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Nonlinear dynamics in an optical system with controlled two-dimensional feedback:
Black-eye patterns and related phenomena
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We present experimental and theoretical results of spontaneous optical pattern formation in a nonlinear
optical system. The nonlinear optical system we considered had a controllable phase-only spatial Fourier filter
placed in the system’s diffractive feedback loop. A change in feedback field spatial spectral component phase
resulted in a transition between dynamic regimes, as observed in both experiments and numerics. Patterns
originating from interactions between spatial modes belonging to different instability kblzdk-eye pat-
terns, decagons, efc.were observed, as well as localized states and shock traveling waves.
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l. INTRODUCTION shift amplitude. Depending on the wave vectgrlocation
and the phase shift amplitude we observed the formation

Pattern formation is one of the fastest growing fields inof spontaneous patterns including hexagons, rolls, black-eye
modern optics. Both the number of nonlinear optical systemgatterns, and decagons, as well as localized states and trav-
capable of generating transverse pattefis10 and the eling waves. Our theoretical analysis and numerical simula-
number of patterns that can coexist and compete in the sant@ns for the black-eye patterns are in good agreement with
system[11-14 continue to increase. From a beginning with the experimental data.
simple patterns originating from nonlinear interactions be-
tween only a few mode§l,15], pattern formation studies II. NONLINEAR SYSTEM WITH CONTROLLED
now involve analysis of sophisticated spatio-temporal re- EEEDBACK: EXPERIMENTAL RESULTS
gimes that include interactions of dozens of mofik$ 16,
formation of localized statefsl7-19 and transverse travel-
ing waved 20], the excitation of spatio-temporal oscillations  The experimental setup schematically shown in Fig. 1 is
[21], and chaotic regimd®2]. A promising new trend in this the LCLV diffractive feedback system first introduced in

A. Experimental setup

field is spatio-temporal dynamics contf@3—25. [27], with an additional Fourier spatial filter located in the
We consider here a nonlinear optical system based on a

liquid-crystal light-valve(LCLV) phase modulator with dif- Liquid Crystal Photo-

fractive feedback. An additional phase-only spatial Fourier Light Valve 4— Conductor .

filter (computer-controlled multielement spatial phase modu- L ]

lator) is placed into the feedback loop to control phase shifts > > < * e l

of the feedback field spatial spectral components. z,=F+L z,=F
In conventional nonlinear systems with diffractive feed- LC layer Mirror

back such as the Kerr-slice feedback mirror sysf2fj and ¥ Phase-Only Spatial L 4

LCLV or liquid crystal (LC) slice[27,5] based systems, pat- ‘ Filter (HEX127) :

tern formation dynamics depend on feedback field diffrac-
tion, which leads to spatial frequency dependent phase shift:
¢Y between feedback field spectral components. For free-
space propagation these phase shifts are proportional to th
square of the transverse wave veotpred(q)=qg2L/(2k),
whereq=|q| is the transverse wave numberjs the length

of diffraction, andk=2=/\ [15]. In the nonlinear optical
system considered here we introduce additional phase shift
#°(q) to provide control of the feedback field spectral com-

ponent phase. This results in the generation of symmetric £ 1. Experimental setup an@—(c) LC phase modulator
patterns, waves, localized states, and spatio-temporal inst@fectrode mapsa) Zernike-type spatial filter(b) spatial filter com-
bilities. posed of concentric ringsg) spatial filter controlling off-axis spec-

