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Nonlinear dynamics in an optical system with controlled two-dimensional feedback:
Black-eye patterns and related phenomena

M. A. Vorontsov1 and B. A. Samson1,2

1Army Research Laboratory, Adelphi, Maryland 20783
2Institute of Physics, Belarus Academy of Sciences, Minsk, Belarus

~Received 3 October 1997!

We present experimental and theoretical results of spontaneous optical pattern formation in a nonlinear
optical system. The nonlinear optical system we considered had a controllable phase-only spatial Fourier filter
placed in the system’s diffractive feedback loop. A change in feedback field spatial spectral component phase
resulted in a transition between dynamic regimes, as observed in both experiments and numerics. Patterns
originating from interactions between spatial modes belonging to different instability bands~black-eye pat-
terns, decagons, etc.! were observed, as well as localized states and shock traveling waves.
@S1050-2947~98!02304-X#

PACS number~s!: 42.65.Sf, 47.54.1r
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I. INTRODUCTION

Pattern formation is one of the fastest growing fields
modern optics. Both the number of nonlinear optical syste
capable of generating transverse patterns@1–10# and the
number of patterns that can coexist and compete in the s
system@11–14# continue to increase. From a beginning wi
simple patterns originating from nonlinear interactions b
tween only a few modes@1,15#, pattern formation studies
now involve analysis of sophisticated spatio-temporal
gimes that include interactions of dozens of modes@14,16#,
formation of localized states@17–19# and transverse travel
ing waves@20#, the excitation of spatio-temporal oscillation
@21#, and chaotic regimes@22#. A promising new trend in this
field is spatio-temporal dynamics control@23–25#.

We consider here a nonlinear optical system based o
liquid-crystal light-valve~LCLV ! phase modulator with dif-
fractive feedback. An additional phase-only spatial Fou
filter ~computer-controlled multielement spatial phase mo
lator! is placed into the feedback loop to control phase sh
of the feedback field spatial spectral components.

In conventional nonlinear systems with diffractive fee
back such as the Kerr-slice feedback mirror system@26# and
LCLV or liquid crystal ~LC! slice @27,5# based systems, pa
tern formation dynamics depend on feedback field diffr
tion, which leads to spatial frequency dependent phase s
fd between feedback field spectral components. For fr
space propagation these phase shifts are proportional to
square of the transverse wave vectorq: fd(q)5q2L/(2k),
whereq5uqu is the transverse wave number,L is the length
of diffraction, andk52p/l @15#. In the nonlinear optical
system considered here we introduce additional phase s
fc(q) to provide control of the feedback field spectral co
ponent phase. This results in the generation of symme
patterns, waves, localized states, and spatio-temporal in
bilities.

Experiments were performed using simple phase Fou
filters to control the phase within a small spectral dom
region. In both theory and numerics we assume control o
single spectral componentfc(q0)5n, wheren is the phase
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shift amplitude. Depending on the wave vectorq0 location
and the phase shift amplituden, we observed the formation
of spontaneous patterns including hexagons, rolls, black-
patterns, and decagons, as well as localized states and
eling waves. Our theoretical analysis and numerical simu
tions for the black-eye patterns are in good agreement w
the experimental data.

II. NONLINEAR SYSTEM WITH CONTROLLED
FEEDBACK: EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup schematically shown in Fig. 1
the LCLV diffractive feedback system first introduced
@27#, with an additional Fourier spatial filter located in th

FIG. 1. Experimental setup and~a!–~c! LC phase modulator
electrode maps:~a! Zernike-type spatial filter,~b! spatial filter com-
posed of concentric rings,~c! spatial filter controlling off-axis spec-
tral component. Gray levels indicate different voltage amplitud
applied to the corresponding LC elements. White hexagons co
spond to zero voltage~no phase shift!. Vectorq0 shows the location
of an off-axis element.
3040 © 1998 The American Physical Society
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57 3041NONLINEAR DYNAMICS IN AN OPTICAL SYSTEM . . .
feedback loop. The Fourier spatial filter consisted of len
L1 andL2 with focal lengthF5100 cm, and a Hex-127 LC
spatial phase modulator from Meadowlark Optics placed
the joint focal plane. This phase modulator has 127 indivi
ally addressed hexagonal LC cells, as shown in Figs. 1~a!–
1~c!. The size of each LC cell is 1.0 mm. Phase modulat
depth ranged from 0 to 2p (l50.514 mm! and was con-
trolled by a computer. The LCLV was located in the fro
focal plane ofL1. The length of the diffractive pathL ~from
z0 5F to z15F1L in Fig. 1 was varied by changing th
distancez between lensL2 and the LCLV’s photoconductive
layer. The casez1,F corresponds to negative feedback d
fractive lengths (L,0), as described in@28#.

