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Low-temperature Bose-Einstein condensates in time-dependent traps:
Beyond theU (1) symmetry-breaking approach
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We present a method to calculate the dynamics of very-low-temperature Bose-Einstein condensates in
time-dependent traps. We consider a system with a well-defined number of particles, rather than a system in a
coherent state with a well-defined phase. This preservedU{ie symmetry of the problem. We use a
systematic asymptotic expansion in the square root of the fraction of noncondensed particles. In lowest order
we recover the time-dependent Gross-Pitaevskii equation for the condensate wave function. The next order
gives the linear dynamics of noncondensed particles. The higher order gives corrections to the time-dependent
Gross-Pitaevskii equation including the effects of noncondensed particles on the condensate. We compare this
method with the Bogoliubov—de Gennes approach.
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[. INTRODUCTION field operator has quantum fluctuations around this mean
value; the basic idea of Bogoliubov is to treat the quantum
Recently dramatic progress has been made in the expeffluctuations in a linear approximation.
mental demonstration of Bose-Einstein condensation in di- Any consistent way of applying the symmetry breaking
lute gase$1—3]. The fact that these condensates are obtainedpproach has to reveal the fact thataherentstate is not a
for a relatively small number of atorrgess than 10) that  stationary state of the system, because it has not a well-
are trapped in harmonic potentials leads to new physicallefined number of particles. The Bogoliubov approach is ap-
properties. The interaction between the atoms makes, howplied in a careful manner ifiL5]; a time divergence of quan-
ever, a theoretical treatment nontrivial. An exact althoughtum fluctuations is then predicted, and interpreted as a
purely numerical approach to study systems in thermal equiqguantum phase spreading of the condensate. This spreading
librium is the quantum Monte Carlo method recently putinvalidates the linearization around a classical field very
forward in[4]. The most widely used approach is a Hartree-soon in the trapped atomic gases because the number of par-
Fock mean-field approach, which can be extended to norticles is small. A similar conclusion is reached [ib6] by
equilibrium situations. In the case of zero temperature it reexplicitly calculating how an initial coherent state is de-
duces to a description of the state of the condensate by tHermed by the atomic interaction; due to this deformation the
so-called Gross-Pitaevskii equatifh,6]. In the context of mean value of the field operator undergoes collapses and
recent experiments this equation was studied initially byrevivals(see our Sec. ¥
purely numerical mear|¥]. Recently analytical results have  In this paper we develop an approach based on a system-
been obtainefi8—11]. They allowed in11] an easy quanti- atic expansion of the evolution equations for the atomic field
tative study of the experimental results, such as ballistic exeperator in a system with exactly particles. We do not rely
pansion of the atomic cloyd 2] and collective excitations of on symmetry breaking and therefore we avoid the patholo-
the condensat¢l13]. Although the Hartree-Fock approach gies associated with phase fluctuations of the condensate. We
leads to an intuitive understanding it does not lend itself to &plit the atomic field operator into an operator with macro-
systematic treatment and therefore no estimation of the ranggopic matrix elements, which describes the condensate, and
of validity of the time-dependent Gross-Pitaevskii equationthe remainder, which describes the non-condensed particles
is obtained. We provide one in the present paper, as we givend has matrix elements smaller by a factofN. This mo-
the deviations of the state of the condensate from the preditivates an expansion in powers ofyN [17]. We thereby
tions of the Gross-Pitaevskii equation. give a justification for the prediction of the Gross-Pitaevskii
Going beyond the Gross-Pitaevskii equation, Bogoliubovequation for the condensate wave function. By including
proposed a method to study how the condensed state of dmgher-order terms in our expansion we also derive devia-
interacting homogeneous gas differs from that of a nontions of the condensate wave function from the solution of
interacting Bose gas; de Gennes gave an extension to inhthe Gross-Pitaevskii equation. For a steady state we find that
mogeneous gasé§,14]. U(1) symmetry breaking is an es- the predictions of the Gross-Pitaevskii equation are remark-
sential ingredient of the Bogoliubov—de Gennes approachesibly accurate at low temperatures for typical experimental
the state of the system is described byaherentstate and parameters. For time-dependent systems, however, this con-
therefore the atomic field operator has a nonzero expectatiotiusion is no longer true: the number of noncondensed par-
value. This mean value is a classical field characterizing théicles may diverge in time and the predictions of the time-
condensate; it constitutes an explici{1) symmetry break- dependent Gross-Pitaevskii equation may eventually fail
ing as the condensate has a well-defined phase. The atonjit8].
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In Sec. Il we define the condensate wave function andrhe Hamiltonian in Eq(3) is invariant under a global phase

identify the square root of the fraction of noncondensed pargnange ofl referred to as th&J(1) symmetry. An atomic

ticles as the small physical parameter of our expansion. We . - ~ .
also give a summary of the main results of the paper. In Seéta::]emv(\anttrh 'ai tnv(\)/g\l:? dn'ﬁgggssn;?i?n ixsg\??glvggﬂgﬁfghg o-
Il we proceed explicitly with the expansion; this section y Y, y Perp

may be skipped by readers not interested in a thorough der?—'t'on of states with different total number of particles.

vation. To lowest order we recover the Gross-Pitaevskii
equation for the condensate wave function; the next order
gives the nonsymmetry breaking version of the |n this section we define the notion of a conden$ats.
Bogoliubov—de Gennes equations for the linearized quantunmo this end we introduce the one-body density operajasf
fluctuations. In Sec. IV we analyze the time evolution of thethe particles by

guantum fluctuations; we establish a remarkably simple link

between the dynamics of the noncondensed particles and the <F'|p1(t)|F>E<\irT(F,t)«if(Ff,t)>, (5)
linearization of the time-dependent Gross-Pitaevskii equa-

tion. We extend the concept of a modal decomposition of thguhere theW’s are taken in the Heisenberg picture and the
guantum fluctuations to the explicitly time-dependent caseexpectation(--+) is taken in the initial state at=0. We
The dynamics is completely contained in the time evolutionassume in this paper that the number of particles is well
of the mode functions of the system, the operators corregefined and equal thl (so that Tfp;]=N) and we suppose
sponding to these mode functions are time independent. Ifhat theN-particle system is initially in thermal equilibrium
Sec. V we compare our approach to the symmetry-breakingy temperaturd'.