Experiments were performed using simple phase Fouriefral component. Gray levels indicate different voltage amplitudes
filters to control the phase within a small spectral domainapplied to the corresponding LC elements. White hexagons corre-
region. In both theory and numerics we assume control of 8pond to zero voltagéo phase shift Vectorg, shows the location
single spectral componewrt®(qy) = v, wherev is the phase of an off-axis element.
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feedback loop. The Fourier spatial filter consisted of lenses
L, andL, with focal lengthF=100 cm, and a Hex-127 LC
spatial phase modulator from Meadowlark Optics placed in
the joint focal plane. This phase modulator has 127 individu-
ally addressed hexagonal LC cells, as shown in Fi¢gs—1
1(c). The size of each LC cell is 1.0 mm. Phase modulation
depth ranged from 0 to2 (A=0.514 mm and was con-
trolled by a computer. The LCLV was located in the front
focal plane ofL;. The length of the diffractive path (from
zo =F to zz=F+L in Fig. 1 was varied by changing the
distancez between len&., and the LCLV'’s photoconductive
layer. The case,<F corresponds to negative feedback dif-
fractive lengths < 0), as described if28]. (o)
In our experiments we used spatial filters with phase-only\24 oD
transfer functions such ag(qg)=exdiQ(q)], where q

Fourier plane. Functio®(q)=Q(rg) can be represented in
the form Q(rF)=EJ-N:1vJ-Sj(rF), where v; are controlling
voltages applied to the LC elements a88drg) are stepwise
response functions corresponding to each LC elembht (
=127). The following phase filters were implemented.

(i) A Zernike-type spatial filtefFig. 1(a)]. The controlling
voltage was applied only to the centrgl<1) LC element
(v1=v( and »;=0 for j>1). This filter provided phase
control only for low-frequency spectral components. Since i
the diffraction-limited size of the input beam spatial spec- |
trum was comparable to the LC element size, this Fourien
filter can be considered as a Zernike-type filter that controlsg#s
the phase of the zero spectral compor|@$.

(i) As shown in Fig. 1b), a filter providing phase control
to the central element and the elements in the two concentric
rings surrounding the central element & V(O),Vj: 4 for FIG. 2. Experimentally observed transverse intensity distribu-
ji=2,...7 andvj: ) for i=8,...,19). tions of the output beanfplanez=2z,) corre_sponding tda=-20

(iii) Shown in Fig. 1), a filter controlling the phase of a cm[(@~(d)] anc(jol)_:20 cm((e) and ()] for different »(*: (a) he(x)'
single off-axisith elementy;= (9, [ #1, andv;,=0. agonal array ¢7=0), (b) disordered htind of black eyes'f

The experimental setup shown in Fig. 1 was also used tg 247 (© b(lgc_k eyes with pupils £=0.4m), (d) localized
analyze patterns originating from nonlinear interactions be¥ L"’(‘gk: gy?essn)é (f)‘ozg(f’;)'sq(ji)m'ii?g :0{ i:(;al?ﬁ: V\?r:i'?eh;qsuzortes
tween an inserted image’s spatial components and its self- ' - T
induced modegstimulated pattern$30]). Masks (inserted ?hnet?:s?ottom right represents 1 mm fey and(e), and 0.5 mm for
image$ having an intensity transmission coefficielt(r) '
were placed at the LCLV photoconductive layer plane

—ErL background, as seen in Fig(d, appeared. We did not ob-

serve regular patterns in the range 0rz51(®)<2.0x.

When the diffractive length was positive and @8 was
increased, we found hexagonal type patterns< ("

By controlling the phase shift of the feedback field zero<0.5x), islands of hexagons as in Fig(e? (0.67< v(©
spectral component, we were able to generate various pat0.757), localized bright spots on a hexagon-type back-
terns. Some of the patterns we observed are shown in Figs. ground (0.8r< (O0< 0.97), and the complicated pattern
A negative diffractive length with various voltages applied toshown in Fig. 2f).
the phase modulator central element was used for Figs-2 Far field patterngspatial spectra of the field at) that
2(d). Within the phase shift rang€®~0 to »(¥~0.357 we  occur far beyond the threshold conditions for varietR are
found only the hexagon-type patterns shown in Fi@).Zor  presented in Fig. 3. In all observed cases the spatial spectra
0.357< v(9<0.47 these hexagon-type patterns were trans-consisted of concentric ring@stability coneq11] or insta-
formed into a disordered array of patterns resembling blackility balloons[31]) that determine the location of the most
eyes, seen in Fig.(B). When the input field intensity was unstable spatial mode wave vectors. Near the onset of an
increased, instead of black eyes the patterns shown in Fignstability threshold the spatial spectrum had six dominating
2(c) were observed. Further increases in the phase shift valugell-pronounced components located on the instability ring.
v resulted in a decrease in the number of black eyesBy controlling the phase of the zero-order spectral compo-
When 0.57< »(9<0.75r, patterns consisting of only a few nent, we were able to change the instability ring radii, illus-
localized black eyes visible on a high-frequency hexagorirated in Figs. 82—3(c). The spatial spectrum in Fig.(®

