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Nonlinear spectroscopy in the strong-coupling regime of cavity QED
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A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field
pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is
varied fromN~4.2 toN~0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A
detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for
N=2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important
effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and
the experiments is observed for small numbers of atdﬁisl). Unfortunately, it is difficult to determine if
this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the
severe technical complications of the experimg81050-294{®8)09704-2

PACS numbse(s): 42.50.Fx, 32.806-t, 42.65—k

[. INTRODUCTION tion are measurements dffnamicalprocesses such as pho-
ton antibunching[16] and sub-Poissonian photon statistics
An exciting development in recent years has been the e¥-10] for which a manifestly quantum theory of strong cou-
perimental investigation of open quantum systems in the dopling in cavity QED is required.
main of strong coupling. In this limit the time scale for in-  In order to advance spectroscopic investigations in optical
ternal, coherent evolution of a quantum system is mucltavity QED from the classicdlinear) domain to the quan-
shorter than the time scale for dissipation into an externalum regime, we have carried out both linear and nonlinear
environmen{1]. Increasing the ratio of coherent coupling to optical spectroscopic measurements of a strongly coupled
dissipation is of primary import in many nascent fields of atom-cavity system with average intracavity atom number
experimental quantum physics including quantum computaranging fromN~4.2 to N~0.8. In particular, we have ob-
tion [2] and quantum state synthef8-6]. Experimental ex-  served with significantly improved resolution over our pre-
amples of such systems are scarce, with notable exceptioRfous result§17] a weak-field normal-modéor “vacuum-
being photon-phonon coupling in trapped ion systdifis  Rabi”) splitting of the transmission spectrum of the coupled
and photon-atom coupling in the field of cavity quantumsystem[1,20]. Moreover, we have recorded modifications of
electrodynamicgcavity QED). Strong-coupling cavity QED  weak-field spectra in the presence of a moderate intensity
experiments have been carried out in both the microwav@ump field of fixed frequency. Significant nonlinear effects
[8-15 and optical domaingl,16—23. were observed with as few as 0.1 intracavity photons. This
Thus far, most experiments in strong-coupling cavityinvestigation complements our measurements of nonlinear
QED with few atoms which have focused on structural propsesponse in the bad-cavity limit of cavity QER9], where
erties(eigenstructureof the coupled system have been per-we have studied a quantum-phase gate for quantum logic
formed in the linear regime. It has been pointed out numerwith saturation photon number 0.0230].
ous timeq1,17,22—2T that the linear regime is equally well A principle motivation for this research is the identifica-
described by the semiclassical Maxwell-Bloch equations otion (in the level structure of the atom-cavity “moleculetf
by a full quantum master equation. As regasisuctural  manifestly quantum aspects of the atom-cavity interaction. In
aspects of the coupled system, ofpnlineaj excitations of  particular we have attempted to observe multiquanta transi-
high-lying dressed states can potentially distinguish betweetions, using a pump-probe technique in which the system is
theories. Recently, in the microwave domain, peaks arisinglriven to its first excited state using a fixed-frequency pump
from such a nonlinear excitation have been observed in théield, with transitions to higher-lying states probed by a
Fourier transform of a time-domain Rabi oscillatip®8]. =~ weak, variable-frequency probe field. With on average less
Alternative to structural aspects of the atom-cavity interacthan one atom in the cavity-mode volume, deviations from a
semiclassical model are observed, but an unambiguous sig-
nature of a multiexcitation resonance of uniquely quantum
*Present address: Jet Propulsion Laboratory, California Institut@rigin remains elusive to the experiments described here.
of Technology, M/C 298-100, Pasadena, CA. Electronic address: It must be noted at the outset that this experiment along
rithomp@horology.jpl.nasa.gov with almost all strong-coupling atomic cavity QED work to
TPresent address: National Institute of Standards and Technologgate is performed with an atomic beam which crosses the
Division 847, Boulder, CO 80303. Electronic address: cavity mode(the exception is Ref31]). Because of this, the

guentint@boulder.nist.gov effects of fluctuations in atomic number inherent in the
*present address: Holtronics Technologies, Champs-Montanigeam, along with spatially variant coupling strength within
12b, CH-2074 Marin, Switzerland. the cavity, play an extremely important role in the interpre-
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tation of observations. While this has been stressed in ou
previous work[16—19, which has included detailed quanti- _ _ | _ _ _ }{
tative comparisons based on a Monte Carlo simulation ac-
counting for the effects of these fluctuations, the present non
linear experiment with larger coupling raises new issues -
which we likewise address in detailed simulations of this |t |, o[ty 1"
experiment. The complicating effects of atomic beam fluc-
tuations have also been considered theoretically in the work * 20 TN
of Carmichael and co-workef82,33. There it was found - ---—-- -=-= § —-=----- - 8o
that an approach alternative to the spectra measurements r g0 =N
ported here— namely, a two-photon correlation technique—
can provide rather clear signatures of the higher-lying g
Jaynes-Cummings levels even in the presence of atomic
beam fluctuations. The experiments proposed there, while
quite promising, add a level of additional technical complex-
ity over the relatively simple measurements of transmission
spectra employed here. FIG. 1. Comparison of the level structure of the first two excited
The organization of this article is as follows. In Sec. Il we States of a coupled atom-cavity system for the one-atom (¢efte
formulate the relevant theory and then in Sec. Il we discus@nd the many-atom cas&l¢-1) (right). The transitions, andt,
methodology and results of our semiclassical simulationsPecur at—(y2+1)go and +(y2—1)go, respectively(relative to

— _ s i * * *
Our measurements are discussed in Sec. IV. We conclude H"P_‘"j: wc)- Fc\’/r_N>1’ trai‘/ﬂt'O”Stg i, andt; are at
Sec. V with a discussion of future techniques for improving _ 390VN: = +0oVN, and—goVN andty is highly suppressed, so
measurements in cavity QED. that the first- to second-excited-state transitions overlap with the

ground- to excited-state transitions, and the quantum anharmonicity
is lost. By contrast, for one atom, there is a distinct separation
Il. QUANTUM AND SEMICLASSICAL THEORY between ground to first-excited-state and first- to second-excited-

OF THE ATOM-CAVITY SYSTEM state transitions. Hereyy= w.= w( with frequency offsets quoted
relative tow,.

+- /4N -2g,
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A

- 4N -2g,
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A. Preliminaries: Structure of the atom-cavity system

The quantum mechanical structure of a dissipationlesst2g,\/N, and transitions from the first to the second mani-
strongly coupled atom-cavity syste(in the absence of num- fo|d occur at a frequency-gy/N in agreement with the
ber fluctuations is well known. The single-atom prediction semiclassical prediction. Note that the semiclassical predic-
is a spectrum of eigenvalues given by the so-called Jaynesgpn fails for smallN both in terms of level splitting and
Cummings laddef34]; an extension to the multiple-atom transition strength. For weak-field excitation, the second ex-
case is the Tavis-Cummings ladde5] of dressed states. cited state is never reached, so that the semiclassical and
The formidable task of incorporating small amounts of dis-quantum predictions coincide. The quantum character of the
sipation in the systenfvia a master equation or other ap- second-excited-state splitting can be expressed in terms of a
proach) reveals many interesting quantum mechanical effectsquantum anharmonicity” which can be quantitatively de-

(such as photon antibunching in the transmitted I[di8,36))  fined as the ratio of the second-excited-state splitting for the
and indicates that in the strong-coupling regime, the overaljyantum and semiclassical predictions:

structure cannot be viewed in the absence of a self-consistent

treatment of the nature of the complete interaciimeiuding OoVAN—2
dissipation [37]. Semiclassically, the problem has been an—Zgo\/N : 1)

treated from various perspectives, notably the state equation

of optical bistability[38] derived either from the standard Fqor N=1, q,=0.71, while forN—x, g,—1.
Maxwell-Bloch equation$39] or from the full master equa- Alternatively, we can examine the transition frequergy
tion in a system size expansidd0]. Comparisons of the corresponding ta* given by

fully quantum and semiclassical approaches indicate that for !

tvyo limiting cases pred|_ct|qns of the structure (_)f Fhe Iowe;t— 81= 9o /—4N—2—90\/N
lying dressed states coincide. These are the limit of vanish-
ing excitation strength and the limit of large numbers of =goN[V4—2/IN—-1]—goYyN for N>1. (2)

intracavity atomg41].

Figure 1 helps to explain the situation. Figut@1ldepicts  Of additional note in Fig. 1 are the transition rates and spac-
the first two excited states of a single atom optimally coupledngs from the upper sideband of the first excited state to
to a cavity as derived from a full quantum calculation in levels of the second excited state. As explained in the figure
which g is the rate of coherent coupling between atom andcaption, the quantum transitions give rise to an additional
cavity: 29o=Qrapi» With Qr,pi the one-photon Rabi fre- “anharmonic” resonance aty2—1)go, whereas folN>1,
guency. Figure (b) is the fully quantum extension of the the allowed largeN transitions lead to no additional reso-
one-atom calculation to the case with atoms[41]. The  nances other than atgy/N.
exact quantum expression for the first-excited-state splitting The simple picture presented thus far becomes signifi-
is go/N and that of the second excited statetigy4N—2.  cantly more complicated under a typical experimental mea-
For N>1 the splitting of the excited state becomessurement strategy. For example, in our experiment the num-
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ber of intracavity gtoms fluctuates duri_ng_ the deteqtion time [6)=10)c|2)a, [d2)=|D)e|Da, | h3)=]2)c|0)A,

window, the coupling is not constant within the cavity mode (

(it is an optical standing-wave cavity with a Gaussian trans-

verse profilg, the system is driven with an external field, and Where now|2), is the state with two excitations in the

there is dissipation for both the atoms and the cavity. atomic samplgwith Ns>1), carried, of course, by distinct
Unfortunately, a general quantum treatment of the eigenatoms. Explicitly we have

value structure of the atom-cavity system for such experi-

mental conditions is a nontrivial undertaking. However, we

can nonetheless make some progress in understanding the

nature of the eigenstates and eigenvalues for the case of a

distribution of atoms in a spatially varying field mode by with normalization

reference to a simple model. We consider the interaction

HamiltonianH, for N atoms in the cavity each with cou- D=2giN?2

pling strengthg, = g(r,) at the siter, of thelth atom. Explic-

itly, in the dipole and rotating-wave approximations we have i . N
The eigenvalues of the second excited stateHfpfollow by

diagonalizing the X3 matrix in the basis specified by Eq.
H,=i% >, [gia’o; +grao; ], (3)  (8) and are found to be

=t M 1/2
e
e

15
|2>AEE§pgrg;|0>1-~~|1>|~--|1>p--~|0>NS, 9

(10

1 2|¢||4}
_=ny
Ne

z
[

wherea is the annihilation operator for the cavity field mode

and frﬁ is the raising operator for theth atom. To begin

with, we restrict our attention to the case of one unit of Where

excitation in the atom-cavity system. Since our interest is in Ng

the collective degrees of freedom of the atomic sample, we M= L%, (12)
introduce the state =1

