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Nonlinear spectroscopy in the strong-coupling regime of cavity QED

R. J. Thompson,* Q. A. Turchette,† O. Carnal,‡ and H. J. Kimble
Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California 91125

~Received 10 June 1997; revised manuscript received 9 December 1997!

A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field
pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is

varied fromN̄'4.2 to N̄'0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A
detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for

N̄*2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important
effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and

the experiments is observed for small numbers of atoms (N̄&1). Unfortunately, it is difficult to determine if
this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the
severe technical complications of the experiment.@S1050-2947~98!09704-2#

PACS number~s!: 42.50.Fx, 32.80.2t, 42.65.2k
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I. INTRODUCTION

An exciting development in recent years has been the
perimental investigation of open quantum systems in the
main of strong coupling. In this limit the time scale for in
ternal, coherent evolution of a quantum system is mu
shorter than the time scale for dissipation into an exter
environment@1#. Increasing the ratio of coherent coupling
dissipation is of primary import in many nascent fields
experimental quantum physics including quantum compu
tion @2# and quantum state synthesis@3–6#. Experimental ex-
amples of such systems are scarce, with notable excep
being photon-phonon coupling in trapped ion systems@7#
and photon-atom coupling in the field of cavity quantu
electrodynamics~cavity QED!. Strong-coupling cavity QED
experiments have been carried out in both the microw
@8–15# and optical domains@1,16–22#.

Thus far, most experiments in strong-coupling cav
QED with few atoms which have focused on structural pro
erties~eigenstructure! of the coupled system have been pe
formed in the linear regime. It has been pointed out num
ous times@1,17,22–27# that the linear regime is equally we
described by the semiclassical Maxwell-Bloch equations
by a full quantum master equation. As regardsstructural
aspects of the coupled system, only~nonlinear! excitations of
high-lying dressed states can potentially distinguish betw
theories. Recently, in the microwave domain, peaks aris
from such a nonlinear excitation have been observed in
Fourier transform of a time-domain Rabi oscillation@28#.
Alternative to structural aspects of the atom-cavity inter
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tion are measurements ofdynamicalprocesses such as pho
ton antibunching@16# and sub-Poissonian photon statisti
@10# for which a manifestly quantum theory of strong co
pling in cavity QED is required.

In order to advance spectroscopic investigations in opt
cavity QED from the classical~linear! domain to the quan-
tum regime, we have carried out both linear and nonlin
optical spectroscopic measurements of a strongly coup
atom-cavity system with average intracavity atom num

ranging fromN̄'4.2 to N̄'0.8. In particular, we have ob
served with significantly improved resolution over our pr
vious results@17# a weak-field normal-mode~or ‘‘vacuum-
Rabi’’! splitting of the transmission spectrum of the coupl
system@1,20#. Moreover, we have recorded modifications
weak-field spectra in the presence of a moderate inten
pump field of fixed frequency. Significant nonlinear effec
were observed with as few as 0.1 intracavity photons. T
investigation complements our measurements of nonlin
response in the bad-cavity limit of cavity QED@29#, where
we have studied a quantum-phase gate for quantum l
with saturation photon number 0.02@30#.

A principle motivation for this research is the identific
tion ~in the level structure of the atom-cavity ‘‘molecule’’! of
manifestly quantum aspects of the atom-cavity interaction
particular we have attempted to observe multiquanta tra
tions, using a pump-probe technique in which the system
driven to its first excited state using a fixed-frequency pu
field, with transitions to higher-lying states probed by
weak, variable-frequency probe field. With on average l
than one atom in the cavity-mode volume, deviations from
semiclassical model are observed, but an unambiguous
nature of a multiexcitation resonance of uniquely quant
origin remains elusive to the experiments described here

It must be noted at the outset that this experiment alo
with almost all strong-coupling atomic cavity QED work t
date is performed with an atomic beam which crosses
cavity mode~the exception is Ref.@31#!. Because of this, the
effects of fluctuations in atomic number inherent in t
beam, along with spatially variant coupling strength with
the cavity, play an extremely important role in the interpr

te
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57 3085NONLINEAR SPECTROSCOPY IN THE STRONG- . . .
tation of observations. While this has been stressed in
previous work@16–19#, which has included detailed quant
tative comparisons based on a Monte Carlo simulation
counting for the effects of these fluctuations, the present n
linear experiment with larger coupling raises new issu
which we likewise address in detailed simulations of t
experiment. The complicating effects of atomic beam flu
tuations have also been considered theoretically in the w
of Carmichael and co-workers@32,33#. There it was found
that an approach alternative to the spectra measuremen
ported here— namely, a two-photon correlation techniqu
can provide rather clear signatures of the higher-ly
Jaynes-Cummings levels even in the presence of ato
beam fluctuations. The experiments proposed there, w
quite promising, add a level of additional technical comple
ity over the relatively simple measurements of transmiss
spectra employed here.

The organization of this article is as follows. In Sec. II w
formulate the relevant theory and then in Sec. III we disc
methodology and results of our semiclassical simulatio
Our measurements are discussed in Sec. IV. We conclud
Sec. V with a discussion of future techniques for improvi
measurements in cavity QED.

II. QUANTUM AND SEMICLASSICAL THEORY
OF THE ATOM-CAVITY SYSTEM

A. Preliminaries: Structure of the atom-cavity system

The quantum mechanical structure of a dissipationle
strongly coupled atom-cavity system~in the absence of num
ber fluctuations! is well known. The single-atom predictio
is a spectrum of eigenvalues given by the so-called Jay
Cummings ladder@34#; an extension to the multiple-atom
case is the Tavis-Cummings ladder@35# of dressed states
The formidable task of incorporating small amounts of d
sipation in the system~via a master equation or other a
proach! reveals many interesting quantum mechanical effe
~such as photon antibunching in the transmitted light@16,36#!
and indicates that in the strong-coupling regime, the ove
structure cannot be viewed in the absence of a self-consis
treatment of the nature of the complete interactionincluding
dissipation @37#. Semiclassically, the problem has be
treated from various perspectives, notably the state equa
of optical bistability @38# derived either from the standar
Maxwell-Bloch equations@39# or from the full master equa
tion in a system size expansion@40#. Comparisons of the
fully quantum and semiclassical approaches indicate tha
two limiting cases predictions of the structure of the lowe
lying dressed states coincide. These are the limit of van
ing excitation strength and the limit of large numbers
intracavity atoms@41#.

Figure 1 helps to explain the situation. Figure 1~a! depicts
the first two excited states of a single atom optimally coup
to a cavity as derived from a full quantum calculation
which g0 is the rate of coherent coupling between atom a
cavity: 2g0[VRabi, with VRabi the one-photon Rabi fre
quency. Figure 1~b! is the fully quantum extension of th
one-atom calculation to the case withN atoms @41#. The
exact quantum expression for the first-excited-state split
is g0AN and that of the second excited state is6g0A4N22.
For N@1 the splitting of the excited state becom
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62g0AN, and transitions from the first to the second ma
fold occur at a frequency6g0AN in agreement with the
semiclassical prediction. Note that the semiclassical pre
tion fails for small N both in terms of level splitting and
transition strength. For weak-field excitation, the second
cited state is never reached, so that the semiclassical
quantum predictions coincide. The quantum character of
second-excited-state splitting can be expressed in terms
‘‘quantum anharmonicity’’ which can be quantitatively de
fined as the ratio of the second-excited-state splitting for
quantum and semiclassical predictions:

qa[
g0A4N22

2g0AN
. ~1!

For N51, qa50.71, while forN→`, qa→1.
Alternatively, we can examine the transition frequencyd1

corresponding tot1* given by

d15g0A4N222g0AN

5g0AN@A422/N21#→g0AN for N@1. ~2!

Of additional note in Fig. 1 are the transition rates and sp
ings from the upper sideband of the first excited state
levels of the second excited state. As explained in the fig
caption, the quantum transitions give rise to an additio
‘‘anharmonic’’ resonance at (A221)g0, whereas forN@1,
the allowed large-N transitions lead to no additional reso
nances other than at6g0AN.

The simple picture presented thus far becomes sign
cantly more complicated under a typical experimental m
surement strategy. For example, in our experiment the n

FIG. 1. Comparison of the level structure of the first two excit
states of a coupled atom-cavity system for the one-atom case~left!
and the many-atom case (N.1) ~right!. The transitionst0 and t1

occur at2(A211)g0 and 1(A221)g0, respectively~relative to
v0[va5vc). For N@1, transitions t0* , t1* , and t2* are at
23g0AN, 1g0AN, and2g0AN and t0* is highly suppressed, so
that the first- to second-excited-state transitions overlap with
ground- to excited-state transitions, and the quantum anharmon
is lost. By contrast, for one atom, there is a distinct separa
between ground to first-excited-state and first- to second-exci
state transitions. Here,vA5vc[v0 with frequency offsets quoted
relative tov0.
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3086 57THOMPSON, TURCHETTE, CARNAL, AND KIMBLE
ber of intracavity atoms fluctuates during the detection ti
window, the coupling is not constant within the cavity mo
~it is an optical standing-wave cavity with a Gaussian tra
verse profile!, the system is driven with an external field, a
there is dissipation for both the atoms and the cavity.

Unfortunately, a general quantum treatment of the eig
value structure of the atom-cavity system for such exp
mental conditions is a nontrivial undertaking. However,
can nonetheless make some progress in understandin
nature of the eigenstates and eigenvalues for the case
distribution of atoms in a spatially varying field mode b
reference to a simple model. We consider the interac
Hamiltonian ĤI for Ns atoms in the cavity each with cou
pling strengthgl5g(rW l) at the siterW l of the l th atom. Explic-
itly, in the dipole and rotating-wave approximations we ha

ĤI5 i\(
l 51

Ns

@glâ
†ŝ l

21gl* âŝ l
1#, ~3!

whereâ is the annihilation operator for the cavity field mod
and ŝ l

1 is the raising operator for thel th atom. To begin
with, we restrict our attention to the case of one unit
excitation in the atom-cavity system. Since our interest is
the collective degrees of freedom of the atomic sample,
introduce the state

u1&A[
1

g0ANe
(
l 51

Ns

gl* u0&1u0&2•••u1& l•••u0&Ns
, ~4!

where (u0& j ,u1& j ) represent the~ground, excited! states of
atom j . This state is simply the state of one excitation sha
symmetrically among theNs atoms of the sample. The no
malization A^1u1&A51 demands that

Ne5
1

g0
2 (

l 51

Ns

ugl u25(
l 51

Ns

uc l u2, ~5!

where c(rW l)[c l is the cavity mode function~defined be-
low!. Ne represents the effective number of atoms in
cavity, in which each actual atom is weighted by its coupli
to the field mode. Note that forNs atoms all at optimal sites
(ucu51) Ne5Ns .

For the case of one excitation, we introduce the ba
states

uc1&[u1&cu0&A , uc2&[u0&cu1&A , ~6!

whereun&c is the state of the cavity field withn photons and
u0&A[u0&1u0&2•••u0&Ns

is the atomic state with all atoms i
the ground state. In this basis, the eigenvalues of the
excited state associated withĤI are found to be

l6
~1!56g0ANe, ~7!

previously indicated in Fig. 1, now, however, with the r
placementN→Ne .