B. Zero spectral component control
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Optical noise in the LCLV caused by inhomogeneity in
sensitivity of the LCLV’s photosensitive layer, as well as
inhomogeneities in the input beam phase and intensity dis-
tributions, did not allow us to obtain regular patterns for the
entire laser beam aperture. In order to stabilize the output
patterns, amplitude maskd (r) with different symmetries
were placed into the feedback loop, leading to the formation
of stimulated patterns. A hexagonal gray scale mask of the
type M(r)ocEle[cosqj -r)+1], where vectorsq; (j
=1,2,3) form an equilateral triangle, was used to stabilize
the irregular black-eye array in Fig(l®. The mask’s spatial
frequency ofg,=|q;| was approximately equal to the spatial
frequencygqy= v wk/L for the hexagonal array in the system
without Fourier filter ¢{°)=0). In the presence of the mask,
the irregular black-eye pattern in Fig(k? was transformed
into the black-eye hexagonal array shown in Fitp)4

To analyze the effect of different spatial spectral compo-
nents on black-eye pattern formation, we placed an ampli-
tude low-pass filter with variable cutoff frequenay,
=r9/(\F) into the system’s Fourier plane. When the am-
plitude filter radiusr ) was decreased, we observed a tran-

FIG. 3. Output field spatial spectra for different phase shift am-sition from the black-eye hexagonal array shown in Fig) 4
plitudes v@: (@ =0, (b) vO==/2, () Q== (d »9 tothe conventional hexagonal pattern in Figh)4

=0.47. L=20 cm for(a)—(c) andL=—20 cm for(d). The central Black eyes arranged in a hexagon lattice were first ob-
black spot diameter is approximately equivalent to a single LC celserved in a chemical reaction-diffusion experiment: a
size (~1 mm). chlorite-iodide-malonic acid reaction in a thin gel layer reac-

tor [32]. These chemically produced black-eye patterns ap-
corresponds to the black-eye pattern shown in Fi{f).2n peared to have spectral components with different wave
comparison with the spatial spectra for hexagonal-type pataumbers, similar to the pattern in Figsa#and 4c). This
terns, the spectrum for the black-eye pattern has less distinsuggests a common origin of the black-eye pattern in both
instability rings and a wider instability spectral band. experiments.

FIG. 4. Stimulated patterns)
and(b) with corresponding spatial
spectra(c) and (d) in a system
without[(a) and(c)] and with[(b)
and (d)] an additional low-pass
amplitude filter[dashed circle in
(d)] placed in front of the phase
modulator. Arrows correspond to
wave vectorsj, , gg, andgp used
for the pattern formation analysis.
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FIG. 5. Intensity distributior(a) and far-field spectruntb) for the spatial filter shown in Fig.(B) (v9=1.17, v =0.17, and »?
=1.6m).

C. Phase filter composed by concentric rings plex amplitude in the Fourier filter output plarg(r,t) is

Using the phase filter shown in Fig(t), we observed the linked to the complex amplitud&;.exiu(r,t)] of the wave
formation of spontaneous patterns resulting from interactiongeflected from the LCLV's internal mirror by the convolution
between spatial modes with wave vectgrshaving the two ~ integral
primary values ofq|=q, and|q|=qg [14]. The spontane-
ous pattern shown in Fig.(® is composed of two coupled
hexagons whose wave vectors yield the resonance condition
gs~/30,. Spectral components corresponding to the sec-
ond spatial harmonic with wave numbgy=2q, are clearly
seen in this pattern’s spatial spectrum, shown in Fig).5

D. Off-axis spectral component phase control

A phase shift in the off-axis spectral component in the
feedback was acheived in two ways. The first technique was
to apply a voltager to a noncentral LC phase modulator
element. A second method involved shifting the Zernike-
type phase filter in a transverse direction with respect to the
laser beam longitudinal axis. In the latter case, we were able
to control the phase of off-axis spectral components having a
wave number value less than the size of an individual LC
element.