In our experiments we used spatial filters with phase-o
transfer functions such asT(q)5exp@iQ(q)#, where q
5rF /(lF) and rF is a transverse vector in the spatial filt
Fourier plane. FunctionQ(q)[Q(rF) can be represented i
the form Q(rF)5( j 51

N n jSj (rF), where n j are controlling
voltages applied to the LC elements andSj (rF) are stepwise
response functions corresponding to each LC elementN
5127). The following phase filters were implemented.

~i! A Zernike-type spatial filter@Fig. 1~a!#. The controlling
voltage was applied only to the central (j 51) LC element
(n15n (0) and n j50 for j .1). This filter provided phase
control only for low-frequency spectral components. Sin
the diffraction-limited size of the input beam spatial spe
trum was comparable to the LC element size, this Fou
filter can be considered as a Zernike-type filter that cont
the phase of the zero spectral component@29#.

~ii ! As shown in Fig. 1~b!, a filter providing phase contro
to the central element and the elements in the two conce
rings surrounding the central element (n15n (0),n j5n (1) for
j 52, . . . ,7 andn j5n (2) for j 58, . . .,19).

~iii ! Shown in Fig. 1~c!, a filter controlling the phase of a
single off-axisl th elementn l5n (0), lÞ1, andn j Þ l50.

The experimental setup shown in Fig. 1 was also use
analyze patterns originating from nonlinear interactions
tween an inserted image’s spatial components and its
induced modes~stimulated patterns@30#!. Masks ~inserted
images! having an intensity transmission coefficientM (r)
were placed at the LCLV photoconductive layer planez1
5F1L.

B. Zero spectral component control

By controlling the phase shift of the feedback field ze
spectral component, we were able to generate various
terns. Some of the patterns we observed are shown in Fig
A negative diffractive length with various voltages applied
the phase modulator central element was used for Figs. 2~a!–
2~d!. Within the phase shift rangen (0)'0 to n (0)'0.35p we
found only the hexagon-type patterns shown in Fig. 2~a!. For
0.35p,n (0),0.4p these hexagon-type patterns were tra
formed into a disordered array of patterns resembling bl
eyes, seen in Fig. 2~b!. When the input field intensity wa
increased, instead of black eyes the patterns shown in
2~c! were observed. Further increases in the phase shift v
n (0) resulted in a decrease in the number of black ey
When 0.5p,n (0),0.75p, patterns consisting of only a few
localized black eyes visible on a high-frequency hexag
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background, as seen in Fig. 2~d!, appeared. We did not ob
serve regular patterns in the range 0.75p,n (0),2.0p.

When the diffractive length was positive and asn (0) was
increased, we found hexagonal type patterns (0,n (0)

,0.5p), islands of hexagons as in Fig. 2~e! (0.6p,n (0)

,0.75p), localized bright spots on a hexagon-type bac
ground (0.8p,n (0),0.9p), and the complicated patter
shown in Fig. 2~f!.

Far field patterns~spatial spectra of the field atz1) that
occur far beyond the threshold conditions for variousn (0) are
presented in Fig. 3. In all observed cases the spatial spe
consisted of concentric rings~instability cones@11# or insta-
bility balloons @31#! that determine the location of the mo
unstable spatial mode wave vectors. Near the onset o
instability threshold the spatial spectrum had six dominat
well-pronounced components located on the instability ri
By controlling the phase of the zero-order spectral com
nent, we were able to change the instability ring radii, illu
trated in Figs. 3~a!–3~c!. The spatial spectrum in Fig. 3~d!