Turning next to the second excited manifold with tw
quanta in the atom-cavity system, we introduce the state
e

-

-
i-

the
f a

n

e

f
n
e

d

e

is

st

uf1&[u0&cu2&A , uf2&[u1&cu1&A , uf3&[u2&cu0&A ,
~8!

where now u2&A is the state with two excitations in th
atomic sample~with Ns.1), carried, of course, by distinc
atoms. Explicitly we have

u2&A[
1

AD
(
lÞp

Ns

gl* gp* u0&1•••u1& l•••u1&p•••u0&Ns
, ~9!

with normalization

D[2g0
4Ne

2F12
(uc l u4

Ne
2 G . ~10!

The eigenvalues of the second excited state forĤI follow by
diagonalizing the 333 matrix in the basis specified by Eq
~8! and are found to be

l0
~2!50, l6

~2!56A2g0ANeF22
Me

Ne
2 G1/2

, ~11!

where

Me[(
l 51

Ns

uc l u4. ~12!

Note that forNs51 atom in the sample, at positionrW i , we
must haveu2&A50. In this case,̂f2uĤI uf1&50 and the ei-
genvalues equation has nol50 root. Indeed,
l6

(2)→A2g0
2uc i u25A2ug(rW i)u2 as would be expected from

Fig. 1 for one atom with~nonoptimal! couplinggi .
Returning to the general caseNs.1 for a distributed

sample, we compute the transition frequencyd1 ~relative to
v0) for the transition analogous tot1* shown in Fig. 1,
namely,

d15l1
~2!2l1

~1!5g0ANeFA2S 22
Me

Ne
2 D 1/2

21G . ~13!

In the limit of a sample ofNs atoms in a mode of uniform
strength (ucu51), we have thatMe→Ns , Ne→Ns , so that

d1→g0ANsF S 42
2

Ns
D 1/2

21G , ~14!

in agreement with Eq.~2!. Likewise, the quantum anharmo
nicity qa now becomes

qa8[
l1

~2!

2g0ANs

5S 12
Me

2Ne
2D 1/2

→qa ~15!

for a uniform mode (ucu51).
It is worth noting that a sample with distributed atoms b

with effective atom numberNe51 gives rise to a larger split
ting for the second excited state than does a single at
Ns51. The reason for this can be understood with refere
to Eqs.~8! and~9!, and in particular to the contribution from
the stateu2&A . The classical limit requiresl1

(2)→2ANeg0,
which is larger than the quantum~single-atom! resultA2g0.
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57 3087NONLINEAR SPECTROSCOPY IN THE STRONG- . . .
It is precisely the ‘‘classical’’ contribution from excitation
of two separate atoms in Eq.~9! @O(Ns

2) such terms# that
overwhelm the ‘‘quantum’’ contribution from the stateuf2&
in Eq. ~8! @O(Ns) such terms#. That is, if we byfiat drop the
contribution associated with the two excited atoms in
sample~the stateuf1&), we then find the eigenvalues for th
second excited state to be

L6
~2!56A2Neg0 , ~16!

such that

l 1[L1
~2!2l1

~1!5g0ANe~A221!. ~17!

Note that the quantum anharmonicity remains. Hencel1
(2)

for the case of a distributed sample lies between this qu
tum result A2Neg0 and the classical result 2ANeg0, ap-
proaching the latter forNe@1.

Not surprisingly, the quantitative values forl6
(2) depend

on the particular locations of atoms within the mode volum
For an atomic beam experiment such as ours, we can thin
repeated trials associated with different realizations of ato
at various sites within the mode volume, where independ
trials are roughly realized in a time scale associated w
atomic transit through the cavity mode. In such a case, b
Ns and the quantities (Ne ,Me) will vary from one realization
to the next, with the constraint that the average atomic d
sity be constant. Hence the quantities (Ne ,Me) appearing in
Eq. ~11! for l6

(2) will vary from realization to realization.
Here we anticipate the results of Sec. III where Monte Ca
simulations are performed and from which the average va
^d1& can be obtained, where

^d1&5K g0A(
i

uc i u2FA2S 22
( j uc j u4

~( l uc l u2!2D 1/2

21G L ,

~18!

with the angular brackets representing an average ove
peated trials of randomly generated atomic positions.
consider a Gaussian standing-wave mode with

c~rW !5sin~kz!exp@2~x21y2!/w0
2#. ~19!

Collecting together the results thus far obtained,
present in Fig. 2 a plot of the quantities (d1 , l 1 ,^d1&) where
we recall that these are the transition frequencies~relative to
v0) from the upper state of the first excited level to the up
state of the second excited level withd1 being the frequency
for a sample of atoms in a uniform mode (ucu51) ~or at a
fixed point in a spatially varying mode!, l 1 being the corre-
sponding ‘‘quantum’’ component obtained by excluding t
two single-atom excitations of the stateuf1&, and^d1& being
the Monte Carlo average as in Eq.~18! obtained for a Gauss
ian standing-wave cavity.

We also include in Fig. 2 the analytic result for a contin
ous sample of uniform densityr ~our ‘‘jelly’’ model !, for
which

Ne[(
i

uc i u2→rE uc~rW !u2d3x[rV0 , ~20!
e

n-

.
of
s

nt
h
th

n-

o
e
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e

e

r

-

with

V0[E uc~rW !u2d3x5
pw0

2l

4
~21!

as the effective mode volume. We again specialize to
case of a standing-wave Gaussian mode cavity with a sam
of infinite extent along the (x,y) plane and distributed along
the lengthl of the cavity axis. Likewise,

Me[(
i

uc i u4→rE uc~rW !u4d3x[
3

8
rV0 , ~22!

so that

k[Me /Ne5
3

8
. ~23!

For the Gaussian standing-wave cavity with a continuo
sample of densityr ~as opposed to one composed of discr
atoms situated throughout the mode!, we thus find from Eqs.
~23! and ~13! that

d1→ j 15g0ANeFA2S 22
3

8Ne
D 1/2

21G ~24!

for the transition frequency of the upper to upper states of
first and second excited manifolds. Note that the analy
form for j 1 @Eq. ~24!# gives a reasonable approximation
the expectation value of Eq.~18!.

FIG. 2. FrequencyD1 /g0 for the transition from the upper stat
of the first excited manifold to the upper state of the second exc
manifold (t1* in Fig. 1! vs number of atoms, eitherNe ~a continuous
variable! for distributed samples orN ~an integer variable! for fixed,
optimally coupled samples. HereD1 is one of the four quantities
$d1 ,l 1 ,^d1&, j 1% defined in Eqs.~2!, ~17!, ~18!, and~24!. The1 are
points from the numerical simulation̂d1& for a Gaussian standing
wave cavity mode, and thes ared1, the fixed, optimally coupled
case.
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B. Heisenberg equations of motion

While the underlying quantum structure of the coupl
atom-cavity system in the absence of drive or dissipation
well understood, probing that structure in the laboratory
proved a challenging task. A number of measurement s
egies have been theoretically investigated, including sin
field coherent excitation@37,42,43# and excitation with inco-
herent light@42,44,45#. Unfortunately, all of these analyse
are for a single atom located at a fixed siterW0 inside the
cavity mode. It seems clear that a general treatment of
eigenvalue structure of the atom-cavity system in the p
ence of continuous excitation and dissipation is a nontriv
theoretical undertaking. Beyond the extension of the pla
wave theory of the preceding section to the case ofNs atoms
each with a different coupling to the cavity, our experime
involves as well fluctuations in atomic number and posit
and the system is driven, so that the situation becomes m
complicated still. In general there are drive streng
dependent level shifts@37# and the intracavity field buildup
depends on the exact number and position of the collec
of atoms. In response to our experimental investigation, T
and Carmichael@46# have explored a pump-probe-type me
surement and developed both a semiclassical and fully q
tum theoretical treatment of the nonlinear transmission sp
trum of the coupled atom-cavity system, including atom
beam effects; their complete quantum Monte Carlo simu
tion is rather bulky, and so the details will not be discuss
here. Additionally, Tian and Carmichael have develope
different approach which utilizes a photon coincidence
tection scheme to extract the interesting nonlinear feature
the Jaynes-Cummings model@32,33# from an atomic beam
experiment. The calculations for this scheme are quite
sonable in required resources and demonstrate that the
perimental scheme is very promising. Here we will n
present a full discussion of all measurement strategies a
able, but instead we will focus on the spectra measurem
within which context we will pursue several calculation
approaches, each with a limited domain of validity.

In particular, in this section we begin with the Heisenbe
equations of motion for the cavity fieldâ, the atomic polar-
ization ŝ l

2 , and inversionŝ l
z for the l th atom at siterW l in a

sample ofNs atoms. We follow a standard procedure@39# by
way of a quantum master equation for the density operator̂
to obtain the following Heisenberg equations of motion
the Ns two-state atoms interacting viaĤI of Eq. ~3! with a
single spatially varying field mode:

ȧ̂52~k1 iQ!â1(
l 51

Ns

g~rW l !ŝ l
21«, ~25!

ṡ̂ l
252~g'1 iD!ŝ l

21g~rW l !âŝ l
z , ~26!

ṡ̂ l
z52g i~ ŝ l

z11!22g~rW l !~ â†ŝ l
21âŝ l

1!. ~27!

Here « denotes a coherent driving field at frequencyvp
@which defines the rotating frame for Eqs.~25!–~27!#, Q
5(vc2vp)/k is the cavity detuning,D5(va2vp)/g i is
the atomic detuning,k is the cavity field decay rate, andg'

is the transverse atomic decay. For pure radiative decayg'
is
s
t-

e-

e
s-
l

e-

t

re
-

n
n

-
n-
c-

-
d
a
-
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a-
ex-
t
il-
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r

5gi/2. Note thatg i is in general the decay rate to mod
other than the privileged cavity mode. However, for o
cavities, g i is essentially the same as for an atom in fr
space since we operate in the limit that the solid anglef )
subtended by the cavity mode is small (f '1025). Finally,
the dipole coupling coefficient for an atom with transitio
momentm at siterW within the cavity standing wave isg(rW)
[g0c(rW), whereg0[(m2vc/2\e0V)1/2 is the optimal cou-
pling coefficient andc(rW)[sin(kz)exp@2(x21y2)/v0

2# is the
cavity mode function for our Gaussian standing-wave mo
with mode volume Vm[*2`

` dx*2`
` dy*0

l dzuc(x,y,z)u2

5pv0
2l /4. Two useful dimensionless quantities which can

derived from the rates (k,g,g) are the saturation photo
number ns[bg'g i/4g2, where b58/3 for a Gaussian
standing-wave mode@47#, and the critical atom numberN0

[2g'k/g0
2. Our task now is to understand the behavior p

dicted by Eqs.~25!–~27! for various drive configurations an
strengths.