In experiments with off-axis spectral component phase
control we observed waves traveling across the beam aper-
ture, as shown in Fig. 6. The wave propagation direction
was parallel to the vectay, corresponding to the center of
the controlled off-axis LC element in the Fourier pldifég.
1(c)]. The traveling wave amplitude had an abrupt front,
similar to shock waves studied in hydrodynamisge, for
example,[33]). The front of this wave typically was bent.
When |go] was increased, the distortion of the front de-
creased while the wave’s spatial frequency increased. Within
the interval G<v<r, traveling shock waves were not ob-
served. The speed and amplitude of these shock waves were
a function of the phase shift. The maximum value of the
speed corresponded to a phase shifvof— /2.

. MATHEMATICAL MODEL
AND LINEAR STABILITY ANALYSIS
FIG. 6. Snaphots of near-field intensity distribution taken at
Consider the mathematical model for a LCLV diffractive three consequent moments separated in time by 30 ms#or
feedback system with spatial filterif@4]. The field com-  — /2. The phase modulator was shifted by 0.5 mm in the trans-
verse direction I =20 cm), and the aperture size was 15 mm.
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: . phase shiftz® (solid lineg. The dashed line corresponds to the
0.7 1 A 1 : B} . synchronization conditiom,=2qPsin(¢/2) for the black-eye pat-
Lo e terns(defined below.
i Vo i mathematical model of LCLV dynamics that accounts for
v . threshold and saturation properties can be founidtjas|.
05 L " First consider dynamics for the system of E(9—(3) in
' the absence of the inserted mgdW (r)=1]. From linear
al 5! q/q stability analysis one can obtain the expression for a neutral
! g L9 ¢ stability surfacd34]:
0.0 1.0 2.0 3.0
1+d|ql?

4

FIG. 7. Neutral stability curves for various phase shift3: (a)
0=0.257 (dashed ling and »©=0.757 (solid line); (b) »?
=1.257 (dashed lingand v =1.757 (solid line).

K’[h= . 2 !
2sir{ L[g|*/2k+Q(0)—Q(q)]

whereq is the perturbation transverse wave vector.
The spatially uniform solution to the system of E¢b.—
AFF(H)=J Arexdiu(r’,HTh(r' —nd?r’, (1) (3) becomes unstable when the control paraméter ex-
ceeds a threshold valu€(®). The threshold valu&(® and
whereu(r,t) is a phase modulation introduced into the inputthe corresponding wave vectogs” for the most unstable
plane waveA;, by the LCLV, andh(r) is the Fourier trans- modes are determined from the conditiéf’) = min|K,(q)|.
form of the spatial filter transfer function(q) =exdiQ(q) ]. For a rotationaly invariant spatial filt€)(q) = Q(q), we can
Diffraction over the distanc& obeys the free-space propa- write K,(q) =Ky,(q). In the case of weak diffusion the neu-

gation equation for the complex amplituéér,z,t): tral stability curveK,(q) has several local minima with ap-
proximately the same threshold valu¢d~KP~K (). In this

—2ik % A A ( case the unstable mode wave vectors are located at several
0z ' instability rings with radiig?, q°, and so forth.
, » , For a Zernike-type spatial filtdiQ(q) = »(*) for g=0 and
with boundary condition\(r,0) =Ag(r,t) in the planez,. o)~ otherwisa the neutral stability curveginstability
The phase modulatiom(r,t) depends on the feedback field’s balloons are given by
intensity distribution at the LCLV’'s photoconductive layer

