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Determination of atom-field observables via resonant interaction

A. Luis and L. L. Sa´nchez-Soto
Departamento de O´ ptica, Facultad de Ciencias Fı´sicas, Universidad Complutense, 28040 Madrid, Spain

~Received 22 October 1997!

We find the observables that can be determined by two practical schemes based on atom-field resonant
interaction. In the first example, the interaction is followed by photon-number and atomic-population measure-
ments. In the second scheme the directly measured quantity is the atomic deflection. In particular, we show that
they provide the measurement of the atom-field relative phase. When the initial field state is known, the atomic
density matrix can be reconstructed.@S1050-2947~98!10704-7#

PACS number~s!: 42.50.Dv, 03.65.Bz, 42.50.Vk
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I. INTRODUCTION

Quantum mechanics postulates that every self-adjoint
erator can be measured~leaving aside superselection rules!.
This also applies to positive-operator measures through t
Naimark extension@1#. Although the practical implementa
tion of such measurements is known in very few cases, th
are methods extending the number of observables whose
tistics can be determined in practice. For instance, cont
lable couplings can relate directly measurable quantities w
more involved observables through a suitable data analy
The dependence of the statistics on controllable parame
is the basis of generalized measurements described
positive-operator measures. This also underlies well-kno
schemes determining the quantum state, like tomography
instance@2#.

In this work we reexamine this issue for the measurem
of observables of a two-level atom and a one-mode elec
magnetic field. Two simple arrangements based on reso
interaction are considered. In the first example, resonan
teraction is followed by the measurement of photon num
and atomic population. In the second arrangement, the m
sured observable is the atomic deflection@3,4#. Both schemes
provide information about the atom-field state prior to t
coupling.

The plan of this work is as follows: In Secs. II and III, w
analyze the joint atom-field observables that can be de
mined from the statistics of the corresponding measurem
In Sec. IV, we consider the possibility of measuring t
atom-field relative phase@5,6#, including a concrete exampl
to illustrate the experimental feasibility of the method. Re
nant interaction is highly sensitive to phase relations betw
the field and the atomic dipole. The output measurable qu
tities depend on the initial relative phase, so the arran
ments studied here should allow us to determine the quan
statistics of this observable. Given the relevance of ph
variables and the difficulties that their quantum descript
encounter, we think it is worth examining the possibility
their practical measurement@7#.

If the initial field state is known, these arrangements c
be regarded as generalized measurements of atomic ob
ables. In Sec. V we study the atomic variables that can
determined in this way. The possibility of reconstructing t
density matrix of the atom is examined as well.
571050-2947/98/57~4!/3105~7!/$15.00
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II. DETERMINATION OF ATOM-FIELD OBSERVABLES
BY PHOTON-NUMBER AND ATOMIC-POPULATION

MEASUREMENTS

In this section we examine the observables that can
determined when atom-field resonant interaction is follow
by the simultaneous measurement of field-photon num
and atomic-level population. The interaction is convenien
described by the Jaynes-Cummings Hamiltonian in
rotating-wave approximation~in units \51! @8#

H5v~Sz1a†a!1l~a†S21aS1!, ~2.1!

where Sz5(ue&^eu2ug&^gu)/2, S15ue&^gu, and
S25ug&^eu. The vectorsue& and ug& represent the excited
and ground energy levels of the isolated atom,a anda† are
the annihilation and creation operators for the field mo
and l is the coupling constant. For simplicity, exact res
nance has been assumed.

We shall consider that the field experiences a controlla
phase shiftd before its interaction with the atom, which i
equivalent to shift by2d the atomic phase. Ifr in is the
initial density matrix of the atom-field system, the final ou
put density matrixrout after these two steps can be written

rout5Ur inU
†, ~2.2!

where the unitary operatorU is

U5e2 i tHeida†a, ~2.3!

andt is the interaction time.
The joint probability for the simultaneous measurement

photon number and atomic population is

Pout~ j ,n,d!5tr~routu j ,n&^ j ,nu!, ~2.4!

wherej 5e,g. Since only one fixed interaction timet will be
needed,t is not included in the parametrization of the
probabilities.

