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Exterior complex scaling method applied to doubly excited states of helium
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We propose a technique which is suitable for calculations of resonant energies of three-body systems. It is
based on a smooth exterior complex scaling procedure and the three-dimensional finite-element method.
Accuracy dependencies on an exterior radius and on a curvature of the rotated path are examvenesl.
resonances of helium are calculated with an accuracy better thahal0.[S1050-29478)05604-7

PACS numbd(s): 31.50+w, 02.70.Dh

. INTRODUCTION physics there exist systems, likeHor Oy, where all three
interparticle distances must be scaled. Furthermore, this is a

The complex scalingCS method is one of the main tpical f | hvsi bl Th kinds of
methods for studying resonant properties of quantum sys—yp'ca case 1or nuclear physics problems. These Kinds o

tems. Since it was proposed, a lot of papers appeared whic,%r()blemS motivate the present work.

dealt with an analvtical implementation of the CS as well In this paper we thus describe a method which incorpo-
ca an analytical impiementation ot the as Well 83 4tes the ECS in a truly three-dimensional fashion. Numeri-
with numerical realizations in molecular, atomic, and nuclear

. . - ) cally, our method is based on the finite-element method
physics. The interested reader is referred to reviews anH:EM) [13]. The realization of the method is described in

workshop proceedings treating CS-related theories and theggafg. [14,15. It was recently shown that the FEM can be

applicationg{1-3]. used to compute energy levels of three-body systems with a
The uniform CS method uses the coordinate transforma.qery high accuracy, up to 181 [16]. Here we show that a

tion r— pr, where» is a complex number. In many cases, rather high accuracy can be reached in the framework of the

however, this transformation is not applicable, e.g., in theFEM also for resonant energies.

case of potentials which are not dilation analy#¢, or when As a test example we have chosen the helium atom. A lot

a potential is given numerically in a part of the entire coor-of very accurate experimental and theoretical results con-

dinate space while it can be represented as an analytic funcerning doubly excited states in helium are availafsee

tion asymptotically. Even though it may be formally applied, [17], and references thergirlThus this system is a good test

it is unnecessary when a system decays along only one caase for any method, and we use it in spite of the applicabil-

ordinate. In this case, it is natural from both physical andity of the uniform CS for helium. For the sake of simplicity,

numerical points of view to scale only that coordinate. we restrict ourselves t8 states only despite the fact that our
To deal with these issues, the exterior CS procedureealization of the FEM works efficiently even for very high

(ECS was proposed6]. In ECS the coordinates are only angular momentum, up to 4Q5].

scaled outside a hypersphere of radiys- Rq. This implies

that one does not rotate potentials at small distafreegtion Il. THEORY
region and, therefore, excludes the problems outlined above. _
In spite of the great success in locating resonance posi- A. Complex scaling method

tions, some problems are usually connected with the use of |n a supposition of infinitely heavy nucleus, the Hamil-
CS theories when calculating scattering data, such as croggnianH of the helium atom for zero total angular momen-
sections[5]. Recently, however, a generalization of the CStym can be written as
was proposefl7,8], which can be successfully used for com-
puting scattering amplitudes and cross sections. As this gen-
eralization is based on the ECS technique, it becomes impor- H= —E -
tant to have a convenient numerical method, which utilizes =1 2r]
the idea of the exterior complex scaling.

There are a considerable number of pap@rsl2 which where the potential energy(r.r,.c) is the sum of Cou-
deal with computations in the context of the ECS. Howeveryo " e viac. i
most of them describe implementations of the one- '

;L > + J 1-c? i +V
ri—rhir—(1—C%)— r{,r-,C),
Iarz i é,c( )ac ( 1,12 )

| @

dimensional ECS. The authors of Ref8,9], who used a 2 2 1
two-dimensional method, are an exception. All these realiza- V(rq{,ry,c)=————+—.
tions are powerful enough for many practical applications, fi T2 Ti

especially in molecular physics. However, even in molecular . . .
P y phy Here r; is the distance between thHé¢h electron and the

nucleus,c=cosﬁ,r§), and the inter-electron distance is

2 _ .2 2
*On leave of absence from Laboratory of Complex Systemd 12= 1~ 2r1r2C+r5. .
Theory, Institute for Physics, St. Petersburg University, St. Peters- 10 calculate resonant states of the system in the CS

burg, Russia. method, we should replace the three-component veﬁcws
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the complex ones. In fact, only the magnitudgsof the The resonant energigs=E—i I'/2 are obtained as eigen-
vectors have to be scal¢@]. We define the transformation values of a functiona¥ ,H,|¥,), where the rotated
of r; as[18] Hamiltonian H, is defined in Eq.(5). These energies are

evaluated by solving a generalized eigenvalue problem:
ri—é(ri)=ri+xg(ry, )

where\ =exp(6)—1, andé is a rotation angle. The function

g(r) describes the complex path. The formal requirementghere
on this function are rather general and are given in Ri].