(planez,). In a simplified model describing LCLV dynam- 1+dcP
ics, the phasei(r,t) can be described by a nonlinear diffu- Kin= (g#0), 5)
sion equation with Kerr-type nonlinearif25,4]: 25ir<g(q/qd)2+ ()
Ju
7o tu=dA u+Kigg(r,b), (3 whereqy=my2/\L. The first two instability balloons and
B) are shown in Fig. 7. The locations of the instability bal-

where 7 andd are the LCLV time response and diffusion loon minima inq space can be controlled by changing the
coefficients, K is the control parameter,|gg(r,t) zero spectral component phas®’, as shown in Fig. 8 for
=M(r)|Apg(r,t)|? is the feedback field intensity at the pho- the first two instability balloonsA andB). Nonlinear inter-
toconductor layer, anégg(r,t)=A(r,L,t). A more detailed actions between unstable modes with wave numbers in the
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FIG. 10. Numerically obtained stationary state patternskor
=-0.55,L=-0.01, and various phase shift amplitude®: (a)
regular array of black eyes/{?)=0.25x), (b) irregular black eyes
(»9=0.57), (c) localized statesy(®’=0.87), (d) hexagonal array
with low-frequency modulated amplitude® = 1.0x).

|K|=1.1K®, where K(©®=0.5. As an initial condition
u(r,t=0) we used realizations of &-correlated random
field with small amplitudgu(r,t=0)|<0.1.

By varying the phase shift(®) we observed transitions
between patterns having different symmetries. In addition to
hexagons, we obtained steady-state patterns that occurred
due to the nonlinear coupling of modes with different wave

FIG. 9. Numerically obtained stationary state pattefisand ~ numbers. The dodecagon-type patterns shown in FE'?) 9
(b) with corresponding spatial spect@ and(d) for K=—0.55and  appeared in the phase shift amplitude rang.2m<v

L=—-0.02: (8 dodecagon patterns{®=—0.157), (b) decagon <0.3m. This type of pattern was observed previously in nu-
pattern (9 = 1.257). Schematic diagrams illustrate the elementary merical simulations of the Kerr slice and feedback mirror

interactions between spectral components having different waveystem and in the nonlinear interferometer with diffractive
vectors for(e) dodecagon antf) decagon patterns. Instability rings feedback[36,14. A new pattern with tenfold symmetry
are shown by circles. The propagation lengths normalized by  (“decagon”), shown in Fig. %), was observed in the range
ka’/(27), wherea is the transverse pattern area size. 1.2r<v9<1.457. The spatial spectra for the dodecagon
and decagon patterns along with the corresponding mode
vicinity of different instability rings(i.e., belonging to differ- configurations illustrating nonlinear mode coupling are
ent instability balloons give rise to the formation of the shown in Figs. &)—9(f). The mode coupling parametgr
patterns observed in our experiments. =P/ characterizing interaction between spatial modes be-
longing to different instability rings ig«.= 5~ 1.93 for the

IV. NUMERICAL SIMULATIONS

A. Zernike-type filter: Black-eye patterns F

Numerical analysis of the original system of E¢.—(3)
was performed with 128 128 and 25& 256 uniform square
grids. The diffusion coefficient was set to zero in order to F&8
have an identical minimum threshold value for different in-
stability balloons K#=KP=K () and thus provide effective
interaction between active modes having different wave
numbers. In our calculations we assumed the presence of |
low-pass amplitude filter in the Fourier plane of the optical
system feedback loop. This filter blocks all field spectral

components with wave numbgr> g, having the cutoff fre- FIG. 11. Traveling wave patterns with=20 andv=1.57: (a)
quencydc,=3dq - A fast Fourier transform routine was used phase control of the single spectral compongstg,, (b) phase

to calculate the convolution integrdl) and to solve the control of spectral components in the circular spectral domain cen-
free-space propagation equati@. The value of the control tered atg=q,. The radius of the domain is equal to the LC element
parametefK| was near the onset of an instability threshold: size.
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FIG. 12. Profile of traveling wave in Fig. 1d) (x is dimension-
lesg. The direction of wave propagation is indicated by the arrow.