one and we interpret the collapse of the classical atomic field A condensate is present jf; has an eigenvectdd

as the collapse of the correlation function of the atomic fieldjth eigenvalueN,, of the order ofN much larger than all
operator due to fluctuations in the number of particles. Inyther eigenvalues

Sec. VI we give a correction to the Gross-Pitaevskii equation

B. Definition of the condensate wave function

for the condensate wave function. We conclude in Sec. VII PP ey =N Pey)- (6)
and indicate future applications of the general method pre- ) ) .
sented in this paper. The condensate wave functigi,,) is the exact state in
which a macroscopic numbét,, of particles is condensed.
II. BASIC EQUATIONS AND ASSUMPTIONS In what follows it will be normalized to unity:
A. The effective Hamiltonian (P Py =1. 7
In our mOde| we COHSideN Scalar bOSOI’lS in a time' The existence Of a macroscopica"y popu'ated smge

dependent trapping potentiblI(F,t). Those bosons undergo motivates splitting the field operator into a part with macro-
pair interactions, and as usual in theoretical treatments, wgcopic matrix elements and a remainder, which accounts for
replace the true interaction potential by the local pseudoporoncondensed patrticles:

tential . o .

.. .. V(r,t)=®(r,t)ag (t)+V(r,t). (8
V(ry=ry)=gé(ra—ry). 1) .

In this expression the coupling constanbetween the par-
ticles is given by

The mode operataiq,ex is given by

ap = | Arox(r, )W (r t). 9
g=4mh%as/m, 2 Doy J ol LOW(r,t) 9
whereag is thes-wave scattering length for the true interac- In the Schrdinger pictureéq,ex(t) annihilates a particle in

tion potential and wheren is the mass of the boson. The the condensate wave functioh.,(r,t). It has matrix ele-
pseudopotential has to be regularized to be meaninhgf]l ments on the order of/N,, since the expectation value
In second quantized form the model Hamiltonian is given - A . . A .
by (aq)ex(t)aq,ex(t)) is Ney. The remainde¥ is obtained by
projection of the field operatOP(F) orthogonally tod,:

R ny o 1 o, a2 ]a o
Hzf drt(r) H(t)+§g\1ﬂ(r)qf(r) v(r), 3

5«if<r*,t>=fdF'<F|Qex(t>|F’>ﬁf(F'.t>. (10)

whereV is the particle field operatojwe always use” to
refer to operators acting in thH-body Fock spade The
one-particle Hamiltonia(t) includes the kinetic energy of
the particle and the time-dependent trapping potenti

u(r,t):

Qex(t) =1—|D (P, projects onto the one-particle states
orthogonal to the condensate wave functibg,. To sim-
aPIify the notation we introduce the operand which de-
scribes the action of a one-body opera®@ronto a field
operator depending parametrically pnsuch as¥ (r):

2

H(t)=;—m+U(F,t). (4) Oo‘i’EJ dso|s)W(s). (12)
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With this notation Eq(10) reads This means physically that there is no one-particle coher-
- - ence, that is, no off-diagonal matrix elements of the one-
W (1) =Qexl1)W (1), (120 pody density operator, between the condensate and any state

orthogonal to®,).

This relation implies that'V is orthogonal tod,: Inspired by Eq.(15) we introduce the operato}ex:

<q>ex|oa\if=f drd* (r,t)sW(r,t)=0. (13

.. 1 .
AefT )= —=a}_() SV (1 1), (16)
It satisfies quasibosonic commutation relations \/ﬁ
Y2 rtocr /7 gl A ~
oW (r,0), 8% (r",)]=(r|Qext)]r") whereN is the total number operator. The operatqy com-

mutes withN and therefore conserves the number of par-
ticles. The matrix elements of,, are of order one and the
expectation value of\., vanishes exactly

and it commutes wittay,_.

C. Identification of a small parameter

A first approach to analyze the properties of the Bose- (f\ex(FJ»ZO- (17
Einstein condensate would be to use standard perturbation
theory to treat the effect of the interactions. As shown inEquation(17) ensures that,, is an eigenstate of the one-
[5,21] in the spatially homogeneous case one has to resum drody density operator.
infinite number of terms in the expansion because the total As stated before our expansion requires that the gas be in
interaction energy £ Npg, p is the spatial densilyis much ~ a weakly interactive regimepa3<1). We now identify a
larger than the splitting between the energy levels in the tradimit where this condition is automatically satisfied and that
We prefer to use here a different approach, initiated bywe shall use to perform our asymptotic expansion: This limit
Bogoliubov[21] and generalized by de Gennes to the inho-corresponds formally to
mogeneous cadd 4], that does not require any explicit re-

summation. We consider the regime where the mean number N— + o0, 19
of noncondensed particles is much smaller than the number _
of condensed particles: Ng= const=gy,

R e L. which amounts to the limi&ag— 0 for N—co. As we shall see
(oN)= f dr(aWT(r,) 8¥(r,)<Ne=N. (14 inthis limit (5N) converges to a finite value so that the small
formal parameter of the expansion is

From the fact thas¥ in Eq. (8) has matrix elements scaling — =
< - V{SN)/Noc1/y/N.
as V(oN) whereas those ody,, are of orderyN we con- (oR)/ R 1R
clude that the small expansion parameter under consideratioihether we are allowed to use predictions resulting from the
is the square root of the noncondensed fracti&rﬁN)/N limit in Eq. (18) has to be checked for a given experimental
[17]. situation at hand, that is, one has to compare the order of

A small value of( SN)/N requires that the temperatuife magnltudg of the successive terms In t.he expansion.
A physical way to implement this limit without puttiray

be low enough, in particulaF<T, whereT, is the critical t0 zero is to open the trap as the number of particles in-

temperature for Bose-Einstein condensation, to avoid depleéreases More precisely we consider the limit
tion of the condensate by thermal excitations. This condition ' P y