It is of course the termsâŝ l
z and âŝ l

2 ~and conjugate
terms! which couple Eqs.~25!–~27! to an infinite hierarchy
of equations for higher-order products of atom and field o
erators and which make the general atom-cavity problem
ficult to solve in its full generality. However, in the limit o
vanishing excitation, we can restrict our attention to a limit
basis set consisting of only three direct product states.
first state is the ground stateuc0&5u0&Au0&c with no excita-
tion in atoms or field; the second state places one excita
in the cavity mode with all atoms in their ground states a
is just the stateuc1& of Eq. ~6!; the third state contains on
excitation distributed among the atoms with the field in
ground state and is the stateuc2& of Eq. ~6!. Taking expec-
tation values in this restricted basis, we find that the prod

^âŝ l
z&5(21)^â& and hence

^ṡ̂ l
2&52~g'1 iD!^ŝ l

2&2g~rW l !^â&. ~28!

For «50, Eq. ~25! ~its expectation value! and Eq.~28!
form a coupled homogeneous system forNs11 complex
variables whose eigenvalues are straightforward to ded
The ‘‘atomic’’ eigenvaluelA52(g'1 iD) is (Ns21)-fold
degenerate, while the remaining two eigenvaluesl6 are
found as roots of the quadratic

f ~l![@l1~k1 iQ!#@l1~g'1 iD!#1g0
2Ne , ~29!

where in agreement with our earlier definition@Eq. ~5!# Ne

5( l 51
Ns uc l u2. Also, for k505g' ~in the absence of dissipa

tion!, the eigenvalues given by Eq.~29! reproduce the resul
of Eq. ~7!, namely,

l6
~1!56g0ANe. ~30!

Note that theNs21 eigenvectors corresponding tolA are
such that( lgl^ŝ l

2&50 and^â&50 which represents no ex
citation of the ‘‘collective’’ or ‘‘cooperative’’ degrees of
freedom. On the other hand, the eigenvectors correspon
to l6 describe the dynamics of the collective atom-cav
system. As indicated in Eq.~25!, this collective degree of
freedom can be explored by way of excitation of the cav



ne

all

on

n

sy

f

is
ea
av
a
od

-

th

e
o

-

d

t
le
las
de
n

el
o

is
e
ply

ar-

ig.
sly

x-
in-
ay

in

to
he

om
eby
ex-

n
.

one

57 3089NONLINEAR SPECTROSCOPY IN THE STRONG- . . .
field â, which couples to each atom in precisely the man
specified by the expansion in Eq.~4! ~namely, in direct pro-
portion togl) and is driven by the collective response of
atoms.

More specifically, consider conditions of weak excitati
(«/k!1) such that the three-state basis$uc0&,uc1&,uc2&%
suffices. In this case, Eqs.~25! and~28! are readily solved in
steady state. The transmission functiont lin(vp) of a weak
external probe, operationally defined as the ratio of transm
ted to incident field amplitude, is, in the case of coincide
cavity and atomic frequencies (vc5va), given by@25,48#

t lin~vp!5
k@g'2 ivp#

~l12 ivp!~l22 ivp!
. ~31!

The eigenvaluesl6 are given by

l652S k1g'

2 D6F S k2g'

2 D2g0
2NeG1/2

, ~32!

and describe the collective normal modes of the coupled
tem. Note that in the weak-field limit considered here,l6

simply containg0ANe to account for the varied couplings o
theNs atoms. Equations~31! and~32! are valid as long as the
excitation is ‘‘weak’’ (e/k→0) so that our assumed bas
uc0,1,2& is adequate. This is simply the case of coupled lin
oscillators. That is to say, either the approach we h
adopted here or an approach utilizing the full quantum m
ter equation leads to the same prediction of normal-m
structure@Eq. ~32!# and the same transmission function@Eq.
~31!#.

From Eq. ~32!, a normal-mode splitting is formally ex
pected for g0ANe.(g'2k)/2 with correspondingl6'
2(k1g')/26 ig0ANe. Only if g0ANe.(k1g')/2 will the
splitting be observable. Considering the observability of
normal-mode splitting for the caseNe51 we adopt the cri-
terion g0.(k,g') for the strong-coupling regime. Th
imaginary parts of the resulting eigenvalues give rise t
normal-mode splitting, which in the caseNe51 ~in the op-
timal coupling limit!, is known equivalently as the single
atom vacuum-Rabi splitting at6g0 or the first excited state
of the Jaynes-Cummings ladder, as was first observed in
rect spectroscopic measurements@1,17,20# in our group.

C. Semiclassical theory

As has been demonstrated repeatedly over the pas
years, the utility of a semiclassical model of the coup
atom-cavity system is far-reaching. In addition, the semic
sical equations are tractable from the perspective of mo
ing a real experiment in which fluctuations, dissipation a
drive must be treated.

We thus turn next to a semiclassical treatment. The w
known Maxwell-Bloch equations for the expectation value
the cavity field modê â&, the atomic polarization̂ŝ l

2&, and

inversion^ŝ l
z& for the l th atom in a sample ofNs atoms are

arrived at from the full quantum equations~25!–~27! by the
simple replacements
r

it-
t

s-

r
e

s-
e

e

a

i-

15
d
-
l-

d

l-
f

^ŝ l
zâ&→^ŝ l

z&^â&, ^â†ŝ l
1&→^â†&^ŝ l

z&,

^âŝ l
2&→^â&^ŝ l

2&, ~33!

and read

^ ȧ̂&52~k1 iQ!^a&1(
l

Ns

g~rW l !^ŝ l
2&1«, ~34!

^ṡ̂ l
2&52~g'1 iD!^ŝ l

2&1g~rW l !^â&^ŝ l
z&, ~35!

^ṡ̂ l
z&52g i~^ŝ l

z&11!22g* ~rW l !~^â
†&^ŝ l

2&1^â&^ŝ l
1&.

~36!

Note that in the limit of weak excitation«→0 such that

^â&!Ans, the eigenvalues which follow from Eqs.~34!–~36!
are precisely those of the full quantum theory@Eqs.~29! and
~32!#. Further, the transmission function for the probe field
just that of Eq.~31!. There is no surprise here, in either th
quantum or classical case; for weak excitation, we are sim
probing the normal-mode structure for the two coupled~lin-
ear! oscillators associated with the collective atomic pol
ization and the intracavity field.

Of considerable more current interest@28# is an explora-
tion of the structure of the higher-lying states shown in F
1 as was discussed in Sec. II A. However, as we previou
noted, the formulation of a full quantum theory for our e
periment is a somewhat daunting undertaking. We will
stead settle for a preliminary attack on this problem by w
of the semiclassical equations~34!–~36!, which are much
more amenable to extensions which include fluctuations
atomic number and position.

Our semiclassical theory is developed to correspond
our experimental strategy which is to first excite one of t
two ‘‘levels’’ of the first excited manifold shown in Fig. 1
with a fixed frequency ‘‘pump’’ fieldep . A second ‘‘probe’’
beam of tunable frequency can then excite transitions fr
the first to the second manifold of excited states, and ther
reveal the structure of the dressed states containing two
citations. Excitation of thefield mode probes this structure i
the same way discussed above for the first excited state

In formal terms, we supplement Eq.~34! with a probe
field of amplitudee8 and frequencyn by the replacement

«→ep1e8e2 int, ~37!

where ep represents the pump field@recall that Eqs.~34!–
~36! are written in a rotating frame, here taken atvpump, the
frequency of the pump field#. Thusn is the offset frequency
of the probe relative to the pump. We treate8 as a perturba-
tion ~as compared to the steady state established byep), and
write

a~ t !5ass1da~ t !, pl~ t !5pl
ss1dpl~ t !,

zl~ t !5zl
ss1dzl~ t !, ~38!

where a[^â&, pl[^ŝ l
2&, zl[^ŝ l

z&, and ss denotes the
steady-state solution established with the pump field al
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(e850,epÞ0). Substituting Eqs.~38! into Eqs. ~34!–~36!
with Eq. ~37! yields the following equations for the devia
tions (da,dpl ,dzl):

dȧ~ t !52~k1 iQ!da~ t !1( gld1e8e2 int and c.c,

~39!

d ṗl~ t !52~g'1 iD!dpl~ t !1gl* @assdzl1zl
ssda# and c.c.,

~40!

d żl~ t !52g idzl~ t !22gl@ass* dpl1pl
ssda* #

22gl* @assdpl* 1~pl
ss!* da#. ~41!

Introducing the Fourier transform of each variable, e.g.,

z̃~V![E eiVtdz~ t !dt, ~42!

we find

052~k1 iQ2 iV!ã~V!1(
l

gl p̃ l~V!

12pe8d~V2n!,
y-
.
he
:

r a
052~k2 iQ2 iV!ã* ~V!1(
l

gl* p̃ l* ~V!

12pe* 8d~V1n!, ~43!

052~g'1 iD2 iV! p̃ l~V!1gl* @assz̃ l~V!1zl
ssã~V!#,

052~g'2 iD2 iV! p̃ l* ~V!

1gl@ass* z̃ l~V!1zl
ssã* ~2V!#, ~44!

052~g i2 iV! z̃ l~V!22gl@ass* z̃ l~V!1zl
ssã* ~2V!#,

22gl* @assz̃ l~V!1zl
ssã~V!#. ~45!

Equations~44! and ~45! can be combined to find an expre

sion for p̃ l(V) in terms of the steady-state solution

(ass,pl
ss,zl

ss) and ã(V), namely,
p̃ l~V!5
gl*

~g'1 iD2 iV!
H F ~g i2 iV!12ugl u2S uassu2

~g'1 iD2 iV!
1

uassu2

~g'2 iD2 iV! D G
21

3F22zl
ssugl u2S uassu2ã~V!

~g'1 iD2 iV!
1

uassu2ã* ~2V!

~g'2 iD2 iV!
D 22glpl

ssassã* ~2V!22gl* ~pl
ss!* assã~V!G1zl

ssã~V!J .

~46!
-

e

e
an-
ate

an
At this point, we turn to evaluate explicitly the stead
state quantities (ass,pl

ss,zl
ss) required in this expression

Since the situation follows along the well-worn path of t
optical bistability literature@25#, we simply quote the results

zl
ss5

2~11d2!

11d21uassu2/n0
l

, pl
ss5

2gl*

g'

a

11 id F 11d2

11d21uassu2/n0
l G ,

~47!

ep

k
5assF S 11(

l 51

Ns 2Cl

11d21uassu2/n0
l D

1 i S f2(
l 51

Ns 2Cld

11d21uassu2/n0
l D G .

Heren0
l [g'g i /(4ugl u2) andCl[ugl u2/(2kg') are the satu-

ration photon number and the cooperativity parameter fo
 n

atom at siterW l @49#. The normalized atomic and cavity de
tunings are defined byd[D/g' andf[Q/k.

Our objective here is to find a simple analytic form for th
transmission of the probe fielde8 as a function ofn in the
presence of the pump fieldep . With such an expression, w
can then efficiently perform Monte Carlo averages over r
domly generated distributions of atomic positions to simul
our atomic beam experiment. Towards this end, we seek
expression valid to lowest order inuassu2 and hence expand
the various quantities in Eqs.~47! as follows:

zl
ss'2F12

uassu2

n0
2~11d2!

G , ~48!

pl
ss'

2gl*

g'

~12 id!assF12
uassu2

n0
2~11d2!

