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Determination of atom-field observables via resonant interaction
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We find the observables that can be determined by two practical schemes based on atom-field resonant
interaction. In the first example, the interaction is followed by photon-number and atomic-population measure-
ments. In the second scheme the directly measured quantity is the atomic deflection. In particular, we show that
they provide the measurement of the atom-field relative phase. When the initial field state is known, the atomic
density matrix can be reconstruct¢81050-29478)10704-7

PACS numbdps): 42.50.Dv, 03.65.Bz, 42.50.Vk

I. INTRODUCTION Il. DETERMINATION OF ATOM-FIELD OBSERVABLES
BY PHOTON-NUMBER AND ATOMIC-POPULATION
Quantum mechanics postulates that every self-adjoint op- MEASUREMENTS

erator can be measuréttaving aside superselection rules |, yhis section we examine the observables that can be
This also applies to positive-operator measures through theffetermined when atom-field resonant interaction is followed
Naimark extensiori1]. Although the practical implementa- p the simultaneous measurement of field-photon number
tion of such measurements is known in very few cases, thergng atomic-level population. The interaction is conveniently

are methods extending the number of observables whose si@escribed by the Jaynes-Cummings Hamiltonian in the
tistics can be determined in practice. For instance, controlrotating-wave approximatiofin units# = 1) [8]

lable couplings can relate directly measurable quantities with

more involved observables through a suitable data analysis. H=w(S,+a'a)+1(a'S_+as$s,), (2.1
The dependence of the statistics on controllable parameters
is the basis of generalized measurements described byhere  S,=(|e)(e|—[g)(gl)/2,  S,=[e)g|, and

positive-operator measures. This also underlies well-know®- =|g)(€|. The vectorsle) and|g) represent the ?xcited
schemes determining the quantum state, like tomography, féind ground energy levels of the isolated atamanda’ are
instance[2]. the annihilation and creation operators for the field mode,

In this work we reexamine this issue for the measuremen@Nd M is the coupling constant. For simplicity, exact reso-
of observables of a two-level atom and a one-mode electrg?@nce has been assumed. _
magnetic field. Two simple arrangements based on resonanhWe shall consider that the field experiences a controllable

interaction are considered. In the first example, resonant inehase shifté before its interaction with the atom, which is

teraction is followed by the measurement of photon numbegqgwalent_to Sh'ft. by~ 4 the atomic phase. Ipi, IS the
. . Initial density matrix of the atom-field system, the final out-
and atomic population. In the second arrangement, the mea-

sured observable is the atomic deflectj8¥]. Both schemes put density matrip,, after these two steps can be written as
provide information about the atom-field state prior to the
coupling.
The plan of this work is as follows: In Secs. Il and Ill, we \yhere the unitary operatdy is
analyze the joint atom-field observables that can be deter-
mined from the statistics of the corresponding measurement. U=e iHgioa'a (2.3
In Sec. IV, we consider the possibility of measuring the
atom-field relative phagb,6], including a concrete example and ris the interaction time.
to illustrate the experimental feasibility of the method. Reso-  The joint probability for the simultaneous measurement of
nant interaction is highly sensitive to phase relations betweephoton number and atomic population is
the field and the atomic dipole. The output measurable quan-
tites depend on the initial relative phase, so the arrange- Pou(]:N, 8 =tr(poudj,n){j.n|), (2.9
ments studied here should allow us to determine the quantum
statistics of this observable. Given the relevance of phaswherej=e,g. Since only one fixed interaction timewill be
variables and the difficulties that their quantum descriptiomeeded,r is not included in the parametrization of these
encounter, we think it is worth examining the possibility of probabilities.
their practical measuremept]. Our purpose is to extract from this measurement the sta-
If the initial field state is known, these arrangements cartistics of atom-field variables in the initial state. To this end,
be regarded as generalized measurements of atomic obsetve express the probabiliti€2.4) in terms ofp;,,,
ables. In Sec. V we study the atomic variables that can be
determined in this way. The possibility of reconstructing the  Pou(j,n,8) =tr(pi,UT]j,n){j,n|U) =t pinA(j,n,5)],
density matrix of the atom is examined as well. (2.

