQUATIONS and observgs, i p= x p and B, x p= ¥ p in the basig11)

o ) ) ) _such that we may effectively s@,=1 andgB,;=p in Eqgs.
Let particlesi (=1,2) satisfy the free Dirac equations, in (7) and(8) in this basis:

unitsh=c=1:

. (K= ysp)p=mixip,  (KO—ysp)xp=Myip.
(10— api—mpB)¢¥i=0, a=v0a;, Bi=7, " " " (14

af’:&/ati. (5) Using the first equation for the elimination ®f 5, one ob-
tains for the second
The o; are Pauli matrices anqh‘r’ﬂiJr,Bi yi5=O. The direct
product 41®= y, ® 4, satisfies both Eqg5) and thus also (KO=ysp_) (M) Y (K= ysp ) p=m, Yy p. (15)
their sum, in whichi 99+i49 will be replaced by its eigen-

valueK®, which is the total laboratory energy: Multiplying this equation bym., and using

22 _
(K= ¥3p101— ¥3p202— My By — My B,) ¢ 19=0.  (6) meM-_=M=My, M+ ¥s=ysM-, (16
419 is now divided into two octetsy p and y_p, which ~ ONe arives at

5_ 5_ 5_ _ 5_ L
naveyi= vi= s andyi=— 2= 75 respectively: Kotip=0, Ko=(K°=ysp-m_/m,)(K°= ysp,)—m? .
(K= y5p101— ¥5p202) Y p= (M1 B1+MaB2) xip, (7) (17)

Equation(14) or (17) can be Lorentz transformed to the c.m.
O— =
(K™= ¥5p101+ ¥5P202) xLp= (M1 B1+ MpB5) i p. (8) system, where one ha€’=E andp_p. =p2—p2=0. The

The coupling betweey; » and x,p arises because eagh ~ Constants of Eg. (17) are combined into
reverses the eigenvalue f . In the chiral basisy$ andy3 ~ E”—Mi—m;=2Ee, with e defined by Eq(1):

are diagonal: [2Ee—Eys(pom_/m. +pAo) ¢ p=2mm,Bip,
. (10 0 1 Wie
Yi= 0 -1 ’ Bi:<1 0)! lr/li: ¢i|>, 0-:01+0'21 A0-:0-1_0-21 (18)
wherem;m, may also be written aBu according to Eq(1).
_(‘ﬂrr) _(lﬂn) © If po were present without the facton_/m, , one would
Yip= o Xy ) usepo+pAo=2po; and Eq.(18) would be identical to Eq.

(2) for V=0, multiplied by ZE.
where the indices and| (denoting right-handed and left- It is in fact possible to removen_ /m,. from Eq.(18), by
handed, respectivelyefer to the eigenvalues 1 of y? and a transformation
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yip=cy, c lys=ysC, coc=om,/m_,
cAoc=Ao. (19
Explicit forms ofc are
c=(mem_) " YIm,+ 3mB(1+0107)]
=(mym_)""(m, —2m;Ay), (20

where A;=(1—0405)/4 is the projector on singlet spin
states. To verify Eq(19), one noticesAso=0As=0. In
summary, the 16-component equati@his now transformed
into a single free-Dirac equatiore{ uB8— y501p) ¥;16e=0,

with no trace of the spin operators of particle 2. In the next
section it will be seen that the interaction for this equation

contains no mass factors at all.

Ill. ONE-PHOTON EXCHANGE INTERACTION

A connection between bound states and perturbative QED

rests on thes matrix S=1+iT and the Born series for the
matrix, T= TN+ T@+ ..

Ji=ue'? with ¢;=
=kiri—
energy-momentum-conservirgfunction from theT-matrix
elements S;;=i(2m)*S(E—E')8(k;+ko—K;—k5)Tis. In
analogy, we sety, p=ve'® and y p=we?, with ¢=¢,
+ ¢,. The first Born approximation td'(l) of the matrix
elementsT;; is (with q;=—e, q,=Ze, andezza)

kiri—E;t for the initial states, ¢/

Ti(fl):4wzaui uy (1- eyay)uu,
dmla
=— [ (1= oou+w 1+ ar0)w],
(21
with t=g%°— g2, q°=K%—K?, andq=k,—k/. Using Eq.