G
[pl

0F12
uassu2

n0
2~11d2!

G , ~49!
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Uep

k U2

'uassu2F S 11
2C1Ne

11d2 2
2C1uassu2

~11d2!m0

MeD 2

1S f2
2C1Ned

11d2 1
2C1uassu2d

~11d2!m0

MeD 2G , ~50!
e
,

e

p
-
ve
m

where we define the optimal saturation photon number
single-atom cooperativity asm0[g'g i /(4g0

2) and C1

[g0
2/(2kg'), respectively.

Combining Eqs.~46! and ~48!, ~49! and retaining only
lowest-order terms inuassu, we find
p̃ l~V!5
gl*

g'1 iD2 iVF2ã~V!S 12
uassu2

~11d2!n0
l D 1

2ugl u2

~g i2 iV!
uassu2ã~V!F 2g'2 iV

~g'2 iD!~g'1 iD2 iV!G1
2ugl u2

~g i2 iV!

3ass
2 ã* ~2V!S 2g'2 iV

~g'1 iD!~g'2 iD2 iV! D G . ~51!

By forming the sum(gl p̃ l(V) with Eq. ~51!, we can eliminate the dipole source term in Eq.~43! to be left with

ã~V!~k1 iQ2 iV!5
Neg0

2ã~V!

~g'1 iD2 iV!
1

2Meg0
4~2g'2 iV!uassu2ã~V!

~g i2 iV!~g'2 iD!~g'1 iD2 iV!2
1

2Meg0
4~2g' /g i!uassu2ã~V!

~g'
2 1D2!~g'1 iD2 iV!

1
2Meg0

4~2g'2 iV!ass
2 ã* ~2V!

~g i2 iV!~g'1 iD!~g'2 iD2 iV!~g'1 iD2 iV!
12pe8d~V2n!, ~52!
en

m-
of

of

-

where in correspondence to Eqs.~5! and ~11! we have de-
fined Ne[( l uc l u2 and Me[( l uc l u4. Notice now that by
writing a corresponding equation forã* (2V) the term in
d(V2n) will not contribute to heterodyne detection at th
probe frequencyn as in our experiment. Without this term
then, the resulting equation forã* (2V) is given in terms of
ã(V) with a lowest-order contributionuassu4. Hence, to or-
der uassu2, we can drop theã* (2V) term in Eq.~52! alto-
gether to find

ã~V!52p
e8

k
d~V2n!tp~V!

3F12
2uassu2g0

4Metp~V!

k~g'1 iD2 iV! S 2g' /g i

~g'
2 1D2!

1
~2g'2 iV!

~g i2 iV!~g'2 iD!~g'1 iD2 iV! D G21

,

~53!

where the probe transmission spectrum in the weak-fi
limit ( uau2→0) is defined by

tp~V![
k~g'1 iD2 iV!

~k1 iQ2 iV!~g'1 iD2 iV!1g0
2Ne

. ~54!

Note thatV in this expression is defined relative to the pum
frequencyvpump, which will in fact be varied to one of sev
eral values in our experiment. It is somewhat more con
nient to translate to a frequency scale centered on the ato
resonancevA . Hence we define
ld

-
ic

V→V85V2~vA2vpump!5V2D, n→n85n2D,
~55!

and rewrite the above expressions as

ã~V8!52p
e8

k
d~V82n8!tp~V!

3F12
2uassu2g0

4Metp~V8!

k~g'2 iV8!
S 2g' /g i

~g'
2 1D2!

1
2g'2 i ~V81D!

@g i2 i ~V81D!#~g'2 iD!~g'2 iV8! D G21

,

~56!

where now

tp~V8![
k~g'2 iV8!

$k1 i @~vc2vA!2V8#%~g'2 iV8!1g0
2Ne

.

~57!

To find the probe transmission spectrum for a giv
~fixed! input field e we must first deduceuassu2 from Eq.
~50!. Apart from the various detunings and coupling para
eters (C1 ,n0) this determination requires an evaluation
the mode sumsNe[(uc l u2 andMe[(uc l u4 for the particu-
lar distribution of atoms at hand and, hence, the solution
the cubic equation~50!. With uassu2 in hand,ã(V) follows
in a straightforward fashion from Eq.~56!, again with
(Ne ,Me) for the particular atom distribution within the cav
ity mode.
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We can recast Eqs.~55!, ~56!, ~57!, and ~50! in a form
more similar to that of Eq.~31! and in a terminology more
directly related to experimental quantities. As such,
transmission spectrum of a weak probe at a frequencv
~also detected atv) in the presence of the pump field is

tnonlin~v,Ne ,Me!5tp~v,Ne!@12nutp~v,Ne!hp~v,Me!#
21,
~58!

wherenu[uassu2 is the pump intracavity photon number an

hp~v,Me!5
2g0

4Me

k~g'2 iv!F 2g'

g i~g'
2 1Du

2!

1
2g'2 iv2 iDu

~g i2 iv2 iDu!~g'2 iDu!~g'2 iv!G ,

~59!

with Du the detuning between the pump frequency and
uncoupled, coincident atom and cavity frequencies.

The linear transmission parttp(v,Ne) appearing in Eq.
~58! is given by

tp~v,Ne!5
k~g'2 iv!

~k2 iv!~g'2 iv!1g0
2Ne

, ~60!

which is just a rewritten version of Eq.~31!. We have al-
lowed 2g' /g iÞ1 to account for a slight transit broadenin
~see Refs.@50# and @29# for a discussion of the validity o
this approximation!. Equations~58!–~60! are a complete
specification of the transmission of a weak probe in the p
ence of a pump field with intracavity photon numbernu and
detuningDu for an atom-cavity system with effective ato
numberNe and momentMe .

In a Monte Carlo numerical simulation of the experime
we do not know the intracavity pump photon numbera pri-
ori since we drive the atom cavity with a fixed-power, fixe
frequencyexternalpump field, of strengthi in . To reiterate
the previous discussion, for each distribution~each instance
of Ne ,Me), the pump intracavity photon numbernu is found
by inverting the following equation:

i in5nuF S 11
2C1Ne

11d2
2

2C1nuMe

n0~11d2!2D 2

1S f2
2C1Ned

11d2

2
2C1nuMed

n0~11d2!2D 2G , ~61!

whered5Du /g' andf5Du /k. So, in total, with Eqs.~58!–
~61!, we now have a complete description of the probe tra
mission for a fixed external drive which can be related to
experimental measurement.

Since Eq.~56! is deduced in lowest order inuassu2, the
pump field cannot be ‘‘too large.’’ To quantify this state
ment, we have compared our approximate result with tha
Tian and Carmichael@46# whose analysis is restricted to
single atom at a well-defined siterW0, but which is valid for
arbitrary pump strength. For parameters comparable to th
e

e

s-

,

s-
n

of

se

of our experiment, the resulting probe spectra or, more p
cisely, the difference spectra defined by

Dp~V![uã~V!u22utp~V!u2 ~62!

are essentially indistinguishable for intracavity photon nu
ber uassu250.01 with deviations of about 10% foruassu2
50.06 in a situation where the saturation photon num
m050.06 @(g,k,gi52g')5(7.2,0.7,5.0) MHz#. Since our
expansion inuassu2 is essentially in terms of the small pa
rameteruassu2/m0, this expansion for theN51 atom case
should be sufficient for the more general case of a distribu
sample of atoms, as long asuassu2/m0,1 and the modifica-
tions of the weak-field spectrum by the pump field are n
too large (&10%).

As implied above, we expect the semiclassical treatm
to make incorrect structural predictions asNe→1 in the
strong-coupling regime, which is the point at which th
quantum anharmonicity should play an important role. F
comparison, a full quantum electrodynamical treatment
the coupled system for our particular choice of measurem
strategy, including dissipation, but excluding multiple-ato
couplings and fluctuations has been carried out@46#. In this
treatment, the Jaynes-Cummings resonances discusse
Sec. II A are clearly evident for an atom-cavity system w
sufficiently strong coupling when it is probed using a pum
probe geometry similar to that described in this paper.@It
should be noted that even for a single atom without fluct
tions in number and position, the observation of distinct m
tiquanta resonances requires a coupling to dissipation rati
approximately 20, compared to the ratio 2g0 /(k1g')'5
for this work.# The essential full quantum treatment whic
includes the effects of multiple atoms with different couplin
strengths, of fluctuations in both number and coupling, a
of transit effects requires a sophisticated approach, and w
is currently underway by Tian and Carmichael@46# to model
a system similar to the one described here using the me
of quantum trajectories@51#. The computational resource
required for such a calculation are large and at present s
too prohibitive to make this a useful technique for detail
quantitative comparison with experimental results.

III. SEMICLASSICAL SIMULATIONS OR WHAT
EXACTLY IS A ONE-ATOM EFFECT?

A. Description

We turn now to a discussion of modeling our experime
At the most fundamental level, we have a complex quant
mechanical system consisting of a beam of atoms interac
with a single cavity mode. Ideally, we would like to mak
predictions of the outcomes of particular measurements
such a system. A full quantum treatment presents, howe
a challenging task. To model our experiment requires ke
ing track of a phenomenally large amount of informatio
For example, even when there is on average less than
atom in the cavity-mode volumeVm , the response of a larg
number of ‘‘spectator’’ atoms—those atoms which a
weakly coupled due to their location on the skirts of t
Gaussian beam waist or those atoms which are near
nodes of the standing-wave field—must be taken into
count. Indeed, counterintuitively, it is these very atom
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which smooth the otherwise much larger fluctuations in c
ity transmission and hence allow any sort of useful obser
tion of single-atom effects. But these spectator atoms ma
full quantum mechanical simulation extremely costly.

Our initial approach has been to develop a semiclass
model based on the results of the preceding section w
accounts for fluctuations in number and position of ato
within the cavity mode but which approximates transit tim
effects by a simple modification ofg' @as discussed in the
context of Eq.~58!#. The model is equivalent to a full quan
tum treatment in the weak-field linear regime, but is a se
classical approximation for strong excitation. The semicl
sical model starts at Eq.~31! or ~58! and proceeds as follows

We begin with a series of ‘‘tosses’’ of atoms into th
cavity mode. Each toss consists of choosing randomly
(xj ,yj ,zj ) coordinates ofNs atoms and evaluating the mod
functionc(rW j )[c j for each atom. The simulation volumeVs
contains, and is much larger than, a volume of space equ
size to the mode volumeVm . To model our experiments in
which the atomic beam is collimated only by the cavity su
strates~collimation equal to the length of the cavity tran
verse to the atomic beam direction!, Vs is chosen to be 10w0
along the Gaussian waist (x,y directions! and onlyl /4 along
the cavity axis (z direction! since this accounts for all pos
sible couplings along the standing wave. For each toss
effective number of atoms,Ne5( j 51

Ns uc j (rW j )u2, is calculated.