FIG. 2. Experimentally observed transverse intensity distri
tions of the output beam~planez5z1) corresponding toL5220
cm @~a!–~d!# andL520 cm@~e! and~f!# for different n (0): ~a! hex-
agonal array (n (0)50), ~b! disordered array of black eyes (n (0)

50.4p), ~c! black eyes with pupils (n (0)50.4p), ~d! localized
black eyes (n (0)50.65p), ~e! island of localized bright spots
(n (0)50.75p), ~f! optical squirms (n (0)51.1p). The white square
on the bottom right represents 1 mm for~a! and~e!, and 0.5 mm for
the rest.
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3042 57M. A. VORONTSOV AND B. A. SAMSON
corresponds to the black-eye pattern shown in Fig. 2~b!. In
comparison with the spatial spectra for hexagonal-type
terns, the spectrum for the black-eye pattern has less dis
instability rings and a wider instability spectral band.

FIG. 3. Output field spatial spectra for different phase shift a
plitudes n (0): ~a! n (0)50, ~b! n (0)5p/2, ~c! n (0)5p, ~d! n (0)

50.4p. L520 cm for~a!–~c! andL5220 cm for~d!. The central
black spot diameter is approximately equivalent to a single LC
size ~;1 mm!.
t-
ct

Optical noise in the LCLV caused by inhomogeneity
sensitivity of the LCLV’s photosensitive layer, as well a
inhomogeneities in the input beam phase and intensity
tributions, did not allow us to obtain regular patterns for t
entire laser beam aperture. In order to stabilize the ou
patterns, amplitude masksM (r) with different symmetries
were placed into the feedback loop, leading to the format
of stimulated patterns. A hexagonal gray scale mask of
type M (r)}( j 51

3 @cos(qj•r)11#, where vectors qj ( j
51,2,3) form an equilateral triangle, was used to stabil
the irregular black-eye array in Fig. 2~b!. The mask’s spatial
frequency ofqA5uqj u was approximately equal to the spati
frequencyqd5Apk/L for the hexagonal array in the syste
without Fourier filter (n (0)50). In the presence of the mas
the irregular black-eye pattern in Fig. 2~b! was transformed
into the black-eye hexagonal array shown in Fig. 4~a!.

To analyze the effect of different spatial spectral comp
nents on black-eye pattern formation, we placed an am
tude low-pass filter with variable cutoff frequencyqcut

5r F
(0)/(lF) into the system’s Fourier plane. When the am

plitude filter radiusr F
(0) was decreased, we observed a tra

sition from the black-eye hexagonal array shown in Fig. 4~a!
to the conventional hexagonal pattern in Fig. 4~b!.

Black eyes arranged in a hexagon lattice were first
served in a chemical reaction-diffusion experiment:
chlorite-iodide-malonic acid reaction in a thin gel layer rea
tor @32#. These chemically produced black-eye patterns
peared to have spectral components with different w
numbers, similar to the pattern in Figs. 4~a! and 4~c!. This
suggests a common origin of the black-eye pattern in b
experiments.

-

ll
l

.

FIG. 4. Stimulated patterns~a!
and~b! with corresponding spatia
spectra ~c! and ~d! in a system
without @~a! and~c!# and with@~b!
and ~d!# an additional low-pass
amplitude filter @dashed circle in
~d!# placed in front of the phase
modulator. Arrows correspond to
wave vectorsqA , qB , andqD used
for the pattern formation analysis
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FIG. 5. Intensity distribution~a! and far-field spectrum~b! for the spatial filter shown in Fig. 1~b! (n (0)51.1p, n (1)50.1p, andn (2)

51.6p).
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C. Phase filter composed by concentric rings

Using the phase filter shown in Fig. 1~b!, we observed the
formation of spontaneous patterns resulting from interacti
between spatial modes with wave vectorsql having the two
primary values ofuql u5qA and uql u5qB @14#. The spontane-
ous pattern shown in Fig. 5~a! is composed of two coupled
hexagons whose wave vectors yield the resonance cond
qB'A3qA . Spectral components corresponding to the s
ond spatial harmonic with wave numberq252qA are clearly
seen in this pattern’s spatial spectrum, shown in Fig. 5~b!.

D. Off-axis spectral component phase control

A phase shift in the off-axis spectral component in t
feedback was acheived in two ways. The first technique
to apply a voltagen to a noncentral LC phase modulat
element. A second method involved shifting the Zernik
type phase filter in a transverse direction with respect to
laser beam longitudinal axis. In the latter case, we were a
to control the phase of off-axis spectral components havin
wave number value less than the size of an individual
element.