(19

on the temperature, however, is not sufficient as even at zero N— 40,
temperature not all the particles are condensed because of
their interactions; for a homogeneous condensate the non- Nag
condensed fraction scales dap for pa<1 [21], a result -~ eonst, (20
that approximately extends to the case of a condensate in a
harmonic trap as we have shown by numerical calculations kgT
[22]. In the experimental conditions §2] we havep~ 10t 7o const
cm~ 3 anda,~25 A, which leads to a small noncondensed
fraction alp~1073. for a isotropic harmonic trap with frequenay where L
= Jhil2mw is the spatial extension of the ground state of the
D. Practical implementation of the expansion procedure trap. We thereby keep the interaction energy per particle con-

stant in units ofi w. The critical number of particles for the

In the calculations to come we will use a characterizatiory, . .~iion of the condensatil ~(kgT/hw)® is also kept
. C
of |®¢, that turns out to be more operational than E&). ;. stant so thall,<N. In this limit we expect the state of

Using Eq.(6) projected ontq(r|, and Egs(5), (8), and(9)  the condensate to become independent sfhen the length
we get is measured in units df.
Assuming the limit of Eq(18) we expandA o, and®, in

<é‘¥ex(t)5\ij(F’t)>:O' 19 powers of 1{/N:
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1.1, (X)=(N=(3N))(®|X(1)| @)
A= A+ —=AD+ AP ..
NS +(D|X(1)| D) +(DD|X(1)|D)
(21
. . +fddﬂPGMuWUMHﬁMP».@®
D=0+ —=0V+ —d@+....
\/ﬁ N The first line in Eq.(26) contains the leading contribution to

(X}, scaling asN. It involves the contribution of the lowest-
From the normalization condition E¢7) we find that|®) is order approximationb to the condensate wave functio®;
normalized to unity. From Eq17) we find that the expecta- 1S always normalized to unity and is obtained from the
. - : . . . Gross-Pitaevskii equation:
tion value ofA vanishes, which will determin®. From Eq.

A i i R h? R -
(14) we note also thai\ obeys the commutation relation 0,0 (F 1) = — ﬁACD(r,tH—[U(r,t)
A Atror — g ) N R

whereQ projects onto the space orthogonaldo whereU(r,t) is the trapping potential of Eq4). The factor

N—(&N) in Eq. (26) is the number of particles in the con-
Q=1-[®)(P|. (23 densate, which is less than the total number of partislés
the system.

This expansion puts rather stringent limits on the tempera- The second line of Eq(26) is of orderN?; it is also a
ture, as the requiremerisN)<N imposes thafl be much  contribution of the condensed particles. It originates from the
smaller than the critical temperatufg. An expansion based fact that the exact condensate wave function differs from the
on the ratio of the density of noncondensed particles to th@rediction® of the Gross-Pitaevskii equation by a term of
density of the condensate would have a broader range sfrder 1N, giving rise to a contribution t¢X) of order N°.
application. Due to the presence of a trap the condensefio our knowledge this correction was not systematically
particles form indeed a high-density cloud with a low- taken into account before in the literature. The derivation of
density background of noncondensed particles. So even witthis correction is presented in Sec. VI; it accounts for the
a significant fraction of noncondensed particles an expansioaction of noncondensed particles onto the particles in the
with this ratio as small parameter might work. At thermal condensate.
equilibrium the numerical calculations ¢#] confirm this The third line in Eq(26), also of ordeiN®, corresponds to
expectation. the direct contribution of the noncondensed particles. It in-
volves the field operatoA(F,t), defined by Eqs(16) and
(21), which describes the dynamics of the noncondensed par-
~ ticles to lowest order. For example, the leading order ap-

Imagine that a one-particle observabie= Ei’\LlX(i) of  proximation for the mean number of noncondensed particles
the system is measureX(i) acting on the state of particle s
An ensemble average over many experimental realizations

E. Summary of results

v_vith a fixed numbeN of particles will lead to the expecta- <5N>:f dF(AT(F,t)A(F,t)). 28)
tion value
_ bl Iy SNt E TR As we show in Sec. lll, the field operato&(ﬁt) fulfills
X)) fdrf dr(riXIr ¥ H¥r.n). partial  differential equations reminiscent of the

(24 Bogoliubov—de Gennes equatiof:

The splitting Eq.(8) allows one to distinguish the contribu- .
tions of the condensed and the noncondensed particles: i1.0;

. (29)
AT(r,t)

MEU):EU

A(r,t) )
Atr)

<X>:<5<T1> é¢ x><®ex|x(1)|q)ex>+f de dF’<F|X(1)|F’> The partial differer_ltial operatqﬁ(t), given ex_plicitly in EqQ. .
ex e (46), has a very simple physical interpretation, as shown in
Sec. IV: consider a solution of the Gross-Pitaevskii equation
arbitrarily close to®; its deviation from® will evolve ac-
cording to the linearized Gross-Pitaevskii equation. The part

Note that there is no crossed term between the condensesdb  of this deviation orthogonal té evolves then exactly
and noncondensed particles in this expression, a CoNsg= A Atin Eq. (29):

guence of Eq(17). The expansion Eg21) allows the cal-

X(SWT(r ) sW(r 1). (25)

culation of this expectation value with an error scaling as - -~

— R _ o (r,1) 0P, (r,t)
V{SN)/N, where(sN) is the number of noncondensed par- i%0; . - = - . (30
ticles defined in Eq(14): oD (r,t) oD (r,t)
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One can therefore determine the dynamics of the noncons ¢ . d R d .
densed particles from a linear stability analysis of the GPE.(&Qex)O\P: _Qex<a|q)ex> ag, |q)ex>(a<q)ex|)°5\l'

As we do not break th&J(1) symmetry in this paper we (32)
find that our equation Eq.(29) differs from the
Bogoliubov—de Gennes equations usually found in the literaresulting from Eq.(8) and from the time derivative of Eq.
ture. In the time-independent case the predictions for th€7).
excitation spectra coincide but the mode functions of the To calculate the second term inside the brackets of Eq.

excitations and their population differ: as shown in Sec. V, in(31) we determine the time evolution & from the Hamil-
our treatment the excitations are produced only in states otz 1ian and keep the pertinent order:

thogonal to the condensate wave functidn The phase

spreading predicted in th&J(1) symmetry-breaking ap- d. . .. e a

proach is obtained in our approach for a system being mﬁ&\P(r,t)=H(t)‘P(r,t)+g\IfT(r,t)‘l’(r,t)\lf(r,t) (33
statistical mixtures of stationary states with different number
of particles(see Sec. V.

