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Exterior complex scaling method applied to doubly excited states of helium

Nils Elander and Evgeny Yarevsky*
Department of Physics, Stockholm University, Box 6730, S-11385 Stockholm, Sweden

~Received 18 November 1997!

We propose a technique which is suitable for calculations of resonant energies of three-body systems. It is
based on a smooth exterior complex scaling procedure and the three-dimensional finite-element method.
Accuracy dependencies on an exterior radius and on a curvature of the rotated path are examined.S-wave
resonances of helium are calculated with an accuracy better than 1025 a.u. @S1050-2947~98!05604-2#

PACS number~s!: 31.50.1w, 02.70.Dh
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I. INTRODUCTION

The complex scaling~CS! method is one of the main
methods for studying resonant properties of quantum s
tems. Since it was proposed, a lot of papers appeared w
dealt with an analytical implementation of the CS as well
with numerical realizations in molecular, atomic, and nucl
physics. The interested reader is referred to reviews
workshop proceedings treating CS-related theories and
applications@1–3#.

The uniform CS method uses the coordinate transfor
tion r→hr , whereh is a complex number. In many case
however, this transformation is not applicable, e.g., in
case of potentials which are not dilation analytic@4#, or when
a potential is given numerically in a part of the entire co
dinate space while it can be represented as an analytic f
tion asymptotically. Even though it may be formally applie
it is unnecessary when a system decays along only one
ordinate. In this case, it is natural from both physical a
numerical points of view to scale only that coordinate.

To deal with these issues, the exterior CS proced
~ECS! was proposed@6#. In ECS the coordinates are on
scaled outside a hypersphere of radiusur u5R0 . This implies
that one does not rotate potentials at small distances~reaction
region! and, therefore, excludes the problems outlined abo

In spite of the great success in locating resonance p
tions, some problems are usually connected with the us
CS theories when calculating scattering data, such as c
sections@5#. Recently, however, a generalization of the C
was proposed@7,8#, which can be successfully used for com
puting scattering amplitudes and cross sections. As this g
eralization is based on the ECS technique, it becomes im
tant to have a convenient numerical method, which utiliz
the idea of the exterior complex scaling.

There are a considerable number of papers@7–12# which
deal with computations in the context of the ECS. Howev
most of them describe implementations of the on
dimensional ECS. The authors of Refs.@8,9#, who used a
two-dimensional method, are an exception. All these real
tions are powerful enough for many practical applicatio
especially in molecular physics. However, even in molecu

*On leave of absence from Laboratory of Complex Syste
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physics there exist systems, like H3
1 or O3, where all three

interparticle distances must be scaled. Furthermore, this
typical case for nuclear physics problems. These kinds
problems motivate the present work.

In this paper we thus describe a method which incor
rates the ECS in a truly three-dimensional fashion. Num
cally, our method is based on the finite-element meth
~FEM! @13#. The realization of the method is described
Refs. @14,15#. It was recently shown that the FEM can b
used to compute energy levels of three-body systems wi
very high accuracy, up to 10211 @16#. Here we show that a
rather high accuracy can be reached in the framework of
FEM also for resonant energies.

As a test example we have chosen the helium atom. A
of very accurate experimental and theoretical results c
cerning doubly excited states in helium are available~see
@17#, and references therein!. Thus this system is a good te
case for any method, and we use it in spite of the applica
ity of the uniform CS for helium. For the sake of simplicity
we restrict ourselves toS states only despite the fact that o
realization of the FEM works efficiently even for very hig
angular momentum, up to 40@15#.

II. THEORY

A. Complex scaling method

In a supposition of infinitely heavy nucleus, the Ham
tonianH of the helium atom for zero total angular mome
tum can be written as

H52(
i 51

2
1

2r i
2S r i

]2

]r i
2

r i1
]

]c
~12c2!

]

]cD 1V~r 1 ,r 2 ,c!,

~1!

where the potential energyV(r 1 ,r 2 ,c) is the sum of Cou-
lomb potentials:

V~r 1 ,r 2 ,c!52
2

r 1
2

2

r 2
1

1

r 12
.

Here r i is the distance between thei th electron and the
nucleus, c5cos(r1

W,r2
W), and the inter-electron distance

r 12
2 5r 1

222r 1r 2c1r 2
2 .

To calculate resonant states of the system in the
method, we should replace the three-component vectorsr i

W to

s
s-
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3120 57BRIEF REPORTS
the complex ones. In fact, only the magnitudesr i of the
vectors have to be scaled@6#. We define the transformatio
of r i as @18#

r i→f~r i !5r i1lg~r i !, ~2!

wherel5exp(iu)21, andu is a rotation angle. The function
g(r ) describes the complex path. The formal requireme
on this function are rather general and are given in Ref.@18#.
It is worth noticing thatg(r )5r corresponds to the uniform
CS. In this paper, we use the term ‘‘smooth’’ CS for t
transformation when bothg(r ) and its derivative are con
tinuous. The term ‘‘sharp’’ CS refers to the original prescr
tion @6# wheng8(r ) is discontinuous. We specify our choic
of g(r ) below. The angular variablec is obviously not
changed by the transformation.