In experiments with off-axis spectral component pha
control we observed waves traveling across the beam a
ture, as shown in Fig. 6. The wave propagation direction
was parallel to the vectorq0 corresponding to the center o
the controlled off-axis LC element in the Fourier plane@Fig.
1~c!#. The traveling wave amplitude had an abrupt fro
similar to shock waves studied in hydrodynamics~see, for
example,@33#!. The front of this wave typically was ben
When uq0u was increased, the distortion of the front d
creased while the wave’s spatial frequency increased. Wi
the interval 0,n,p, traveling shock waves were not ob
served. The speed and amplitude of these shock waves
a function of the phase shift. The maximum value of t
speed corresponded to a phase shift ofn'2p/2.

III. MATHEMATICAL MODEL
AND LINEAR STABILITY ANALYSIS

Consider the mathematical model for a LCLV diffractiv
feedback system with spatial filtering@34#. The field com-
s
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plex amplitude in the Fourier filter output planeAFF(r,t) is
linked to the complex amplitudeAinexp@iu(r,t)# of the wave
reflected from the LCLV’s internal mirror by the convolutio
integral

FIG. 6. Snaphots of near-field intensity distribution taken
three consequent moments separated in time by 30 ms forn5
2p/2. The phase modulator was shifted by 0.5 mm in the tra
verse direction (L520 cm!, and the aperture size was 15 mm.
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3044 57M. A. VORONTSOV AND B. A. SAMSON
AFF~r,t !5E Ainexp@ iu~r8,t !#h~r82r!d2r8, ~1!

whereu(r,t) is a phase modulation introduced into the inp
plane waveAin by the LCLV, andh(r) is the Fourier trans-
form of the spatial filter transfer functionT(q)5exp@iQ(q)#.
Diffraction over the distanceL obeys the free-space prop
gation equation for the complex amplitudeA(r,z,t):

22ik
]A

]z
5D'A, ~2!

with boundary conditionsA(r,0,t)5AFF(r,t) in the planez0.
The phase modulationu(r,t) depends on the feedback field
intensity distribution at the LCLV’s photoconductive lay
~planez1). In a simplified model describing LCLV dynam
ics, the phaseu(r,t) can be described by a nonlinear diffu
sion equation with Kerr-type nonlinearity@25,4#:

t
]u

]t
1u5dD'u1KI FB~r,t !, ~3!

where t and d are the LCLV time response and diffusio
coefficients, K is the control parameter, I FB(r,t)
5M (r)uAFB(r,t)u2 is the feedback field intensity at the ph
toconductor layer, andAFB(r,t)5A(r,L,t). A more detailed

FIG. 7. Neutral stability curves for various phase shiftsn (0): ~a!
n (0)50.25p ~dashed line! and n (0)50.75p ~solid line!; ~b! n (0)

51.25p ~dashed line! andn (0)51.75p ~solid line!.
t

mathematical model of LCLV dynamics that accounts
threshold and saturation properties can be found in@4,35#.

First consider dynamics for the system of Eqs.~1!–~3! in
the absence of the inserted mask@M (r)51#. From linear
stability analysis one can obtain the expression for a neu
stability surface@34#:

K th5
11duqu2

2sin@Luqu2/2k1Q~0!2Q~q!#
, ~4!

whereq is the perturbation transverse wave vector.
The spatially uniform solution to the system of Eqs.~1!–

~3! becomes unstable when the control parameteruKu ex-
ceeds a threshold valueK (0). The threshold valueK (0) and
the corresponding wave vectorsq(0) for the most unstable
modes are determined from the conditionK (0)5minuKth(q)u.
For a rotationaly invariant spatial filterQ(q)5Q(q), we can
write K th(q)5K th(q). In the case of weak diffusion the neu
tral stability curveK th(q) has several local minima with ap
proximately the same threshold valuesKa'Kb'K (0). In this
case the unstable mode wave vectors are located at se
instability rings with radiiqa, qb, and so forth.