Ns . Note that forNg=1 atom in the sample, at positicfril, we
1) A= —N; g7 [0)1l0)2---[Lh---[0ng (9 must have2),=0. In this case(d,|A|¢1)=0 and the ei-
oV genvalues equation has nox=0 root. Indeed,
where (0);,/1);) represent théground, exciteyl states of NB— 298| yi|?= 2|g(r))|* as would be expected from
atomj. This state is simply the state of one excitation sharedig. 1 for one atom witi(nonoptimaJ couplingg; .
symmetrically among th&lg atoms of the sample. The nor- ~ Returning to the general cade,>1 for a distributed

malization (1|1),=1 demands that sample, we compute the transition frequenigy(relative to
wp) for the transition analogous ttf shown in Fig. 1,
1 Ns Ns namely,
Ne=—2, |giI*=2 |wil*, 5
goi=1 =1

0 =A DA D= g\, 13

M 1/2
ﬁ(z—ﬁze) —1/.
where ¢(r,)=4¢, is the cavity mode functiorfdefined be- €
low). N represents the effective number of atoms in thejn the limit of a sample ofNg atoms in a mode of uniform

cavity, in which each actual atom is weighted by its couplingstrength [i|=1), we have thaM,—Ng, Ne—Njs, so that
to the field mode. Note that fd¥g atoms all at optimal sites

(I1=1) Ne=N;. 2\
For the case of one excitation, we introduce the basis d1—go Ny 4_N_s -1} (14
states
in agreement with Eq2). Likewise, the quantum anharmo-
[41)=]1)c|0)a,  [#2)=[0)c[1)a, (6)  nicity g, now becomes
where|n), is the state of the cavity field with photons and AP M, | Y2
|0)a=]0)4]0),- - -0}y is the atomic state with all atoms in = 2000Ne 1-582] —% (15
the ground state. In this basis, the eigenvalues of the first 0¥ ©
excited state associated with are found to be for a uniform mode || =1).
It is worth noting that a sample with distributed atoms but
AP =+goVNe, (7)  with effective atom numbe =1 gives rise to a larger split-

ting for the second excited state than does a single atom,
previous|y indicated in F|g 1, now, however, with the re- NS:]-' The reason for this can be understood with reference
placementN— N,. to Egs.(8) and(9), and in particular to the contribution from
Turning next to the second excited manifold with two the state[2),. The classical limit requires ?)—2/N¢go,
guanta in the atom-cavity system, we introduce the states which is larger than the quantufsingle-atom result V29,.
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It is precisely the “classical” contribution from excitations  2°
of two separate atoms in E¢9) [(’)(Ng) such terms that
overwhelm the “quantum” contribution from the stajté,) ot
in Eqg. (8) [O(Ng) such termg That is, if we byfiat drop the 2r +
contribution associated with the two excited atoms in the

sample(the statd ¢,)), we then find the eigenvalues for the P /
second excited state to be 181 T |
A?' =+ \2Ngo, (16) ° e
1+ © B
such that ys P ///,,/“//
l,=A? NP =goVNo(V2-1). R R |

Note that the quantum anharmonicity remains. HenEfé -7
for the case of a distributed sample lies between this quan o —— 00— 01—
tum result V2N.g, and the classical result \dN.g,, ap- NN,
proaching the latter foN>1.

Not surprisingly, the quantitative values an_E) depend

FIG. 2. Frequency, /g, for the transition from the upper state

th ticular locati f at ithin th d | of the first excited manifold to the upper state of the second excited
on the particular locations ot atoms within theé mode Volume, ., iz, 4 (t7 in Fig. 1) vs number of atoms, eithé¢, (a continuous

Foran atom'c beam ?Xpe”m_ent _SUCh as Our_s’ We can think riable for distributed samples d (an integer variablefor fixed,
repeated trials associated with different realizations of atomgptima”y coupled samples. Hel2, is one of the four quantities
at various sites within the mode volume, where independents, |, (d,),j,} defined in Eqs(2), (17), (18), and(24). The + are
trials are roughly realized in a time scale associated Wmaoints from the numerical simulatidf,) for a Gaussian standing-
atomic transit through the cavity mode. In such a case, botlyave cavity mode, and the® are 8,, the fixed, optimally coupled
N and the quantitiesN, M) will vary from one realization case.

to the next, with the constraint that the average atomic den-

sity be constant. Hence the quantitiéé.(M.) appearing in  \yith

Eq. (12) for A2 will vary from realization to realization.

Here we anticipate the results of Sec. lll where Monte Carlo 2

simulations are performed and from which the average value VoEf | (1) | 2d3x= ol (22)
(d;) can be obtained, where 4
B IR S|yt |\ M2 as the effective mode volume. We again specialize to the
(d)={ 9o i il V2| 2 3] 1/f||2)2 -1, case of a standing-wave Gaussian mode cavity with a sample

(18) of infinite extent along thex,y) plane and distributed along
the lengthl of the cavity axis. Likewise,

with the angular brackets representing an average over re-

peated trials of randomly generated atomic positions. We R 3
consider a Gaussian standing-wave mode with Me=2, |llfi|4—>Pj ()| *d®x= gPVo. (22)
I
r)=sin(kz)exg — (x2+y?)/w2]. 19
P(r)=sin(kz)exd — (x“+y“)/wq] (19 <o that

Collecting together the results thus far obtained, we
present in Fig2 a plot of the quantitiesd;, 11,{(d;)) where
we recall that these are the transition frequengiektive to
wg) from the upper state of the first excited level to the upper
state of the second excited level wigh being the frequency

| w

K=Mo/Ng==. (23)

f le of at . it dbA =1 i For the Gaussian standing-wave cavity with a continuous
or a sample of atoms in a uniform modg/{=1) (or at a sample of density (as opposed to one composed of discrete

fixed point in a spatially varying modlel, being the corre- atoms situated throughout the mgdee thus find from Eqgs.
sponding “quantum’” component obtained by excluding the(23) and (13) that

two single-atom excitations of the sta, ), and(d,) being
the Monte Carlo average as in H38) obtained for a Gauss- 3 |12
ian standing-wave cavity. di—i = N [ 2(2_ _) _1} 24
We also include in Fig. 2 the analytic result for a continu- 1=11=00Ng V2 8N, (24
ous sample of uniform density (our “jelly” model), for
which for the transition frequency of the upper to upper states of the
first and second excited manifolds. Note that the analytic

N.= 12_, f 1) 2d3x=pV,, 20 form for j; [EqQ. (24)] gives a reasonable approximation to
€ Z [Wil"=p | 1P d*=pVo 20 the expectation value of E18).
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B. Heisenberg equations of motion =/2. Note thaty, is in general the decay rate to modes

While the underlying quantum structure of the coupledOther than the privileged cavity mode. However, for our
atom-cavity system in the absence of drive or dissipation i$aViti€s, y| is essentially the same as for an atom in free
well understood, probing that structure in the laboratory haSPace since we operate in the limit that the_5solld_ang)e (
proved a challenging task. A number of measurement straguPtended by the cavity mode is smal<10""). Finally,
egies have been theoretically investigated, including singleth® dipole coupling coefficient for an atom with transition
field coherent excitatiof37,42,43 and excitation with inco- momentu at siter within the cavity standing wave ig(r)
herent light[42,44,43. Unfortunately, all of these analyses Egow(F), wherego=(uw /2% e,V)Y? is the optimal cou-

are for a single atom located at a fixed sitginside the pling coefficient andl/,(F)Esin(kz)exp[—(x2+y2)/wg] is the
cavity mode. It seems clear that a general treatment of theavity mode function for our Gaussian standing-wave mode
eigenvalue structure of the atom-cavity system in the prespith mode volume Vy,=/7_dx/".dyfidZ¥(x,y,2)|?
ence of continuous excitation and dissipation is a nontrivial— muSI/4. Two useful dimensionless quantities which can be
theoretical undertaking. Beyond the extension of the planegegrived from the rates «y,g) are the saturation photon
wave theory of the preceding section to the casNoatoms [, imber n=by, 7\|/492’ where b=8/3 for a Gaussian

each with a different coupling to the cavity, our eXpe”memStanding-wave modB47], and the critical atom numbe,

involves as well fluctuations in atomic number and posmonzzw x/g2. Our task now is to understand the behavior pre-

and th_e system_ls driven, so that the situation _becomes MOrg +ad by Eqs(25)—(27) for various drive configurations and
complicated still. In general there are drive strength-Strengths

dependent level shifte37] and the intracavity field buildup ; any A .
depends on the exact number and position of the collection 't IS Of course the termsio} and as; (and conjugate

of atoms. In response to our experimental investigation, Tiat®mMs Which couple Eqs(25)—(27) to an infinite hierarchy
and Carmichadl46] have explored a pump-probe-type mea-©f equations fo_r higher-order products of atorr_l and field op-
surement and developed both a semiclassical and fully quagrators and which make the general atom-cavity problem dif-

tum theoretical treatment of the nonlinear transmission spedicult to solve in its full generality. However, in the limit of
trum of the coupled atom-cavity system, including atomicvan'Sh'ng excitation, we can restrict our attention to a limited

beam effects; their complete quantum Monte Carlo simula-baSiS set _consisting of only three direct pr(_)duct statgs. The
tion is rather bulky, and so the details will not be discussedirst state is the ground stae) =[0)|0). with no excita-
here. Additionally, Tian and Carmichael have developed 40" in atoms or field; the second state places one excitation
different approach which utilizes a photon coincidence deln the cavity mode with all atoms in their ground states and
tection scheme to extract the interesting nonlinear features ¢ just the statgys,) of Eq. (6); the third state contains one
the Jaynes-Cummings modg2,33 from an atomic beam excitation distributed among the atoms with the field in its
experiment. The calculations for this scheme are quite regdfound state and is the stdig,) of Eq. (6). Taking expec-
sonable in required resources and demonstrate that the glation values in this restricted basis, we find that the product
perimental scheme is very promising. Here we will not{acf)=(—1)(a) and hence

present a full discussion of all measurement strategies avail-

able, but instead we will focus on the spectra measurements <3r>= —(y, +iA){o7 ) —g(r)(a). (28)
within which context we will pursue several calculational
approaches, each with a limited domain of validity. For e=0, Eq. (25 (its expectation valyeand Eq.(28)