=HOP e, 1)ag_ (1) +g| Do 1, )[*Peyr,t)

[ll. ASYMPTOTIC EXPANSION IN THE LIMIT At 2 2 20
Xag_(tag, (Hag, (t)+O(N7). (34)
OF LARGE N

We turn to the last term in the right-hand side of E8Q):

. . Y 1/2 . .
We now work out explicitly the IM*“ expansion outlined taking the time derivative of Eq9) we find that

in the previous section. In this way we give a rigorous deri-
vation to the time-dependent Gross-Pitaevskii equation

which determine®, the lowest-order appArozdmation O, . i Eéq; _ (d/dt((I)ex|)|<Dex)é¢ i i<¢ex| ) o5
We also derive the evolution equations forA™, the lowest- /R 4t~ JR = Juldt

order approximation t&ex,AZX; those equations are similar

to the Bogoliub_ov—de Gennes _equatio[risl]. We fin_ally ) +i<q) |Oi\i} (35
show that the first-order correction to the Gross-Pitaevskii \/ﬁ &gt

approximation® for the condensate wave function is of or-
der 1N, to be calculated explicitly in Sec. VI. o <0 . .
In this section we proceed as followd) We calculate the This is of orderN" so that this last term does not contribute

terms in @dt)A., of order k in 1/JN, where k= [0 the present Of‘?'ef/ﬁ- , , ,
—1,0, ... successively(2) We take the mean value of the Further reductions consistent with the leading order are

expression obtained in point 1. This mean value has to varf—’btai!"e_d b}’T reApIacin.gDef by its lowest order®, and by
ish exactly, agA,) is zero to all order; this gives an equa- '9€MYINg ag_ap, with N:
tion for @+ 1) the term of the condensate wave function of
order k+1. The remairAlder of the expression obtained in é:rb Xaq)eleq_f dr*gj,T(F)g\i,(;):NJro(No)_ (36)
point 1 is exactly @/dt)A®. ¢
We finally get
A. Order NY2 Gross-Pitaevskii equation

. ods o =~ - . d -
We now calculate the time derivative af, keeping only 1% gpAedr )= VR(FIQUD)| Hapl) — i a} |®)+O(NO),
the leading terms. We show that this time derivative contains (37)

terms of order\/ﬁ, which at first sight contradicts the expan- i . i
sion chosen in Eq21). In fact these terms will be shown to WhereQ defined in Eq(23) projects orthogonally td. The
depend o, only and vanish for an appropriate definition OPeratorHgp is given by

of ®. 5
From the definitions Eq(16) and Eq.(12) we get _ b = ~ ]2
Hee(t) 2m+U(r,t)+gN|CI>(r,t)| . (38
d . 1 ~ d . d. )
gie” =R, aQex oW+ Qe a‘l’ From the requirement Eq17), (d/dt) (A¢)=0, and the
N expectation value of Eq37) determines the lowest-order
114 approximation tob,:
+ - aé&,ex) Qexo{\l,- (31 o d
VR QD)| ~ i - + Helt) || 9(1) =0, (39)
In this expression the first term in the right-hand sideis Therefore we have
priori of order \/ﬁ which we therefore take here as the d
leading order. This is apparent from the following rewriting e 9 _
of the first term inside the brackets: IﬁdthHGF’(t) |[2D) =D M), (40
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where the arbitrary real functiof(t) corresponds to an ar- d . ) d -

bitrary global phase of the wave functidn. We recover the ih oV =— 17| ® e &<(Dex| °oW
time-dependent Gross-Pitaevskii equatiéhy which is usu-

ally written with the choiceé(t)=0. The last term in the +Qo{[H+298), ag |Der, t)|2]oW

one-particle HamiltonianHgp(t) describes an effective
mean-field potential due to particle interactions.

When the system is in a steady state, the one-body density
matrix p, is time independent and can be chosen time
independent as well; E¢40) then reduces to Finally the last term on the right hand side of Hg1) is

Head @) = u| D), (41) obtained from Eq(?_,5); in this.Iast_equationc(/ijt)\If is cor-
rectly replaced by its approximation of orde/ﬁ [Eq. (34)],
whereé(t)=u is a constant determined from the normaliza- so that
tion of ® to unity. It is known thatu corresponds to the
lowest-order approximation to the chemical potential of the

+ NPl 1)%85, ST +O(INN).  (43)

system[5]. In what follows we take the solution of E¢41) . i Ba i r i -
as the initial condition for the time evolution @b(t), in K \/Tdtaq’ex_ \/T<<Dex| Herll) Iﬁdt |Peda,,
particular we set N N
§(t=0)=pu. (42) +o(LVR)
B. Order N°; 1 -
Time-dependent Bogoliubow-de Gennes equations =£(1) —=ag, O(l/\/ﬁ). (44)

In tf)is subsection we collect the terms of orde? in

Vi
(d/dt) A, to derive the time evolution oA. The correction ) ) o )
@@ is obtained by a calculation to the same order; it isThe reader interested in obtaining a more global point of
shown in the next subsection thtY is in fact zero, and we ViEW on the derivation is referred to our Appendix A; the
directly use this result here. exact value of §/dt) A, is given in this appendix; from this

We take again the exact E€1). The terms of ordeN*2 expression one can straightforwardly identify the terms order
vanish due to our choice @b so we are left with terms of PY Order.