For a Zernike-type spatial filter@Q(q)5n (0) for q50 and
Q(q)50 otherwise# the neutral stability curves~instability
balloons! are given by

K th5
11dq2

2sinS p

2
~q/qd!21n~0!D ~qÞ0!, ~5!

whereqd5pA2/lL. The first two instability balloons (A and
B) are shown in Fig. 7. The locations of the instability ba
loon minima inq space can be controlled by changing t
zero spectral component phasen (0), as shown in Fig. 8 for
the first two instability balloons (A andB). Nonlinear inter-
actions between unstable modes with wave numbers in

FIG. 8. Dependence of the instability ring radiiqa andqb on the
phase shiftn0 ~solid lines!. The dashed line corresponds to th
synchronization conditionqA52qbsin(f/2) for the black-eye pat-
terns~defined below!.
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57 3045NONLINEAR DYNAMICS IN AN OPTICAL SYSTEM . . .
vicinity of different instability rings~i.e., belonging to differ-
ent instability balloons! give rise to the formation of the
patterns observed in our experiments.

IV. NUMERICAL SIMULATIONS

A. Zernike-type filter: Black-eye patterns

Numerical analysis of the original system of Eqs.~1!–~3!
was performed with 1283128 and 2563256 uniform square
grids. The diffusion coefficient was set to zero in order
have an identical minimum threshold value for different
stability balloons (Ka5Kb5K (0)) and thus provide effective
interaction between active modes having different wa
numbers. In our calculations we assumed the presence
low-pass amplitude filter in the Fourier plane of the optic
system feedback loop. This filter blocks all field spect
components with wave numberq.qcut having the cutoff fre-
quencyqcut53qd . A fast Fourier transform routine was use
to calculate the convolution integral~1! and to solve the
free-space propagation equation~2!. The value of the contro
parameteruKu was near the onset of an instability thresho

FIG. 9. Numerically obtained stationary state patterns~a! and
~b! with corresponding spatial spectra~c! and~d! for K520.55 and
L520.02: ~a! dodecagon pattern (n (0)520.15p), ~b! decagon
pattern (n (0)51.25p). Schematic diagrams illustrate the elementa
interactions between spectral components having different w
vectors for~e! dodecagon and~f! decagon patterns. Instability ring
are shown by circles. The propagation lengthL is normalized by
ka2/(2p), wherea is the transverse pattern area size.
e
f a
l
l

:

uKu51.1K (0), where K (0)50.5. As an initial condition
u(r,t50) we used realizations of ad-correlated random
field with small amplitudeuu(r,t50)u,0.1.

By varying the phase shiftn (0) we observed transitions
between patterns having different symmetries. In addition
hexagons, we obtained steady-state patterns that occu
due to the nonlinear coupling of modes with different wa
numbers. The dodecagon-type patterns shown in Fig.~a!
appeared in the phase shift amplitude range20.2p,n (0)

,0.3p. This type of pattern was observed previously in n
merical simulations of the Kerr slice and feedback mirr
system and in the nonlinear interferometer with diffracti
feedback @36,14#. A new pattern with tenfold symmetry
~‘‘decagon’’!, shown in Fig. 9~b!, was observed in the rang
1.2p,n (0),1.45p. The spatial spectra for the dodecag
and decagon patterns along with the corresponding m
configurations illustrating nonlinear mode coupling a
shown in Figs. 9~c!–9~f!. The mode coupling parameterm
5qb/qa characterizing interaction between spatial modes
longing to different instability rings ism5A5'1.93 for the

ve

FIG. 10. Numerically obtained stationary state patterns forK
520.55, L520.01, and various phase shift amplitudesn (0): ~a!
regular array of black eyes (n (0)50.25p), ~b! irregular black eyes
(n (0)50.5p), ~c! localized states (n (0)50.8p), ~d! hexagonal array
with low-frequency modulated amplitude (n (0)51.0p).

FIG. 11. Traveling wave patterns withK520 andn51.5p: ~a!
phase control of the single spectral componentq5q0, ~b! phase
control of spectral components in the circular spectral domain c
tered atq5q0. The radius of the domain is equal to the LC eleme
size.
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3046 57M. A. VORONTSOV AND B. A. SAMSON
dodecagon, andm52cosp/5'1.62 for the decagon pattern
Black-eye patterns were observed in numerical simu

tions within the interval 0.05p,n (0),1.0p (L,0). As
shown in Fig. 10, whenn (0) was increased beyondp/2 the
black-eye hexagon lattice@Fig. 10~a!# first transformed into
an irregular array@Fig. 10~b!#, and then into localized state
@Fig. 10~c!#. At n (0)5p, the black-eye patterns were re
placed by low-frequency modulated hexagons@Fig. 10~d!#.
Depending on initial conditions, different patterns can co
ist for the same phase shift valuen (0). For example, both
dodecagons and black-eye arrays were found for 0.0p
<n (0)<0.3p.