(14) for the elimination ofv’" in one term and ofv in the
other, T is expressed in terms of anx@ matrix M:

1 1
— _— (kO0_ 't — ' T0r rN_—
w m+(K vski)v, v w' (K ysk_)m+,

TH=wTMv. (22)
In the differential equation approach based on £, the
potentialV is the Fourier transform of (), apart from cor-
rections from the Hermitian part af(®) [12]. Unitarity S'S
=1 implies T®T=T®) and thusV=V"', i.e., a Hermitian
potential. However, the asymmetric fonf "M implies a
non-Hermitian interaction/C, in our differential equation
(Ko+K)y=0. The simultaneous validity ofk{y+ k) x

=0 guarantees real eigenvalues, though. The ordinary Dirac

equation fails to ordeZ*«* in the states with=f(l denotes
the orbital andf the total angular momentundue to hyper-
fine mixing.
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We now restrict ourselves to the c.m. systekg;+k,
=k;+k;,=0 and callk;=k and p,=p=—iV. The total
phase¢ containsk(r,—r,)=kr, such that one hap,=
—p. Moreover,K°= KO’ E. To orderZ*a*, one also has
q°=0 andt=—g*

—g’°M/AnZa=(E—ysk" )m; (1- oy 0)

+mit(1+0105) (E—ysky). (29

With k” =k’ o, one hask’ (1—o,0,)=4k'oA,=0, as 1
— 0105 vanishes for triplet states, whilg annihilates the
singlet state. Consequently,

—g’M/4nZa=m ] [2E— y5(1+ 00 kA o]

=2m; Y (E—iyska™). (24)

1

Combining nowm. - with w'*, the Fourier transform of

m, M will be K, :

K,=EV—iysVpo™, V=-Zalr. (25

- When this series is summed by g is 1o he added t&, [Eq. (17)] and used in Eq18). To
appropriate dlfferentlal or integral equations, the bound, 1S 19 o [EQ. (17)] used in E18)

states appear as polesDf In detail, one takes plane waves

rrive at the form(2) of the differential equationk’, must be
replaced byc™1KC,c according to Eq(19). Fortunately, one
finds

co’c=0", c Kic=K, (26)
such that the same operator appears in fact in(Bg.To
order Z%* in E, K, is equivalent to the operator
Kig=EV—1vys(io*—0,)[V,p]/2 of the Dirac-Breit ap-
proach[8,9], the transformation being

lr/lB — e‘rl”ZV/ZEI/I (27)

after the transformation (noticec™ 1C;gC# Kg).

For the ordersz®a® and Z%a®, the conditionq®=0
should be replaced by the current conservation conditions
q,J=0 (i=1,2). This produces the spin operatot o
= 0,0, (0,9)(0,9)/92%, which is equivalent to using the
Coulomb gauge. However, we have not yet performed this
calculation. Thez®a® terms of Eq.(42) below result from
the use of relativistic kinematics in E¢R).

IV. SOLVING THE EQUATION NONPERTURBATIVELY

The total angular momentunk=L + (o4 + 0%)/2=J;
+ 0,/2 is conserved. All eight components ¢f have the
same eigenvaluef+ 1)=F2 of F2 andm; of F,; factors
1/r andi/r are extracted fromy, and ; as usual:

bg= Xk TUgM), P X T undr), (28
(e—p—V)ug=imus, (e+p—V)u=—imug,
7=(o—ia*VIE)rplr. (29)