Our purpose is to extract from this measurement the
tistics of atom-field variables in the initial state. To this en
we express the probabilities~2.4! in terms ofr in ,

Pout~ j ,n,d!5tr~r inU
†u j ,n&^ j ,nuU !5tr@r inD~ j ,n,d!#,

~2.5!
3105 © 1998 The American Physical Society
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where

D~g,n,d!5cn
2ug,n&^g,nu1sn

2ue,n21&^e,n21u

1 isncn~eidue,n21&^g,nu

2e2 idug,n&^e,n21u!,

D~e,n,d!5sn11
2 ug,n11&^g,n11u1cn11

2 ue,n&^e,nu

2 isn11cn11~eidue,n&^g,n11u

2e2 idug,n11&^e,nu!, ~2.6!

and

sn5sin~ltAn!,

cn5cos~ltAn! ~2.7!

are known parameters.
The determination of atom-field observables requires

inversion of the previous equations, expressingue,n&^e,nu,
ug,n&^g,nu, ue,n21&^g,nu, and ug,n&^e,n21u as functions
of D(e,n,d) and D(g,n,d). This inversion can be carrie
out by means of a discrete Fourier analysis ind. In this case
three values ford are enough, for instanced r52pr /3 with
r 50,61. This gives the following equations:

ue,n&^e,nu5
1

2
@D~e,n,d!1D~g,n11,d!#

1
1

6c4n14
(

r
@D~e,n,d r !2D~g,n11,d r !#,

ug,n&^g,nu5
1

2
@D~e,n21,d!1D~g,n,d!#

2
1

6c4n
(

r
@D~e,n21,d r !2D~g,n,d r !#,

ug,0&^g,0u5D~g,0!,

ue,n21&^g,nu5
2i

3s4n
(

r
e2 idrD~e,n21,d r !

5
22i

3s4n
(

r
e2 idrD~g,n,d r !,

ug,n&^e,n21u5
22i

3s4n
(

r
eidrD~e,n21,d r !

5
2i

3s4n
(

r
eidrD~g,n,d r !. ~2.8!

It should be noted that@D(e,n21,d)1D(g,n,d)# and
D(g,0) are independent ofd, so anyd r can be used when
ever they appear. We have assumed that the interaction
t is chosen such that s4n5sin(2ltAn)Þ0 and
c4n5cos(2ltAn)Þ0.
e

e

Thus Eqs.~2.8! provide the statistics of any observab
expressible as an arbitrary linear combination of the ope
tors

ue,n&^e,nu, ug,n&^g,nu, ue,n21&^g,nu,

ug,n&^e,n21u, ~2.9!

i.e., of every observable commuting withSz1a†a. To this
end, probabilities~2.5! should be known for the three value
d r of the phase shift. This can be accomplished by repea
the measurement after each phase shiftd r . In addition, this
can be achieved in the form of a single generalized meas
ment. The three phase shifts can be embodied in a si
realization by using a nonresonant interaction of the fi
with an auxiliary three-level atom, for example@9#. One of
the levels can be too strongly detuned to affect or be affec
by the field, while the other two can be sufficiently detun
so that the transition probability is negligible. This nonres
nant interaction produces a phase shift in the field that
pends on the atomic level. If the auxiliary atom is prepar
in a superposition of its three states, the detection of
energy level after the interaction implies the correspond
phase shift in the field, which can be adjusted to
d r , r 5061, by properly selecting the detuning, couplin
constant, and interaction time.

Before considering particular examples, we can expr
the result obtained in a slightly different form. The measu
ment provides information about the atom-field stater in .
Although this information is not complete, we can neverth
less express this partial knowledge in terms of a quasipr
ability distribution in phase space, for instance theQ func-
tion. The atom-fieldQ function is defined as

Q~a,q,w!5
1

2p2 tr~r inuq,w&ua&^au^q,wu!, ~2.10!

whereua& are field coherent states, and

uq,w&5sin~q/2!ug&1eiw cos~q/2!ue&, ~2.11!

are SU~2! coherent states for the atom@10#. Instead of the
completeQ(a,q,w) function, the measurement provides
reducedQ function depending just onuau, q, and the phase
difference f5w2u between the atomic phasew and the
field phaseu :

q~ uau,q,f!5E du Q~a5uaueiu,q,w5f1u!.

~2.12!

This is because

E duuq,w5f1u&ua5uaueiu&^a5uaueiuu^q,w5f1uu

~2.13!

commutes withSz1a†a, so Eqs.~2.8! can be used to expres
q(uau,q,f) in terms of the statistics of the measureme
Similar results would be obtained by using other quasipr
ability distributions.