B. Traveling waves

In the numerical simulations of the system having a s
tial filter controlling the phase of a single off-axis eleme
we used the following phase transfer function model:Q(q)
5n for q5q0 andQ(q)50 otherwise. We neglected diffrac
tion so thatAFB(r,t)5AFF(r,t). Numerical simulations of
Eqs. ~1!–~3! were performed for various values of the p
rametersK and d. Above the threshold valueK.K (0) we
observed the formation of traveling waves. Examples of tr
eling wave patterns are given in Fig. 11. Slightly above
threshold, the traveling waves had a harmonic shape. W
K increased, the shape of the wave became nonsymme
Far above the threshold value, the wave profile consiste
two regions, as seen in Fig. 12: a slow linear increase of
amplitudeu in the direction of propagation, and a brief in
terval of abrupt fall. Waves with such a profile are known
shock waves@33#. When there was zero diffusion the sho
wave did not move. The shock wave speed depended on
phase shift amplituden, with the maximum speed occurrin
at n'1.5p. Whenq0 was increased, the shock wave spat
frequency linearly increased. Calculations were also p
formed for an off-axis phase controlling element having
finite size. The result was wavefront bending similar to th
observed in our experiments; compare the shock wave
Fig. 6 and in Fig. 11~b!.

FIG. 12. Profile of traveling wave in Fig. 11~a! ~x is dimension-
less!. The direction of wave propagation is indicated by the arro
-
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-
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V. BLACK-EYE PATTERNS: NONLINEAR ANALYSIS

Consider the black-eye pattern in Fig. 10~a!. This pat-
tern’s spatial spectrum is given in Fig. 13~a!, together with
the instability rings corresponding to theA andB instability
balloons. Its spatial spectra consist of the 24 highest-inten
spectral components.

~i! Six spectral componentsqA
( j ) ( j 51, . . . ,6) with equal

wave numbersqA forming a hexagon (A-hexagon mode
family!.

~ii ! Six spectral componentsqD
( j ) ( j 51, . . . ,6) having

wave numberqD (D-hexagon mode family!. TheD-hexagon
mode family is rotated byp/6 with respect to theA hexagon.

~iii ! Twelve spectral componentsqB
( j ) andqB̃

( j ) with wave
numberqB'qb belonging to two hexagon manifolds (B- and
B̃-hexagon mode families!. B and B̃ hexagons are mutually
rotated by an anglef.

From the black-eye pattern spatial spectrum in Fig. 13~a!,
we can see that only spectral componentsqB

( j ) andqB̃
( j ) belong

to the instability ring and hence have positive eigenvalu
lB,B̃

( j )
>0 ~active modes!. Here lB,B̃

( j )
52(11dqB,B̃

2 )
12Ksin@p/2(qB,B̃ /qd)

21n(0)#. The most distinguishing fea
ture of the spectrum in Fig. 13~a! is that modes correspond

.

FIG. 13. Schematic diagram illustrating black-eye pattern f
mation: ~a! spatial spectrum of the black-eye pattern in Fig. 10~a!

~gray-level spots! together with wave vectorsqA
(1) , qB

(1) , qB̃
(1) be-

longing to different mode families, with instability rings~dotted
circles! for K520.55; ~b! wave-vector diagram showing elemen
tary intermode interactions.
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57 3047NONLINEAR DYNAMICS IN AN OPTICAL SYSTEM . . .
ing to A- andD-hexagon mode families do not belong to t
instability rings, and hence have negative eigenvalueslA

( j )

,0 andlD
( j ),0 ~passive modes!. These modes would die i

they were not driven by modes belonging toB and B̃ mani-
folds.

Qualitative analysis of the black-eye mode configurat
suggests that black-eye pattern formation occurs due to
termode interaction, resulting in the coupling of all fo
hexagon mode manifolds. A schematic diagram of inter
tions between modes belonging to different mode familie
shown in Fig. 13~b!. From a consideration of the wave
vector geometry in Fig. 13 we obtain the following mod
synchronization conditions:

qA52qBsin~f/2!,

qD5A3qA , ~6!

qA
25qD

2 1qB
222qDqBcos~f/2!.