The indexk assumes the four valuds=s=(f,0) (single},
k=1=(f,1) (triplet with orbital angular momenturh= f)
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andk=+,; k= — (triplets withl# f and eigenvalues 1 of o2 ot 4
=g rool i i — 8l yara= + + . 36
Z‘érO'Zr oro,r) [8]. We arrange the radial wave functions para~ 51 {1 (21+1)°  8n(21+1) (36)
u u For orthopositronium with = f, one factor\ is divided off
gt ™ and\® can be neglected to order*:
o= ] wm=|
Ug(l)= o U= ' a? 1 a? 1-1/2F?\?
o o ~ ool =0 = o 17 S T o 2( 21+1
Ugs Uss 2F< 2F
4
0 0 —F/r  f_o_ a
_ e 37
e 0 0 d, —f_FIr 8n<(21+1)
= , (30 ) . . ;
! Flr o 0 0 We now arrive at our main point, namely, the calculation of
f.o, f.FIr 0 0 E2. From Eq.(32) and the definition(1) of x and e, one

finds Eq.(3). Expansion of the square root leads to a more
with 9. =9, =1/ andf.=1=2V/E. The statek=* with  practical series, which to ordes> is
|=f=1 havej,;=j,=f+1/2 to ordera®. An analytic solu-

tion of the equations is obtained when the hyperfine operator E2—m? a2l 3 a: 5 a 7 a
is replaced by an equivalent 2 operator. At this level of m,m, == F 2 FJF 8 F ~3 F )
precision, the equation becomes equivalent to the one de-
rived from the Dirac-Breit equatiof8,9], where the replace- _
: S m=m;+m,. 38
ment was achieved by the substitutiorr’ —Zaal/2u (see 1R (38)
Sec. VIII for a): Insertion ofn* =n+ 4l yields, to ordera$,
[€2— u?—2eV—L?/r?+5?]u=0. (32) E2-m? o2 zb)
=——|1l+a5=
- 2 Zn )’
L2=L2-2Z7%a%(1+a) comprises all ~2 operators. Its eigen- MM, n n
values will be denoted b/ (I’ +1) to profit from the anal- , )
ogy with the Schidinger equation. Defining moreover _ 28 3 N 2( 5 +3i|+3i> (39
o 2 4n n 2 2 4"
GZ—MZZ—KZ, z=—-2ikr=2«r, ay=Za, @z 8n azh @z

This expression is still quite compact, in view of the fact that
6l contains both fine and hyperfine interactions. The result

_ . for E is, again to orden$,
andu=e Z/22'/F(z), the equation becomes as usual an equa- g z

azel k=n*, (32

tion for the confluent hypergeometric functién E=[m?—m;mya’(1+ a2b/n)/n2]Y2
[I'+1-252~ (2" +2~2)0,]F=n*F. (33 —m— g a(1+ a2bin)/2n?

For unbound statesy=—in* is called the Sommerfeld pa- — w2 .a3(1+ a2b/n)?/8n*m— ud aS/16n5m?,

rameter. For bound states’ — |’ — 1 must be a non-negative

integern, . With |’ near an integet, one defines (40

whereu,,=m;m,/m is the nonrelativistic reduced mass and
the expressior{39) for b remains to be inserted. The third

wheren=n, +1+1 is the principal quantum number a@at term of EqQ.(40), with the approximatiob=0, is known as
the Bechert-Meixner recoil correctidi8]. To ordera$, b

may be approximated by 25I/a§—3/4n. For comparison

Sl=1"—1, n*=n+I"+1=n+4l, (34

is always negative. All four eigenvalues of L?>—F2+ a3

are given b
g y with the literaturg13,4], we split the reduced mags,, in a
N2 N2—2\—4(F2—a3€elE)+2a3]—2a2\ rather unusual way,
—a§(1—4e/E)=O. (35) ﬂnr:Mnr(1+Mnr/m)_ﬂﬁr/m%mi(l_milmz)_ﬂﬁr/m'