@In addition,Me5( j 51
Ns uc j (rW j )u4 is computed for the nonlin-

ear simulations.# Typically, to achieveNe;1 in Vs , Ns
'100. Simulations with a largerVs and Ns ~but with the
sameNe) have been run, with little change in the resultin
spectra, confirming that atoms farther than 10w0 from the
cavity axis contribute negligibly to the overall probe tran
mission spectrum. FromNe @and (Me ,nu) if necessary# a
transmission spectrum is generated using either Eq.~31! or
~58!. The transmission function generated with each tos
then averaged over a large numberNt;2000 of tosses. Thus
finally produced is an averaged spectrumQa(v)
51/Nt( i 51

Nt ta(Nei
,Mei

,v) whereta is eitherut linu2 from Eq.

~31! or utnonlinu2 from Eq. ~58!. Qa results from an averag
collective atom numberNa[( i 51

Nt Nei
/Nt . More specific de-

tails of the simulations depend on the regime~linear or non-
linear! of simulation and the type of probe detection e
ployed.

B. Linear simulations

We begin with the results of our linear simulations. Equ
tion ~31! is used to generate the appropriate transmiss
function which is then averaged over a large number
tosses to produceQlin . It is clear thatQlin will not be iden-
tical to a spectrum generated by directly insertingNa into
Eq. ~31!, especially in the caseNa;1 when Poissonian fluc
tuations are relatively large. It could be possible, howev
from the definition ofNe andNa that a given averaged split
ting could be equivalently generated either from a few ato
strongly coupled to the cavity mode or from many ato
weakly coupled to the cavity mode. This is actually not tru
because the number fluctuations in the two cases leaves
servably different signatures on the resultant spectrum as
first pointed out in Ref.@17#. Indeed, in Ref.@17# a convinc-
-
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-
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-
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f
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s
,
b-
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ing measure of the average intracavity atom number is
rived from the effects of fluctuations on the linear pro
transmission spectrum. Pursuing this issue in more detail
will compute the distribution of atoms which contributes to
given experimental or simulated spectrum. Particularly,
would like to know the role of a single nearly optimall
coupled atom in a spectrum withNa;1. The impact of a
single atom in a cavity with the parameters of this expe
ment is quite large. For example, the cavity transmission
resonance changes by a factor 1/(112/N0)2;1023 when a
single optimally coupled atom traverses the cavity mode,
so one optimally coupled atom is expected to play a v
important role in a given spectrum.

Let us continue this pursuit. We define a volume in whi
an atom will have a certain fraction of the optimal couplin
say, gc5 f cg0 @in which case the ‘‘coupling’’ volumeVg
5e( f c)Vm#. Now for each toss of atoms (Ns is chosen to
give Ne;1) we count the number of atomsNg in Vg and
keep track of those cases in which exactly one atom app
in Vg (Ng51), when no atoms at all appear inVg (Ng
50), and when two or more atoms are present
Vg (Ng>2). The result of such a tracking is histogramm
in Fig. 3 and shown along with the sum of all contribution
Here we make the choicee51, corresponding toVg5Vm
and f c50.56. We show the distributions forNa'1.0 ~a! and

FIG. 3. Occurrences of occupation numberNg in volume Vg

5Vm ~as discussed in the text! for a typical 2000-trial simulation of
Na'1.0 ~a! andNa'0.7 ~b!.
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Na'0.7 ~b!. In Fig. 4 we show the corresponding spect
with the contributions to the overall probe transmission sp
tra shown for the same breakdown as in Fig. 3. The cont
of the averaged spectrum with a spectrum due to a sin
atom optimally coupled to the cavity mode is also shown

Several comments are in order at this point.
~1! The number of trials in the simulation and the numb

of spectator atomsNs are important parameters of the sim
lation. These must not be chosen too small.

~2! It turns out that the fluctuations allow an independe
calibration of the atom number. For example, in the we
field spectrum~in the absence of beam fluctuations!, only the
product of the coupling and the number of atoms appears
the termg0AN. Thus if N increases andg0 decreases suffi
ciently to keepg0AN constant, the spectrum will not chang
However, in the case with fluctuations, this is no longer tr
essentially because the weight of the contribution of
empty cavity depends on the mean number of atoms,Na .
Thus varyingNa and compensating withg0 to keepg0ANa
constantwill not keep the averaged spectrum the same. T
spectra are especially sensitive to the absolute atom num

FIG. 4. Breakdown of the contributions of various numbers
atoms in the cavity-mode volume~as discussed in the text! for two
different average intracavity atom numbers, corresponding to
histograms of Fig. 3. Graph~a! hasNa'1 atom ~with the dash–
double-dotted curve for one atom optimally coupled for compa
son! and graph ~b! has Na'0.7 atoms. (g0 ,k,g i)/2p
5(7.3,0.6,5) MHz, g'5g i /(230.7).
,
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near the center. This is demonstrated in Fig. 5 forNa varying
by 20% aroundNa;1. Towards a greater emphasis of th
point, let us summarize the ideas of the immediately prec
ing sentences: Perfect linear transmission spectra~that is, in
the absence of atomic beam fluctuations! cannot distinguish
between a sample ofN atoms collectively coupled to the
cavity mode at a rategcollectionAN and a single atom couple
to the cavity mode at a rategsingle if gcollectionAN5gsingle.
However, if there are atomic beam fluctuations, theaveraged
spectra in the two cases are different and the single-atom
many-atom cases can be distinguished.

~3! For the two values ofNa shown, theNg51 case is a
major contributor both to theNe breakdown~35% of the
cases hadNg51) and to the magnitude of the overall spli
ting. The overall splitting is indeed given byg0ANa to good
approximation forNa51, slightly less so forNa50.7. A
further study has shown that the absolute error in splitting
determined from the simple prescription of measuring
peak separation and dividing by 2g0 to infer ANa as com-
pared to the result from the simulation remains appro
mately constant as the number of atoms is lowered, so
the relative error becomes increasingly large. For exam
for the two values ofNa shown in Fig. 4, for the simulation
with Na51 the splitting isg0 to within 4%, while for the
simulation with Na50.7 the splitting isg0A0.7 to 10%.
While paradoxically the case for single-atom effects may
be as convincing as for our previous cavity parameters~Ref.
@17#, with smallerg0), we are still convinced that what w
observe whenNa;1 is an effect with unique unambiguou
signatures arising from the strong coupling of single ato
within the mode volumeVm . Note that these conclusions d
not change significantly for moderate changes ofVg .

f

e

-

FIG. 5. Comparison of simulated averaged spectra for differ
numbers of atoms,Na , with different couplingsg0, such that
g0ANa is constant. The details are the following: Solid trace,Na

51.0, g0/2p57.3. Dotted trace, Na50.83, g0/2p58.0.
Dashed trace,Na51.22, g0/2p56.6. For all traces,g i/2p
55 MHz, g'5g i/2, k/2p50.6 MHz. Note the increased
role of atomic beam fluctuations as the mean number of atoms,Na ,
is decreased, evidenced by the rising central region.
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~4! It can be seen clearly in Fig. 4~b! that there is an
auxiliary peak atV50. The breakdown in terms of the va
ues ofNg shows that this is contributed from those cases
which there are no atoms inVg—this is simply the transmis
sion function of the ~very large! empty cavity peaking
through. During the times when there are no atoms inVg ,
there are still a large number of spectator atoms giving ris
Ne;0.4 from Fig. 3~b!. These spectator atoms play the cri
cal role of keeping the empty cavity from completely dom
nating the transmission spectrum. The central peak can
made much larger by shrinkingVs and thereby loweringNs
as has been done in Ref.@22#. Our choice ofVs is for an
atomic beam whose dimensions are much larger than
cavity waist which has the important effect of diminishin
the role of the empty cavity while retaining observability
the essential single-atom effects.

It should be noted at this point that this is not a univ
sally accepted interpretation of the situation. The authors
Ref. @22# have argued that there is no way to observe norm
mode splittings in the ‘‘true single-atom regime’’ with pre
ently realized cavity QED parameters. Their point is as f
lows: Clearly, the actual cavity volumeVc is much larger
than our chosenVg ~formally Vc→`), and whenNe51
there is certainly more than one atom interacting with
whole cavity volume~formally Ns→`). If one takesVg to
be much larger thanVm and demands~as a definition of the
‘‘true single-atom regime’’! that at most one atom ever b
present inVg@Vm , then for an atomic beam experiment
which only the average atomic density can be controll
most of the time there will be no atoms at all present with
Vm . In this case, the single-peaked empty-cavity respo
will completely dominate the spectrum and no splitting at
will be observable. As this is simply their choice of adefi-
nition of the ‘‘single-atom regime,’’ it is irrefutable. We
should note that a similar viewpoint is adopted in Ref.@32#.

Of course, the cavity volumeVc is as large in the trans
verse dimension as the cavity mirror substrates, and wh
one draws the formal boundary is somewhat arbitrary. O
choice for this boundary is a reasonable definition based
volume in space equivalent to the cavity-mode volume,
which the coupling is large (ucu2.0.31 forVg5Vm). In any
event, the breakdown of the spectra~especially those of Ref
@17#! clearly shows that single atoms contribute significan
to the overall spectra and that the ‘‘spectator’’ atoms se
the primary function of attenuating the otherwise lar
empty-cavity contribution. To define the ‘‘true single-ato
regime’’ by demanding that the empty-cavity peak domina
as Refs.@22,32# have in effect done, may be appropriate
some situations~e.g., the cavity transits described in Re
@31#! but seems to us not to be physically motivated in
current setting of atomic beam cavity QED. The choiceVg
5Vm accounts for 70% of the total cooperativity paramet

Aside from these issues, there are two points wh
should be mentioned regarding claims made in Ref.@22#.
First we note that the ‘‘unique feature,’’ descibed in the
paper~the unique feature being the central peak due to
empty cavity at low atomic beam flux!, was observed and
described earlier by us, both experimentally@52# and in
simulations of the effects of fluctuations in the atomic be
@17#. These are quite well-known effects, and their imp
tance has been amply noted@1#. We also note that their ob
n
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servation of ‘‘line-shape splitting without normal-mode o
cillations,’’ might be taken to imply that one can be foole
by ‘‘line-splitting’’ observations. This observation was mad
in an experiment in which the atom-cavity parameters are
in the strong-coupling limit~the eigenvalues are purely real!,
and so their observed ‘‘line splitting’’ of course has nothin
to do with a normal-mode splitting—in fact it is not a ‘‘line
splitting’’ at all but merely the two maxima in the transmi
sion function on either side of the atom-absorption valley,
we measured and noted well before their result@29#.

C. Nonlinear simulations

We first present plots derived directly from Eq.~58! via
numerical calculation for optimally coupled atoms. For op
mally coupled atoms,Ne5Me[N, the actual number of at
oms in the cavity. In order to help quantify the nonline
effect, we derive a difference spectrum simply by subtract
the pump-absent case from the pump-present case. Figu
shows pump on/off transmission spectra along with diff
ence spectra forN54 andN51. We expect expression~58!
to be valid only for pump intracavity photon numbersnu
,n0.