N ) - . . We collect the previous results and identi and
orderNO. The first term inside the brackets is already given - S with @ anz Rl respectively. in a manr?eerxconsis
by Eq.(32); asay,_ae, =N+O(N°), only the last term of 98, Bog, gh. resp 4

- tent with the ordeN° of the calculation, keeping in mind the
Eq. (32) contributes to Eq(31). X . o
The second term inside the brackets of E3fl) is ob-  aSymptotic expansion E@18), that 'S’gA:A?(llN)' We ob-
tained to ordeN® by substituting Eq(8) into Eq. (33 and tain the time evolution of the operatorsA' of Eq. (21):
keeping only terms linear id¥; the terms involving only

ay  have already contributed indeed to the previous order f\(t) A(t)
= ih—| . =L(t)e| . 45
VN and theirAnext-order contribtﬂtion to E(Y) is found Eo dt Af(t) Af(t) 49
be of orderN~"? rather thanN® becauseag,_ag, =N
+0O(N°). One is left with with
L= Hep(t) + gnQ(D] P(r,1)|*Q(t) — &(1) INQP2(r, 1) Q* (1) .
—gNQ* (N*2(r,HQ(Y) —Hept) = GNQ* (D|D(r,1)[7Q* () + £(1) |

In this expression the complex conjugate of any one-bodyussed in the previous section, and our equati@® be-
operatory is defined in the basis of the localized states ~ come very similar to the Bogoliubov—de Gennes equations
that is [5]; the only difference is the emergence of the projectors
o . Q,Q*. This difference is due to the fact that we are consid-
(rIX*[r)y=((r]X|r)) (47)  ering states of the total system with a fixed number of par-

ticles, whereas the standard treatments in the literature intro-
For exampleQ* (t) projects orthogonally to the staf@*)  duce states with “broken symmetry.” The physical
whose wave function i®* (r,t). consequences of the presence of the projectors will be dis-

When the system is in a steady stdt@g)=u, as dis- cussed in Sec. V.
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3 - 1/2. ; i G ; -
C. Order N™% Corrections to the Gross-Pitaevskil equation o4 tion ofA is totally contained in the time dependence of

Neglecting terms of orde@(l/\/ﬁ) in (d/dt)/’\\ex in Eq. the modal functions and the operator-valued coefficients are
(A3) given in Appendix A, we get from the requirement Eq. constants of motion.

17) that (d/dt) (A)=0 and therefore
(17) ( ) (M) A. Physical interpretation of the time evolution operator

| X>=O(1/\/ﬁ) (49) In this section we show the equivalence of the time evo-
e .

lution of the quantum fluctuations described hyand the
time evolution of small perturbationg® of the time-

~ dependent solutiod of the Gross-Pitaevskii equation. Lin-
to order 1A/K; this leads to earizing the time-dependent Gross-Pitaevskii equation
around the solutiord, we obtain

d
Qex{_lhﬁ""H'*_gqu)ex|2

Consistently we replac®,, and ®., by their expansion up

Qt)y 0 \/ d (1)
0 i)l ar £V ey |0 49 4 )| s (1) ”
dt\ sd* ()] TP so* (1))
where
- 12 5, = where Lgp(t) has already been introduced in E§O0).
_ HA+2g8|D(N)[*~ € gnPe(r) LsHt) is different from £ because of the presence of
GP —gN<I>*2(F) —H—2gy|D()|2+¢&) projectorsQ,Q* in L. Physically this results from the or-

(500 thogonality tod® of the quantum fluctuations described Ay
" (h [see EQq.(13)]. We therefore consider the evolution of the
We have used the fact thab"| @) +(®|d)=0 fromthe  components of the perturbationd () orthogonal tob, that
normalization condition Eq(7). The operatorLgp corre- is, of | 8D, (1))=Q(t)|5®(t)). We take the time derivative

sponds to the linear evolution of small deviations from theys inis relation and splits®) into | 5®, ) and a part propor-
solution®(t) in the Gross-Pitaevskii equati¢dd0) as shown g4 to |D):

in the next section. Equatio9) for &) is linear and ho-

mogeneous so that . d ( 5‘%(0) {(Q(t) 0 )g
dW(1)=0 (51) atlsorry) 7|l 0 Qry)FerY
vt if ®@(t=0)=0. cpdfew o o0
The system is initially in thermal equilibrium; in this case, dtl 0 Q*(t) 5D (1)

from a time-reversal symmetry argument, theparticle
wave function is real and therefof.(r,t=0),d(r,t=0), +ON(P[0D) + (6P| D))
and®®(r,t=0) can be chosen real. From the normalization Q|d|?| D)
condition Eq.(7) we find that|®®)(t=0)) is orthogonal to X( —Q*|<I>|2|d>*))’
|®(t=0)). We project Eq(49) for t=0 onto|® V) (t=0)):

(55

where we used®|?|®)=d?d*) and QP =—Qd. The

1 2 1\ —
(PPI[H+3gn®(1)?= ]| @) =0, (52 source term that couple¥b, to the component 06d pro-
which imposes portional to® vanishes due to the normalization condition
(®|P)y=((P|+{(5P|)(|P)+|5P))=1 obeyed to first order
D=0 (53)  in 6®. The homogeneous term can be identified witlde-

fined in Eq.(46) using the identityi# (d/dt) Q=[Hgp,Q]:
as the operator in the above equation is strictly positive be-
caused is the ground state df{gp (at least forg>0). d[ 6D (1) oD, (1)
The first correction tab is therefore ofO(1/N). It will be 'hm( 5(1,*(0) = (5(13*(t))'
discussed in Sec. VI. + -

(56)

Remarkably this shows that, in the linear response regime,

IV. TIME EVOLUTION OF A the quantum fluctuations associated wittevolve in exactly
- the same way as the classical orthogonal perturbaf{bn .
We show that the time evolution of the operatdrsthat We can restate the same conclusion in terms of the time
is, the dynamics of the noncondensed particles, amounts @,glution operators. Letgp(t) be the evolution operator
propagating orthogonal perturbations®o corresponding taCgp. Let U(t) be the evolution operator

The time evolution ofA is performed most conveniently corresponding taC and restricted to the space orthogonal to
by choosing a basis which diagonalizsatt=0. Att=0 [®(t=0),0] and[0,®*(t=0)]. From Eqs(54) and(56) we
we expandA in this eigenbasis of modal functions with co- 96t @s shown explicitly in Appendix B,
efficients that are operator valued. We give an interpretation
of these operators as annihilation operators of elementary U(t):(Q(t) 0 ) )(Q(O) 0 ) 57
excitations of the system. For time-dependent problems the 0 Q* (1) G 0 Q*(0))°
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This result shows that propagating withamounts to propa-
gating with Lgp and projecting the result witl(t),Q* (t).