(41)
It contains the Dirac eigenvalues with recoil-corrected hyper-
fine structure and hyperfine mixing near both static limitsIn the ordera$ , we may then combine all contributions from
[9]. For equal masses, the equation is reliable only to ordeFq. (40) with that of an additional operatorL?/r* [13],
a2, but for |=f we nevertheless quote the result firto  which makes the expression complete for0:
ordera®. With 1—4€e/E= a?/4n?, one solution of Eq(35) is

A =—a?/8n. It belongs to parapositronium, as we shall see. AE(a) Mﬁrag 4n4l N Mnr N a% L2
’ 2 _ a-)=— - = — .
The value ofl’ follows from I’ + = \FZ+1/4+\—a? 2 omnb a% 8m 2,uﬁ,m r
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The last contribution has been symmetrized in the masseBhe corresponding boost foy, on the other hand, has a
and the expectation valye ~*) refers to the solution of the factorm, extracted:
Schralinger equation with reduced mass. This operator has
been calculated from two-photon exchange, but the order oA,=m_*Am, = y+ % ysKAaZm+ /m_— %Rza§/(2y+ 2).
exchange may be gauge dependent. Insertion of the Dirac (52
guantum defect .
The desired boosts fap andy areA. andA., respectively.
Slplad=(y—j— Hlac~—[1+a2/(2j+1)2)/(2j+1) They are needed for the construction of Dirac-Breit equa-
(43)  tions in the presence of external potentials.

. . In a covariant treatment, the interaction between two par-
reproduces the kn'own resyt3]. Equat|on(42).gen'erallzes' ticles at distance,=r,—r, depends also on a time differ-
this result to arbitrary masses _and hyperfine interaction ncex®=t;—t, such thatx“=(x%r,) is a four-vector. A
(Sec. VIIl). However, we would like to advocate the direct go-onq independent four-vectit* is defined such tha®*

use of formula(39) fo'r (E?—m?)/m;m, because it is more =igdx becomes the total four-momentupf + p5, which is
compact for calculations and less mass dependent for meas \Served:

surements.

XE=xb—xt  XE=ExE+ExE, ph=prt+EPH
V. BOOSTS AND COORDINATE TRANSFORMATIONS

Lorentz transformations can be constructed directlyyfor ps=—p“+ E,P*, (53
and ¢, p, but it is more convenient to use the known trans- o
formations of the single free-particle spinapg and ¢,. We Ei+E,=1, PH=p{+p5y, Pry=KFy. (B4

only need the boosts from the c.m. system to the laboratory
system (), where the system has a total four-momentifn ~ The as yet open value d;—E, is chosen such than°
=il 9x° vanishes at asymptotic distances in the c.m. system
$ia= At cm where particles 1 and 2 are on their mass shélfs; k?
=m? and E3—k?®=m3, i.e., E5—EZ=mi—mi=m,m_.

— 517 1/2__ —-1/2 57
A= (v 7 Ko) ™= (2y+2) " Hy+ 1+ vKay), Using in additionE, + E,=E, one obtains

(44)
R R E;=(E?-m,m_)/2E, E,=(E?+m.,m_)/2E. (55
K=K/E, y=KYE=(1+K??Y2 (45)
R R Extracting now from Eq(53)
We also take the axis alongK, Ko;=Ka;,. Suppressing . A
the index p, the eight-component laboratory spinor is p*=E,p{—E.p5 (56)

h=Adcm, and inserting the asymptotic valu& of p? in the c.m.
. ~ system, one finds that® vanishes here for
A= (y+ ysKoz) YA y+ ysK o)

Ei=E/E=3(1¥m,m.), m.=m./E. (57)

Nl

=(1+ 3K?07+Ko,yys) " (46)
In the interaction regiorp® does not vanish, but in the con-
A=y+ %k%gz— %RZA gf/(27+ 2) (47 text of a single integral equatidBethe-Salpeter equatipit
cannot be treated as a dynamical variable. Instead, integrals
[in checking Eq.(47) by squaring Eq.(46), use o,Ac, involving p° are treated as perturbations é6(p°) integrals
=0, (A0)?=2(1-01,05), (Ao,)*=4(Ao,)?, and K*  (Sec. VI). _ _ _
—R2(y2—1)]. TheboostA for \ follows from A by replac- The space coordinate transformation of Esp) is