dodecagon, ang.=2cost/5~1.62 for the decagon pattern.
Black-eye patterns were observed in numerical simula-
tions within the interval 0.06<»(©<1.0m (L<0). As
shown in Fig. 10, when(?) was increased beyond/2 the
black-eye hexagon latticd=ig. 10@)] first transformed into
an irregular arrayFig. 10b)], and then into localized states
[Fig. 10c)]. At v(9=7, the black-eye patterns were re-
Blgczg d?%/ lgvg-r;ﬁ?alfi%%ydi?gr?sul?jti?fgrte]gi(agﬁgﬁ's ]éCé?])](:'oeX_ FIG. 13. Schematic diagram illustrating black-eye pattern for-
Dep 9 e (0) P mation: (a) spatial spectrum of the black-eye pattern in Fig(al0
ist for the same phase shift valué®). For example, both ( level s togeth ith ore® o @ p
dodecagons and black-eye arrays were found for .05 gray-level spols logether with wave VEcior§a -, ds, g~ be-
(0) longing to different mode families, with instability ringslotted
<9\"<0.37. . . ]
circles for K= —0.55; (b) wave-vector diagram showing elemen-
tary intermode interactions.

B. Traveling waves

In the numerical simulations of the system having a spa- V. BLACK-EYE PATTERNS: NONLINEAR ANALYSIS
tial filter controlling the phase of a single off-axis element,
we used the following phase transfer function modg{n)
=y for =g, andQ(qg) =0 otherwise. We neglected diffrac-
tion so thatAgg(r,t)=AgLr,t). Numerical simulations of : ; i X i
Egs. (1—(3) were performed for various values of the pa- balloons. Its spatial spectra consist of the 24 highest-intensity
rametersk and d. Above the threshold valu>K(© we  SPectral components. N o _
observed the formation of traveling waves. Examples of trav- () Six spectral comp_onent:é{ (1=1,....6)with equal
eling wave patterns are given in Fig. 11. Slightly above thevave numbersq, forming a hexagon A-hexagon mode
threshold, the traveling waves had a harmonic shape. Whe@Mmily). _

K increased, the shape of the wave became nonsymmetric. (i) Six spectral componentsd) (j=1,...,6) having
Far above the threshold value, the wave profile consisted oFave numbeqp (D-hexagon mode family The D-hexagon
two regions, as seen in Fig. 12: a slow linear increase of thghode family is rotated byr/6 with respect to thé hexagon.
amplitudeu in the direction of propagation, and a brief in-  (iii) Twelve spectral componenqg) and q%) with wave
terval of abrupt fall. Waves with such a profile are known asnumberqg~q® belonging to two hexagon manifoldB{ and
shock \{vave$33]. When there was zero diffusion the shock §-hexagon mode familiesB andB hexagons are mutually
wave did not move. The shock wave speed depended on ”?Stated by an angle.

phase shift amplitude, with the maximum speed occurring From the black-eye pattern spatial spectrum in Figall3

at v~ 1.57. Whenq, was increased, the shock wave spatialWe can see that onlv spectral com one]@t)sand 0 belon
frequency linearly increased. Calculations were also per- ysp P NE Y

formed for an off-axis phase controlling element having al0 the instability ring and hence have positive eigenvalues

. j 2
finite size. The result was wavefront bending similar to thatMiygBO (active modes Here Ng?"g: —(1+dgg )
observed in our experiments; compare the shock waves ir 2Ksir’{7-r/2(qB’§/qd)2+v(o)]. The most distinguishing fea-
Fig. 6 and in Fig. 1(b). ture of the spectrum in Fig. 18 is that modes correspond-