In particular, in. this section Wg bggin with the Heisenbergform a coupled homogeneous system fdg+1 complex
equations of motion for the cavity field, the atomic polar- variables whose eigenvalues are straightforward to deduce.
ization oy, and inversions{ for thelth atom at siter; ina  The “atomic” eigenvaluexy= —(y, +i4) is (Ns—1)-fold
sample ofN atoms. We follow a standard proced(ig®] by ~ degenerate, while the remaining two eigenvalues are
way of a quantum master equation for the density opegator foUnd as roots of the quadratic
to obtain the following Heisenberg equations of motion for
the N two-state atoms interacting vid, of Eq. (3) with a
single spatially varying field mode:

fON=[A+(k+iO) ][N+ (y, +iA)]+93Ne, (29

where in agreement with our earlier definitipqg. (5)] N

. N =2|le|¢||2. Also, for k=0=1, (in the absence of dissipa-
a=—(k+i®)a+ ), g(r)o, +e, (25  tion), the eigenvalues given by ER9) reproduce the result
=1 of Eq. (7), namely,
o) =—(y, +iA)oy +g(r)aof, (26) A= +goNe. (30)
(}Iz: _ VH(‘}IZJF 1)_29(;0(;(}( +é(}|+)_ (27) Note that theN;— 1 eigenvectors correspondingXq are

such that>,g(o; )=0 and(a)=0 which represents no ex-
Here ¢ denotes a coherent driving field at frequeney  citation of the “collective” or “cooperative” degrees of
[which defines the rotating frame for Eq&5—(27)], ® freedom. On the other hand, the eigenvectors corresponding
=(w.—wp)/k is the cavity detuningA=(w,—wp)/y) is  to N. describe the dynamics of the collective atom-cavity
the atomic detuningx is the cavity field decay rate, and system. As indicated in Eq25), this collective degree of
is the transverse atomic decay. For pure radiative degay freedom can be explored by way of excitation of the cavity
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field a, which couples to each atom in precisely the manner (ota)—(of)(a), (a'a])—(af)o?),
specified by the expansion in E@) (namely, in direct pro-
portion tog,) and is driven by the collective response of all (a5 ) —(a) o) (33)
atoms. ' i
More specifically, consider conditions of weak excitation 5,4 read
(e/k<1) such that the three-state basigig),| 1), o)}
suffices. In this case, Eq&5) and(28) are readily solved in . Ns
steady state. The transmission functigr(w,) of a weak (é\)=—(K+i®)(a>+2I g(r){oy ) +e, (34)

external probe, operationally defined as the ratio of transmit-
ted to incident field amplitude, is, in the case of coincident

cavity and atomic frequenciess(= w,), given by[25,48 (}(): —(y, +iA) (a7 Y +a(r)(aNad), (35)
 kly—iwp] o3y = — 3 (67 + 1) — 2g* (I ((AT(o7 )+ (Ao ).
tin(wp) = (=T —Twy) (31 (o7)=—»(o) N(@)o ) +(a) (o >(36

Note that in the limit of weak excitatiom—0 such that
(a)<ng, the eigenvalues which follow from Eq&4)—(36)

are precisely those of the full quantum thefBgs.(29) and

( K=Y, (32)]. Further, the transmission function for the probe field is

The eigenvalue& .. are given by

+

L=

12

T —g2N 32

2 2 YolNe| - (32 just that of Eq.(31). There is no surprise here, in either the
guantum or classical case; for weak excitation, we are simply

robing the normal-mode structure for the two coupl(é

ah oscillators associated with the collective atomic polar-

and describe the collective normal modes of the coupled sy§-
tem. Note that in the weak-field limit considered hexe, ization and the intracavity field

simply containgo\/N—e to account for the varied couplings of ¢ considerable more current interé&8] is an explora-
theN; atoms. Equationg31) and(32) are valid as long as the jon of the structure of the higher-lying states shown in Fig.
excitation is “weak” (e/x—0) so that our assumed basis 1 45 was discussed in Sec. Il A. However, as we previously
|10,1,2 is adequate. This is simply the case of coupled lineapoted, the formulation of a full quantum theory for our ex-
oscillators. That is to say, either the approach we havgeriment is a somewhat daunting undertaking. We will in-
adopted here or an approach utilizing the full quantum masgieaq settle for a preliminary attack on this problem by way
ter equation leads to the same predlct_lon of normal-modeof the semiclassical equatior84)—(36), which are much
structure[Eq. (32)] and the same transmission functidfd.  more amenable to extensions which include fluctuations in

(3D]. o atomic number and position.
From Eq.(32), a normal-mode splitting is formally ex- oy semiclassical theory is developed to correspond to
pected for goyNe>(y, —«)/2 with corresponding\.~  our experimental strategy which is to first excite one of the

—(k+y,)12+igoNe. Only if goVNe>(x+y,)/2 will the  two “levels” of the first excited manifold shown in Fig. 1
splitting be observable. Considering the observability of thewith a fixed frequency “pump” fielde, . A second “probe”
normal-mode splitting for the cadé.=1 we adopt the cri- peam of tunable frequency can then excite transitions from
terion go>(«,y,) for the strong-coupling regime. The the first to the second manifold of excited states, and thereby
imaginary parts of the resulting eigenvalues give rise to geveal the structure of the dressed states containing two ex-
normal-mode splitting, which in the casdé,=1 (in the op-  citations. Excitation of théield mode probes this structure in
timal coupling limiY, is known equivalently as the single- the same way discussed above for the first excited state.
atom vacuum-Rabi splitting at g, or the first excited state In formal terms, we supplement E4) with a probe
of the Jaynes-Cummings ladder, as was first observed in dfield of amplitudee’ and frequency by the replacement
rect spectroscopic measuremefitsl7,2q in our group.
g—€pt e'e (37
C. Semiclassical theory where €, represents the pump fieldecall that Eqs(34)—
As has been demonstrated repeatedly over the past 136) are written in a rotating frame, here takenugf,m,, the
years, the utility of a semiclassical model of the coupledfrequency of the pump field Thusv is the offset frequency
atom-cavity system is far-reaching. In addition, the semiclasef the probe relative to the pump. We tredtas a perturba-
sical equations are tractable from the perspective of modetion (as compared to the steady state established,pyand
ing a real experiment in which fluctuations, dissipation andwrite
drive must be treated.

We thus turn next to a semiclassical treatment. The well- a(t)=a5+ da(t), pi(t)=p;>+dp(t),
known Maxwell-Bloch equations for the expectation value of
the cavity field modéa), the atomic polarizatioio; ), and 7(t) =25+ 8z(1), (38)

inversion(a?) for thelth atom in a sample dfl; atoms are R R R
arrived at from the full quantum equatiof®5)—(27) by the ~ where a=(a), pj=(o, ), z=(o{), and ss denotes the
simple replacements steady-state solution established with the pump field alone
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(e'=0,e,#0). Substituting Eqs(38) into Egs. (34)—(36) _ - s
with Eq. (37) yields the following equations for the devia- 0:—(K—|®—|9)a*(ﬂ)+§|: g pr ()
tions (da,dp,,02):
+2me* S(Q+v), (43
Sa(t)=—(k+i®)da(t)+ 2, go+ee ™ andc.c,
(39) H H = * = SS
_ 0= —(y, +iA=iQ)p|(Q) + g [@ssZi(Q) +77a(Q)],
Spi(t)=—(y, +iA)op|(t) + o [assdZ+27°5] andc.c.,
(40)
: 0=—(y, —iA-iQ)pf(Q)
67)(t)=—y67/(t) — 2g)[ agsdp, + p; *6a* ] . -
* SS % (__
_zgr[assépr_,’_(plss)*éa]_ (41) +g|[asSZI(Q)+ZI a ( Q)], (44)

Introducing the Fourier transform of each variable, e.g., _ _
0= (=) Z/(Q) - 2g [ a£Z/(V) +Za* (- )],

7= eounat 42 20! (e Z Q)+ Q). (45
we find
_ _ Equations(44) and (45) can be combined to find an expres-
0:_(K+i_i9)“(m+2| 9ipi(€) sion for p;(Q) in terms of the steady-state solutions
(@ss,PP%, 279 and@(Q), namely,
+27e’ 5(Q1—v),
* 2 2 -1
Q)= Mﬁ”(v—iﬂwﬂlgdz (yl_l_oilsj_m) +(7L1TSASJ_iQ)”

lasd?a(Q)  |agd®a*(—Q)

oS8 |2
X|~22% o Ay T G, —ia—i)

) —20,p}Sassa* (— Q) — 207 (pP9)* assa(Q) +zf§&<m] :

(46)

At this point, we turn to evaluate explicitly the steady- atom at siter; [49]. The normalized atomic and cavity de-
state quantities dss,p;°,z’°) required in this expression. tunings are defined by=A/y, and $=0/«.
Since the situation follows along the well-worn path of the  Our objective here is to find a simple analytic form for the
optical bistability literaturg¢25], we simply quote the results: transmission of the probe field as a function ofv in the
presence of the pump field, . With such an expression, we
-gy can then efficiently perform Monte Carlo averages over ran-

—(1+ 6% a[ 1+ 82 domly generated distributions of atomic positions to simulate
e———————— pPS= n, , our atomic beam experiment. Towards this end, we seek an
1+ 8%+ | asd?Ing 1+io [ 1+ 8%+ | asd?/n}) expression valid to lowest order jad? and hence expand
47) the various quantities in Eq§47) as follows:
Nsg |ass|2
. 2, 5~ - { 1- = (48)
—=a 1+, —————— ! 2 2y |’
K SS{( ;1 1+52+|a35|2/n{)) Ny(1+9%)
Ng - g* |a S|2
2C\6 ss. 9l . . _ s
il p=> ———— 1. pr~—-(1 '5)0155{1 o
¢ Zl 1+52+|ass|2/n5)] YL ng(1+ 69)
| 2 2 0 |a542
Hereny=1v, v,/(4|g/|*) andC,=|g,|*/(2«y, ) are the satu- =pl[ 15— | (49)
ration photon number and the cooperativity parameter for an no(1+6%)
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e |2 2C;N,  2Cy|acd? 2 where we define the optimal saturation photon number and
= ~|agd? (1 7 529— 25 e) single-atom cooperativity asny=1y, yH/(4g§) and C;
(1+ 5% mg =g3/(2k7y,), respectively.
2C,N & 2C1|Olss|25M 2 - | Co;nbi(rjlingt Eqs.(.z:1f16) j\nd (4?),d(49) and retaining only
- , owest-order terms iflagg, we fin
146 (1+dmy © :
|
~ g ~ |asd? 2|gl? ~ 2y, —iQ 2|gl?
OW)=———F——~ —a(Q)| 1- + - Za(Q - — + -
P = Fia—in )( aroon) i s DG G| i
2 %
X s (=) <n+iA>m—iA—im) | =1
By forming the sum=g,p,(Q) with Eq. (51), we can eliminate the dipole source term in E4B) to be left with
- Negga(Q 2Mog3(2y, —i1Q)|asd?a(Q) 2Mog3(2y, 1y)| asd?a(Q
() (k+i0—i0)= egF)A( ;) + -ego( '}’J_. | ssl- ( 2+ eng( ;}’L Y |ss| ( )
(Yo FTA=IQ) (g =iQ)(y, —iA)(y, +i1A=iQ) (Y2 +A2%)(y, +iA—-iQ)
2M g2 (2y, —iQ)ala* (—Q)
+— ol €y, 7107 s 1 27€' 5 ), (52)
(V=12 (7, Fi8)(y, —1A=10Q)(y, +iA=iQ)
|
where in correspondence to Eq5) and (11) we have de- Q=0 =0 (0p— 0pump) =L —A, v—v' =v-A,
fined Ne==,|¢4|2 and M=% ¢|*. Notice now that by (55)
writing a corresponding equation far* (— Q) the term in ) )
8(Q—v) will not contribute to heterodyne detection at the and rewrite the above expressions as
probe frequency as in our experiment. Without this term, ,
then, the resulting equation far (— Q) is given in terms of ;(Qf)zzﬂe_ 8(Q —v")ty(Q)
a(Q) with a lowest-order contributioprsd*. Hence, to or- K
2 ok ([ i - ’
der|asd?, we can drop thex* (— Q) term in Eq.(52) alto 2|0154293Metp(9 )/ 2y, Iy
gether to find 1- - %
k(y —iQ")  (¥1+4A?)
~ €' . _
a(Q)=27—5(Q=1)ty(Q) . 29, —i(Q'+A) ) !
)4 [y =1(Q" +A)](y —1A)(y, —1Q") ’
k(y +iA=iQ) | (12 +A?)
. (29, -i0Q) ”_1 where now
(=1 Q) (y, —iA)(y, +iA-iQ) ’ k(y, —iQ")
t,(Q")= .
(53) il an)— 0T}, 101+ N,
- : , (57)
where the probe transmission spectrum in the weak-field
limit (|a|2—0) is defined by To find the probe transmission spectrum for a given
o (fixed) input field e we must first deducéa.d? from Eq.
k(y, +TA—iQ) (50). Apart from the various detunings and coupling param-