" by - : . .
INg y502 by — ys507, ri=R+E,r, r,=R—Er, (58)

— A A— 1p _1p2 2
Xi=Axem: A=yt 2KysAo,— 3K 03/ (2y+2). wherez, is Lorentz contractedz =z/y. The nonrelativistic

4 A
“8) approximation yields the familis; =m; /m.
The inverse boost has replaced by—K, which is equiva-
lent to a sign change ofs; VI. VECTOR POTENTIAL AND BETHE LOGARITHM
AB=BA L, Kﬁzﬁxfl‘ (49) In the presence of a four-potential, pf, andp% are
replaced by

Insertion of Eq.(19), #.m=C#, gives, in the laboratory sys-
tem, ¢4 =Acy, and for thec-transformediy; , mi=pLteA (X)), mh=pi—ZeA(xy). (59

he=c iy =c 'Acy=Acy, Ac;=c 'Ac, (50) The coefficient€, andE, of the transformatiori53) to
. . andIT* remain unchanged in a perturbative treatmenhof
Ac=7y+ % ysKo,m, Im_— 3K?Ac2/(2y+2). (51) Inthe dipole approximatioA(x,) =A(X), Eq.(56) leads to
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a=E,m—E m=p+reA, (60)  With a;=—2In(2a)—2. The denominatom. m_ in Eq. (67)
will be discussed in the next section. The factan1nh front
wherere=r X e is the dipole radiation chard@], disappears in the expression fBf, asE>~m?+2mE, ac-

cording to Eq.(1).
r=3z+1)-1(z-1)m,m_
o VII. BETHE-SALPETER EQUATION, VACUUM
=1+ 3(Z-1)(1-m.m_). (61) POLARIZATION, AND FORM FACTOR

In the following, we use the Coulomb gauge in the c.m. Continuing with theT matrix of Sec. llI, the two-photon
system and replacp by 4 in Eq. (2). To exhibit its E2 exchange parf® may be used to derive corrections to the
dependence, we also multiply the equationFay main interaction, including the Salpeter shi#7). However,
here we consider instead the more commonly used Bethe-
(Ee—EV—mym,B8) = vys(o,—i0*VIE)Em. (62) Salpeter(BS) equation. It is formulated in the c.m. system,
where Eq.(53) reduces to
The substitution
L=pt+E ,  py=—-p*+E , 69
(=Ep, p=p,/E, m=m,E 63 p1=p 1940, P2 p 29,40 (69)
and p* is an integration variable. Suppressing the integra-
puts Eq.(62) into a form that contains only even powers of tion, the BS equation applies to the two-fermion Green’s

E. For the moment, we assumé=—Zal/r and EV= function G=G(19),
—Zalp=V(p). Deviations will be discussed in Sec. VII. For
the Lamb shift calculation, one neglects the hyperfine opera- G10=g10 4 g1OK (16 G106 (70)
tor and obtains an explicit eigenvalue equation e
— (E2—m2—-m3)/2, whereS™*9 is the product of two free fermion propagators in
momentum space
hy=Eey, h=mm,B+V(p)+am,. (64) B B
g S1=(p—my) @ (p—my) *
Its Coulomb Green’s functio® satisfies the usual equation
[2], taken in the variablep,p’: | = (patmy) ® (P +m)/D;D,, 7D
[V§+(EE)2_ m§m§+ 2EeZa/p D1: pi_ mi-l— ie= p2+ 2E1p0+ K2+i g,
+(Za+iap)Z2a®p?]G(p,p' E€)=8(p—p'). (65 D,=p5—mi+ie=p?—2E,p°+K*+ie, (72