Pout:UPinUTv (2.2
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where Thus Egs.(2.8) provide the statistics of any observable
expressible as an arbitrary linear combination of the opera-
A(g,n,8)=c2|g,n)(g,n|+s%e,;n—1)(e,n—1] tors
+isycq(e'’le,n—1)(g.n| le.n)(enl, [g.n)(g.n], [en—1Ka.n|,
_eflﬁlg,n><e,n—1|), |g,n><e,n_l|, (29)
A(e,n,8)=s2,,/g,n+1)(g,n+1|+c2,,|e,n)en| i.e., of every observable commuting wiy+a'a. To this
) s end, probabilitieg2.5) should be known for the three values
—isnt1Cn+1(e"’le,n)(g,n+1| o, of the phase shift. This can be accomplished by repeating
—e 19g,n+1)(en|) (2.6) the measurement after each phase shiftIn addition, this

can be achieved in the form of a single generalized measure-
ment. The three phase shifts can be embodied in a single
realization by using a nonresonant interaction of the field
s, =sin(A 7yn) with an auxiliary three-level atom, for examgl@]. One of
" ' the levels can be too strongly detuned to affect or be affected
by the field, while the other two can be sufficiently detuned
ca=cos A7) (2.7 50 that the transition probability is negligible. This nonreso-
nant interaction produces a phase shift in the field that de-
ends on the atomic level. If the auxiliary atom is prepared

a superposition of its three states, the detection of the
energy level after the interaction implies the corresponding
phase shift in the field, which can be adjusted to be
6., r=0x1, by properly selecting the detuning, coupling
constant, and interaction time.

Before considering particular examples, we can express
the result obtained in a slightly different form. The measure-
ment provides information about the atom-field statg.
le,n)(en|= E[A(e n,8)+A(g,n+1,8)] Although this information is not complete, we can neverthe-

' 2 n ’ ' less express this partial knowledge in terms of a quasiprob-
ability distribution in phase space, for instance @dunc-
5 > [A(e,n,8,)—A(g,n+1,8,)], tion. The atom-fieldQ function is defined as
4n+4 T

and

are known parameters.

The determination of atom-field observables requires th
inversion of the previous equations, expressieg)(e,n|,
lg,n){(g,n|, |e,n—1){g,n|, and|g,n)(e,n—1| as functions
of A(e,n,8) and A(g,n,d). This inversion can be carried
out by means of a discrete Fourier analysisdinin this case
three values foid are enough, for instancé =2r/3 with
r=0,=1. This gives the following equations:

1
+

1
L Qla, ,0) = 5— tr(pin| %, )| @)(al(D.0]), (2.10
|g.n)(g.n|=5[A(e,n—1,8)+A(g.n, )]
where|a) are field coherent states, and

6o, 2 [Aen-10)-A(gn.5)], |0,0)=sin(9/2)|g)+€'¢ cog 9/2)[e),  (2.11
n
are SU2) coherent states for the atoft0]. Instead of the
9,0(g,0=A(g,0), completeQ(a,?,¢) function, the measurement provides a
reducedQ function depending just ofw], ¥, and the phase
2i s difference ¢=¢— 6 between the atomic phasge and the
|e,n—1><g,n|=§ 2 e 'rA(e,n—1,5,) field phased:
n
—2i . — — i6 —
=3 Z e 1%A(g,n,8,), q(|a|,ﬁ,q§)—j do Q(a=|ale'’, 3, o= ¢+ 0).
an 1 (2.12

This is because

2i :
lg.n)(e,n—1|=— >, €¥A(e,n—1,5,)
3S4n T

| dolo.0= 0+ ola=lale)a=lalel(s,g= 0+ 4
> €%A(g,n,s,). (2.9 2.13

commutes with5,+a'a, so Eqs(2.8) can be used to express
It should be noted thafA(e,n—1,6)+A(g,n,8)] and  q(|al|,d,¢) in terms of the statistics of the measurement.
A(g,0) are independent aof, so anyd, can be used when- Similar results would be obtained by using other quasiprob-
ever they appear. We have assumed that the interaction timhility distributions.
r is chosen such thats,,=sin(Ar/n)#0 and This phase-space picture expresses the main result of this
Can=COS(A7/n)#0. section in a more classical way. The atom-field resonant cou-