This phase-space picture expresses the main result of
section in a more classical way. The atom-field resonant c
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57 3107DETERMINATION OF ATOM-FIELD OBSERVABLES VIA . . .
pling backtransformsq anduau ~which are phase-space cou
terparts of the measured operatorsSz anda†a! into functions
of q, uau, andf. This, and the determination ofq(uau,q,f)
just shown, suggest that the quantum translation of the r
tive phase should be included among the observables w
statistics can be derived from this measuring scheme. Sec
IV is devoted to an examination of this possibility in pure
quantum terms.

III. DETERMINATION OF ATOM-FIELD OBSERVABLES
VIA ATOMIC DEFLECTION

Here we analyze a different measurement scheme b
also on the resonant coupling of the atom with a single-m
field. In this case, we shall consider the atomic deflect
produced when the atom passes near the node of a stan
electromagnetic wave@4#. The information about atom-field
variables will be contained in the change of transverse m
mentum` experienced by the atom.

As in Sec. II, we assume that, before the atom-field int
action, a controllable phase shiftd can be produced on th
field. Afterwards, the atom crosses a standing light fi
aligned along theX direction, passing through a small tran
verse region centered around a node atx50. If this region is
small enough, the interaction can be described by the Ha
tonian

H int52kx~a†S21aS1!, ~3.1!

wherek is a coupling constant andx denotes the correspond
ing position for the center of mass of the atom. We assu
the Raman-Nath regime@11#, where the motion of the atom
alongX during its passage through the standing wave may
ignored, and the kinetic energy in the Hamiltonian can
neglected. In this limit there is a transverse momentum s
associated with each eigenvalue ofk(a†S21aS1). The out-
put transverse-momentum distributionPout(`,d) for a given
field-phase shiftd is

Pout~`,d!5Pin~0!Pin~` !1 (
n51,6

`

Pin
~6 !~n,d!Pin~`7ktAn!,

~3.2!

wherePin(`) is the initial distribution,t is the interaction
time,

Pin~0!5tr@r inD~0!#,

Pin
~6 !~n,d!5tr@r inD

~6 !~n,d!#, ~3.3!

with

D~0!5ug,0&^g,0u,

D~6 !~n,d!5
1

2
~ ug,n&^g,nu1ue,n21&^e,n21u

6eidue,n21&^g,nu6e2 idug,n&^e,n21u!,

~3.4!

andr in is the initial density matrix representing the field a
the internal state of the atom. We have assumed that initi
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` is uncorrelated with the rest of variables. The output pro
abilitiesPout(`,d) can be measured by observing the spa
distribution of the atom far away from the standing field. F
simplicity, we consider a Gaussian forPin(`),

Pin~` !5
1

A2ps`

exp2S `2

2s`
2 D . ~3.5!

If kt/s` is large enough, the output distribution consists
separate peaks centered at the values

`56ktAn. ~3.6!

According to Eq. ~3.2!, we have Pout(`56ktAn,d)
}Pin

(6)(n,d), so the peak heights at these points give direc
the probabilities~3.3!.

As in Sec. II the knowledge of these probabilities f
three phase shifts,d r52pr /3, r 50,61, allows us to infer
the statistics of any linear combination of

ug,n&^g,nu1ue,n21&^e,n21u, ug,0&^g,0u,

ue,n21&^g,nu, ug,n&^e,n21u ~3.7!

by inverting Eq. ~3.4! with the help of a discrete Fourie
analysis.

The set of observables that can be determined now
smaller than before, since the separate contribution of
projectorsug,n&^g,nu and ue,n21&^e,n21u is not available
without further measurements. Nevertheless, we shall s
in Sec. IV that this scheme also provides the measuremen
the phase difference between the atomic dipole and the fi

IV. MEASUREMENT OF THE ATOM-FIELD
RELATIVE PHASE

We have shown that the statistics of observables comm
ing with Sz1a†a can be derived from the probabilities o
these measurements. This must include the atom-field p
difference. The operatorSz1a†a generates identical shifts in
the field and atomic-dipole phases, leaving the phase dif
ence unchanged. Then the quantum description of the r
tive phase must commute withSz1a†a.