From this expression we find the angle betweenB and B̃
hexagons to bef5fBE5arccos(13/14)'21.8°, and the
mode coupling parameter to bem5mBE5qB /qA5A7. The
dependenceqA(n (0))52qb(n (0))sinf/2 is shown in Fig. 8 as
a function of the controlling phase shiftn (0). At the point
corresponding ton (0)5nBE5p/6, we have the resonant con
dition for black-eye pattern formation:qA5qa. For this case,
modes belonging to theA-hexagon manifold are activ
(lA

( j )>0) and the corresponding wave vectorsqA
( j ) are lo-

cated inside the instability ring. When the parametere
5un (0)2nBEu is increased, the mismatch between wave nu
bersqA andqa also increases, thus expanding the misma
between theA-hexagon manifold and the instability ring, a
seen in Fig. 13~a!. Increasinge changes the eigenvalue sig
(lA

( j ),0), and subsequently as the absolute valuesulA
( j )u

grow the black-eye patterns eventually disintegrate whee
.0.3p.

One question that naturally arises is why are the de
oped black-eye pattern modes belonging toB- and
B̃-hexagon mode families always matched with the insta
ity ring, but theA-hexagon mode manifold is not? In oth
words, why does the system choose the resonance cond
qB5qb over the conditionqA5qa? The physical reason fo
such a preference is related to the shape of the instab
curves shown in Fig. 14. TheB branch of the instability
curve is narrower. As a result, any small mismatch betw
wave-number valuesqB andqb causes a rapid decrease in t
eigenvalueslB,B̃

( j ) . On the contrary, the same amplitude m
match between wave numbersqA andqa does not produce a
great a decrease in the eigenvalueslA

( j ) . A similar phenom-
enon that occurred with the dodecagon pattern was anal
on the basis of mode amplitude equations in@14#. It was
shown that due to the difference in instability balloon wid
the wave vectors were locked into the more narrow one.

The process ofB- and B̃-hexagon manifold locking is
illustrated in Fig. 14, where spatial spectrum evolution
the functionu(r,t) is shown at the beginning of the patte
formation process, and for the stationary state black-eye
n
n-

-
is

-
h

l-

l-

ion

ty

n

ed

r

t-

tern. At an earlier stage in the pattern formation process@Fig.
14~a!# wave vectors of the most unstable perturbation co
ponents are located at the bottom of the neutral stab
curves~inside the instability rings!. In this caseqA'qa. With
mode amplitude growth, interactions between modes hav
wave numbers belonging to different instability balloons le
to wave-number amplitudeqA change (A-hexagon mode
manifold mismatch! and the appearance of additional spe
tral components with wave numbersq'qD corresponding to
the D-hexagon mode family@Fig. 14~b!#. For the stationary
state black-eye pattern in Fig. 14~b! the synchronization con
ditions~6! @m5mBE andf5fBE# obtained from geometrica
consideration are sufficiently accurate.

FIG. 14. Evolution of the black-eye pattern spatial spectrum
K520.55 ~horizontal line! and n (0)50.3p: ~a! t550t and ~b! t
55000t. Azimuthally averaged spatial spectra are given along w
the neutral stability curves~solid lines!; the 2D spectra at the top
right are shown with the instability circles of radiusqa andqb.
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For the nonlinear analysis of black-eye patterns we us
Neumann-series approach@37,14#. This technique is applied
here to derive the system of amplitude equations for
mode configuration shown in Fig. 13. Small perturbations
the system’s stationary state spatially uniform solution
volve four hexagon manifolds:

ũ~r,t !5(
j 51

6

$aj~ t !exp@ iqA
~ j !

•r#1dj~ t !exp@ iqD
~ j !

•r#

1bj~ t !exp@ iqB
~ j !

•r#1 b̃ j~ t !exp@ iqB̃
~ j !

•r#%, ~7!

whereaj (t), dj (t), bj (t), andb̃ j (t) are the mode amplitudes
The wave vectorsqA

( j ) , qD
( j ) , qB

( j ) , andqB̃
( j ) satisfy the condi-

tions ~6! for qB5qb.
Substitute perturbation~7! into Eqs. ~1!–~3! and keep

only terms up to the second order in the Neumann-se
expansion. Forũ(r,t) to be real, assumea45a1 , a55a2,
a65a3, and the same condition for the amplitudesdj , bj ,
and b̃ j . The resulting equations for the mode amplitud
forming the black-eye pattern are

tḃ j1bj54KD$SbQ~bj !12@CbQ~b@ j 11#!Q~b@ j 12#!