Evidently, it is also independent of the signsmof andms,. and the kerneK(® is the sum of all irreducible Feynman
The same remark applies tqEq. (61)], but that expression diagrams. Our proposed eight-component formalism simpli-
uses the low-energy dipole approximation. Apart from thatfies S at the expense oK. Taking K from the matrix ele-
the Bethe logarithm can depend only B, m2, andmZ. Its ~Mentsx 'Ky analogous to the 88 matrix M in Eg. (22),
proportionality tor? has been noted previouslg4,15. In-  ©one has

spection of the formulas collected 2] reveals another

small s state correction, which is also proportional ité. SIOK1O=gBK®)  SB="> y w//D;D,. (73
Moreover, both corrections are proportional nrgm, and
therefore pushed under the square root in([Bj.where they

. . 0_ . .
appear as quantum defects: In a matrix notation where/*= g and ys are identical for

particles 1 and 2, the spin summation is now

_4a32|k | , 4a® (5 o2
o=z kN, pT== g e’ S oW =M,y + My BE,—m_p°
(66)
- m,o;— My Bo5). 74
After the extraction of3g andg’, there remains a somewhat YsP(Mo0 — My foy) 74
reduced Salpeter shift It is only a first-order polynomial imp;,p,. Consequently,
2 o5 5 the numerator o8® is linear in the integration variables,
AEL - — ML a [za’+ 1 5 whereasS(*®) is quadratic. One may in fact go one step fur-
Sal man3 [3 " m,ym_ 10 ther and use irreducible representations of the Lorentz group,

in which case one arrives &%=1/D;D,. This amounts to
the elimination of the dotted spinor components frgrfil6];

: (67)  itis widely used in QCD calculationfd.7]. For bound states,
however, it has the disadvantage of suppressing explicit par-
ity invariance.

n 1-3 The term in parentheses in E§4) is (m_o +m_ A o)/2

I(I+1)(21+1)° in the notation of Eq(18) andm_ o may be converted into
(680 m, o by the transformatiori20),

2 m2 2 m2
m3In— —miin—;
mz mp

X

20 &1 1 1
|n7+iz.—+§—%

a,’1=—25|0 <3
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vLp=Cv, W_p=C 1w, and hyperfine structure of these inner orbitals, the f76)

suggests the introduction of a running electric coupling con-

stanta,:

Z vW'=(e=ysop+pB+p°m_/m,)m, . (75
V=V¢+6Vy, Ve=-Za.lp,

To handle thep® integration, one may use the formulax./(

—ig)=PIx+ims(x) (P is the principal valug Ny=VytZ(ae—a)lp, (&Vy)=0. (80)
Y 0V/(n2— K2\ — 04 In this manner, the nonperturbative res(t remains appli-
2E/D1D,=2i7w8(p°)/(p°—k)—1/D(p " +ie) cable, withar,> .
+1/Dy(p°—ie), (76) Recoil corrections to an extended nuclear charge distribu-

tion p(r) are particularly large for muonic atoms:
and treat alp® integrals except the first one as perturbations
of the Green’s function. In these integrals, the spin summa-
tion (75) reduces t&vw'/m, = e— ap+ uB, which is sim-
ply the expression for a single-particle spin summation. In
the remaining integrals, the complete two-fermion propaga- _
tor has the more explicit numerator Propad pc(l’)=f d*qe™""F(q?). (82)

Vip)=~Za [ @rlp-r/E| Ypin)

Again, V(p) is E? dependent.
2ES vwl/m, =E2— (m2+m2—2m,m,8) 9 (p) p

VIIl. ANGULAR-MOMENTUM DEFECTS

e _
X(1-Ep/mym.)—2ysp,0. AND BARKER-GLOVER TERM

7 . . .

