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Common eigenkets of three-particle compatible observables
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We give common eigenkets of three compatible observafgs- P,+P3, (u2Q5+ u3Q3)/(ma+ m3)
—Q1, Q3—Q,}, which are composed of three particles’ coordin§e and momentumP;, where y;
=m;/(my+my+m;). This set of operators are so-called Jacobi coordinates and momenta. By compatible we
mean such observables can be simultaneously determined. Using the technique of integration within an ordered
product of operators, we prove that the common eigenkets are complete and orthonormal, and hereby qualified
for making up a representation. Applying this representation to solving some new three-body problems is also
shown.[S1050-294{@8)09604-9

PACS numbd(s): 03.65—w

I. INTRODUCTION Il. COMMON EIGENKETS OF THE THREE COMPATIBLE
OBSERVABLES

In Re_f. [1],the explicit form of the common _e|genk¢_ts of We begin with introducing the three-mode Fock space
two particles’ total momentur®, + P, and relative position

| m n

Q,—Q, is constructed in the two-mode Fock space. It wasSPamled by||,m,n>_=(a1+ a; ag /yI'mint)|000), vxhere
Einstein, Podolsky, and Rosef2] who first used[P, L& .aj ]=4;, |000 is the ground state, argl anda;" are
+P,,Q;—-Q,]=0 to challenge that the quantum- related toQ; andP; by
mechanical state vector is incomplete. Although the experi- N
mental conformation that studies the correlated systems and _aita _a—a 4

iynifi i~ ' I:)i_ K ' [aiia' ]_5i'- (2)
the significance on the outcome of a second, noncausally ol iv2 ] !
connected measurement on the results of a first measurement
is fully in accord with quantum mechanics, this fact does not We shall prove that the common eigenkets of
diminish interest in properties of compatible operators andP, (u,Q,+ u3Q3)/(to+ u3) —Q1, Q3—Q,}, denoted by
their eigenketd3] and in entangled statdd] in quantum |p,x,,x3), are given in three-mode Fock space by
optics measurement.

The purpose of this work is to construct eigenvectors for a 34 (a1+2+ a2+2+ agz)
set of three-particle compatible observables 1P X2, x3)= 3 exp| — >
{P,(12Q2+ 13Q3)/ (pat+ p3) —Q1,Q3—Qa}, (a; +a; +az)* v2 (.
2
where P=P;+P,+P3 is the total momentum, «,Q, M2 ks N

+u3Q3)/ (ot m3)—Qq is the relative position between

X3
particle 1 and the center-of-mass of particle 2 an¢s&- M2t prg

air"’? (ip+x2

ia”ei Jacciai coordinatesui=m;/M, i=1,23, M=m, ot 213 it Q L
m, m3. S M2+M3 X3 |2 3 PTXx2
2 2
H2Q2+ 13Q3 2ot p3 ) P R ¢
- - = — - + — A, — —— —
P’ M2+M3 Ql 07 [P1Q3 QZ] 0, (1) M2+,U«3 X3|a3 6 3
_ B (M%"'M%"’ﬂz#s))(%_ (2= m3) X2X3
we are challenged to search fo_r the common eigenvectors 3ot pa)? 3t pa)
|p,x2.,x3) of these three compatible observables. By virtue
of the technique of integration within an ordered product p Lo M3
(IWOP) of operatorg5], we show thafp,x,,xs) makes a +i 3 [(1—3,%))(2— T X3 |000).
complete representation. Thus they can be used for solving AR
some new three-body dynamic problems. 3)
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In fact, actinga; on|p,x2,x3) we have PP, x2.x3)=P|P:X2:X3)- (7
. Further, {[uyXEQ. (5)+usXEq. (6))/(uy+us)—Eq. (4)}
. 2(a; ta, +az) V2. shows
a1 p,x2,X3)= Tyt t3 Ip—2x2
Mo~ W3 [(12Q2+ w3Qa)/ (2t pa) — Qullp.x2.x3) = X2|P X2, X3)
T X8 P X2:X3), 4 (8)
M2 M3
while the subtraction of Eq5) from Eq. (6) yields
2(a; +a; +az) V2 (.
El|pX X3)= —ayt Ip+x — =
2P X2:X3 2 3 3 2 (Q3—Q2)IP.x2,X3)= X3P X2:X3)- 9
ot 2ps Thus we know|p, x»,x3) is the eigenkets we required.
T, X Ip.Xx2:X3)s 5
2 lll. THE COMPLETENESS RELATION OF |p,x2.X3)
P We now examine ifip,x2,x3) satisfies a completeness
ay| V= —al + 2(a; +a, +3;) i+ relation. By virtue of IWOP and the normal ordering form of
3l X2:X3 8 3 PTXe the three-mode vacuum projector,
+ M | ) (6) + + +
ot pg N3] |IPX2XS) |000(00q =:exp(—a; a;—a; 8,—~azas):, (10
The sum of Eqs(4)—(6) leads to we can easily perform the following integration:
- - n %2 P° 2x3 2(up+mit popa)X3
J' f f_mdp ddeX3|P,X2aX3><p:X2'X3|:f f f_mdp dx2dxa3 T.exp ~3 3 3ot pa)?
23— o) X2x3 1V2 + + +
——————+ —[(a; —a;)+(a, —ay)+(a; —a
3(M2+M3) 3 [( 1 1) ( 2 2) ( 3 3)]p
+ @ [—2(a; +a1)+(a; +ap)+(az +ag) Ix2+ 5 [(us— u2)
3 3(p2t pma)