In analogy with the uniform complex scaling@4#, we de-
fine the operatorUu which scales the wave functio
C(r 1 ,r 2 ,c) as

UuC~r 1 ,r 2 ,c!5p~r 1!p~r 2!C„f~r 1!,f~r 2!,c…. ~3!

Here the functionp(r i)5AuJ(r i)u, and the JacobiansJ(r i)
are defined as

J~r i !5
df~r i !

dri
511lg8~r i !. ~4!

As it was suggested in Ref.@7#, it is convenient to deal with
the function Cu[C„f(r 1),f(r 2),c… without the factor
p(r 1)p(r 2). This has an advantage that even for the sh
exterior scaling the functionCu is continuous unlike
p(r 1)p(r 2)Cu @19#. The rotated HamiltonianHu5UuHUu

21

acting on the functionCu can be expressed as

Hu52(
i 51

2 F 1

2p4~r i !

]2

]r i
2

1S 1

p2~r i !f~r i !
2

p8~r i !

p5~r i !
D ]

]r i

1
1

2f2~r i !

]

]c
~12c2!

]

]cG1V„f~r 1!,f~r 2!,c…. ~5!

B. Finite-element method

Numerically we have treated Eq.~5! using the finite-
element method. Here we outline the general ideas of
method, while one can find its detailed description elsewh
@12–14#.

The three-dimensional space formed byr 1 , r 2 , andc is
divided into some number of rectangular boxes numbered
i . The wave functionCu is expanded in a finite-elemen
basis such that

Cu5(
im

v imf im~r 1 ,r 2 ,c!. ~6!

Here,v im are expansion coefficients defined in each elem
i and restricted through continuity conditions for the wa
function and its derivatives at element boundaries. A ba
function f im(r 1 ,r 2 ,c) has, in the finite-element algorithm
the property

f im~r 1 ,r 2 ,c![0 for ~r 1 ,r 2 ,c!¹ element i . ~7!
ts
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The resonant energiesz5E2 i G/2 are obtained as eigen
values of a functional^CuuHuuCu&, where the rotated
Hamiltonian Hu is defined in Eq.~5!. These energies ar
evaluated by solving a generalized eigenvalue problem:

H̃uv5z S̃v, ~8!

where

~H̃u! im, jk5^ f imuHuu f jk& and ~ S̃! im, jk5^ f imu f jk&.

The basis functionsf im are expressed as products of on
dimensional functions

f im~r 1 ,r 2 ,c!5 f im1
~r 1! f im2

~r 2! f im3
~c!. ~9!

Such a representation of the basis functions simplifies
evaluation of the matrix elements in Eq.~8! and reduces
three-dimensional integrals of the kinetic energy to a prod
of one-dimensional ones. Namely, integrating Eq.~8! by
parts and accounting for the smoothness of all functions,
have, for example, for a partHu

(1) which includes derivatives
with respect tor 1 ,

~H̃u
~1!! im, jk5E d fim1

~r 1!

dr1

d f jk1
~r 1!

dr1

f2~r 1!

p2~r 1!
dr1

3E f im2
~r 2! f jk2

~r 2!f2~r 2!p2~r 2!dr2

3E f im3
~c! f jk3

~c!dc. ~10!

Analogous expressions are obtained for the other derivati
The only remaining three-dimensional integral is that of t
potential energy.

The one-dimensional basis functions were chosen to
Legendre polynomials for the angular variable and a prod
of Legendre polynomials and an exponential function for
radial variables.

The generalized eigenvalue problem~8! was solved by the
inverse iterations method. For solving the set of linear eq
tions appearing, we used the block lower times upper tri
gular matrices~LU! factorization method.

It is well known @4# that positions and widths of reso
nances are independent of the rotation angleu. However,
this is true only in exact calculations. When a numeric
approximation is used, resonances becomeu dependent. In
this case, their positionsE and widthsG are defined by
means of the complex variational principle@20#:

dE

duU
ur

50

and

dG

duU
u i

50. ~11!

The two optimal anglesu r and u i converge to one single
angle as the accuracy of the calculation is increased.
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III. CALCULATIONS, RESULTS, AND DISCUSSION

For our calculations we should specify a functiong(r )
which can describe complex paths with different curvatur
Our choice

g~r !5H 0, r<R0

~r 2R0!$12exp@2s~r 2R0!2#%, r .R0 .
~12!

HereR0 is the external radius ands is the curvature param
eter. Both the function and its derivative are continuous
R0 . Whens goes to infinity,g(r ) describes the sharp exte
rior CS. The caseR050 and s5` @i.e., g(r )5r ] corre-
sponds to the usual uniform scaling.