The simulation in the nonlinear case is similar, b
slightly more complicated than the linear case. As in t
linear case, we begin by choosing thedesired number of

FIG. 6. Calculated nonlinear spectra~strong pump, weak probe!
for optimally coupled atoms. Pump powernu5n0/2 for ~a! N54
and ~b! N51 optimally coupled atom~s!. The frequency of the
pump is atg0AN in both curves.d(V) is the difference spectrum
derived by subtracting the spectrum without a pump from the sp
trum with a pump. (g0 ,k,g i)/2p5(7.3,0.6,5) MHz, g'5g i/2.
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3096 57THOMPSON, TURCHETTE, CARNAL, AND KIMBLE
atoms,Nd . Of course, we cannot knowNa until the simula-
tion is complete, but if the calculation parameters are cho
appropriately, then we can getNa consistently close toNd .
We also choose an approximate desired number of intra
ity pump photons,nd , from which we can calculate the ap
propriate~and approximate! fixed drive by use of the stat
equation

i in5ndF S 11
2NdC1

11d21nd /n0
D 2

1S f2
2NdC1d

11d21nd /n0
D 2G ,

~63!

whered and f are defined in the context of Eq.~61!. This
fixes i in for the entire simulation. As usual,Ne and Me are
computed for each toss. Now, since the the actual pump
tracavity photon numbernu builds up depending on the va
ues ofNe andMe , we must solve Eq.~61! in order to have
an appropriatenu associated with the fixed drivei in which
can then be used in Eq.~58! for each toss. For consistency o
notation, we will call this effective pump intracavity photo
numberhe in analogy toNe and Me , and likewise,he av-
eraged overNt trials will be calledha in analogy withNa .
In Figs. 7 and 8 we show histograms ofNe ,Me , andhe for
Na53,ha5n0/3, andNa51,ha5n0/5, respectively. The cor
responding spectra are shown in Fig. 9. For these figures
pump frequency is coincident with the Rabi peak for t
desired number of atoms,Nd . This is a fixed quantity, the
same for every toss with value

Du52ANdg0
22

~g'2k!2

4
. ~64!

In practice, Na turns out to be very close toNd

@(Na2Nd)/Nd,0.01#, and so indeed Eq.~64! does turn out
to be a pump at the correct frequency. This procedure
meant to mimic the experimental situation in which there
an estimate of the number of intracavity atoms~based on the
linear transmission spectrum! with the pump detuning se
accordingly and with an arbitrary external fixed drive pow

D. Comments on comparison of simulated
and experimental data

We are free in the simulations to average over the mo
lus @Qa5ut(v)u2# or the modulus square@Qa5ut(v)u2# of
the transmission spectrum. Of course, we can simulate
averaging process, but ultimately we would like to choo
one that corresponds most closely to that actually used in
experiment. Unfortunately, this has proved to be sligh
more problematic than it may at first appear. We theref
will discuss carefully in this section how a comparison
simulated and experimental data is made.

All results presented thus far are for averaging over
modulus square@Qa5ut(v)u2#. An experiment in which this
is the correct choice is one which employs a photon-coun
detection process. Let us assume that the time scale
which the intracavity atomic distribution evolves is set by t
transit timeT0 of atoms crossing the cavity field. Over a tim
T0 each atom distribution ‘‘snapshot’’ evolves into the ne
Our experimental detection always averages over m
snapshots, producing the averaged transmission spec
n
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Qa . In the case of photon counting, the detector samples
a time td@T0 during which the cavity-output photon strea
is collected. This performs an average over theintensityof
the cavity-output field so thatQpc5ut(v)u2 is measured. This
was the detection method of our previous work@17# and the
simulations fit well with the data. In addition, we have do
a limited number of photon-counting measurements for
cavity parameters of this experiment, and again we have s
good agreement between simulation and data@1#. ~To look
ahead, refer to Fig. 12.!

The photodetection used in most of the present exp
ments, however, is different. For the measurements of pu
and probe fields, there are two different fields with frequen
separation ranging from a few to tens of MHz, and so go
frequency discrimination is required~which is quite difficult
with photon counting and frequency selective filtering!. De-
tection via an optical heterodyne was therefore utilized.

FIG. 7. Histogram ofNe ,Me , andhe for a full nonlinear simu-
lation (Nt52000) for Na'3,ha'n0/3, and n050.06. The abrupt
final point inhe can be explained by the following. There is a fixe
drive strength, so that there is clearly a maximum value ofhe

allowed. We are driving with the pump at the Rabi peak, and s
fluctuation in atom number in either direction always causes
pump to leave resonance and the buildup to decrease.
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57 3097NONLINEAR SPECTROSCOPY IN THE STRONG- . . .
this type of detection, the fieldamplitudeof the transmission
spectrum is written as coherent modulation on an rf pho
current in combination with~white! shot noise and noise du
to atomic fluctuations. The technique by which this pho
current is then processed determines the appropriate av
ing of the data. Any process seeks to extract the cohe
signal from the inevitable noise sources. We chose a se
tive ~low-noise-floor! rf spectrum analyzer to mix down th
rf and readily view the modulation as a dc signal on t
screen of the spectrum analyzer~SA! which is then digitized
and stored on a computer. The critical element is the res
tion bandwidth~RB! of the SA which was was chosen sma
2pB!T0

21, so that the spectrum analyzer performs an av
aging over many atomic transit times. The spectrum analy
has an envelope detector and not a true square law dete
so that the averaging performed by the spectrum analyz
of the ut(v)u type, which we then square in post-process
to producein principle a measurement ofQhet5ut(v)u2.

Spectra simulated with the two different methods of av
aging yield qualitatively similar but quantitatively differen
line shapes and amplitudes. This is shown in Fig. 10 for t
different values ofNa . The differences are by far most pro

FIG. 8. Histogram ofNe ,Me , andhe for a full nonlinear simu-
lation (Nt52000) forNa'1, ha'n0/5.
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nounced nearV50. This region is also very sensitive in th
experiment to uncertainties such as beam alignment. It is
empirical fact that no matter how carefully we have char
terized and traced the signal processing elements and
heterodyne detection, on the whole, the data agree b
with a calculation ofQa5ut(v)u2 than withQhet5ut(v)u2. In
light of this, we continue to use theQa5ut(v)u2 averaging
process in our simulations throughout. While this may se
a brash decision based on our knowledge~both theoretical
and for simple empirical test cases! of the inner workings of
the heterodyne detection, it turns out not to be critical
several reasons. The first, as we have stated, is that the
pronounced difference between the two averaging pro
dures appears in the ‘‘valley’’ between the Rabi peaks, n
V50. This is a notoriously sensitive region. For examp
the auxiliary central peak in Fig. 4~b! is exquisitely sensitive
to experimental uncertainties, particularly atomic bea
alignment and, indeed, to the fluctuations in atom num
themselves. Slight changes inNa ~on levels far more sensi
tive than our control over oven temperature drift, e.g.! pro-
duce dramatic changes in the central peak. Simply put,
difficult to model the central region of the data successfu
The second saving grace is that the position of the R
peaks does not differ to any significant degree for the t
methods of averaging as determined from simulations. A
finally, the simulated difference spectra are only slightly
fected, perhaps indicating that this simple mathematics~sub-
traction! reveals the true underlying eigenstructure, whi

FIG. 9. Spectra associated with Fig. 7~top graph! and Fig. 8
~bottom graph!. (g0 ,k,g i)/2p5(7.3,0.6,5) MHz, g'5g i /(2
30.7).
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3098 57THOMPSON, TURCHETTE, CARNAL, AND KIMBLE
surely must be independent of the way the data are avera
In particular, the position of the difference peak does
change at all under the two averaging types.

IV. PUMP-PROBE EXPERIMENT

A. Apparatus

The experimental setup employed is as depicted in Fig
@53,54#. The core of the apparatus is a small (L
5346 mm, w0538 mm), high-finesse (F533105) reso-
nator formed by the two mirrorsMi and Mo with radii of
curvature 17 cm and transmission coefficientsd i'131026

anddo'1.531025 ~nontransmission scattering losses in t
cavity coatings were on the order of 431026). An optically
prepared beam of cesium atoms intersects the cavity ax
90°. The transition investigated is the (6S1/2F54, mF54
→6P3/2, F855, mF855) transition at 852 nm. Together wit
the free-space lifetime of the 6P3/2 level
(t532 ns @55#!, these parameters lead to the set of ra
(g0 ,k,g i)/2p5(7.360.3,0.660.1,5) MHz. From the
above parameters, (n0 ,N0)5(0.16,0.06). Transit broadenin
due to T0'10/g i leads to a modification ofg'5g i /(2
30.7) @50#.

The linear response of the coupled atom-cavity system
investigated using a frequency-tunable probe generated u
an acousto-optic modulator~AOM! and electro-optic modu
lator ~EOM! from the output of a frequency-stabilize
titanium-sapphire laser~10–100 kHz rms linewidth!. The
probe is mode-matched to the TEM00 mode of the cavity,
whose length is actively servo controlled to within 10% of

FIG. 10. Comparison of methods of averaging the simula
spectra for~a! Na50.7 and~b! Na51.0. In each graph the solid
curve is^ut linu2& and the dashed curve is^ut linu&2. The parameters are
(g0 ,k,g i)/2p5(7.3,0.6,5) MHz, g'5g i/2.
ed.
t

1

at

s
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ing

full spectral linewidth. The cavity-length servo consists o
large-intensity (nlock'103ns) ‘‘lock beam’’ incident on the
cavity; both mirrors are on piezoelectric transducers~PZT’s!
with which the cavity length is dithered very slightly~at 80
kHz; the cavity transmission is changed by the dither by l
than 1%!. The transmitted lock beam is detected via a lock
amplifier with the error signal fed back to a mirror PZT. Th
lock beam is chopped by a mechanical chopper wheel~50%
duty cycle at 1.7 kHz! to attain an attenuation of more tha
60 dB during the ‘‘off’’ cycle, at which time the probe beam
is observed without the interference of the lock beam. T
transmission of the weak (np!ns) probe beam is recorded a
a function of its frequency on a~rf! SA after balanced optica
heterodyning with an intense local oscillator frequency d
tuned240 MHz from the common uncoupled atom-cavi
center~frequencyv1 of Fig. 11!. For the nonlinear spectro
scopic studies, we employ an additional fixed-frequen
pump field, which is generated by summing a consta
frequency, variable-strength, rf signal with the tunab
weak, rf probe signal. The resultant sum of rf signals driv
the EOM for pump-probe generation.

B. Linear results

In order to touch base immediately with the Monte Ca
simulations described in Sec. III, we start this section w
data taken via a photon-counting method, in which the av
aging process is unquestionably of the typeQa5ut(v)u2.
These data for an average intracavity atom numberN̄51 are
shown in Fig. 12. The experimental details are identical w
those of Ref.@17#, and so we will not discuss the details her
Note that we have introduced a new quantityN̄. This is the
experimentally determined version ofNa from the simula-
tions. As per the discussion above,N̄ can be read directly
from the measured splitting between Rabi peaks forN̄*1,
but should be determined from a fit to simulations with a

d

FIG. 11. Schematic of the experimental apparatus. EOM is
electro-optic traveling wave modulator. The depleter beam cont
the atomic flux in the correct (F54) ground state, and the monito
beam registers this flux. The locking beam is part of the cav
length servo and is chopped at 1.7 kHz. During the ‘‘off’’ cycle
the locking beam, the transmitted probe is measured by the
anced heterodyne detector.L are mode-matching lenses. The refle
tivity of the beam splitter which deflects part of the cavity output
the lock photomultipler tube~PMT! is 15%.
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eraging over fluctuations for atom numbers below this. T
procedure of fitting averaged transmission spec
Qa5ut(v)u2 is seen from Fig. 12 to work quite well, a
expected from our experience with our previous system w
smaller g0. However, it can be seen already in these a
related data that the points nearV50 are subject to a large
variance than those elsewhere in the frequency scan.
aspect does not tend to go away by averaging a large num
of traces. Rather, imperfections of various sorts~including
atomic beam alignment! tend to ‘‘fill in’’ the central region
which makes it a problematic region for comparisons w
the simulations, as stressed above.