If one can determine how a small deviation from a given
solution ®(t) of the Gross-Pitaevskii equation evolves in
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|u) and|v,) are orthogonal t¢®) and|d* ), respectively.
The eigenbasis can be normalized so {24

(ulug) —(uilvi) = i (60

time one can from that immediately derive the dynamics of

the noncondensed patrticles.
In a recent work{18] we have identified physical situa-
tions where the wave functioh(t) is an unstable solution of

the Gross-Pitaevskii equation, i.e., a small initial deviation

from ®(0) will be amplified exponentially with time. From

the above discussion we conclude that the same property

holds for the field operatoA; the density of noncondensed
particles,(ATA), will then diverge exponentially with time,
until the Bogoliubov approximation fails.

B. Time-dependent modal decomposition

To study the dynamics of the noncondensed particles we

have to solve Eq45) for A,AT. We obtain in this section a

solution to this equation in terms of an infinite sum of time

(Uk|U:r>_<Uk|U:'>:O-

With this normalization we get the decomposition of unity

0 ) <|Uk>)
|®*) lvi)

0k)

i)

(0LD* )+ >

k>0

()t

X ({uil, —(vil) + (61)

)(—<v§|,<utl)
and of the operatof

|ui)
v

<<ukl,—<vkl)—Ek< lvi>)(—<v:|,<u:|>.
|ug
(62

£=2 Ek(
&0

independent operators with time-dependent coefficients.
Those coefficients correspond to the time propagation byye finally expand {,A") at timet=0 in the eigenbasis of

U(t) of the eigenmodes of att=0. The time-independent
operators constitute a complete set of “constants of motion
for Eq. (45).

1. Spectral decomposition of(t=0)

L(t=0):

vE(r)

ug(r)

A(r,t=0)
AT(r,t=0)

Uk(F))

vi(r)

)Zé Bk( +61( ) (63

We consider first the case of the system being in a steady

state. The operatof in Eq. (45) is time independent witl§
given by Eq.(42) and we diagonalize it. We start by explor-
ing the symmetries of. The first one corresponds to a time
reversal spin-flip symmetry:
0'1[:0'1: _;C*, (58)

where o= (2 1) is the first Pauli matrix. The second one
expresses the fact thatis Hermitian for the spinorial scalar
product of signature (1 1):

o3Loz=L", (59
Wherecrg:(é ,(1)) is the third Pauli matrix. This has the fol-
lowing consequences for the eigenvectorgoff (u,v) is an
eigenvector with eigenvalug, (v*,u*) is an eigenvector of
L with the eigenvalue- E* and (u,—v) is an eigenvector of
LT with the eigenvalué.

We assume that(t=0) is diagonalizable and that all
eigenvalues are real [23]. In this case if
{(ug,vy),Ex.>0k=1, ...} is the set of eigenvectors with
strictly positiveeigenvalue€, , we can write the eigenbasis
of £L(t=0) as{(uy,vy),(®,0),(0D*), (v ,uy) . k=1,...}.
We have embodied the fact thab(0) and (0p*) span the
zero eigenvalue subspace £f

With Eq. (59) we get an eigenbasis @' (left eigenvec-
tors of £) from the one ofL by action ofo3: {(uy,—v)),
(®,0),(09*),(—vg ,ug) k=1,...} (where we choose the
signs for convenienge The vectors @, ,vy) and Uy,

—vy) (k#k") are orthogonal because they correspond to

different eigenvalues for and £'. For the same reason
(ug,vy) and (—vy, ,ug,) (Vkk') are orthogonal and as well

The coefficientd, are obtained by projection on the eigen-
vector (Uy,v) using the adjoint vectoruj, —uvy):

BK:J druf (NAN) —vf (HAT(T). (64)

They are in fact operators, and they form a bosonic algebra

as a consequence of E@O0):

[ by ,Bl,]= Ok’ (65)

[y b 1=0. (66)

2. Time evolution of the modes

To get (f\,f\U at any later time we have to evolve the
decomposition Eq(63) by action ofU(t) onto the vectors
(uy,vy); this simply means that they satisfy

Cod | [u(t) [u(t))
Iﬁa( =[,(t)( )

loi(t)) lo(1))
for all modesk. Thef)k’s have the desired property of being
time independent:

(67)

dB =0 68
grok=0- (68)
The decomposition Eq63) extends ta>0 as
AT &L (wr) L [oEy
)= bk( S IS (69)
AT(rt)) k=1 Tlo(r,t) ug(r,t)
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which shows explicitly that the time evolution af(r,t) is ~ depends explicitly on the mode functions; e.g., for a system
contained in the time dependence of the mode functionditially prepared at temperatufe we get at any later time

ug(r.t),v(r,t). Such an expression is very convenient, be-
cause one has to deal only with the evolution of regular

functions rather than with operators to calculate the evolu- (5N(t)>=§k: (bb)(u(t)|u(t)) +(blby+1)
tion of A. Note that this time evolution conserves the decom-
position of unity of Eq.(61). X(vi()|v(t)), (72)

C. Physics contained in theb,’s: Elementary efcitations Where<6l6k) _ [expCEk/kB'D—l]*l.
We express the Hamiltonian E@) up toO(N°) in terms Two different types of excitations of the system are con-
of ® and A AT specializing for simplicity to the time inde- sidered in the literature. A state with a time-dependent con-

pendent case wheggt) =y, (d/dt) |®(t))=0. We find that densate wave functio®(t) constitutes a collective excita-

. A tion of the system. Such a collective excitation can be
terms linear ind¥ disappear because of Eqél), (13). We produced, e.g., by a time modulation of the trapping poten-

get[25] tial. This is distinct from the one-particle excitation created
noa (N—1)g - 1 by b} even though,. as a consequence of &), the_ spec-
H=N(®|H+ T|‘1’(r)| ) — 5 TLQ(Hep— 1 trum of the collective excitationédefined as the eigenfre-

guencies of the linearized Gross-Pitaevskii equation around
time independent solutigncoincide with the spectrum
+0(1N). formed by theE, /%'s.