2
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pling backtransforms} and|a| (which are phase-space coun- ¢ is uncorrelated with the rest of variables. The output prob-
terparts of the measured operatSgsanda’a) into functions  abilities P, (p,5) can be measured by observing the spatial
of 9, |aj, and ¢. This, and the determination of|«|,¥,¢)  distribution of the atom far away from the standing field. For
just shown, suggest that the quantum translation of the relasimplicity, we consider a Gaussian f&%,(¢),

tive phase should be included among the observables whose

statistics can be derived from this measuring scheme. Section 1 p?
IV is devoted to an examination of this possibility in purely Pin(9)= 2mo exp— 252) (3.9
1

quantum terms.

If 7/, is large enough, the output distribution consists of
Ill. DETERMINATION OF ATOM-FIELD OBSERVABLES separate peaks centered at the values

VIA ATOMIC DEFLECTION
) p== KT\/ﬁ. (3.6
Here we analyze a different measurement scheme based
also on the resonant coupling of the atom with a single-mod@ccording to Eq. (3.2, we have Pyu(p=*«7Jn,d)
field. In this case, we shall consider the atomic deflectionx pi(ni)(n,g), so the peak heights at these points give directly
produced when the atom passes near the node of a standifige probabilities(3.3).

electromagnetic wavp4]. The information about atom-field As in Sec. Il the knowledge of these probabilities for
variables will be contained in the change of transverse mothree phase shiftsy, =2#r/3, r=0,+1, allows us to infer

mentumg experienced by the atom. the statistics of any linear combination of
As in Sec. Il, we assume that, before the atom-field inter-
action, a controllable phase shiftcan be produced on the |g,n){g,n|+|e,n—1){e,n—1|, |g,0){g,0],
field. Afterwards, the atom crosses a standing light field
aligned along thé direction, passing through a small trans- le;n—1)(g,n|, |g,n){e,;n—1] (3.7

verse region centered around a nod&=a0. If this region is

small enough, the interaction can be described by the Hamif2Y inverting Eq.
tonian analysis.
The set of observables that can be determined now is

Hix=—«x(a'S_+aS,), (3.1 smaller than before, since the separate contribution of the
projectors|g,n){(g,n| and|e,n—1){e,n—1| is not available
wherek is a coupling constant anddenotes the correspond- without further measurements. Nevertheless, we shall show
ing position for the center of mass of the atom. We assumén Sec. IV that this scheme also provides the measurement of
the Raman-Nath regimiel1], where the motion of the atom the phase difference between the atomic dipole and the field.
alongX during its passage through the standing wave may be

3.4) with the help of a discrete Fourier

ignored, and the kinetic energy in the Hamiltonian can be IV. MEASUREMENT OF THE ATOM-FIELD
neglected. In this limit there is a transverse momentum shift RELATIVE PHASE
associated with each eigenvaluexgd’S_+aS,). The out- o
put transverse-momentum distributity (¢, d) for a given ~ We have shTown that the statistics of observables commut-
field-phase shifts is ing with S,+a'a can be derived from the probabilities of
these measurements. This must include the atom-field phase
* difference. The operat@®,+a'a generates identical shifts in

Poul ©,0)=Pin(0)Pr(p)+ > PL(n,8)Pn(pFkryn),  the field and atomic-dipole phases, leaving the phase differ-
n=tl= 3.2 ence unchanged. Then the quantum description of the rela-
32 tive phase must commute wi,+a'a.

where P;,(p) is the initial distribution, is the interaction Besides this general remark, it is still necessary to specify
time, what may be understood as the quantum translation of this
variable. Because of the problematic description of phase,
Pin(0)=tr[ pinA(0)], several different approaches are available. Two main possi-

bilities have been examined recent$;6]. It has been shown

Pi(nt)(n* &)=t pinA™)(n, 8)], (3.3 that a unitary operatdg , representing the exponential of the
phase difference and commuting wia+a'a is defined by
with the polar decompositiofb]

A(O):|gvo><gio|! SfaT: \/S,S+a aE¢,:E¢\ S+S,aa . (41)