It is worth noticing thatg(r)=r corresponds to the uniform H.): o =(f . Q). L =(f._|f

CS. In this paper, we use the term “smooth” CS for the (Ho)im,jc=(TimlHol > NG (S)im = (Finl y10-
transformation when botlg(r) and its derivative are con- The basis functiond;,, are expressed as products of one-
tinuous. The term “sharp” CS refers to the original prescrip- dimensional functions

tion [6] wheng'(r) is discontinuous. We specify our choice

of g(r) below. The angular variable is obviously not fim(r1,r2,€)="fim (r)fim,(r2)fim (c). 9)
changed by the transformation.

In analogy with the uniform complex scaliig], we de-  Such a representation of the basis functions simplifies an
fine the operatorU, which scales the wave function €valuation of the matrix elements in E() and reduces
W(ry,r,,c) as three-dimensional integrals of the kinetic energy to a product

of one-dimensional ones. Namely, integrating E&) by
UgW(ry,r2,0)=p(ry)p(ra)¥(e(ry),é(r),c). (3)  parts and accounting for the smoothness of all functions, we

_ _ have, for example, for a part(!) which includes derivatives
Here the functiomp(r;)=|J(r;)|, and the Jacobian(r;) i respect tar
are defined as o

’HQU:Z&), (8)

¢( ) [ Gfimy(re) dij(ry) ¢2(r1)d
3r)=—5—=1+\g'(r). @ (Hs >im,-k—f dr, dn gy
As it was suggested in R€f7], it is convenient to deal with f . £ 2 2(r\d
the function ¥ ,=W((r,),#(r,),c) without the factor my(12) Ty (12) #7(r2) P(T2)dr

p(r)p(r,). This has an advantage that even for the sharp

exterior scaling the function¥, is continuous unlike xf fim.(C)fj.(c)dc. (10)
p(r)p(ry) ¥, [19]. The rotated Hamiltoniakl ,=U ,HU , * ° :

acting on the function? , can be expressed as

ﬁ[ az( 1 pln)

2pt(ry) ar?  \PPr)@(r)  ps(ry ) an

Analogous expressions are obtained for the other derivatives.
The only remaining three-dimensional integral is that of the
potential energy.
The one-dimensional basis functions were chosen to be
Legendre polynomials for the angular variable and a product
of Legendre polynomials and an exponential function for the
tV(@(ry),é(r2).c). () radial variables.
The generalized eigenvalue probléd) was solved by the
inverse iterations method. For solving the set of linear equa-
B. Finite-element method tions appearing, we used the block lower times upper trian-
Numerically we have treated Eq5) using the finite- gular matricegLU) factorization method.
element method. Here we outline the general ideas of this It is well known [4] that positions and widths of reso-
method, while one can find its detailed description elsewher&ances are independent of the rotation angleHowever,
[12-14. this is true only in exact calculations. When a numerical
The three-dimensional space formedmy r,, andc is  approximation is used, resonances becaimgependent. In
divided into some number of rectangular boxes numbered bthis case, their position& and widthsI' are defined by
i. The wave function¥, is expanded in a finite-element means of the complex variational princidi20]:
basis such that

A
" 201 %

dE
dé

Or

W5=2 vimfim(r1,2,€). 6)
. - . . and
Here,v;, are expansion coefficients defined in each element
i and restricted through continuity conditions for the wave dar
function and its derivatives at element boundaries. A basis d0
function f;,,(r4,r,,c) has, in the finite-element algorithm,
the property

=0. (12)
0.

The two optimal angleg), and ¢; converge to one single
fim(r.,r>,c)=0for (ry,r,,c) ¢ elementi. (7)  angle as the accuracy of the calculation is increased.
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Ill. CALCULATIONS, RESULTS, AND DISCUSSION

For our calculations we should specify a functigfr)
which can describe complex paths with different curvatures.
Our choice

r<R,
r>Rg.

12)

9= (1= Ry {1—ex — (1 —Ro)?T},

HereR, is the external radius and is the curvature param-
eter. Both the function and its derivative are continuous at
Ry. Wheno goes to infinity,g(r) describes the sharp exte-
rior CS. The casRy=0 and o= [i.e., g(r)=r] corre-
sponds to the usual uniform scaling.

For our calculations we have chosen maximum radius 50
a.u. and five boxes for both, andr, coordinates and one
box for ¢ coordinate. The box boundaries are 1.24, 4.0, 6.6,
and 16.0 a.u. The number of basis functions was chosen to
be 6 for the radial coordinates and 10 for the angular one.
The matrix elements of the potential in E@) were calcu-
lated numerically using the 20-point Gauss-quadrature rule.
This mesh yields sparse matrices of dimension 3250 with a
total bandwidth of 2102. It is worth noticing that these values
are very small in the context of the FEM5,16.