to(Q)= (54

(K+i—iQ)(n+iA—iQ)+ggNe' eters C,,np) this determination requires an evaluation of
the mode sumdl.== || andM ==y, |* for the particu-
Note that() in this expression is defined relative to the pumplar distribution of atoms at hand and, hencﬁga, the solution of
frequencywp,mp, Which will in fact be varied to one of sev- the cubic equatiori50). With |asd? in hand,a () follows

eral values in our experiment. It is somewhat more convein a straightforward fashion from Eq56), again with
nient to translate to a frequency scale centered on the atom{®&N.,M.) for the particular atom distribution within the cav-
resonancew, . Hence we define ity mode.
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We can recast Eqg55), (56), (57), and(50) in a form
more similar to that of Eq(31) and in a terminology more
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of our experiment, the resulting probe spectra or, more pre-
cisely, the difference spectra defined by

directly related to experimental quantities. As such, the

transmission spectrum of a weak probe at a frequency
(also detected ab) in the presence of the pump field is

tnonlin(vaeaMe):tp(vae)[l_ nutp(wuNe)hp(vae)]_1,
(58)

wheren,=|a4d? is the pump intracavity photon number and

2g;Me [ 2y,
K(’)/L_iw)\‘ ’y”(‘yi‘i‘Aﬁ)

hy(w,M¢)=

. 2y, —iw—iA,
(y—lo—iAy(y, —iA)(y, —iw) |’
(59

Dp()=a(Q)|?=tp(Q)[? (62)

are essentially indistinguishable for intracavity photon num-
ber |asd?=0.01 with deviations of about 10% fdwr.d?
=0.06 in a situation where the saturation photon number
my=0.06 [(9,x,%=2y,)=(7.2,0.7,5.0) MHZ. Since our
expansion inagd? is essentially in terms of the small pa-
rameter| agd?/my, this expansion for thé&l=1 atom case
should be sufficient for the more general case of a distributed
sample of atoms, as long &8.d%my<1 and the modifica-
tions of the weak-field spectrum by the pump field are not
too large £10%).

As implied above, we expect the semiclassical treatment
to make incorrect structural predictions 8g—1 in the
strong-coupling regime, which is the point at which the
guantum anharmonicity should play an important role. For

with A, the detuning between the pump frequency and th&omparison, a full quantum electrodynamical treatment of

uncoupled, coincident atom and cavity frequencies.
The linear transmission pat(w,Ng) appearing in Eq.
(58) is given by

k(y, —iw)

,Ne: . .
ol Ne) (k—iw)(y, —iw)+g3Ne

: (60)

which is just a rewritten version of Eq31). We have al-
lowed 2y, /y;#1 to account for a slight transit broadening
(see Refs[50] and[29] for a discussion of the validity of
this approximation Equations(58)—(60) are a complete

the coupled system for our particular choice of measurement
strategy, including dissipation, but excluding multiple-atom
couplings and fluctuations has been carried [dé{. In this
treatment, the Jaynes-Cummings resonances discussed in
Sec. Il A are clearly evident for an atom-cavity system with
sufficiently strong coupling when it is probed using a pump-
probe geometry similar to that described in this papkr.
should be noted that even for a single atom without fluctua-
tions in number and position, the observation of distinct mul-
tiguanta resonances requires a coupling to dissipation ratio of
approximately 20, compared to the ratiggd(«+y,)~5

for this work] The essential full quantum treatment which

specification of the transmission of a weak probe in the presincludes the effects of multiple atoms with different coupling

ence of a pump field with intracavity photon numbegrand
detuningA , for an atom-cavity system with effective atom
numberN, and moment, .

In a Monte Carlo numerical simulation of the experiment,

we do not know the intracavity pump photon numlbepri-

ori since we drive the atom cavity with a fixed-power, fixed-

frequencyexternal pump field, of strength;,. To reiterate
the previous discussion, for each distributi@ach instance
of Ng,M,), the pump intracavity photon numbey, is found
by inverting the following equation:

_ 2C;N,  2C;n M, 2+ . 2C,N.d
iin=n - -
no 1+d?  ny(1+d?)? 1+d?
_2cinMgd |’ -
no(1+d??/ |’

whered=A,/y, and¢=A,/k. So, in total, with Eqs(58)—

strengths, of fluctuations in both number and coupling, and
of transit effects requires a sophisticated approach, and work
is currently underway by Tian and Carmichfé6] to model

a system similar to the one described here using the method
of quantum trajectorie$51]. The computational resources
required for such a calculation are large and at present seem
too prohibitive to make this a useful technique for detailed
quantitative comparison with experimental results.

Ill. SEMICLASSICAL SIMULATIONS OR WHAT

EXACTLY IS A ONE-ATOM EFFECT?
A. Description

We turn now to a discussion of modeling our experiment.
At the most fundamental level, we have a complex quantum
mechanical system consisting of a beam of atoms interacting
with a single cavity mode. Ideally, we would like to make
predictions of the outcomes of particular measurements on
such a system. A full quantum treatment presents, however,

(61), we now have a complete description of the probe transa challenging task. To model our experiment requires keep-
mission for a fixed external drive which can be related to afMng track of a phenomenally large amount of information.

experimental measurement.
Since Eq.(56) is deduced in lowest order ifwsd?, the
pump field cannot be “too large.” To quantify this state-

For example, even when there is on average less than one
atom in the cavity-mode volum€é,,, the response of a large
number of “spectator” atoms—those atoms which are

ment, we have compared our approximate result with that ofyeakly coupled due to their location on the skirts of the

Tian and Carmicha€l46] whose analysis is restricted to a
single atom at a well-defined sif@, but which is valid for

Gaussian beam waist or those atoms which are near the
nodes of the standing-wave field—must be taken into ac-

arbitrary pump strength. For parameters comparable to thosmunt. Indeed, counterintuitively, it is these very atoms
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which smooth the otherwise much larger fluctuations in cav- ' ' ' ' '
ity transmission and hence allow any sort of useful observa-.c—g 140 7]
tion of single-atom effects. But these spectator atoms make a;‘; (a)
full quantum mechanical simulation extremely costly. 8 | All contributions

Our initial approach has been to develop a semiclassica. 100 N — _
model based on the results of the preceding section whict’é '
accounts for fluctuations in number and position of atoms2 8o \ T

120

00!

within the cavity mode but which approximates transit time £

effects by a simple modification of, [as discussed in the § 60 ] 7]
context of Eq.(58)]. The model is equivalent to a full quan- 40 \ i
tum treatment in the weak-field linear regime, but is a semi- :

classical approximation for strong excitation. The semiclas-g§ , _
sical model starts at E¢31) or (58) and proceeds as follows. 2 b

We begin with a series of “tosses” of atoms into the 0 ~ 1 - R
cavity mode. Each toss consists of choosing randomly the 0-0 os 10 s 2o 28
. - Effective number of atoms in trial N
(X;,Yj.Z;) coordinates o atoms and evaluating the mode

function ¢//(Fj) = ¢; for each atom. The simulation volunvg 200 I I I I I 7
contains, and is much larger than, a volume of space equal irg
size to the mode volum¥,,. To model our experiments in
which the atomic beam is collimated only by the cavity sub-
strates(collimation equal to the length of the cavity trans-
verse to the atomic beam directjoiV/, is chosen to be M,
along the Gaussian waist,fy directiong and onlyl/4 along
the cavity axis g direction) since this accounts for all pos-
sible couplings along the standing wave. For each toss al

effective number of atom$\|e=2;\'jl| ¢;(r;)|2, is calculated.
[In addition,MEZEPjﬂgbj(Fj)|4 is computed for the nonlin-
ear simulationd. Typically, to achieveNg~1 in Vg, Ng
~100. Simulations with a large¥s and Ng (but with the

All contributions

50

Number of occurances in 2000 trial
>
o

N ) , 0 = - [oeo-
sameN,) have been run, with little change in the resulting 0.0 0.5 1.0 1.5 2.0 2.5
spectra, confirming that atoms farther tharwjOfrom the Effective number of atoms in trial N

cavity axis contribute negligibly to the overall probe trans-
mission spectrum. FronN, [and (M¢,n,) if necessary a _ : ) Y _
transmission spectrum is generated using either(&%). or =V, (as discussed in the tgxbr a typical 2000-trial simulation of
(58). The transmission function generated with each toss ig\laml.O(a) andN,~0.7 (b).

then averaged over a large numbgr-2000 of tosses. Thus, jng measure of the average intracavity atom number is de-
finally Nproduced is an aver.age_d spectrur®,(®)  rived from the effects of fluctuations on the linear probe
=1NZ; 1 ta(Ne,, Mg, @) wheret, is either|t;,|? from Eq.  transmission spectrum. Pursuing this issue in more detail, we
(32) or |thonind? from Eq. (58). Q, results from an average Will compute the distribution of atoms which contributes to a
collective atom numbdNaEEiN:thei/Nt- More specific de-  9iven experimental or simulated spectrum. Particularly, we

tails of the simulations depend on the regitfieear or non- would like to know the role of a single nearly optimally

linean of simulation and the type of probe detection em_cpupled atom in a spectrum Wit~ 1. The Impact of a .
ployed single atom in a cavity with the parameters of this experi-

ment is quite large. For example, the cavity transmission on
resonance changes by a factor H{2/Ny)?~10 2 when a
single optimally coupled atom traverses the cavity mode, and
We begin with the results of our linear simulations. Equa-so one optimally coupled atom is expected to play a very
tion (31) is used to generate the appropriate transmissioimportant role in a given spectrum.
function which is then averaged over a large number of Let us continue this pursuit. We define a volume in which
tosses to produc®,, . It is clear thatQy, will not be iden- an atom will have a certain fraction of the optimal coupling,
tical to a spectrum generated by directly insertidg into  say, g.=f.go [in which case the “coupling” volumeV,
Eq. (31), especially in the casd,~1 when Poissonian fluc- =e(f.)V]. Now for each toss of atoms\g is chosen to
tuations are relatively large. It could be possible, howevergive Ne~1) we count the number of atonigy in V4 and
from the definition ofN, andN, that a given averaged split- keep track of those cases in which exactly one atom appears
ting could be equivalently generated either from a few atomsn V4 (Nyg=1), when no atoms at all appear W, (Ng
strongly coupled to the cavity mode or from many atoms=0), and when two or more atoms are present in
weakly coupled to the cavity mode. This is actually not true,V, (Ng=2). The result of such a tracking is histogrammed
because the number fluctuations in the two cases leaves oio+ Fig. 3 and shown along with the sum of all contributions.
servably different signatures on the resultant spectrum as wasere we make the choice=1, corresponding t&/4=V,
first pointed out in Ref[17]. Indeed, in Ref[17] a convinc- andf.=0.56. We show the distributions fdt,~1.0 (a) and