The simultaneous eigenvectorsbf, and S, + a'a are

|¢5”)=19.0),

A™)(n,8)= %( g,n){g,n|+|e,n—1)(e,n—1]

+e'%e,n—1)(g,n|=e " "%g,n)(e,n—1]), .
34 |¢>(£>>=‘72(|g.n>ri|e,n—1>), 4.2

andp;, is the initial density matrix representing the field and
the internal state of the atom. We have assumed that initiallyith eigenvalues
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Egloe)) =140, A(0,p)= %|g,0><g,0|,

Eglo™)==ilo),

1
1 A(n,¢)=5—(le,;n—1)(e,n—1|+|g,n)(g,n|
(Sz+a*a>|¢<“>>=(n— —)|¢<“>>. (4.3 | .
2 + u€'?le,n—1)g,n|+ pie ' g,n)(e,n—1)),
These eigenvectors define a joint probability distribution for (4.9

. + f . .
the phase difference arig}+a’a as and u,, are parameters depending on the particular approach

used for the absolute phases. This positive-operator measure

(0)y — (0)\/ 4(0)
Pin(0:b0”) =tr(pinl 60" (b0 1), is again a linear combination of the operat@<9) or (3.7),
so the corresponding probability distribution can be deduced
Pin(1, ™) =tr(pin| ) (). (4.4  from the statistics of the measurements in Secs. Il and lIl.

The preceding calculations show how the atom-field rela-
Focusing on the scheme analyzed in Sec. I, we have thdive phase can be theoretically inferred from measurement.
the orthogonal projector@.4) are linear combinations of the However, this inference will be affected by the limited accu-

operatorg2.9). Equations(2.8) give racy attainable in real measurements. In the case of a practi-
cal realization of the arrangement examined is Sec. Il, there
| (| =A(g,0), are several sources of uncertainty such as detection ineffi-

ciencies or the spread of the interaction time, for instance.
Therefore, it would be desirable to examine in which way the

|p MY\ = 1[A(e,n—1,5)+A(g,n,5)] reconstructed values would deviate from the true input val-
- 2 ues under realistic practical conditions.
1 The consequences of nonunit detection efficiencies and
* > [e %A(e,n—1,5,) the way they can be dealt with have been well studii],
3San 1 so we will consider in some detail the effect of an imprecise
—el%A(g,n,8,)]. (4.5 determination of the interaction time. We can see in Egs.

(4.5 or (4.9 that the interaction time appears only when
btaining the nondiagonal matrix elemexiesn—1|p;,|g,n)

Then, the statistics of the phase-difference operator can fom Eqs.(2.8). For instance, we have

extracted from the measured probabilitRrg(j,n,5).
Similarly, the scheme examined in Sec. Ill can be used for
this purpose, since the projection measure in @) is a = > €%Py(g.n,8,)=ssm(e,n—1|ping,n).
linear combination of the operatof8.7). This shows that 3%
this operator is indirectly measured in both schemes. (4.10

Nevertheless, 'Fhe arrangement based on atomic (_jeflectlolno calculate the deviation of the inferred values from the true
also allows the _dlrect measurement O.f this phase-dlfferencgnes we will assume a Gaussian distribution of possible in-
operator. To this end, the paramet&rin Sec. Ill can be terac:cion times

chosen to beS= w/2. In such a case, the transverse momen-

tum distribution at the peaks is proportional to the phase- (' —7)2
difference probabilitie$4.4) since, from Eq(3.4), we have W(7')= exp— 7 27- , (4.12)
V2mao, 207
AS(n, 5=m/2)=| L) ($, (4.6

with average interaction timeand widtho .. The measured
values (e,n—1|pi,|g,N)meas are obtained after averaging

dth
and then Pou(9.n,d,) over the distributionN(7'), leading to

Poul 9 == k7N, 6=7m2)xPir(n, M), (4.