A

1 - N
+on| PP ]+ 5 (AT, = A)oLo|
2 AT

(70 V. COMPARISON WITH THE SYMMETRY-BREAKING

The first line contains two terms depending Nnonly; the APPROACH

first term is the mean energy one would get if all tNe In the approach used in the literature up to ni&y the
particles were in the same quantum stabg. The second (1) symmetry is broken by splitting the field operator

line is quat_:lratic in the field operatdr and_ is at the o_rigin of \i;(f) into a classical fie|d\/NQ)(F) and a part describing
the dynamics of the noncondensed particles described by Eguantum fluctuations. These quantum fluctuations can be

(46). . _ L shown[5] to have a time evolution similar to that of, AT
We now insert in Eq(70) the modal expansion ok, AT [Eq. (45] with £ replaced by gp given by Eq.(50). In this
[Eq. (63)]. Since these modes are eigenvector§ 0Eq.(70)  section we investigate the physical differences in the dynam-

simply reads as ics induced byC andLgp, restricting for simplicity to a time
independent condensate wave functiaith the convention

A=Eo(R)+ S Ebib+ 01N §)=p andd()=0(0)]. .
o(N) k§>:0 Dby /\/—)’ MathematicallyLsp contrarily to £ does not involve the

(71) projectorQ orthogonally tod. £ andLgp still have the same

(N—-1)g - spectrum, leading to identical elementary excitation spectra

T|¢(f)| |(1)>—k>o Evilvi)- for the U(1) symmetry-conserving ant) (1) symmetry-
breaking approaches. However, the eigenvectorggf do

got form a complete basis: there is a “missing eigenvector,”

which is at the origin of the “momentum” operator of the

Eo(N)=N(®|H+

This corresponds to a set of uncoupled harmonic oscillator:
[26]. The ground state of thN-particle system is given by condensate introduced if15]. In the U(1) symmetry-

the vacuum of the,’s. The excited states are obtained by preaking approach this “missing eigenvector” is responsible
successively applying the operatds§ on the vacuum. The for a divergence linear in time of the quantum fluctuations,
excitation operatobl is a superposition of a transfer of a resulting in a phase spreading of the condensate. We show

particle out of the condensate into the sta,te(ukf\’r) and a how thifs phase sprﬁading emerges in Ukl) symmetry-
transfer of a particle from statef into the condensate preserving approach.

(viA). One recovers the same algebra as for the usual
Bogoliubov—de Gennes equations; as shown in Sec. V A, the A. Comparison of the spectral properties:
spectrumkE, coincides with the well-known Bogoliubov one, The “missing eigenvector”

whereas the modes functions are different. Another differ-

: L Even though the symmetries fdgp are the same as those
ence is that our excitation operatds§ conserve the total - y Oee

: ) mentioned forC, the modal decomposition performed in Sec.
number of particles in the system. IV B has to be adapted. A remarkable property is that the
Note that even fE)rAa time-dependent problem the numbeéigenvalues ofZ and of Lgp are the same; for eigenvalues
of excitationsS...o(b{by) is preserved by the time evolution E+( we find indeed a one-to-one correspondence between
because of Eq68). This conclusion, however, does not hold the eigenvectorsu,v) for £ and the eigenvectord) V) of

for the mean numbesN) of noncondensed particles, which Lgp:



lu)=QJU),

[v)=Q*|V)
[{(ulu)—(v|v)=(UJU)—=(V|V)=1 andQ is given by Eq.
(23)].

For the eigenvalu&=0, however, we find as the only
eigenvector forLgp: (®,—®*). One vector is therefore
missing in order to form a basis. This missing vector will be
obtained as an eigenvectan (,v,) of ﬁép with eigenvalue
zero. As a consequence the actiongfp on (u,,v,) gives
an eigenvector ofgp with eigenvalue zero, so that

N

Here « is a complex number and without loss of generality
we assume thab is real. By adding and/or subtracting the
two lines in Eq.(73) we get

(Hop— 1) (Jua)—|va)) =0,

|®)
—|®)

|Ua)

73
|Ua> 3

(74)
(Hept 200 P(N)|2= ) (|Ua) +|va)) = 2a| P).

The first line imposedu,) —|v,)=|P). We wish to have
(ua,v,) orthogonal to the only eigenvector dfgp with E
=0, which imposes$u,)=|v,)=|®,). The second lin¢Eq.
(74)] determines uniquely®,). We construct the adjoint
basis as done in Sec. IV Bhis is possible due to the fact
that Lgp and £ have the same symmetrje8y choosinga
such that {,®) is the adjoint vector of®,,®,), we have

(D|d,)=1/2 (75)

and we get the decomposition of unity

1=( o )<<<I>a|,—<¢>*l>+ |q)a>)(<<bl,<<b*l>
_|(D*> a |CI);
U Vei
+go(||vkk>)(<Uk|=—<Vk|)+ ||Uk§> (—(Vil (UK

(76)

and of the operatofqp

|®)
—[®*)

Ui
Vi

|

)(—(V§|,<U§|)_ (77)

£GP=C¥( )(<(D|'<CD*|)+|§0 Ek(
Vi)
| *

X(<Uk|1_<vk|)_Ek(
K

Comparing this with the expansion E§2) for £ we see that
there is an extra term in the expansiondypy. The physical

implications for the Bogoliubov Hamiltonian are discussed
m

now, and the implications for the dynamics of the quantu
fluctuations are the subject of the next section.
In the symmetry-breaking point of view, the quantum

field operator is split a8 = JN®+ ¥, where yN® is the
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<)

n 1 = =
HU(l)z(functior(N))JrE(\PT,—\I’)EGP -
N7

. (78
N

Inserting the spectral decomposition E@7) in this expres-
sion, we recover the form obtained [ih5]:

- 1 ., .
Hyua)=Eu@)(N)+ EaPU(ME EB¢Bk, (79
k>0
with
T (r) 1. d(r) . (1)
= = Nu) - u(1) >
v —®*(r) P} (r)
U\ . (r)
D ON: 1 I - S R
=0T\ Vi(r) ()
Quipy =i A (D oW — (DX oW, (81)
ﬁu(l):<q)|°$+<¢*|°/€,-r, (82)
Bi=(U[oW — (V[ 83

As discussed ifl5] |:|U(1) corresponds to a set of uncoupled
harmonic oscillators plus the “kinetic” energy of an un-
bound “phase” coordinaté}u(l) conjugate to the “momen-
tum” ﬁ)U(l) .