Consider the black-eye pattern in Fig.(&0 This pat-
tern’s spatial spectrum is given in Fig. (BB together with
the instability rings corresponding to tiheandB instability
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ing to A- andD-hexagon mode families do not belong to the ﬂ —
instability rings, and hence have negative eigenvalugs K, ,b
<0 and\{’<0 (passive modés These modes would die if 0 9h ~4 Y
they were not driven by modes belongingBoand B mani- '
folds. F.
Qualitative analysis of the black-eye mode configuration B e A

suggests that black-eye pattern formation occurs due to in- et
termode interaction, resulting in the coupling of all four
hexagon mode manifolds. A schematic diagram of interac- 7 |
tions between modes belonging to different mode families is A B
shown in Fig. 18). From a consideration of the wave-
vector geometry in Fig. 13 we obtain the following mode -
synchronization conditions:

0.5

Qn=20gsin( $/2), I ] M
qD:\/qui (6) “Jll l a h‘hm : -

0 q ! 17 qlq,

0A=0p 05— 20pdeCos$/2). T
From this expression we find the angle betwd®rand B
hexagons to beg= ¢gz=arccos(13/14521.8°, and the
mode coupling parameter to he= uge=0g/qa= 7. The
dependence(»{?) =2q°(»(?)sing/2 is shown in Fig. 8 as
a function of the controlling phase shif{®). At the point
corresponding ta/?) = pge= 7/6, we have the resonant con-
dition for black-eye pattern formation, = 2. For this case,
modes belonging to theA-hexagon manifold are active
(\{’=0) and the corresponding wave vecta$ are lo-
cated inside the instability ring. When the parameter
=| (9 — pge| is increased, the mismatch between wave num-
bersg, andg? also increases, thus expanding the mismatch
between theA-hexagon manifold and the instability ring, as
seen in Fig. 1@). Increasinge changes the eigenvalue sign
(\¥’<0), and subsequently as the absolute vale¥)|
grow the black-eye patterns eventually disintegrate when
>0.3m7.

One question that naturally arises is why are the devel-
oped black-eye pattern modes belonging B> and FIG. 14. Evolution of the black-eye pattern spatial spectrum for
B-hexagon mode families always matched with the instabilX = ~0-55 (horizontal ling and v9=03m: (@ t=50r and (b) t

ity ring, but theA-hexagon mode manifold is not? In other =5000r. Azimuthally averaged spatial spectra are given along with

words, why does the system choose the resonance conditigﬁe neutral stability curveésolid lineg; the 2D spectra at the top

qB:qb over the conditiory,=q?? The physical reason for fight are shown with the instability circles of radigd andq®.
such a preference is related to the shape of the instability

curves shown in Fig. 14. Th8 branch of the instability
curve is narrower. As a result, any small mismatch between

wave-number valuess andqP causes a rapid decrease in the t€N- Atan earlier stage in the pattern formation proctéﬂgs
: a0 : . 14(a)] wave vectors of the most unstable perturbation com-
eigenvalues., =z . On the contrary, the same amplitude mis-

B.B" ponents are located at the bottom of the neutral stability
match between wave numberg andqg® does not produce as  cyrves(inside the instability rings In this casega~g2. With
great a decrease in the eigenvalugs . A similar phenom-  mode amplitude growth, interactions between modes having
enon that occurred with the dodecagon pattern was analyzegave numbers belonging to different instability balloons lead
on the basis of mode amplitude equations[1d]. It was  to wave-number amplitude], change A-hexagon mode
shown that due to the difference in instability balloon width manifold mismatch and the appearance of additional spec-
the wave vectors were locked into the more narrow one.  tral components with wave numbags-qp, corresponding to

The process oB- and B-hexagon manifold locking is the D-hexagon mode familyFig. 14b)]. For the stationary
illustrated in Fig. 14, where spatial spectrum evolution forstate black-eye pattern in Fig. (b} the synchronization con-
the functionu(r,t) is shown at the beginning of the pattern ditions(6) [ = uge and ¢ = ¢ge| obtained from geometrical
formation process, and for the stationary state black-eye patonsideration are sufficiently accurate.