We would like to stress at this juncture that the number
intracavity atoms inferred from the measured data depe
on the values of (g0 ,k,g i ,g') which are known from inde-
pendent measurements. For example,k is determined from
both cavity ring-down measurements and by scanning
linewidth directly. The atomic lifetime is known from th
literature @55#, giving g i ; the transverse decay rateg' is
determined from the atomic velocity and the well-know
cavity waist size@50#. Finally, in addition to the geometric
factors, such as the cavity length and cavity waist~which
depends on the length and the mirror radii of curvature!, g0
depends on the degree of optical pumping of the ato
beam, since the coupling of any of the other magnetic s
states to the cavity field is less than that of themF54
→mF855 transition, which we nominally prepare. There is
straightforward and powerful way of determining the effe
tiveness of the optical pumping. At reasonably large numb
of intracavity atoms (N̄;2 –4!, we can measure the splittin
of the Rabi peaks both with optical pumping and witho
optical pumping. The average coupling for an atomic sam
uniformly populating the magnetic sublevels of theF54
ground state is determined by an average over the Cleb
Gordon coefficients connecting each of the allowed tran
tions. The value of the coupling if all of the atoms we
pumped to theF54, mF514 ground state should bep
51.73 times larger than the unpumped sample. Typically

FIG. 12. Linear spectrum forN̄'1.0 atoms measured by photo
counting withva5vc[0. The intensity axis is arbitrary. The soli
curve is a simulation which includes the effects of atomic num
and coupling fluctuations with g0/2p57.3 MHz and Na

51.0, k/2p50.6 MHz, g'/2p52.5/0.7 MHz, g i /2p
55 MHz.
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measurepmeas51.610.1/20.2, which is the primary error in
the quoted value ofg0 ~the rest coming from small contribu
tions from errors in the measured length of the cavity and
the radii of curvature of the mirrors!. In principle, an inde-
pendent measure of the saturation photon number can p
additional limits on the value ofg0. The saturation photon
number can be measured by observations of the positio
the turning points in optical bistability measurements, as w
done in our previous measurements@17#. Unfortunately, we
were not able to perform reliable bistability measureme
with this cavity, mainly due to limitations in attainable in
racavity atom number and problems with atomic beam fl
tuations.

We now move on to the heterodyne measurements, wh
are imperative for nonlinear spectroscopy and which are u
exclusively onward from this point. We present in Fig. 13
typical transmission spectrum of the probe beam for
coupled atom-cavity system, in the weak-field limit~with no
pump field present!. Here N̄51.1 atom, withV50 corre-
sponding to the position of the common uncoupled ato
cavity resonance. To facilitate comparison with Eq.~31! the
data have been processed by squaring the output of the
subtracting the background~shot noise! level, and then nor-
malizing to account for the frequency dependence of
probe generation and detection process@53,54#. Note that the
ordinate is normalized in units of the intracavity photo
numbernprobe with nprobe&0.02 over the scan range~com-
pare this ton050.16). The observed doublet structure wi
peaks atV56g0 is a direct spectroscopic measurement
the vacuum-Rabi splitting discussed above.~The sharp fea-
ture atV50 is the rf generated during the lock cycle by th
lock beam, a small amount of which feeds through electro
rf attenuators which otherwise prevent this signal fro
reaching the SA. It is not present during the data tak
cycle.!

r

FIG. 13. Linear spectrum forN̄'1.1 atoms measured by hetero
dyne detection. Nominallyva5vc , but there is a slight atomic
detuning of '21MHz. The solid curves are simulations whic
include the effects of atomic number and coupling fluctuatio
Curve ~i! has g0/2p57.3 MHz and Na51.1; curve ~ii ! has
g0/2p58.0 MHz andNa50.95; curve~iii ! hasg0/2p56.6 MHz
and Na51.4. k/2p50.6 MHz, g'/2p52.5/0.7 MHz, g i /2p
55 MHz.
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Also shown in the figure is a series of simulation plo
using the measured values ofg0 ,k, andg'5g i/2/0.7. The
simulation plots are generated as discussed above in Sec
For the parameters of our system, the magnitude of the s

ting even in the presence of fluctuations isg0AN̄ with the
principle effect of the fluctuations being a significant i
crease in the cavity transmission nearV50. Thus, sinceg0
is known independently, we can determine the number
atoms to a good approximation simply by measuring
splitting, but we can also calibrate this procedure by study
the sensitivity of our spectra to atomic beam fluctuations
the vicinity of V50. This is shown with curves~i!–~iii ! in
which g0ANa is kept constant whileg0 and Na are varied.
Curve ~i! hasg0/2p57.3 MHz andNa51.1, as we would
surmise from the data and the knowledge ofg0, while ~ii ! has
g0/2p58.0 MHz and Na50.95 and ~iii ! has g0/2p
56.6 MHz andNa51.4, neither of which match as well a
curve ~i!. As stated above, we have fixed the simulatio
averaging procedure atQa5ut(v)u2, which appears to per
form quite well. Note that in comparison with our previou
measurements@17#, the resolution of the splitting for a singl
atom is significantly improved in our current system, but n
by as much as one might naively expect, from the more t
twofold increase in the coupling (g0/2p53.2→7.3 MHz)
and the more than eightfold increase in the single-atom
operativity parameterC1. This disappointing result is due t
the even greater role of atomic fluctuations in a system w
increasedC1.

C. Nonlinear results

Armed with this experience in the linear realm, we ne
move to explore the nonlinear spectroscopy of the coup
system. We note immediately that our goal in performing
pump-probe-type experiment was to observe multipho
quantum transitions and to study the evolution of these re
nances for large numbers of atoms where the semiclas
equations should correctly predict spectra. If we take Eq.~1!

as a guide, we conclude thatN̄54 atoms is sufficiently large
to be reasonably well described by semiclassical the
since qa50.94 for this atom number. In addition, at th
number of atoms, the effects of fluctuations in atom num
are less pronounced than forN̄;1. To recapitulate our ob
jective, consider the transitions (t0 ,t1) and (t0* ,t1* ,t2* )
shown in Fig. 1. We are most interested in the transitiont1.
For a system with a single optimally coupled atom in whi
g0@(k,g'), this would appear in the nonlinear spectrum
a peak centered at frequency (A221)g0 relative to the atom-
cavity center frequencyv0. The transitiont0 is strongly sup-
pressed relative tot1, and so we will not search for it. In ou
system, which is more complicated, due to atomic beam fl
tuations, and not sufficiently enough split for this ideal p
ture to be realized, we should consider not the ideal cas
Eq. ~2!, but rather the case of Eq.~13! and the associate
transitions (t0* ,t1* ,t2* ) generalized to the distributed atom
case. Again, the transitions (t0* ,t2* ) are strongly suppresse
relative to (t1* ), and so our goal will be to trace this trans

tion as we lower the intracavity atom numberN̄. If our
choice of measurement~which will be the position of the
peak in the difference spectrum! turns out to be an accurat
,
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reflection of the transition frequencies, then we should
able to trace out data similar to the calculated quanti
shown in Fig. 2.

In Fig. 14 we present a sequence of pump-probe spe
with varying pump intensity, taken for a ‘‘large’’ number o
atoms (N̄54.2 atoms!. The experimentally measured pum
intracavity photon numberh̄ ranges from zero intracavity
pump photons toh̄50.7560.3 intracavity photons, on aver
age, and its frequency is chosen to coincide with the high
frequency resonance of the unpumped atom-cavity syste

V/2p51(g0/2p)AN̄514.8 MHz@this is visible as a sharp
peak in the data, especially of graph~d!#. The data have been
processed in the same manner as in Fig. 13. For trace~a!,
taken with no pump, the observed splitting is just that of t
weak-field normal-mode splitting discussed previous
From the fit ~solid curve! and the splitting, we find thatN̄
54.2, with the only adjustable parameter being the ove
vertical scaling. In trace~b! the pump has been turned o
with a pump intensity corresponding to approximatelyh̄
50.160.05 intracavity photons, while in~c! the pump has

FIG. 14. Sequence of nonlinear probe spectra forN̄'4.2 atoms
with va5vc[0. Here, the frequencyV of a constant amplitude
probe beam is swept and the transmission recorded~in units of
probe intracavity photon numbernprobe). Trace~a! has a probe field
only, with the solid curve a fit to the data including the~minimal!
effects of atomic fluctuations. From~b! to ~d!, the pump powers
~again in units of intracavity photon number with atoms present! are

h̄'0.1, 0.3, 0.8. The pump frequency isVpump/2p5g0/2pAN̄
514.8 MHz, as indicated by the sharp feature in trace~d!. The
solid line in trace~b! is a nonlinear semiclassical simulation inclu
ing atomic fluctuations and is described in the text. The best fi
the data hasha50.38.
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been increased toh̄50.460.2 photons and finally in~d! the
pump is ath̄50.7560.3 photons. Clearly evident from th
data is a trend towards lower heights for the ‘‘unpumpe
peak as the pump power is increased. At the same time
pumped peak becomes higher and migrates inward tow
the common atom-cavity frequency atV50. In addition, the
width of the ‘‘pumped’’ peak narrows, with the width of th
upper peak in graph~d! being 30% reduced compared to th
of the peak in graph~a!. In each case the pumped peak
higher than the unpumped peak and no additional resona
are observed. For a linear system, the probe response w
be independent of the pump~except of course a
Vprobe5Vpump), so that the data in Fig. 14 represent a m
surement of the nonlinear ‘‘susceptibility’’ for the atom
cavity system. The solid curve in trace~b! is a theoretical fit
from Eq. ~58! averaged over atomic distributions using t
numerical simulation technique described above. Here
average atom number and overall height are paramete
the simulation, withNa having been set from the fit in~a! to
Na54.2 and likewise for the height found in~a!. The pump
intensity is then the only free parameter for the fit to t
nonlinear case, yielding a value for the intracavity pump
tensity of ha50.38 photons which is high compared to th
measured value ofh̄50.160.05.