As we study the accuracy dependence on the exterior
scaling parameters, we use the mesh which produces rela-
tively big errors up to 10*. To check a convergence of the
results we use also a denser mesh, see below.

In Fig. 1 we present a typical behavior of real and imagi-
nary parts of a resonance in helium. One can see that there is
the definite accuracy dependence on the curvature parameter
o:. the smallero, the better an accuracy. This fact has a
natural explanation. Indeed, when goes to infinity, the
smooth CS approaches the sharp one. It is known that for the
sharp scaling both the wave function and its derivat\i&3,
or at least the derivativel’], are discontinuous. For finite
values of o they are continuous but they have to change
drastically on an intervah R~ 1/\/o aroundR, in correspon-
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dence with the definition ag(r). As in our realization of the FIG. 1. Real parE (a) and widthI" (b) of a helium resonance as

FEM both functions and derivatives are continuous, it mean4 function of the curvature parameter The lines without symbols,

that we have to use very small boxes arouRglor very with crosses, an_d with triangles correspondRg=0.0, 1.24, and

dense sets of local functiorfs,, in every box in order to 40 @u. respectively.

approximate the wave function with a good accuracy. A

similar conclusion was reported, for the sharp scaling, in

Ref. [12]. When o becomes smaller, the transition region (o=2°) does. In the intermediate region B, details of the

1/ is growing and we do not need to take special caresccuracy behavior depend on a numerical realization.

about the vicinity ofR,. Following arguments mentioned above, for calculations
On the other handg cannot be arbitrarily small. The of other levels we have chosen the exterior scaling param-

transition region /o has to be much smaller than the maxi- eters to b&k,=4 a.u. andr=0.25. The results are presented

mum radius of the numerical approximation: in Table I. The main aim of this work is to present and

Rmax— Ro>1/\/o. This means that the asymptotiger) ~r is analyze a synthesis of the exterior complex scaling and our

already reached inside the part of the space, which is numerprevious FEM approach. It is thus not of interest to compare

cally approximated. our results to an extensive amount of experimental and the-
As one can see in the figure, there is no obvious accuracyretical data. Such a discussion can, for example, be found in

dependence on the external radRg. The only conclusion Ref.[17]. We have rather chosen to compare our results with

that can be drawn is that the best results are obtained witthose of Ref[17] since they are the most complete ones and

Ro=0. Even in this case, the smooth CS with relativelyagree with other precise calculatiofd].

small o produces better results than the uniform scaling One can see that for the mesh mentioned aljovesh 3
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TABLE |. Energies and width¢a.u) of S states in helium.

Preserit Presentt Lindroth®
E r E r E r
st (1 —0.77787 0.00457 —0.777870 0.004535  —0.777868 0.004541
1s8 (2) —0.62204 0.00021 —0.621949 0.000213  —0.621926 0.000216
st (1) —0.58989 1.3 103 —0.589895 1.3810°3 —0.58989 1.3610°°
st (2) —0.54810 7.X10°° —0.548088 7.5%10°5 —0.54809 7.6X10°°
35 (1) —0.60258 6.X10°° —0.602577 6.8610°° —0.60258 6.6%10°°
38 (2) —0.55975 8.6x10° 7 —0.559746 2.6%¥10°7 —0.55975 2.56 107
s (1) —0.35354 3.0%10°° —0.353539 3.0x10°° —0.35354 3.0x10°3
12 (2 —0.31746 6.6%10°3 —0.317457 6.66 102 —0.31745 6.6%x10°2

3Miesh 1 results.
PMesh 2 results.
‘Uniform complex scaling method, RefL7].

our results agree rather well except for small widths IV. CONCLUSIONS
I'=10 * a.u. The reason is that the method gives one com-

plex numberz at a time and, therefore, a relative accuracy oy terior complex scaling and the three-dimensional finite-

for a small imaginary part is worse than for a bigger reale ement method can be successfully applied to calculations
part. To check a convergence, we increased the number g ; -

: . . : Of energies of resonant states in three-body quantum sys-
the local basis functions for the radial coordinates from 6 to - ; . .
teJns. Guidelines for choosing the exterior scaling parameters

7 keeping other mesh parameters the same. This INCreasglve been presented. Our technique gives a competitive ac-

the matrix dimension up to 4530. The corresponding results . . : .
; cFracy even for the helium atom despite the fact that its main
are shown in Table | as results for mesh 2. One can see tha

they agree perfectly with the results of RéL7]. Indeed, implementation should be faced in molecular and nuclear

comparing them with more precise Hylleraas-type calculaP hysics.

tions[21] when available, we have found a difference only a
few units of 10°® a.u. for all levels, except for the level with
E=—0.6219 a.u. This level experienced a slower conver- One of us(E.Y.) is grateful for financial support from the

It has been shown that the technique based on the smooth
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