AL J]“L“l

qD qB q/qd
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For the nonlinear analysis of black-eye patterns we use a
Neumann-series approaf87,14]. This technique is applied
here to derive the system of amplitude equations for the
mode configuration shown in Fig. 13. Small perturbations of
the system’s stationary state spatially uniform solution in-
volve four hexagon manifolds:

6
U =3 {ayexdia] - rl+d;exdiodr]
2

+by(texdiod - r1+b;(exdiqd’ -1}, (7

wherea;(t), dj(t), b; (t) andb; j(t) are the mode amplitudes.

The wave vectorsqA q(D’) qu andqg) satisfy the condi-

tions (6) for gg=qP.

Substitute perturbatior7) into Egs. (1)—(3) and keep
only terms up to the second order in the Neumann-series
expansion. Fo(r,t) to be real, assume,=a;, as=ay,,
ag=ag, and the same condition for the amplitudis b,

and Bj. The resulting equations for the mode amplitudes
forming the black-eye pattern are

7h; + b= 4KD{$,Q(b;) +2[ CoQ(by; 4 1) Qb 1 27)
+PapQ(b))Q(a)) + PageQ(ag 1) Q(d))
+PapQ(dgj 1) Q(byj 2T}

70+ B, =4KD{S,Q(B)) + 2[CyQ(B};+ 1) Q(B(; 4 2)
+PapQ(b)) Q(a)) + P,gnQ(ayj 27 Q(d))
+PgpQ(dyj 1 2) Qb 1)1,

7a;+2a;=4KD(S,Q(a)) +2{CaQ(ay;+ 1)) Q(ayj 1 2))
+PpaQ(b)) Qb)) + Py [ Q(dy 4 2)) Q& + 1))
+Q(dyj+ 1) Qa1 27)]

+ Poad Q(byj 1 2)Q(dyj + 2)
+Q(byj 1 1)Q(dgj 411D, ®8)

. 2.7 2
Pap=c0§ 5 (da/0a)"~ 7 (d5/da)

an
_CO’E(E(qB/qd)2+V(O) ,

Pad:1_005<g(QD/Qd)2+V(O)

77 2. T 2

Pg4a=cO0 E(QD/%) _E(QA/qd)
—COS(g(qA/qd)zﬂ(o)),

77 2. T 2

P4p=CO0 E(QD/%) _E(qB/qd)

_Cos(g(QB/Qd)2+ V(O)) ,

v
Pbd:l_co{g(qD/qd)z"' !

Padpb=2 005(2( aldg)? ——(qD/qd) )

T
—COS(E(qB/qd)Zﬂ(O)

Papa=2

—cog(qolqd)zﬂ“’)

de+dj:4KD(SdQ(dj)+2{CdQ(d[j+l])Q(d[j+2])

+PadQ(ayj+17))Q(ayj+27)

+Pand Q(b))Q(agj+17) + Qb)) Q(ayj+ 2]

+ PpgQ(by; +2])Q(E[j -
In Egs. (8),

Sa'b’d:Sin

'
E(qA,B,D/qd)Z"' 0

ar
Capd=1- COS(g(QA,B,D 1qg)*+ V(O)) ,

CQO)I=A)),
D=HJ-3=lJo(aj)Jo(bj)Jo(bj)Jo(bj), and[j]=(jmod3). The
coefficients in Eqs(8) are expressed as follows:

A complete analysis of the system of amplitude E@&S.
and the stability properties of the solutions is beyond the
framework of the present study and will be done elsewhere.
Nevertheless, it can be shown that the solution of Egjsin

the formb; = |bj|=b, andb;b,b;<0 (negative hexa-
gons, and(aj|—a anda;a,a;>0 (positive hexagons |d|

=0, corresponds to the hexagonal array of black eyes. In
contrast with the dodecagon-type pattern consisting of four
positive hexagonal manifoldd4], black-eye pattern forma-
tion occurs due to the nonlinear coupling of hexagonal mani-
folds having different signs.

VI. CONCLUSION

By controlling the feedback field spectral component
phase in a nonlinear system with LCLV and diffractive feed-
back, we were able to realize controlled transitions between
spatio-temporal regimes, and to obtain patterns not previ-
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