Besides this general remark, it is still necessary to spe
what may be understood as the quantum translation of
variable. Because of the problematic description of pha
several different approaches are available. Two main po
bilities have been examined recently@5,6#. It has been shown
that a unitary operatorEf representing the exponential of th
phase difference and commuting withSz1a†a is defined by
the polar decomposition@5#

S2a†5AS2S1a†aEf5EfAS1S2aa†. ~4.1!

The simultaneous eigenvectors ofEf andSz1a†a are

uf0
~0!&5ug,0&,

uf6
~n!&5

1

&
~ ug,n&6 i ue,n21&), ~4.2!

with eigenvalues
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Efuf0
~0!&5uf0

~0!&,

Efuf6
~n!&56 i uf6

~n!&,

~Sz1a†a!uf~n!&5S n2
1

2D uf~n!&. ~4.3!

These eigenvectors define a joint probability distribution
the phase difference andSz1a†a as

Pin~0,f0
~0!!5tr~r inuf0

~0!&^f0
~0!u!,

Pin~n,f6
~n!!5tr~r inuf6

~n!&^f6
~n!u!. ~4.4!

Focusing on the scheme analyzed in Sec. II, we have
the orthogonal projectors~4.4! are linear combinations of th
operators~2.9!. Equations~2.8! give

uf0
~0!&^f0

~0!u5D~g,0!,

uf6
~n!&^f6

~n!u5
1

2
@D~e,n21,d!1D~g,n,d!#

7
1

3s4n
(

r
@e2 idrD~e,n21,d r !

2eidrD~g,n,d r !#. ~4.5!

Then, the statistics of the phase-difference operator can
extracted from the measured probabilitiesPout( j ,n,d).

Similarly, the scheme examined in Sec. III can be used
this purpose, since the projection measure in Eq.~4.4! is a
linear combination of the operators~3.7!. This shows that
this operator is indirectly measured in both schemes.

Nevertheless, the arrangement based on atomic defle
also allows the direct measurement of this phase-differe
operator. To this end, the parameterd in Sec. III can be
chosen to bed5p/2. In such a case, the transverse mom
tum distribution at the peaks is proportional to the pha
difference probabilities~4.4! since, from Eq.~3.4!, we have

D~6 !~n,d5p/2!5uf6
~n!&^f6

~n!u, ~4.6!

and then

Pout~`56ktAn,d5p/2!}Pin~n,f6
~n!!. ~4.7!

Besides the operator description, there is also the po
bility of describing the phase difference by taking the m
ginal distribution for this variable from a joint positive
operator measure for the dipole and field absolute pha
@6,7,12#. The result is a positive-operator measureL~f! com-
muting with Sz1a†a,

L~f!5 (
n50

`

L~n,f!, ~4.8!

whereL(n,f) has the general form
r

at

be

r

ion
ce

-
-

si-
-

es

L~0,f!5
1

2p
ug,0&^g,0u,

L~n,f!5
1

2p
~ ue,n21&^e,n21u1ug,n&^g,nu

1mneifue,n21&^g,nu1mn* e2 ifug,n&^e,n21u!,

~4.9!

andmn are parameters depending on the particular appro
used for the absolute phases. This positive-operator mea
is again a linear combination of the operators~2.9! or ~3.7!,
so the corresponding probability distribution can be dedu
from the statistics of the measurements in Secs. II and I

The preceding calculations show how the atom-field re
tive phase can be theoretically inferred from measurem
However, this inference will be affected by the limited acc
racy attainable in real measurements. In the case of a pr
cal realization of the arrangement examined is Sec. II, th
are several sources of uncertainty such as detection in
ciencies or the spread of the interaction time, for instan
Therefore, it would be desirable to examine in which way t
reconstructed values would deviate from the true input v
ues under realistic practical conditions.

The consequences of nonunit detection efficiencies
the way they can be dealt with have been well studied@13#,
so we will consider in some detail the effect of an imprec
determination of the interaction time. We can see in E
~4.5! or ~4.9! that the interaction time appears only whe
obtaining the nondiagonal matrix elements^e,n21ur inug,n&
from Eqs.~2.8!. For instance, we have

2i

3 (
r

eidrPout~g,n,d r !5s4n^e,n21ur inug,n&.

~4.10!