FIG. 3. Occurrences of occupation numbey in volume V

B. Linear simulations
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FIG. 5. Comparison of simulated averaged spectra for different
numbers of atomsN,, with different couplingsg,, such that
goVN, is constant. The details are the following: Solid trabk,
=1.0, go/2m=7.3. Dotted trace, N,=0.83, go/27=8.0.
Dashed trace,N,=1.22, go/2m=6.6. For all traces,y)/2m
=5 MHz, vy, =v/2, «k/[2m=0.6 MHz. Note the increased
role of atomic beam fluctuations as the mean number of athijs,
is decreased, evidenced by the rising central region.

near the center. This is demonstrated in Fig. SNgwvarying
oo P = —(') a— 1'0 20 by 20% around\N,~1. Towards a greater emphasis of this
Qan [MHz] point, let us summarize the ideas of the immediately preced-
ing sentences: Perfect linear transmission spdttet is, in
FIG. 4. Breakdown of the contributions of various numbers ofthe absence of atomic beam fluctuatipnannot distinguish
atoms in the cavity-mode volunias discussed in the texor two between a sample dfl atoms collectively coupled to the
different average intracavity atom numbers, corresponding to th@avity mode at a ratg.qjecion’N and a single atom coupled
histograms of Fig. 3. Gra| hasN,~1 atom (with the dash— ; ;
d;ub?e-dotted CLIJ%ve for OEE:‘H )atom oi)timally ccfl\jvpl)led for compari-to the cavity mode at a raigspge If OcatecioryN = Ysingle-
However, if there are atomic beam fluctuations, @lveraged
son and graph (b) has N,~0.7 atoms. §q,«,y))/27 . . .
_ _ spectra in the two cases are different and the single-atom and
=(7.3,0.6,5) MHz, y,=y/(2x0.7). - LTETE
many-atom cases can be distinguished.
(3) For the two values oN, shown, theN;=1 case is a

N,~0.7 (b). In Fig. 4 we show the corresponding Spectra, jaior contributor both to the\, breakdown(35% of the

with the contributions to the overall probe transmission SPeCtaces hat,=1) and to the magnitude of the overall split-

tra shown for the same breakdown as in Fig. 3. The contrast e .
of the averaged spectrum with a spectrum due to a singﬁéng‘ The oyerall splitting is !ndeed given g VN, to good
approximation forN,=1, slightly less so folN,=0.7. A

atom optimally coupled to the cavity mode is also shown. ) -
Several comments are in order at this point. further study has shown that the absolute error in splitting as

(1) The number of trials in the simulation and the numberdetermined from the simple prescription of measuring the
of spectator atoml, are important parameters of the simu- Peak separation and dividing bygg to infer JN, as com-
lation. These must not be chosen too small. pared to the result from the simulation remains approxi-

(2) It turns out that the fluctuations allow an independentmately constant as the number of atoms is lowered, so that
calibration of the atom number. For example, in the weak+the relative error becomes increasingly large. For example,
field spectrunin the absence of beam fluctuatipnsnly the  for the two values ofN, shown in Fig. 4, for the simulation
product of the coupling and the number of atoms appears, iwith N,=1 the splitting isgy to within 4%, while for the
the termgyyN. Thus if N increases and, decreases suffi- simulation with N,=0.7 the splitting isg,+/0.7 to 10%.
ciently to keepgo/N constant, the spectrum will not change. While paradoxically the case for single-atom effects may not
However, in the case with fluctuations, this is no longer truepe as convincing as for our previous cavity parame@e.
essentially because the weight of the contribution of thg17], with smallerg,), we are still convinced that what we
empty cavity depends on the mean number of ato¥s, observe wheMN,~1 is an effect with unique unambiguous
Thus varyingN, and compensating with, to keepg,YN,  Signatures arising from the strong coupling of single atoms
constantwill not keep the averaged spectrum the same. Thavithin the mode volumé/,,. Note that these conclusions do
spectra are especially sensitive to the absolute atom numbeot change significantly for moderate changed/gf

| ~
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(4) It can be seen clearly in Fig.(d) that there is an
auxiliary peak at)=0. The breakdown in terms of the val- 25x10°
ues ofNy shows that this is contributed from those cases ing
which there are no atoms My—this is simply the transmis-
sion function of the(very large empty cavity peaking
through. During the times when there are no atom¥§n 15
there are still a large number of spectator atoms giving rise tc
N¢~ 0.4 from Fig. 3b). These spectator atoms play the criti-
cal role of keeping the empty cavity from completely domi-
nating the transmission spectrum. The central peak can b s
made much larger by shrinkings and thereby lowering\
as has been done in R¢22]. Our choice ofV; is for an . .
atomic beam whose dimensions are much larger than the -20 -10 0
cavity waist which has the important effect of diminishing /2 [MHz]
the role of the empty cavity while retaining observability of '
the essential single-atom effects.

It should be noted at this point that this is not a univer-
sally accepted interpretation of the situation. The authors o=
Ref.[22] have argued that there is no way to observe normal-g 20
mode splittings in the “true single-atom regime” with pres-
ently realized cavity QED parameters. Their point is as fol-
lows: Clearly, the actual cavity volum¥€. is much larger
than our choserVy (formally V.—), and whenN.=1
there is certainly more than one atom interacting with the
whole cavity volume(formally Ng— ). If one takesV, to
be much larger thaW,, and demandsas a definition of the ) , , , ,
“true single-atom regime) that at most one atom ever be -10 5
present inVy>V,,, then for an atomic beam experiment in
which only the average atomic density can be controlled, 5 6 calculated nonlinear spectistrong pump, weak probe
most of the time there will be no atoms at all present withing,, optimally coupled atoms. Pump powap=ny/2 f,or (@ N=4
V. In this case, the single-peaked empty-cavity responsgng (h) N=1 optimally coupled atogs). The frequency of the
will completely dominate the spectrum and no splitting at allpymp is atg,N in both curvesd(Q) is the difference spectrum
will be observable. As this is simply their choice ofdafi-  gerived by subtracting the spectrum without a pump from the spec-
nition of the “single-atom regime,” it is irrefutable. We trum with a pump. Go.x,))/2m=(7.3,0.6,5) MHz, v, =y2.
should note that a similar viewpoint is adopted in R&E)].

Of course, 'the cavity VOIu.mVC IS as large in the trans- g ation of “line-shape splitting without normal-mode os-
verse dimension as the cavity mirror substrates, and wher

d the f | bound . hat arbit 0 &llations,” might be taken to imply that one can be fooled
one draws the formal boundary 1S somewhat arbitrary. u[)y “line-splitting” observations. This observation was made
choice for this boundary is a reasonable definition based on

volume in space equivalent to the cavity-mode volume in;ﬂ an experiment in which the atom-cavity parameters are not
) e ) ' in the strong-coupling limi{the eigenvalues are purely rgal
which the coupling is large] ¢*>0.31 forVy=V,,). In any g-coupling fimit g purely re

thei “li litting” of h thi
event, the breakdown of the spectespecially those of Ref. and so their observed “line splitting™ of course has nothing

17]) clearly sh hat sinal ib nifi | to do with a normal-mode splitting—in fact it is not a “line
[17]) clearly shows that single atoms contribute significantlygyjising at all but merely the two maxima in the transmis-
to the overall spectra and that the “spectator” atoms serv

th . functi f att iing. the otherwise | &ion function on either side of the atom-absorption valley, as
€ primary function of attenuatng e“ Otherwise 1arge€, e measured and noted well before their refp2d].
empty-cavity contribution. To define the “true single-atom

regime” by demanding that the empty-cavity peak dominate,
as Refs[22,32 have in effect done, may be appropriate in
some situationge.g., the cavity transits described in Ref. We first present plots derived directly from E&8) via
[31]) but seems to us not to be physically motivated in thenumerical calculation for optimally coupled atoms. For opti-
current setting of atomic beam cavity QED. The choitg  mally coupled atomsiNe=M=N, the actual number of at-
=V,, accounts for 70% of the total cooperativity parameter.oms in the cavity. In order to help quantify the nonlinear
Aside from these issues, there are two points whicheffect, we derive a difference spectrum simply by subtracting
should be mentioned regarding claims made in R22].  the pump-absent case from the pump-present case. Figure 6
First we note that the “unique feature,” descibed in their shows pump on/off transmission spectra along with differ-
paper(the unigue feature being the central peak due to th&nce spectra fok=4 andN=1. We expect expressidsd)
empty cavity at low atomic beam fluxwas observed and to be valid only for pump intracavity photon numbeng
described earlier by us, both experimentalp2] and in  <n,.
simulations of the effects of fluctuations in the atomic beam The simulation in the nonlinear case is similar, but
[17]. These are quite well-known effects, and their impor-slightly more complicated than the linear case. As in the
tance has been amply notgt]. We also note that their ob- linear case, we begin by choosing tdesired number of
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[Arb. Un

Transmission

30x10° |-

nits]

a5l pump on pump off |

ransmission [Al

-

0
Q21 [MHz]

C. Nonlinear simulations
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atoms,Ngy. Of course, we cannot knoW, until the simula- & 3% T | - T T T

tion is complete, but if the calculation parameters are chosers sof- ) -

appropriately, then we can gbt, consistently close td,. 8 5L o _
We also choose an approximate desired number of intracavl | i
ity pump photonsng, from which we can calculate the ap- £ 2°[ I |
propriate(and approximatefixed drive by use of the state § 5[ 7]
equation § 10 -
2 2 3 5 ]
1+d?+ng/ng 1+d?+ng/ng 0 ! 2 3 4 5 6 7
(63 Ne
whered and ¢ are defined in the context of E¢61). This 2 T ' ' T
fixesi;, for the entire simulation. As usualN, andM. are = L I
computed for each toss. Now, since the the actual pump in& *°[ | {11 _
tracavity photon numbem, builds up depending on the val- & I
ues ofN, andM., we must solve Eq(61) in order to have & 201 .
an appropriaten, associated with the fixed drivig, which §
can then be used in E¢8) for each toss. For consistency of § 10 -
notation, we will call this effective pump intracavity photon §
number 7, in analogy toN, and M., and likewise,n, av- S o 0w 00 1o
eraged ovel; trials will be calledn, in analogy withN, . 0 1 2 3 4 5
In Figs. 7 and 8 we show histogramsN§,M., and 7, for M,
N,=3,7,=n¢/3, andN,=1,7,=ny/5, respectively. The cor-
responding spectra are shown in Fig. 9. For these figures, thy 4, , T —
pump frequency is coincident with the Rabi peak for the-g
desired number of atom$Jy. This is a fixed quantity, the S ol |
same for every toss with value Q
()2 o “r 1
A= \/ Nogg—————— 64 8
§ 20 -
3
In practice, N, turns out to be very close td\y 3
[(Na—Ng)/Ng<<0.01], and so indeed Eq64) does turn out © 00 10 20 3'0 20x10°
to be a pump at the correct frequency. This procedure is Mo
meant to mimic the experimental situation in which there is
an estimate of the number of intracavity atothased on the FIG. 7. Histogram oN.,M., and, for a full nonlinear simu-

linear transmission spectrygnwith the pump detuning set lation (N;=2000) for N,~3,7,~n¢/3, andny,=0.06. The abrupt
accordingly and with an arbitrary external fixed drive power.final point in 7, can be explained by the following. There is a fixed
drive strength, so that there is clearly a maximum valueyngf
allowed. We are driving with the pump at the Rabi peak, and so a
fluctuation in atom number in either direction always causes the
pump to leave resonance and the buildup to decrease.