We next turn to data taken for approximately one intra
avity atom. Figure 15 shows a sequence similar to Fig. 14

FIG. 15. Sequence of nonlinear spectra forN̄'1.1 atoms with
va5vc[0. Graph~a! has a probe field only. The pump powers a

from ~b! to ~d!, h̄'0.1, 0.4, 0.7 intracavity photons on averag

The pump frequency isVpump/2p5g0/2pAN̄57.6 MHz, as indi-
cated by the sharp feature in trace~d!. The solid curves are semi
classical simulations withNa51.1, and for graph~b! ha50.07. See
the text for a discussion.
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N̄'1.1 atoms. The solid curves are again from numeri
simulations of the semiclassical theory applied to the data
the same manner as in Fig. 14. It is seen that the lin
simulation in this case is not as good a fit as that of Fig.
for the following reason. The data are taken under conditi
in which the cavity and atomic detunings are nominally ze
but are subject to some drift (;60.1 MHz cavity detuning
and ;61 MHz atomic detuning!, as has happened in th
case of Fig. 15. We do not at present model such detun
in our nonlinear simulations. In order to determine an a
proximate height scaling of the nondetuned linear simulat
which can then be applied to the nonlinear simulation,
leave the detunings out of the linear fit as well. It is clear th

.

FIG. 16. Linear and nonlinear spectra as the number of atom
varied. Each graph contains a linear~no pump! spectrum@curve~i!#,
a nonlinear spectrum@curve ~ii !#, and a difference spectrum@curve
~ii ! - curve~i!# @curve~iii !#. From top to bottom the parameters ar

~a! N̄'1.6, h̄'0.4, Vpump/2p59.1 MHz; ~b! N̄'1.1, h̄

'0.2, Vpump/2p57.5 MHz; ~c! N̄'0.75, h̄'0.06, Vpump/2p
57.2 MHz. Curve~iv! in graph~c! is a theoretical fit to the linear
spectrum, indicating the extent to which our Monte Carlo simu
tions correctly incorporate fluctuations in atom number and po
tion. As stated in the text the region nearV50 is extremely sensi-
tive to imperfections in the apparatus, including atomic be
alignment, but these factors should remain constant between
linear and nonlinear spectra measurements.
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this procedure is nonoptimal, but it does reproduce the qu
tative features of the nonlinear data. The pump powers
Fig. 15 are similar to those in Fig. 14. The best fit for pum
photon number in Fig. 15~b! is ha50.07 as compared to th
measured valueh̄50.1. As is obvious from these data, mu
tiquanta resonances of the sort predicted by Fig. 1 are
immediately apparent. As the probe frequency is scanne
investigate the first- to second-excited-state transitions, i
course also probes the ground- to first-excited-state tra
tions. Thus a means to isolate the nonlinear effect is nee

In Fig. 16 we introduce a naive attempt at such a te
nique by simply subtracting the linear spectrum from t
spectrum with the pump field present, thereby deriving
‘‘difference’’ spectrum from the data, much the same as
difference spectrum from the nonlinear simulations shown
Figs. 6 and 9. The difference spectrum contains much in
mation. For example, one may look for additional featu
that arise in a regime where the basic first-excited-state
tures change little. This would be indicated by near comp
subtraction of the linear features with a new peak appea
at a frequency different from that of the pump frequen
Figure 16 shows linear~i!, nonlinear ~ii !, and difference

FIG. 17. Difference spectra with semiclassical theory overla

The details are the following: Trace~a!, N̄54.2, h̄50.1, Na

54.2, ha50.38. Trace~b!, N̄51.6, h̄50.4, Na51.6, ha50.16.

Trace ~c!, N̄51.1, h̄50.1, Na51.1, ha50.07. Trace ~d!, N̄

50.75, h̄50.06, Na50.75, ha50.09. Data are taken with th

pump frequency atVpump/2p5g0AN̄ for N̄>1 and atVpump/2p

5g0 for N̄,1. The solid vertical lines depict the position of th
transitiont1 at (A221)g0.
li-
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spectra~iii ! as N̄ is decreased fromN̄'1.6 to N̄'1.1 to N̄
'0.75. Here we have selected the data based on a level
qualitatively similar magnitude for the nonlinear effects.

The data of Fig. 16~c! are data taken withN̄'0.75 atoms.
Here the pump frequency is atV/2p5g0/2p57.2 MHz.
Note that three peaks are evident in both the probe-only d
and in our linear numerical simulation@curve ~iv!#, with the
central peak arising from the fact that now there is a sign
cant fraction of the time in which there are no atoms pres

.

FIG. 18. Plot of the position of the peak in the difference sp
trum P1 /g0 vs the number of intracavity atoms (Na for simulations

or N̄ for the data!. The data are shown as the open squares while
simulation results are represented by the solid curve in graph~a!,
which is a fit through many runs of the nonlinear simulation
show the trend of the semiclassical prediction. The data of graph~a!
are taken with intracavity pump photon numbers in the range 0

,h̄,0.2. Note the suggestive flattening of the data at (A221) ~the
position of the peak corresponding to the transitiont1 in Fig. 1,
shown as the horizontal straight line! perhaps indicative of a quan
tum anharmonicity. Data are taken with the pump frequency

Vpump/2p5g0AN̄ for N̄>1 and atVpump/2p5g0 for N̄,1. The

ranges of pump powers for the subsequent graphs are~b! 0.06,h̄

,0.1, ~c! 0.1,h̄,0.2, ~d! 0.2,h̄,0.4, and~e! 0.5,h̄,0.9. The
error bars displayed represent the one-standard-deviation limits
are shown on only two points to avoid clutter.
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within the cavity-mode volume. This a promising regim
because the contribution from multiple atoms in the cav
mode volume should be small~see Sec. III!, while the re-
sponse from the zero-atom contribution~i.e., atoms outside
the mode volumeVm with coupling g,ecg0'0.56g0)
should be essentially linear since the saturation intensit
higher for these ‘‘spectator’’ atoms~because they are eac
weakly coupled!. Thus an observed nonlinear respon
should be predominately due to contributions from sin
intracavity atoms within the mode volume. Of course, t
trade-off is that the peaks have merged to a degree that
drastically obscure the observation of new features. What
observe in the pump-probe spectra is a region of increa
probe transmission, again on the inner side of the pum
peak, with very little change in the position or height of t
unpumped peak or of the outer side of the pumped pe
Clearly evident in the difference spectrum is a broad p
centered roughly at (g0/2p)(A221)53 MHz, which is
consistent~but certainly not compellingly so! with what one
expects from the QED theory of Sec. II A~not including
atomic fluctuations!. That there are only small dips belo
zero at the positions of the pump-off resonances indicate
there has been only minor modification of the sing
quantum resonances. We emphasize that the peak show
the figure demonstrates a nonlinear response for a sy
containing just one atom~on average! and an intracavity
photon number of onlyh̄'0.1 photons.

While the data shown in Fig. 16~c! are suggestive, we
should stress that without a QED calculation which mod
all aspects of our experiment, including atomic transit effe
and the critical role played by fluctuations in the atom
number and position, it is difficult to determine the extent
which the data of Fig. 16 can be explained by a semiclass
model ~including the proper treatment of transit effects! or
whether there are aspects which have a purely quantum
gin.

To further quantify our observations, we present in F
17 difference spectra with a corresponding set of simula
difference spectra from our semiclassical model. The pe
nent information can be found in the figure caption. Unfo
tunately, these data and their comparison with simulati
does not shed much more light on the issue of multiqua
resonances. However, they do show that the semiclas
simulations qualitatively agree with the data at ‘‘large
numbers of atoms (N̄54.2) tending towards lesser agre
ment with the smaller atom numbers, though any quantita
comparison is far from conclusive. Whether this trend is
dicative of a fundamental disagreement between a semic
sical theory and the experiment or due to complications
the experiment such as transit broadening is certainly
easy to determine. It is possible that the features that we
are to be found in a parameter regime not covered by
simulations. In fact, most of the data that we have tak
@e.g., Figs. 14~c!,~d! and 15~c!,~d!# have pump intracavity
numbers that are too large for the analytical approximati
that went into the derivation of Eq.~58!, so that we have no
way to compare these data with any theory.

Nonetheless, we continue our pursuit of a quantum f
ture manifest in the spectra of the atom-cavity system
focusing in on a particular property of the data: the posit
,
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of the peak on the high-frequency side of the difference sp
trum which from Fig. 1 should coincide with the transition
t1 and t1* . Actually, it is an interesting question as to th
extent to which the position of the difference peak actua
corresponds to the eigenvalues discussed in Sec. II A. F
simulations, we find that the position of the difference pe
tracks the distributed, averaged eigenvalue@^d1& from Eq.
~18!#, but that the latter is about 25% larger. The position
the peak in the difference spectrum is thus not an exact m
sure of the eigenvalue of the atom-cavity system, but is c
tainly a related quantity.

The peak in the difference spectrum is a quantity wh
can be easily measured and simulated, providing ano
way of comparing the semiclassical Monte Carlo simulatio
with the actual data. As stated above, this quantity is ins
sitive to such parameters of the simulation as overall he
and applied pump power, making for an easier compari
with experimental data taken over a range of pump a
probe powers. In Fig. 18 we accumulate some of the non
ear data that we have taken for this experiment and plot
positions of the measured peaks in the difference spe
(h) versus the average number of atoms,N̄, where we have
averaged together data for the measured peak position t
over a range of pump powers fromh̄50.06 to 0.2 photons.
We also show the prediction from our nonlinear semiclas
cal simulations, represented by a curve that is derived by
to many trials of the simulation over a dense collection
atom numbers.~The simulations show that the position of th
difference peak is not a strong function of the pump pow
over the range we consider, even though the height of pe
is.! An interesting feature of the data is a ‘‘kink’’ occurrin
nearN̄'1.3, followed by a leveling off of the peak positio
at a level close to (A221)g0, for N̄,1. The data appear to
approach the semiclassical theory at high atom numbers
we expect, but there are deviations at low atom numb
with no ‘‘kinks’’ observed in the semiclassical theory.
should be noted that most of the low-atom-number data
clude the semiclassical result near the limits of the unc
tainty of the measurement. The leveling of the differen
peak position would certainly be a compelling result fro
our perspective, but again, it is very difficult to determi
whether this represents a true quantum behavior given
uncertainties in the peak positions and the caveats assoc
with our semiclassical simulations.

V. CONCLUSIONS AND THE FUTURE

We have performed extensive measurements of the n
linear response of a strongly coupled atom-cavity syste
While our initial objective was to observe clear multiphoto
resonances as a decisive measure of the quantum natu
the system, it appears that our atomic beam system is
optimal for this purpose and allows us to obtain only limit
information. In the case of the structural investigation p
sented here, explicitly quantum aspects of our stron
coupled cavity QED system have hidden behind the mas
Poissonian fluctuations in atom number and position. Wh
we have observed a discrepancy between our measurem
and the semiclassical predictions, it is not clear whether
is the result of effects omitted from our model~e.g., transit
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time! or whether it arises from a real quantum underpinni
For smallN̄&1.3, the evidence is suggestive of the under
ing quantum anharmonicity, while for largeN̄, the data
asymptote to the expected semiclassical result. More con
sive data are, no doubt, desirable.

Towards this end we are developing two strategies wh
we hope will correct the most serious defects of the curr
atomic beam system. One involves precisely locating the
-
W
o

ev

et

et

ev

pl.

J

.
-

lu-

h
t
t-

oms to the strong parts ofC(rW) @56# along with timing in-
formation of the atomic transit across the cavity mode. T
other involves the use of atom trapping techniques@31#.
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