<e,n_1|pin|grn>measzs

1 2i o

< 3 2 € Pafgn.d)
Besides the operator description, there is also the possi- 4n '
bility of describing the phase difference by taking the mar- s,

ginal distribution for this variable from a joint positive- =ﬂ<e,n—1|pm|g,n>, (4.12
operator measure for the dipole and field absolute phases San

[6,7,19. The result is a positive-operator measiig) com- — — o
muting with S, +a'a, where P,,{(g,n,d,) and s,, denote the corresponding time

averages. Since

A#=3 A9, .9 San=Sye 20, (4.13

we have the following relation between inferred and true
whereA(n,¢) has the general form values
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surement can be regarded as information about the atomic
state. In other words, this leads to a generalized measurement
of the atomic system. We shall study the atomic observables

This relation leads to a measured probability distribution forthat can be determined by using the arrangement of Sec. I,

the relative phase which is broader and smoother than thfr instance.

true one. This is the deteriorating effect of the spread of The knowledge of the initial field state can be taken into
interaction times. account by performing the trace over the field variables in

for, provided that the distributiow(r') were known. How-  Hilbert space of the atom
ever, such compensation will increase the effect of an un- a B fas
avoidably imprecise experimental determination of the prob- A%(J.n.8) =t pinA(].n. 9) ], 6.1
ab'll\'lt'es POU‘(g’nI’ o). lati 1 d listi ical and the statistics of the measurement can be regarded as

ext we evaluate re at|9(14. 4) under rea istic pracyca depending only on the atomic state
values for the parameters involved. We will see that, in fact,
this can be a rather small effect. In principle, any average Poulj ., 8) =tr [ p2A%(j,n,5)]. (5.2
interaction timer is valid provided thas,,# 0, so that Eq.
(4.10 can be inverted. However, from a more practical per-This atomic positive-operator measure is given by
spective, the optimum value will be the one leading to maxi-
mum s,,,, in order to minimize the effect of experimental A?(g,n,8)=Cc2pn n|9){Q|+Sipn_1n_1/€){€|
noise inP,,{(g,n, d,) and the lack of a precise knowledge of ) 4 .

. R + i B _ i _

. If the field state has a mean photon numberwe can iSnCn(€"°pn,n-1l€)(g] — € *pn-1al0)(€]),

imposes,,~ 1, which mean$¢\/6_~1. Then Eq(4.14) can Aa(eﬁ,5)=S§+1Pn+1n+1|g><9| +C%+1Pn alexel
be written as ' '

<e1n_ 1|pin|gvn>meas: e—zxzafn<e7n_ 1|Pin|gvn>-

- ) _isn+1cn+1(ei6Pn+l,n|e><g|
_ . — a—2(n/n)(o,/7) _ . .
(&,n—1|pin|9,N) meas=€ (en :|-|p|n|gv|&2'13 —e I5Pn,n+1|g><e|)- (5.3

L. . . . where the field matrix elements, ..=(n|p! [n’) are known
Accuracies in the interaction time of the order of 1% arequantities o = [pinln")
within the current experimental ~values, so that As a matter of fact, the photon-number variable carries no

2~ 74 . . . . . . .
(o, /7) 10, and the exponen_n_al in Eq4.19 is .Of the . relevant information, so we can remove it by summing over
order of unity. To be more specific, we can consider a mi-

cromaser configuration: for Rydberg atoms the coupling con-"

stant\ can be of the order of £8-1¢° s, and mean atomic o

velocities are in the range 101C° m/s, with a velocity A?%(g,8)= >, A%g,n,8)=c|g)(g|+s|e)e]
spread of 1%. This leads to average interaction times ranging n=0

from 10 % to 10 3 s with a time spread-./7~0.01[8,9,14.

= i ‘

With this typical values, the optimumryn~1 can be sat- +5(e *dle)(gl—e™"’d*|g)(el),
isfied even in the case of very small photon numbers. There-
fore, we conclude that under actual experimental conditions o
the_deviation of the inferred values from the true ones is not A%e,8)=>, A%en,d)=I —A%(g, ), (5.4)
noticeable. n=0