7 To order a3=27%a?, 4l is easily found for particles of
After integration, thisp® dependence produces factors?( ~ arbitrary masses) andg factorsg;=2(1+ «;).4l is conve-
+m2)/m.m_ and m;m,8/m,.m_. Such factors may also Ni€ntly expressed as
ar|§e from the denomma_tors_Il{D2 of the crossgd graph, 5I/a§= —(1+a)/(2+1). 82)
which contain the combinatiop®(E;—E,)=Ep°m,m_.
To check the mass dependence in#hgpiece ofAEg, [Ed.  with the abbreviationsn,;=m; /E and e= €/E and the com-
(67)], notice ma3In(m?/m3)—nmEln(m?/mé)=m, m_In(mm,/  binations

MP) + (Me—+ ma) In(m?/mymy,).

We conclude with a discussion of the potent&V/(r) c2=1-m2—e+2k,Mp, Co=1—m5—e+2k,My,
—V(p) in the presence of vacuum polarization and nuclear (83
charge distribution. For a heavy particle L or p), elec- . - .
tronic vacuum polarization is so large in ldwstates that it C?=1+2Kk1My+2k,M; +2€(1-019,/4), (84

must be added to the Coulomb potent&l, in the form of

the Uehling potential one finds

702 (= a(l=f+1)=*+c?(2j+1)+g,0.¢/ (4 +2) (85
V=Vc+Vy, Vy=-— 3—f d\%e MS(\?), (79
mrJo (where a sign error df9] for |=f+1 is correctegand

with Se=(1—4m2/A%)Y41+2m2/\?)/\%0(4m?) in the 2 2c2
electronic part of/, . At fixed \, ther dependence is easily a(l=f)= r— (2f+1)%— 16F21f421 1
AF c

converted to g dependenceH/r)e M =p le MEr:

c? 2c?cs [ 4F2c3cs
¥ +

+— +
2j+1 c2f+1)| cH2f+1)2

Za? (= 2 -\E 2
VU(p)Z—%J;) drce” *PS(N9). (79 ~

The substitution\E=\' shows that the integral depends (86)
; : ; ) S _
3512'3/ Or?'E . The_re_ is also a second—orde_r recoﬂ_ correctionny Eq. (85), I1=f+1 implies J:J]-:.fi%.:L’_%_ For g,

Ur Which is spin independeiii8]. For antiprotonic atoms, —g,=2, ¢c=1 leads exactly to the Dirac fine structure com-
the radius of the vacuum polarization cloud is much largeponent(43) of &l for all values ofm; and m,, including
than the Bohr radiusZ(a,u)_l: Below a critical valuelc of m;=m, as in positronium_ The cade=f is more Comp"_
the orbital angular momenturhy vacuum polarization ex- cated because the two valugs|+ 3 andj=I— 3} are mixed
ceeds all relativistic effect§protoniumpp and p°He have by the hyperfine interaction. We therefore definas that
=3 and 7, respectivelyfor all values ofn [19]. For these value in the integer p+1 that appears in the main term
orbitals, V is best constructed numerically from E¢9), c?/(2j+1) of a(l=f) after expansion of the square root. It
particularly for the calculation of annihilation that is local- is frequently said that the fine structure contains the
ized at very smalp. However, for the calculation of the fine “Barker-Glover” term (for 1>0) [2,3]
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EBG=a§M3(| —PIj+1)(21+1)m?nd]. (87) Barker-Glover term. Fog;=g,=2, however,cicgw,u/m

o ) ~ € to this order ina and the main terms cancel in E®S).
This is true for a spinless nucleus, except that the electron'$pere remains a small rest

anomalous magnetic moment frequently reverses the effect

[11]. On the other hand, the weighted average over the hy-

E=n2, 5l 3_ _ 4713

perfine structure produces a more complicated expression AE=azundl/(21+1)n"= — pprazaln
=4ugaz(1 = L2+ 1)%2) + 1)m?n®, (89
a—=(]—i 2 o 2.2).2
a=(1—]){2c“+g19,€/2—2(cicy/c) which replace€g in the case of muonium.
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