For our calculations we have chosen maximum radius
a.u. and five boxes for bothr 1 and r 2 coordinates and one
box for c coordinate. The box boundaries are 1.24, 4.0, 6
and 16.0 a.u. The number of basis functions was chose
be 6 for the radial coordinates and 10 for the angular o
The matrix elements of the potential in Eq.~8! were calcu-
lated numerically using the 20-point Gauss-quadrature r
This mesh yields sparse matrices of dimension 3250 wit
total bandwidth of 2102. It is worth noticing that these valu
are very small in the context of the FEM@15,16#.

As we study the accuracy dependence on the exte
scaling parameters, we use the mesh which produces
tively big errors up to 1024. To check a convergence of th
results we use also a denser mesh, see below.

In Fig. 1 we present a typical behavior of real and ima
nary parts of a resonance in helium. One can see that the
the definite accuracy dependence on the curvature param
s: the smallers, the better an accuracy. This fact has
natural explanation. Indeed, whens goes to infinity, the
smooth CS approaches the sharp one. It is known that fo
sharp scaling both the wave function and its derivatives@19#,
or at least the derivatives@7#, are discontinuous. For finite
values ofs they are continuous but they have to chan
drastically on an intervalDR;1/As aroundR0 in correspon-
dence with the definition ofg(r ). As in our realization of the
FEM both functions and derivatives are continuous, it me
that we have to use very small boxes aroundR0 or very
dense sets of local functionsf im in every box in order to
approximate the wave function with a good accuracy.
similar conclusion was reported, for the sharp scaling,
Ref. @12#. When s becomes smaller, the transition regio
1/As is growing and we do not need to take special c
about the vicinity ofR0 .

On the other hand,s cannot be arbitrarily small. The
transition region 1/As has to be much smaller than the max
mum radius of the numerical approximatio
Rmax2R0@1/As. This means that the asymptoticsg(r );r is
already reached inside the part of the space, which is num
cally approximated.

As one can see in the figure, there is no obvious accur
dependence on the external radiusR0 . The only conclusion
that can be drawn is that the best results are obtained
R050. Even in this case, the smooth CS with relative
small s produces better results than the uniform scal
s.
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(s5`) does. In the intermediate region ofR0 , details of the
accuracy behavior depend on a numerical realization.

Following arguments mentioned above, for calculatio
of other levels we have chosen the exterior scaling par
eters to beR054 a.u. ands50.25. The results are presente
in Table I. The main aim of this work is to present an
analyze a synthesis of the exterior complex scaling and
previous FEM approach. It is thus not of interest to comp
our results to an extensive amount of experimental and
oretical data. Such a discussion can, for example, be foun
Ref. @17#. We have rather chosen to compare our results w
those of Ref.@17# since they are the most complete ones a
agree with other precise calculations@21#.

One can see that for the mesh mentioned above~mesh 1!

FIG. 1. Real partE ~a! and widthG ~b! of a helium resonance a
a function of the curvature parameters. The lines without symbols,
with crosses, and with triangles correspond toR050.0, 1.24, and
4.0 a.u., respectively.
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TABLE I. Energies and widths~a.u.! of S states in helium.

Presenta Presentb Lindrothc

E G E G E G

1Se ~1! 20.77787 0.00457 20.777870 0.004535 20.777868 0.004541
1Se ~2! 20.62204 0.00021 20.621949 0.000213 20.621926 0.000216
1Se ~1! 20.58989 1.3631023 20.589895 1.3631023 20.58989 1.3631023

1Se ~2! 20.54810 7.231025 20.548088 7.5131025 20.54809 7.6231025

3Se ~1! 20.60258 6.231026 20.602577 6.8631026 20.60258 6.6431026

3Se ~2! 20.55975 8.631027 20.559746 2.6131027 20.55975 2.5631027

1Se ~1! 20.35354 3.0331023 20.353539 3.0131023 20.35354 3.0131023

1Se ~2! 20.31746 6.6731023 20.317457 6.6631023 20.31745 6.6731023

aMesh 1 results.
bMesh 2 results.
cUniform complex scaling method, Ref.@17#.
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our results agree rather well except for small widt
G&1024 a.u. The reason is that the method gives one co
plex numberz at a time and, therefore, a relative accura
for a small imaginary part is worse than for a bigger re
part. To check a convergence, we increased the numbe
the local basis functions for the radial coordinates from 6
7 keeping other mesh parameters the same. This incre
the matrix dimension up to 4530. The corresponding res
are shown in Table I as results for mesh 2. One can see
they agree perfectly with the results of Ref.@17#. Indeed,
comparing them with more precise Hylleraas-type calcu
tions @21# when available, we have found a difference only
few units of 1026 a.u. for all levels, except for the level wit
E.20.6219 a.u. This level experienced a slower conv
gence than others.
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IV. CONCLUSIONS

It has been shown that the technique based on the sm
exterior complex scaling and the three-dimensional fin
element method can be successfully applied to calculat
of energies of resonant states in three-body quantum
tems. Guidelines for choosing the exterior scaling parame
have been presented. Our technique gives a competitive
curacy even for the helium atom despite the fact that its m
implementation should be faced in molecular and nucl
physics.
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