Using Eqs.(7)—(9) we can also calculate

<p,1Xé 1Xé|P|p1X2!X3>: p,<p,!Xé 1Xé|p1X21X3>

X(ay +ay) = (ua+2u3)(a; +ap) +(2uy+ pus)(ag +az)lxs

2 2 2
_af ta; +ag +a§+a§+a§+(al*+a2*+a§)2+(a1+a2+a3)2
2 3

—aja;—aya,—azag(:=1. (11)

<p’!Xé !Xé|(Q3_Q2)|p!X21X3>=Xé<p,lXé 1Xé|p1X21X3>
:X3<p,!/\/é !Xé|p!X2!X3>!

which tell us that the overlap

=p(p’ . x2.x3|P:x2.x3), (12

(P" x2.x3lP x2.x3)=8(P" —P) 8(x2—x2) (x5~ X3),
(13

(P" X2 X3l (12Q2+ 13Qa)/ (2 + 13) = Q1llP. X2, X3) indicating thatip, x2,x3) are orthonormal,

From Egs.(11) and(13) we see thatp,x»,x3) are quali-

=x2(P" X2:X3P.x2,X3) = X2(P" X2, X3 Ps X25 X3) fied for making up a representation.
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IV. SCHRODINGER EQUATION FOR A THREE-BODY where

SYSTEM WITH KINETIC COUPLINGS

IN THE (p,x2.x3s| REPRESENTATION Mg=my(My+mz)/M, (17)
We now write the Schidinger equation for a three-body m, = mM,Mg /(My+my). (18)

system with kinetic couplings in thép, x»,xs| representa-
tion. The three-body dynamic Hamiltonian that we deal withmg (m;) is the reduced mass of particler3 and particle 1
here is (particle 2 and particle)3

From Egs.(2) and (3) it is not difficult to derive P;’s

2 . ) . .
i representation ifp, x», basis, i.e.,
H=> zp—r'n+k12P1P2+ K1aP1P 3+ kogPPs P APoxz. sl

i=1 i

(19

J
<an21X3|P1§(M1p+i —)
#2Q2+ 13Q ax
FVo| T 4Va(Qe - Q). (19) ?
M2T M3

_ . M2 .
where potential®/, andV; depend only on the Jacobi coor- <p'X2'X3|P2_(f“2p_' ot fs %“ %)(anzstL
dinates.P,P,, P,P5;, andP,P5 are kinetic coupling ener- (20)
gies, which often exist in a polyatomic molecule when the

molecular vibration is considerdé].