To calculate the deviation of the inferred values from the t
ones, we will assume a Gaussian distribution of possible
teraction times,

W~t8!5
1

A2pst

exp2
~t82t!2

2st
2 , ~4.11!

with average interaction timet and widthst . The measured
values ^e,n21ur inug,n&meas are obtained after averagin
Pout(g,n,d r) over the distributionW(t8), leading to

^e,n21ur inug,n&meas5
1

s4n

2i

3 (
r

eidr P̄out~g,n,d r !

5
s̄4n

s4n
^e,n21ur inug,n&, ~4.12!

where P̄out(g,n,d r) and s̄4n denote the corresponding tim
averages. Since

s̄4n5s4ne22l2st
2n, ~4.13!

we have the following relation between inferred and tr
values
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^e,n21ur inug,n&meas5e22l2st
2n^e,n21ur inug,n&.

~4.14!

This relation leads to a measured probability distribution
the relative phase which is broader and smoother than
true one. This is the deteriorating effect of the spread
interaction times.

In principle, this effect can be numerically compensa
for, provided that the distributionW(t8) were known. How-
ever, such compensation will increase the effect of an
avoidably imprecise experimental determination of the pr
abilities Pout(g,n,d r).

Next we evaluate relation~4.14! under realistic practica
values for the parameters involved. We will see that, in fa
this can be a rather small effect. In principle, any avera
interaction timet is valid provided thats4nÞ0, so that Eq.
~4.10! can be inverted. However, from a more practical p
spective, the optimum value will be the one leading to ma
mum s4n , in order to minimize the effect of experiment
noise inPout(g,n,d r) and the lack of a precise knowledge
t. If the field state has a mean photon numbern̄, we can

imposes4n̄;1, which meansltAn̄;1. Then Eq.~4.14! can
be written as

^e,n21ur inug,n&meas5e22~n/n̄!~st /t!2
^e,n21ur inug,n&.

~4.15!

Accuracies in the interaction time of the order of 1% a
within the current experimental values, so th
(st /t)2;1024, and the exponential in Eq.~4.15! is of the
order of unity. To be more specific, we can consider a
cromaser configuration: for Rydberg atoms the coupling c
stantl can be of the order of 104– 106 s21, and mean atomic
velocities are in the range 101– 103 m/s, with a velocity
spread of 1%. This leads to average interaction times ran
from 1025 to 1023 s with a time spreadst /t;0.01@8,9,14#.

With this typical values, the optimumltAn̄;1 can be sat-
isfied even in the case of very small photon numbers. Th
fore, we conclude that under actual experimental conditi
the deviation of the inferred values from the true ones is
noticeable.

This discussion could be extended also to the arrangem
analyzed in Sec. III. In such a case the interaction time
its spread will affect the position and width, respectively,
the peaks of the spatial distribution of atoms far away fr
the standing field. Each peak at̀56ktAn will have a
width s`

21(kst)
2n. A numerical evaluation using param

eters within the preceding ranges and previously conside
values fors` @4# shows that for small photon numbers th
corresponding peaks are clearly distinguishable, even a
including the interaction-time spread.

V. QUANTUM ATOMIC-STATE RECONSTRUCTION

So far we have been concerned with a determination
atom-field variables assuming that before the measurem
the density matrix is completely unknown. It can be intere
ing to examine what happens when the initial system s
factorizes r in5r in

a
^ r in

f , and the initial field stater in
f is

known. In such a case, the information supplied by the m
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surement can be regarded as information about the ato
state. In other words, this leads to a generalized measure
of the atomic system. We shall study the atomic observab
that can be determined by using the arrangement of Sec
for instance.

The knowledge of the initial field state can be taken in
account by performing the trace over the field variables
Eq. ~2.5!. This leads to a positive-operator measure in
Hilbert space of the atom

Da~ j ,n,d!5trf@r in
f D~ j ,n,d!#, ~5.1!

and the statistics of the measurement can be regarde
depending only on the atomic state

Pout~ j ,n,d!5tra@r in
a Da~ j ,n,d!#. ~5.2!