This discussion could be extended also to the arrangement
analyzed in Sec. IlI. In such a case the interaction time an#vherel is the identity in the atomic Hilbert space, and the

its spread will affect the position and width, respectively, of parameter€, s, andd are

the peaks of the spatial distribution of atjins far away from -

the standing field. Each peak at=* «7yn will have a _ f
width o2+ (ko ,)?n. A numerical evaluation using param- C_z‘o cog(Arym)(nlpp/m),
eters within the preceding ranges and previously considered

values foro,, [4] shows that for small photon numbers the *

corresponding peaks are clearly distinguishable, even after s= 2 SiF(A7yn+ 1)<n|pifn|n),
including the interaction-time spread. n=o

V. QUANTUM ATOMIC-STATE RECONSTRUCTION d=> sin2\7/n+1)(n+1|pf|n). (5.5
n=0

So far we have been concerned with a determination of
atom-field variables assuming that before the measuremeiithis corresponds to perform no measurement on the field.
the density matrix is completely unknown. It can be interest-After the interaction only the atomic level is detected.
ing to examine what happens when the initial system state Equations(5.4) can be inverted following the same pro-
factorizes pinzpﬁ@p{n, and the initial field state;oifn is  cedure of preceding sections and, provided thaD andc
known. In such a case, the information supplied by the mea#s, we have
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where« is a classical complex amplitude.

) The atomic state determination this scheme provides can
be regarded as equivalent to the tomographic procedure used
for the reconstruction of field stat¢®]. State reconstruction
for finite-dimensional systems has been studied bdfbré
It has been shown that the elements of the density matrix of

. an arbitrary spinj are completely determined by the mea-
le)(g|= _3_3' E e 1%A%(g,5,), surement of the spin projection along-#41 different direc-

T tions. The procedure followed in this section corresponds to

i j=3. In the semiclassical limit, the measurement of the
i

_ i5A2(q. S.). _ atom!c popu[atiqrs_z after the field phase shifts and_the_ reso-
lgXel 3d* Z © (9.9 (5.6 nant interaction is in fact the measurement on the initial state

of the three spin projectiorS; ,
Since every operator acting in the Hilbert space of the

atom (in particular the atomic density matrpé,) is a linear _ . .
combination of these four operators, this scheme allows us to Sy =cog2\7|al)S,+sin(2x 7| al)sin( 5, + 0) S,
determine the statistics of any atomic observable as a func- +sin(2x 7] af)cog 5.+ 60)S, (5.9
tion of the measured probabilities for three values of the

field-phase shift. This is equivalent to say that the atomic

> A%(g,5,)—3cl

> A%(g,5,)—3sl

r

9491= 355

state can be reconstructed from the measurement. where S,=(le)(g|+[g)(e[)/2 and S,=i(|g)(e| —|e)(g[)/2
A simple and common choice for the field state is a co-2"® the spin operators associated with the two-level atom.
herent ond ). The coefficientsc, s, andd can be calcu- Finally, whenpj, instead ofp;, is known in advance, the

lated very accurately by means of available analytical exSchemes studied in this work become measurements of field

pressiong15]. To simplify the result as far as possible, the Observables. This possibility has been already studied for the

interaction timer can be chosen such thetr<1, while the ~ arrangements considered in Sec.18] and 111 [4].

amplitude of the coherent state is high enough as to give a

finite value for\7al [16]. In this case we are at the initial

stages of the resonant evolution, long before the first col-

lapse, and we have We have found the atom-field observables that can be
determined from some available measurements after resonant

VI. CONCLUSIONS

c=cos(\lal), interaction. The dependence of the arrangement on control-
—sir?(\ lable parameters, like phase shifts, can be used to deduce the
s=sim(\lal), statistics of different observables.
d=e”’sin(2)\r|a|), 5.7 In particular, the two arrangements considered in this

work provide the statistics of the relative phase between the
where @ is the phase of the coherent complex amplitude atomi_c dipole and the field, as it co_uld be e_xpected_from
Such a limit corresponds to the semiclassical atom-field in¢lassical arguments. Moreover, atomic deflection provides a
teraction. The previous conditions are tantamount to consicdirect measurement of the relative-phase operator. _

ering that the atom-field interaction is governed by the When the field state is known, we have a generalized

Hamiltonian measurement of atomic observables. It turns out that it pro-
_ _ vides the statistics of any observable allowing the recon-
H=wS,+\(a*e'’'S_+ ae '°'S,), (5.8 struction of the internal state of the atom.
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