We are free in the simulations to average over the modu-
lus [Q,=|t(w)|?] or the modulus squareQ,=]|t(w»)|?] of  Q,. In the case of photon counting, the detector samples for
the transmission spectrum. Of course, we can simulate ang timety> T, during which the cavity-output photon stream
averaging process, but ultimately we would like to chooseis collected. This performs an average over ithtensity of
one that corresponds most closely to that actually used in aghe cavity-output field so tha,e= [t(w)|? is measured. This
experiment. Unfortunately, this has proved to be slightlywas the detection method of our previous wtk] and the
more problematic than it may at first appear. We thereforgimulations fit well with the data. In addition, we have done
will discuss carefully in this section how a comparison of g limited number of photon-counting measurements for the
simulated and experimental data is made. cavity parameters of this experiment, and again we have seen

All results presented thus far are for averaging over theyood agreement between simulation and daia(To look
modulus squargQ,=|t(w)|?]. An experiment in which this ahead, refer to Fig. 1p.
is the correct choice is one which employs a photon-counting The photodetection used in most of the present experi-
detection process. Let us assume that the time scale ovetents, however, is different. For the measurements of pump
which the intracavity atomic distribution evolves is set by theand probe fields, there are two different fields with frequency
transit timeT, of atoms crossing the cavity field. Over a time separation ranging from a few to tens of MHz, and so good
T, each atom distribution “snapshot” evolves into the next. frequency discrimination is requird@vhich is quite difficult
Our experimental detection always averages over manwith photon counting and frequency selective filtejinDe-
shapshots, producing the averaged transmission spectrutection via an optical heterodyne was therefore utilized. In

D. Comments on comparison of simulated
and experimental data
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0 5 10 15 20 25 30x10° nounced neaf)=0. This region is also very sensitive in the
Ne experiment to uncertainties such as beam alignment. It is an

empirical fact that no matter how carefully we have charac-
terized and traced the signal processing elements and the
heterodyne detection, on the whole, the data agree better
with a calculation oQ,=|t(w)|? than withQy .= [t(w)|?. In
this type o_f detgction, the fieldmplitudeof t_he transmission light of this, we continue to use th@a=—|t(w)|2 averaging
spectrum is written as coherent modulation on an rf photoprgcess in our simulations throughout. While this may seem
current in combination wittiwhite) shot noise and noise due a brash decision based on our knowledgeth theoretical
to atomic fluctuations. The technique by which this photo-5,4 for simple empirical test cagesf the inner workings of
current is then processed determines the appropriate avera@e heterodyne detection, it turns out not to be critical for
ing of the data. Any process seeks to extract the coherenfoyeral reasons. The first, as we have stated, is that the most
signal from the inevitable noise sources. We chose a senshronounced difference between the two averaging proce-
tive (low-noise-flooy rf spectrum analyzer to mix down the 4 ,res appears in the “valley” between the Rabi peaks, near
rf and readily view the modulation as a dc signal on the —_ This is a notoriously sensitive region. For example,
screen of the spectrum analyZ&A) which is then digitized he auxiliary central peak in Fig () is exquisitely sensitive
a_lnd stored_on a computer. The (_:r|t|cal element is the resolyg, experimental uncertainties, particularly atomic beam
tion ba”d‘i‘"dth(RB) of the SA which was was chosen small, 4ignment and, indeed, to the fluctuations in atom number
27B<T, ", so that the spectrum analyzer performs an averemselves. Slight changes My, (on levels far more sensi-
aging over many atomic transit times. The spectrum analyz&§ye than our control over oven temperature drift, pyo-
has an envelope dgtector and not a true square law detect%ce dramatic changes in the central peak. Simply put, it is
so that the averaging performed by the spectrum analyzer igficult to model the central region of the data successfully.
of the|t(w)| type, which we then square in post-processingThe second saving grace is that the position of the Rabi
to producein principle a measurement @@= |t(w)|?. peaks does not differ to any significant degree for the two
Spectra simulated with the two different methods of aver-methods of averaging as determined from simulations. And,
aging yield qualitatively similar but quantitatively different finally, the simulated difference spectra are only slightly af-
line shapes and amplitudes. This is shown in Fig. 10 for twdfected, perhaps indicating that this simple mathematab-
different values olN,. The differences are by far most pro- traction reveals the true underlying eigenstructure, which

FIG. 8. Histogram oN.,M., and #, for a full nonlinear simu-
lation (N;=2000) forN,~1, n,~ny/5.
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o beam registers this flux. The locking beam is part of the cavity
g 20l length servo and is chopped at 1.7 kHz. During the “off” cycle of
2 the locking beam, the transmitted probe is measured by the bal-
g 10" anced heterodyne detectbrare mode-matching lenses. The reflec-
tivity of the beam splitter which deflects part of the cavity output to
the lock photomultipler tubéPMT) is 15%.
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probe frequency £/2r [MHz] full spectral linewidth. The cavity-length servo consists of a

FIG. 10. Comparison of methods of averaging the simulated@rge-intensity Qioc~ 10°ny) “lock beam™ incident on the
spectra for(a) N,=0.7 and(b) N,=1.0. In each graph the solid cavity; both mirrors are on piezoelectric transdud&zT’s)
curve is(|t;y|?) and the dashed curve (;|)2. The parameters are With which the cavity length is dithered very slightfst 80
(9o.x,y))/2m=(7.3,0.6,5) MHz, y, =y/2. kHz; the cavity transmission is changed by the dither by less

than 1%. The transmitted lock beam is detected via a lock-in

surely must be independent of the way the data are averagedhplifier with the error signal fed back to a mirror PZT. The
In particular, the position of the difference peak does nofock beam is chopped by a mechanical chopper wt@do

change at all under the two averaging types. duty cycle at 1.7 kHgto attain an attenuation of more than
60 dB during the “off” cycle, at which time the probe beam
IV. PUMP-PROBE EXPERIMENT is observed without the interference of the lock beam. The
transmission of the wealn,<n) probe beam is recorded as
A. Apparatus a function of its frequency on @f) SA after balanced optical

The experimental setup employed is as depicted in Fig. 1f€terodyning with an intense local oscillator frequency de-
[53,54. The core of the apparatus is a smallL ( tuned—40 MHz from the common uncoupled atom-cavity
=346 um, Wy=38 um), high-finessef=3x 10°) reso-  center(frequencyw, of Fig. 11). For the nonlinear spectro-
nator formed by the two mirror8; and M, with radii of ~ SCOPiC studies, we employ an additional fixed-frequency
curvature 17 cm and transmission coefficiefits 1x10°6  pump field, which is generated by summing a constant-
and 8,~1.5x 10"5 (nontransmission scattering losses in the{féguency, variable-strength, rf signal with the tunable,
cavity coatings were on the order o&4.0~%). An optically weak, rf probe signal. The resulta_nt sum of rf signals drives
prepared beam of cesium atoms intersects the cavity axis 1€ EOM for pump-probe generation.
90°. The transition investigated is the 6,F=4, m=4 _

—6Py,, F'=5, m.=5) transition at 852 nm. Together with B. Linear results

the free-space lifetime of the FRg, level In order to touch base immediately with the Monte Carlo
(7=32 ns[55]), these parameters lead to the set of ratesimulations described in Sec. Ill, we start this section with
(do.x,y))/2m=(7.30.3,0.6:0.1,5) MHz. From the data taken via a photon-counting method, in which the aver-
above parametersné,No):(0.16,0.06). Transit broadening aging process is unquestionab|y of the ty@g: |t(w)|2

due to To~10/y) leads to a modification ofy, =v/(2  These data for an average intracavity atom nunhberl are

x0.7) [50]. .shown in Fig. 12. The experimental details are identical with

. The linear response of the coupled atom-cavity system i§,,qe of Ref[17], and so we will not discuss the details here.
investigated using a frequency-tunable probe generated us"i@ote that we have introduced a new quantinhis is the

an acousto-optic modulatdAOM) and electro-optic modu- . . . .
lator (EOM) from the output of a frequency-stabilized experimentally determined version &f, from the simula-

titanium-sapphire lasefL0—100 kHz rms linewidth The tions. As per the discussion abowd,can be read directly
probe is mode-matched to the TE)mode of the cavity, from the measured splitting between Rabi peaksNer1,
whose length is actively servo controlled to within 10% of its but should be determined from a fit to simulations with av-
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FIG. 12. Linear spectrum fdi~ 1.0 atoms measured by photon ~ FIG. 13. Linear spectrum fdi~1.1 atoms measured by hetero-
counting withw,= w,=0. The intensity axis is arbitrary. The solid dyne detection. Nominally»,=w, but there is a slight atomic
curve is a simulation which includes the effects of atomic numberdetuning of ~—1MHz. The solid curves are simulations which

and coupling fluctuations withgoe/27=7.3 MHz and N, include the effects of atomic number and coupling fluctuations.
=1.0, kl27=0.6 MHz, y,[2m=2.5/0.7 MHz, y /27 Curve (i) has go/2m=7.3 MHz and N,=1.1; curve (ii) has
=5 MHz. 0o/2m=8.0 MHz andN,=0.95; curve(iii) hasgy/2m=6.6 MHz

and N,=1.4. k/2mr=0.6 MHz, v, /2m=2.5/0.7 MHz, y /27
eraging over fluctuations for atom numbers below this. The=5 MHz.
procedure of fitting averaged transmission spectra