This atomic positive-operator measure is given by

Da~g,n,d!5cn
2rn,nug&^gu1sn

2rn21,n21ue&^eu

1 isncn~eidrn,n21ue&^gu2e2 idrn21,nug&^eu!,

Da~e,n,d!5sn11
2 rn11,n11ug&^gu1cn11

2 rn,nue&^eu

2 isn11cn11~eidrn11,nue&^gu

2e2 idrn,n11ug&^eu!, ~5.3!

where the field matrix elementsrn,n85^nur in
f un8& are known

quantities.
As a matter of fact, the photon-number variable carries

relevant information, so we can remove it by summing ov
n,

Da~g,d!5 (
n50

`

Da~g,n,d!5cug&^gu1sue&^eu

1
i

2
~eiddue&^gu2e2 idd* ug&^eu!,

Da~e,d!5 (
n50

`

Da~e,n,d!5I 2Da~g,d!, ~5.4!

where I is the identity in the atomic Hilbert space, and th
parametersc, s, andd are

c5 (
n50

`

cos2~ltAn!^nur in
f un&,

s5 (
n50

`

sin2~ltAn11!^nur in
f un&,

d5 (
n50

`

sin~2ltAn11!^n11ur in
f un&. ~5.5!

This corresponds to perform no measurement on the fi
After the interaction only the atomic level is detected.

Equations~5.4! can be inverted following the same pro
cedure of preceding sections and, provided thatdÞ0 andc
Þs, we have
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ue&^eu5
1

3~s2c! F(
r

Da~g,d r !23cIG ,
ug&^gu5

1

3~c2s! F(
r

Da~g,d r !23sIG ,
ue&^gu5

22i

3d (
r

e2 idrDa~g,d r !,

ug&^eu5
2i

3d* (
r

eidrDa~g,d r !. ~5.6!

Since every operator acting in the Hilbert space of
atom ~in particular the atomic density matrixr in

a ! is a linear
combination of these four operators, this scheme allows u
determine the statistics of any atomic observable as a fu
tion of the measured probabilities for three values of
field-phase shift. This is equivalent to say that the atom
state can be reconstructed from the measurement.

A simple and common choice for the field state is a c
herent oneua&. The coefficientsc, s, andd can be calcu-
lated very accurately by means of available analytical
pressions@15#. To simplify the result as far as possible, th
interaction timet can be chosen such thatlt!1, while the
amplitude of the coherent state is high enough as to giv
finite value forltuau @16#. In this case we are at the initia
stages of the resonant evolution, long before the first c
lapse, and we have

c.cos2~ltuau!,

s.sin2~ltuau!,

d.eiu sin~2ltuau!, ~5.7!

whereu is the phase of the coherent complex amplitudea.
Such a limit corresponds to the semiclassical atom-field
teraction. The previous conditions are tantamount to con
ering that the atom-field interaction is governed by t
Hamiltonian

H5vSz1l~a* eivtS21ae2 ivtS1!, ~5.8!
ry

ev

-

e

to
c-
e
c

-

-

a

l-

-
d-

wherea is a classical complex amplitude.
The atomic state determination this scheme provides

be regarded as equivalent to the tomographic procedure
for the reconstruction of field states@2#. State reconstruction
for finite-dimensional systems has been studied before@17#.
It has been shown that the elements of the density matri
an arbitrary spinj are completely determined by the me
surement of the spin projection along 4j 11 different direc-
tions. The procedure followed in this section corresponds

j 5 1
2. In the semiclassical limit, the measurement of t

atomic populationSz after the field phase shifts and the res
nant interaction is in fact the measurement on the initial s
of the three spin projectionsSr ,

Sr5cos~2ltuau!Sz1sin~2ltuau!sin~d r1u!Sx

1sin~2ltuau!cos~d r1u!Sy , ~5.9!

where Sx5(ue&^gu1ug&^eu)/2 and Sy5 i (ug&^eu2ue&^gu)/2
are the spin operators associated with the two-level atom

Finally, whenr in
a instead ofr in

f is known in advance, the
schemes studied in this work become measurements of
observables. This possibility has been already studied for
arrangements considered in Secs. II@18# and III @4#.

VI. CONCLUSIONS

We have found the atom-field observables that can
determined from some available measurements after reso
interaction. The dependence of the arrangement on con
lable parameters, like phase shifts, can be used to deduc
statistics of different observables.

In particular, the two arrangements considered in t
work provide the statistics of the relative phase between
atomic dipole and the field, as it could be expected fro
classical arguments. Moreover, atomic deflection provide
direct measurement of the relative-phase operator.

When the field state is known, we have a generaliz
measurement of atomic observables. It turns out that it p
vides the statistics of any observable allowing the rec
struction of the internal state of the atom.
.
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