( P ( . Mz O J
L L = _I
Let Pix2,x3F3=| u3P ot i3 0"X2 (7)(

)(p X2:X3l-
(21

Combining Egs(19)—(21) and using Eq(15) we find that

Pr=w1(Py+P3)—(ua+ u3)Pq,

Pr=(12P3—u3P2)/(pua+ us), (15

wherePy (P,) is the mass-weighted relative momentum be-

(P.x2.x3lP=p(P.x2.x3l,

tween particle 2-3 and patrticle 1(between particle 2 and )
particle 3. Then it is easy to see thét can be rewritten as (P.x2:x3|Pr=—1I (9—)(2 (P.x2: X3l
P2 P& P?
=4+ = J
H 2M+2mR+2mr+|2<J KPPy <va2,X3 Pr=—i _<P X2:X3l- (22
+V, #2Q2F p3Qs Q.| +Vs(Qs-0Q,), (16 Asaresultof Eqs@), (9), (16), and(19-(22), sandwiching
Mot 3 H between(p, x»,xs| andH’s eigenstateE, ), we obtain

1 2 1
H|E E E +k +k +k -k —| =
(P.x2:x3lHIEn) =En(P.x2,X3|En) = {( 12M 12T Kighi U3 23#2/*3)[3 (Zmr 23) % 2me
2
M2M3 M2 M3 1_1 M2M3
+k -k [ k +k )
Blurtusl? P apt s Pupt | axg |t % ot
J . 4 ,U~2_,U~3) 7
X P ———i[(Kya—Kp) g + Kool ——(k —Kygtk
p Ixs [(kiz—Kkip) g+ Kog( o= p3) Ip Ixa 2Kt ) Ixadxa
+Va(x2)+Va(xs) [ {(P:x2: X3 En)- (23
|
(P, x2.x3|En)= @, is the wave function. Equatiof23) is the & , d &2
Schradinger equation in thép, x»,xs| representation. A2 92 Pntidop o— oy tAs e ¢nt[En—ApP?
—Va(x2)—Va(x3)len=0, (24)
V. SOLUTION TO EQ. (23) FOR THE CASE
WHEN m2= m3 AND k12=k13 Where
In this section we provide a concrete example of how to 1 2
solve Eq.(23) for my=m; andk;,=k;3. In this case, Eq. _ mm
; —+ +
(23) is reduced to Nom KT K M2 (25
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2=om, "am a0 MmN
(m;—2m)K+mk
{o= M v Mp=mg=m,
kio=kis=K, kaz=k.

To solve this differential equation we make the ansatz

{

cpn=exp(—i Z_Msz)Iﬁn-

After substituting Eq(26) into Eq. (24), we obtain the fol-
lowing equation fory,, :

(26)

9? 92
Ao~z nthz—— ¢n+[En_)\,pz_VZ(XZ)_VS(XB)]‘//n

X3 X3
=0, (27)
where
N =[(mym) " t+kmy t-2K2]/[2(m !
+2my 1+ k—4K)]=N—£3/4N,. (28

Thus we see that once we have worked in ¢hey, x|

representation, the complicated dynamic problem of three-
coupled particles can be simplified as two independent one-
variable differential equations, including another variaple

as a parameter. It then follows that

En=N'p*+E,,+En,, (29
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whereEnj (j=2,3) is the energy eigenvalue of the equation
02
Aj pv ¥ (X)) +HLEn, = V(X 1¥n (X)) =0, (30
j
and the wave function

@n=exp(—i(£2/2\2)PX2) n, ¥n,- (31

In particular, whenV; (j=2,3) in Eq.(16) is the har-
monic potential, which is the simplest molecular vibrational
model, i.e.,

Q2+ Q 10 Q2T Q
22 3_Q1):§Dg( 22 :

\Z

2
_Ql) )

V3(Q3—Q2)=3D3(Q3— Q)%

whereD; (j=2,3) is the spring constant. Since the energy
level of the one-dimensional harmonic oscillator is well
known, we can directly write down the energy level of Eq.
(30) asEnj=(nj+%)\/2_)\ij , thus Eq.(29) becomes

(32

En=m; 1+ (2m) 1427 1k—2KD,(n,+ 3)

+ \ 2m71_2kD3(n3+ %)
(mym) 1+ km t—2K?2

+ 2,
2(m 1+ 2m, T+ k—4K) P (33

In conclusion, by establishing thgp, x»,x3| representa-
tion, we provide a convenient approach for solving some
dynamic problems of three-body systems.
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