— 2 i ;
Qa=|t(w)|” is seen from Fig. 12 to work quite well, as Measure .= 1.6+ 0.1/~ 0.2, which is the primary error in
expected from our experience with our previous system wit . .
he quoted value df, (the rest coming from small contribu-

smallergo. However, it can be seen already in these an ions from errors in the measured length of the cavity and in
related data that the points ne@r=0 are subject to a larger " . gth of' Y
}Qe radii of curvature of the mirrorsin principle, an inde-

variance than those elsewhere in the frequency scan. Th d £ th . h b |
aspect does not tend to go away by averaging a large numbBFndent measure of the saturation photon number can place

of traces. Rather, imperfections of various sditeluding ~additional limits on the value of,. The saturation photon
atomic beam alignmehtend to “fill in” the central region number can be measured by observations of the position of

which makes it a problematic region for comparisons withthe turning points in optical bistability measurements, as was
the simulations, as stressed above. done in our previous measuremefts]. Unfortunately, we
We would like to stress at this juncture that the number ofwere not able to perform reliable bistability measurements
intracavity atoms inferred from the measured data depend#ith this cavity, mainly due to limitations in attainable int-
on the values ofdy,«,y,v,) which are known from inde- racavity atom number and problems with atomic beam fluc-
pendent measurements. For examplds determined from tuations.
both cavity ring-down measurements and by scanning the We now move on to the heterodyne measurements, which
linewidth directly. The atomic lifetime is known from the are imperative for nonlinear spectroscopy and which are used
literature [55], giving y; the transverse decay ratg is  exclusively onward from this point. We present in Fig. 13 a
determined from the atomic velocity and the well-knowntypical transmission spectrum of the probe beam for our
cavity waist sizg[50]. Finally, in addition to the geometric coupled atom-cavity system, in the weak-field lifitith no
factors, such as the cavity Iength and c§vity waighich pump field presept Here N=1.1 atom, withQ=0 corre-
depends on the length and the mirror radii of curvalumg  sponding to the position of the common uncoupled atom-
depends on the degree of optical pumping of the atomigayity resonance. To facilitate comparison with E2) the
beam, since the coupling of any of the other magnetic subgaia have been processed by squaring the output of the SA,
states to the cavity field is less than that of the=4  gyptracting the backgroun@hot noisg level, and then nor-
—mg=5 transition, which we nominally prepare. There is amalizing to account for the frequency dependence of the
straightforward and powerful way of determining the effec-probe generation and detection procks354). Note that the
tiveness of the optical pumping. At reasonably large numbergrdinate is normalized in units of the intracavity photon
of intracavity atoms Kl~2—4), we can measure the splitting numbern,,e With n,,pe<0.02 over the scan rangeom-
of the Rabi peaks both with optical pumping and withoutpare this tony=0.16). The observed doublet structure with
optical pumping. The average coupling for an atomic samplgeaks at() = *+ g, is a direct spectroscopic measurement of
uniformly populating the magnetic sublevels of the=4 the vacuum-Rabi splitting discussed abogEhe sharp fea-
ground state is determined by an average over the Clebschire at{) =0 is the rf generated during the lock cycle by the
Gordon coefficients connecting each of the allowed transitock beam, a small amount of which feeds through electronic
tions. The value of the coupling if all of the atoms were rf attenuators which otherwise prevent this signal from
pumped to theF=4, me=+4 ground state should bp reaching the SA. It is not present during the data taking
=1.73 times larger than the unpumped sample. Typically weycle)
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Also shown in the figure is a series of simulation plots, 30

using the measured values @, «, and y, = y/2/0.7. The 200 (a) ‘ 8
simulation plots are generated as discussed above in Sec. Il o fmi\ g \‘%

For the parameters of our system, the magnitude of the split OW oy

ting even in the presence of fluctuationsg'@/N with the 10 ‘ ‘ . ‘ ‘
principle effect of the fluctuations being a significant in- -30 -20 -10 0 10 20 30
crease in the cavity transmission néar=0. Thus, sincey, 0 T

is known independently, we can determine the number of 2} M

atoms to a good approximation simply by measuring the ., AW%

- p
splitting, but we can also calibrate this procedure by studying WM’“

the sensitivity of our spectra to atomic beam fluctuations in 0
the vicinity of Q=0. This is shown with curveé)—(iii) in % 20 10 0 10 20 2
which go\N, is kept constant whilg, and N, are varied. £ . ‘
Curve (i) hasge/2m=7.3 MHz andN,=1.1, as we would " | WW
surmise from the data and the knowledgeygfwhile (ii) has 2 © N’ﬂ ‘M
9o/2m=8.0 MHz and N,=0.95 and (i) has go/2m 10r St A
=6.6 MHz andN,= 1.4, neither of which match as well as oI WW“”"‘(WWW e
curve (i). As stated above, we have fixed the simulation- g ‘ \ - \ \

. _ 2 . -30 -20 -10 0 10 20 30
averaging procedure ®,=|t(w)|*, which appears to per-
form quite well. Note that in comparison with our previous %0
measurementd 7], the resolution of the splitting for a single 200 (@ fMN
atom is significantly improved in our current system, but not 1o} J 1
by as much as one might naively expect, from the more thar OWWMWWWWNWWW,MWWM it g
twofold increase in the couplingg¢/27w=3.2—7.3 MHz) o ‘ ‘ . ‘ ‘
and the more than eightfold increase in the single-atom co- -2 -20 -10 0 10 20 30

operativity paramete€;. This disappointing result is due to /2m MHz]

the even greater role of atomic fluctuations in a system with

. FIG. 14. Sequence of nonlinear probe spectraﬁem.z atoms
increasedC;.

with w,= w.=0. Here, the frequenc§) of a constant amplitude
_ probe beam is swept and the transmission recor@edinits of
C. Nonlinear results probe intracavity photon numbey,,d. Trace(a) has a probe field

Armed with this experience in the linear realm, we nextonly, with the splid curve a fit to the data including ttrainimal)
move to explore the nonlinear spectroscopy of the couple§Tects of atomic fluctuations. Frorb) to (d), the pump powers
system. We note immediately that our goal in performing the/292in in units of intracavity photon number with atoms presare
pump-probe-type experiment was to observe multiphotor?~0-1, 0.3, 0.8. The pump frequency ﬁpump/27T:@lo/27T\/N
quantum transitions and to study the evolution of these resg= 14-8 MHz, as indicated by the sharp feature in trade The
nances for large numbers of atoms where the semiclassicg!id line in trace(b) is a nonlinear semiclassical simulation includ-

equations should correctly predict spectra. If we take(EX. ing atomic fluctuations and is described in the text. The best fit to

. . - the data hasy,=0.38.
as a guide, we conclude thidt=4 atoms is sufficiently large 9a

to be reasonably well described by semiclassical theory . . .
since q,=0.94 for this atom number. In addition, at this reflection of the transition frequencies, then we should be

number of atoms, the effects of fluctuations in atom numbeiﬁ1b|e fo trace out data similar to the calculated quantities

— , shown in Fig. 2.
are less pronounced than fidr~1. To recapitulate our ob- In Fig. 14 we present a sequence of pump-probe spectra,

jective, consider the transitionsto(t,) and (A _’2‘) with varying pump intensity, taken for a “large” number of
shown in Fig. 1. We are most interested in the transition atoms (N=4.2 atomg The experimentally measured pump

For a system with a single optimally coupled atom in which , — . )
go>(x,7,), this would appear in the nonlinear spectrum asntracavity photon number; ranges from zero intracavity

a peak centered at frequencyZ— 1)g, relative to the atom- PUmp photons ta;=0.75+ 0.3 intracavity photons, on aver-
cavity center frequency,. The transitiort, is strongly sup- @9€, and its frequency is chosen to coincide with the higher-
pressed relative tby, and so we will not search for it. In our frequency resonance of the unpumped atom-cavity system at
system, which is more complicated, due to atomic beam fluc€)/27= + (go/27) \/ﬁ: 14.8 MHz[this is visible as a sharp
tuations, and not sufficiently enough split for this ideal pic- peak in the data, especially of grafi)]. The data have been
ture to be realized, we should consider not the ideal case gfrocessed in the same manner as in Fig. 13. For tfage
Eq. (2), but rather the case of Eq13) and the associated taken with no pump, the observed splitting is just that of the
transitions (5 ,t7 ,t3) generalized to the distributed atoms weak-field normal-mode splitting discussed previously.
case. Again, the transitionsg(,t3) are strongly suppressed From the fit(solid curve and the splitting, we find tha
relative to ¢7), and so our goal will be to trace this transi- =4.2, with the only adjustable parameter being the overall
tion as we lower the intracavity atom numbhb If our  Vertical scaling. In tracéb) the pump has been turned on,
choice of measuremeritvhich will be the position of the with a pump intensity corresponding to approximatejy
peak in the difference spectrirurns out to be an accurate =0.1+0.05 intracavity photons, while ifc) the pump has
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FIG. 15. Sequence of nonlinear spectra for 1.1 atoms with
w,= w.=0. Graph(a) has a probe field only. The pump powers are
from (b) to (d), »=~0.1, 0.4, 0.7 intracavity photons on average.
The pump frequency islpum,{27r:g(,/27r\/ﬁ: 7.6 MHz, as indi-
cated by the sharp feature in tra@. The solid curves are semi-
classical simulations withN,=1.1, and for grapltb) 7,=0.07. See
the text for a discussion.

Q21 [MHz]

FIG. 16. Linear and nonlinear spectra as the number of atoms is
varied. Each graph contains a linéap pump spectrunfcurve(i)],
a nonlinear spectrurfturve (ii)], and a difference spectrufpourve

been increased tg=0.4=0.2 photons and finally ird) the
pump is atn=0.75+0.3 photons. Clearly evident from the
data is a trend towards lO,W?r heights for the unpumped (i) - curve(i)] [curve(iii)]. From top to bottom the parameters are:
peak as the pump power is increased. At the same time t ) N=16, 704, O [2m=9.1 MHz  (b) N1l o
pumped peak becomes higher and migrates inward towar S0z O "!’277 7'5’M|_p|;"_‘ © ﬁ 075’— 0.06. O .;/,27]
. H - HY ~U.g, pum mT= 1. ’ ~U. 17]%' 1 pum T

wiztzog??‘c’e”“afr;“ Z"z‘j‘,’,'tyg;iqr‘]‘aeﬂgzgt W?t.thhaed\?vlig?r?’oﬁ‘htie —7.2 MHz. Curve(iv) in graph(c) is a theoretical it to the linear

Ki pump bp' 30% d, d d to th tspectrum, indicating the extent to which our Monte Carlo simula-
upper peax in grapld) being o reduced compared o that ;¢ correctly incorporate fluctuations in atom number and posi-
of the peak in grapha). In each case the pumped peak is

tion. As stated in the text the region ne@r=0 is extremely sensi-

higher than the unpumped peak and no additional resonancgss o imperfections in the apparatus, including atomic beam

are observed. For a linear system, the probe response WOUlflgnment, but these factors should remain constant between the
be independent of the pumpexcept of course at |inear and nonlinear spectra measurements.