1PabQ~ b̃ j !Q~aj !1PadbQ~a@ j 11#!Q~dj !

1PdbQ~d@ j 11#!Q~ b̃ @ j 12#!#%,

t ḃ̃ j1 b̃ j54KD$SbQ~ b̃ j !12@CbQ~ b̃ @ j 11#!Q~ b̃ @ j 12#!

1PabQ~bj !Q~aj !1PadbQ~a@ j 12#!Q~dj !

1PdbQ~d@ j 12#!Q~b@ j 11#!#%,

tȧ j1aj54KD„SaQ~aj !12$CaQ~a@ j 11#!Q~a@ j 12#!

1PbaQ~bj !Q~ b̃ j !1Pda@Q~d@ j 12#!Q~a@ j 11#!

1Q~d@ j 11#!Q~a@ j 12#!#

1Pbda@Q~b@ j 12#!Q~d@ j 12#!

1Q~ b̃ @ j 11#!Q~d@ j 11#!#%…, ~8!

tḋ j1dj54KD„SdQ~dj !12$CdQ~d@ j 11#!Q~d@ j 12#!

1PadQ~a@ j 11#!Q~a@ j 12#!

1Pabd@Q~bj !Q~a@ j 11#!1Q~ b̃ j !Q~a@ j 12#!#

1PbdQ~b@ j 12#!Q~ b̃ @ j 11#!%….

In Eqs. ~8!, Q(•)[J1(•)/J0(•),
D5) j 51

3 J0(aj )J0(bj )J0(bj )J0( b̃ j ), and@ j #5( j mod3). The
coefficients in Eqs.~8! are expressed as follows:

Sa,b,d5sinS p

2
~qA,B,D /qd!21n~0!D ,

Ca,b,d512cosS p

2
~qA,B,D /qd!21n~0!D ,
a

e
f
-

s

s

Pab5cosS p

2
~qA /qd!22

p

2
~qB /qd!2D

2cosS p

2
~qB /qd!21n~0!D ,

Pad512cosS p

2
~qD /qd!21n~0!D ,

Pda5cosS p

2
~qD /qd!22

p

2
~qA /qd!2D

2cosS p

2
~qA /qd!21n~0!D ,

Pdb5cosS p

2
~qD /qd!22

p

2
~qB /qd!2D

2cosS p

2
~qB /qd!21n~0!D ,

Pbd512cosS p

2
~qD /qd!21n~0!D ,

Padb52FcosS p

2
~qA /qd!22

p

2
~qD /qd!2D

2cosS p

2
~qB /qd!21n~0!D G ,

Pbda52FcosS p

2
~qB /qd!22

p

2
~qD /qd!2D

2cosS p

2
~qA /qd!21n~0!D G ,

Pabd52FcosS p

2
~qA /qd!22

p

2
~qB /qd!2D

2cosS p

2
~qD /qd!21n~0!D G .

A complete analysis of the system of amplitude Eqs.~8!
and the stability properties of the solutions is beyond
framework of the present study and will be done elsewhe
Nevertheless, it can be shown that the solution of Eqs.~8! in
the form bj5 b̃ j , ubj u5b, and b1b2b3,0 ~negative hexa-
gons!, and uaj u5a anda1a2a3.0 ~positive hexagons!, udj u
50, corresponds to the hexagonal array of black eyes
contrast with the dodecagon-type pattern consisting of f
positive hexagonal manifolds@14#, black-eye pattern forma
tion occurs due to the nonlinear coupling of hexagonal ma
folds having different signs.

VI. CONCLUSION

By controlling the feedback field spectral compone
phase in a nonlinear system with LCLV and diffractive fee
back, we were able to realize controlled transitions betw
spatio-temporal regimes, and to obtain patterns not pr
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ously observed in optics. Analysis of black-eye patte
composed of modes with both positive and negative eig
values demonstrates the importance of interaction betw
active and passive modes in the pattern formation proc
Further use of high-resolution spatial phase modulators
create wide opportunities for design and control of a vari
of dynamical regimes.
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