Qprobe= Qpump s SO that the data in Fig. 14 represent a mea-

surement of the nonlinear “susceptibility” for the atom- N~1.1 atoms. The solid curves are again from numerical
cavity system. The solid curve in trade) is a theoretical fit  simulations of the semiclassical theory applied to the data in
from Eq. (58) averaged over atomic distributions using thethe same manner as in Fig. 14. It is seen that the linear
numerical simulation technique descr_ibed above. Here thgjmulation in this case is not as good a fit as that of Fig. 14,
average atom number and overall height are parameters g the following reason. The data are taken under conditions
the simulation, withN, having been set from the fit i@ to  jn which the cavity and atomic detunings are nominally zero,
N,=4.2 and likewise for the height found i@). The pump  pyt are subject to some drift{=0.1 MHz cavity detuning
intensity is then the only free parameter for the fit to thegng ~+1 MHz atomic detuning as has happened in the
nonlinear case, yielding a value for the intracavity pump in-case of Fig. 15. We do not at present model such detunings
tensity of 7,=0.38 photons which is high compared to the j3 our nonlinear simulations. In order to determine an ap-
measured value of=0.1+0.05. proximate height scaling of the nondetuned linear simulation
We next turn to data taken for approximately one intrac-which can then be applied to the nonlinear simulation, we
avity atom. Figure 15 shows a sequence similar to Fig. 14 foteave the detunings out of the linear fit as well. It is clear that



3102 THOMPSON, TURCHETTE, CARNAL, AND KIMBLE 57

15 T r T T T T T T T
10
5
0
_5 i
-10
-3 0 1 1 1 Il
10 ’ | (b)
5 n
ot Ir .
« £
5 =
0 T T : T
-3
5 | (©
% o -
c'6.5 Y n
mo n,: ik -
T 0 ] ¢
L
5 0 L L ) '
30 20 10 (1.1 10 20 30 2r @ T
4t ¥ 1 ~ '
@ i I . T
er W/ 1 L1
[/‘\{\{l‘// (L]
or . T s \ Y S of B L L L L
TS A N ‘ A
2F 1 s © J
-30 20 10 0 10 20 30 -
/27 [MHz]
1k = 4
FIG. 17. Difference spectra with semiclassical theory overlaid. »
The details are the following: Tracé), N=4.2, =0.1, N, o =
=42, na:O_.SS. Tra&e(b), N=1.6, =0.4, N,=1.6, 77a:0-1§ 0 1 2 3 4 5
Trace (¢), N=1.1, »=0.1, N,=1.1, ,=0.07. Trace(d), N Number of Atoms

=0.75, 7=0.06, N,=0.75, 7,=0.09. Data are taken with the 15 15 Ppiot of the position of the peak in the difference spec-
pump frequency <'31ﬂpum,:/277290\/N for N=1 and atQpumd27  trum P, /g, vs the number of intracavity atomalg for simulations
=go for N<1. The solid vertical lines depict the position of the or N for the datad The data are shown as the open squares while the
transitiont, at (22— 1)go. simulation results are represented by the solid curve in gfaph
which is a fit through many runs of the nonlinear simulation to
this procedure is nonoptimal, but it does reproduce the qualishow the trend of the semiclassical prediction. The data of g@ph
tative features of the nonlinear data. The pump powers fogre taken with intracavity pump photon numbers in the range 0.06
Fig. 15 are similar to those in Fig. 14. The best fit for pump<7,<0.2. Note the suggestive flattening of the datay@+ 1) (the
photon number_in Fig. 16) is 7,=0.07 as compared to the position of the peak corresponding to the transittgrin Fig. 1,
measured valug=0.1. As is obvious from these data, mul- shown as the horizontal straight linperhaps indicative of a quan-
tiguanta resonances of the sort predicted by Fig. 1 are nd¢m anharmonicity. Data are taken with the pump frequency at
immediately apparent. As the probe frequency is scanned tﬁpum,jzwzgox/ﬁ_for N=1 and atQp mf2m=g, for N<1. The
investigate the first- to second-excited-state transitions, it ofanges of pump powers for the subsequent graphgbar@.06<
course also probes the ground- to first-excited-state transi-g 1, (c) 0.1<7%<0.2, (d) 0.2< 7<0.4, and(e) 0.5< 7<0.9. The
tions. Thus a means to isolate the nonlinear effect is needegyror bars displayed represent the one-standard-deviation limits, and
In Flg 16 we introduce a naive attempt at such a teChare shown on only two points to avoid clutter.
nigue by simply subtracting the linear spectrum from the
spectrum with the pump field present, thereby deriving a _ — — —
“difference” spectrum from the data, much the same as theSPectra(iii) asN is decreased froml~1.6 toN~1.1 toN
difference spectrum from the nonlinear simulations shown irf=0.75. Here we have selected the data based on a level of a
mation. For example, one may look for additional features The data of Fig. 1€) are data taken with~0.75 atoms.
that arise in a regime where the basic first-excited-state feddere the pump frequency is &/27=gy/27=7.2 MHz.
tures change little. This would be indicated by near completéNote that three peaks are evident in both the probe-only data
subtraction of the linear features with a new peak appearingnd in our linear numerical simulatidourve (iv)], with the
at a frequency different from that of the pump frequency.central peak arising from the fact that now there is a signifi-
Figure 16 shows lineafi), nonlinear (i), and difference cant fraction of the time in which there are no atoms present
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within the cavity-mode volume. This a promising regime, of the peak on the high-frequency side of the difference spec-
because the contribution from multiple atoms in the cavity-trum which from Fig. 1 should coincide with the transitions
mode volume should be smakee Sec. I, while the re- t; andt} . Actually, it is an interesting question as to the
sponse from the zero-atom contributi@ire., atoms outside extent to which the position of the difference peak actually
the mode volumeV,, with coupling g<e.gy~0.569) corresponds to the eigenvalues discussed in Sec. Il A. From
should be essentially linear since the saturation intensity isimulations, we find that the position of the difference peak
higher for these “spectator” atoméecause they are each tracks the distributed, averaged eigenvalge,) from Eq.
weakly coupledd Thus an observed nonlinear response(18)], but that the latter is about 25% larger. The position of
should be predominately due to contributions from singlethe peak in the difference spectrum is thus not an exact mea-
intracavity atoms within the mode volume. Of course, thesure of the eigenvalue of the atom-cavity system, but is cer-
trade-off is that the peaks have merged to a degree that maginly a related quantity.

drastically obscure the observation of new features. What we The peak in the difference spectrum is a quantity which
observe in the pump-probe spectra is a region of increaseshn be easily measured and simulated, providing another
probe transmission, again on the inner side of the pumpeday of comparing the semiclassical Monte Carlo simulations
peak, with very little change in the position or height of the with the actual data. As stated above, this quantity is insen-
unpumped peak or of the outer side of the pumped pealksitive to such parameters of the simulation as overall height
Clearly evident in the difference spectrum is a broad peakind applied pump power, making for an easier comparison
centered roughly atgp/27)(y2—1)=3 MHz, which is  with experimental data taken over a range of pump and
consisteni{but certainly not compellingly owith what one  probe powers. In Fig. 18 we accumulate some of the nonlin-
expects from the QED theory of Sec. Il ot including ear data that we have taken for this experiment and plot the
atomic fluctuations That there are only small dips below positions of the measured peaks in the difference spectra
zero at the positions of the pump-off resonances indicate thg{]) versus the average number of atoiNswhere we have
there has been only minor modification of the single-averaged together data for the measured peak position taken

quantum resonances. We emph_asize that the peak showndger a range of pump powers from=0.06 to 0.2 photons.
the figure demonstrates a nonlinear response for a syste{le also show the prediction from our nonlinear semiclassi-
containing just one atonfon average and an intracavity g simulations, represented by a curve that is derived by a fit
photon number of onlyy=0.1 photons. to many trials of the simulation over a dense collection of
While the data shown in Fig. 16 are suggestive, we atom numbers(The simulations show that the position of the
should stress that without a QED calculation which modelslifference peak is not a strong function of the pump power
all aspects of our experiment, including atomic transit effectver the range we consider, even though the height of peaks
and the critical role played by fluctuations in the atomicis.) An interesting feature of the data is a “kink” occurring

number and position, it is difficult to determine the extent topearN~1.3, followed by a leveling off of the peak position
which the data of Fig. 16 can be explained by a semiclassica(,j{t a level close to(2— 1)g,, for N<1. The data appear to
0 .

vn\:r?gter:élrnﬁmlg?engréh:sgé?:?se:/vtr:?cagmhzcte?[t)zjargls;t qeL]:faérftt:m Orell_pproach the semiclassical theory at high atom numbers, as
gin we expect, but there are d_eV|at|0ns at Iow_atom numbers,
1‘_0 further quantify our observations, we present in Fig with no “kinks” observed in the semiclassical theory. IF
17 difference spectra with a corresponaing set of simulateqou!d b€ noted that most of the low-atom-number data in-
difference spectra from our semiclassical model. The perti: Igde the semiclassical result near th? limits of th_e uncer-
; . . . ; tainty of the measurement. The leveling of the difference
nent information can be found in the figure caption. Unfor-

tunately, these data and their comparison with simulation eak position would certainly be a compelling resuit from
Y, ) paris : ur perspective, but again, it is very difficult to determine

does not shed much more light on the issue of multhuante\L
&

resonances. However. thev do show that the semiclassic hether this represents a true quantum behavior given the
- . ) A y . . ,,_Uhcertainties in the peak positions and the caveats associated
simulations qualitatively agree with the data at “large

] with our semiclassical simulations.

numbers of atomsN=4.2) tending towards lesser agree-
ment wi_th th(_a smaller atom num_bers, though any quanti_ta;ive V. CONCLUSIONS AND THE FUTURE
comparison is far from conclusive. Whether this trend is in-
dicative of a fundamental disagreement between a semiclas- We have performed extensive measurements of the non-
sical theory and the experiment or due to complications ofinear response of a strongly coupled atom-cavity system.
the experiment such as transit broadening is certainly noévhile our initial objective was to observe clear multiphoton
easy to determine. It is possible that the features that we seeksonances as a decisive measure of the quantum nature of
are to be found in a parameter regime not covered by théhe system, it appears that our atomic beam system is not
simulations. In fact, most of the data that we have takeroptimal for this purpose and allows us to obtain only limited
[e.g., Figs. 1&),(d) and 1%c),(d)] have pump intracavity information. In the case of the structural investigation pre-
numbers that are too large for the analytical approximationsented here, explicitly quantum aspects of our strongly
that went into the derivation of E¢58), so that we have no coupled cavity QED system have hidden behind the mask of
way to compare these data with any theory. Poissonian fluctuations in atom number and position. While

Nonetheless, we continue our pursuit of a quantum feawe have observed a discrepancy between our measurements
ture manifest in the spectra of the atom-cavity system byand the semiclassical predictions, it is not clear whether this
focusing in on a particular property of the data: the positionis the result of effects omitted from our model.g., transit
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time) or whether it arises from a real quantum underpinning

For smallN=<1.3, the evidence is suggestive of the underly-

ing quantum anharmonicity, while for largh, the data
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oms to the strong parts oF (r) [56] along with timing in-
formation of the atomic transit across the cavity mode. The
other involves the use of atom trapping technigL&H.

asymptote to the expected semiclassical result. More conclu-

sive data are, no doubt, desirable.
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