The frequencies of the harmonic oscillatorsl:m(l) con-
stitute the spectrum of elementary excitations. They exactly
coincide with the ones obtained in ol(1) symmetry-
preserving approach, as expected from the fact flagtand
L have the same spectrum. As a consequence the thermody-
namical properties predicted from the two approaches are
identical.

B. Phase spreading of the condensate

The state ¢ ,,®,) introduced in the last subsection is not
a regular mode offgp and we will see now that it has a
contribution to the dynamics of the quantum fluctuations lin-
early diverging in time.

The physical meaning o, and « is clarified by the
following observation. Taking the derivative with respect to
N of the time-independent Gross-Pitaevskii equafiti) for
a fixedg (dngn=9) and for a reatb we obtain an equation
similar to Eq.(74):

classical field. Reproducing the analysis of Sec. IV C, we

find that the Bogoliubov Hamiltonian is now

(H+3NgP?— ) an(VN|®) =/ N|®)  (89)
from which we conclude
a=Nu' (89
and
|@2) = VNaN(VN| D)), (86)
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where we use the normalization conditioi|®,)=1/2. For a fixed number of particled we calculateC(r,r’,t)
A crucial consequence of the fact thégp is not diago-  in the steady state using E@). The main contribution stems

nalizable is a linear divergence of the time evolution operato - = - the contribution fromsW is smaller and vanishes
D

Uge: in the long time limit. This can be seen from the modal
D) @) decomposition Eq(63): the different terms oscillate with
UGP(t)< a ):(1_i£GPt/ﬁ)( a ) different frequencief€,—E,,(k# k') and interfere destruc-
| ) |D,) tively. Finally we predict

@) Cn(r. I t) ~ NEXAD* (1D (r')+O(N°). (93
~ —iN,u’t/ﬁ(_ch>) 87) “°°

e No damping is observed for the correlation function of the
condensed part.

Lsince the series expansion of expleet/A) in this expres- If we allow a Poissonian distribution for the total number

sion terminates As the eigenmodes ofp are subject to a

mere oscillation in time, according to E/7), we can write  Of particles the average dy(r,r’,t) will result in a col-
more generally: lapse(and subsequent reviyabf the correlation function as
p and® depend orN. To get an estimate of the collapse
|®) time we neglect th& dependence ob and linearizew(N)
Uget) ~ —iNu't/h —|®) (@|(®). (88  around the mean valus:

t—o

—
We examine now the consequence of this divergence in crr =2 N—e‘NCN(F,F’,t)

the Bogoliubov approach with symmetry breaking. The N N!

quantum fluctuating party of the quantum atomic field

evolves as ~Ne'“exd N(e'* " —1—iu't/h)]

~ X D*(r)d(r')

® ¥ Nt/ a— 172 (t/t)2 e >

- =Ugdt)| _ (89) = it<iNe'#he™ 12U p* (NP (r') (94)
wi(t) v1(0)

L

with t. given by Eq.(91) with N=N. This derivation seems

so that @,\TIT) will diverge linearly with time: more intuitive than the one based on the symmetry breaking

approach.
= . Np't o .
v(r,t) ~ — TCI)(r)PU(l) , (90 VI. CORRECTIONS TO THE GROSS-PITAEVSKII
t—oo EQUATION
where the “momentum’P,, 1) defined in the previous sub- The discussion presented in Sec. Il E has shown that the

section is a constant of motion. This divergence Ep  calculation of the expectation value of atomic observables
. " . i . . 0 . . g
renders the Bogoliubov approach with symmetry breakingSuch as the spatial densitip orderN™ includes, in addition

invalid at timest>t, where to the intuitively expected contribution of the nonconde_ns_ed
particles, a term of the same order due to the deviation
4 ®@IN of the exact condensate wave function from the
te=——7—. (91 Gross-Pitaevskii approximatio®. This complication, ab-
M VN sent from the homogeneous cd@sdere the condensate wave

- function is exactly a plane wayecannot be avoided in har-
For those times indeed quantum fluctuatidhdecome com- monic traps.
parable to the classical fieldN®. This problem was iden- In order to get an equation fdp(*) we follow the general
tified already in[15] and interpreted as a quantum phaseprocedure outlined at the beginning of Sec. Ill; we calculate
spreading of the condensate. In an alternative treattpest the terms of order ﬂﬁ in the exact Eq(A3) of the Appen-
identified with the collapse timgL6] of the mean value o dix and we use the requirement E47) on their mean value
for an initial coherent state. In the asymptotic limit E48)  to get an equation fo(®). In the termR, of Eq. (A3) we
we find thaty’ scales as N so thattcogiverges as/N. For keep the lowest-order terms éfﬂex&pexﬂﬁl,‘bex
typical experimental parameterbl€ 10° sodium atoms in a Al S S -
k?le[\)rmonic?[rap with aﬁ‘requency 1(60 Hwe findt.=0.2 s. A—><I>A,a¢ex§\AP—> VRA, 6076 —ATA). The substitutions
This collapse timet;, can be justified in ourU(1) a},exaq,ex—w and®,—d can also be effected in the term
symmetry-preserving approach as follows. Si(@ezo the Ry, as the terms neglected in these substitutiond\atimes
appropriate quantity to consider is the correlation function ofsmaller than the leading terms. The mean valuRpin this
the field operatorif(F,t) order is therefore zero and does not contribute to (Eq}.
Finally in Ry we make the substitutiod o,— ® + d /N

cr,r )= v (r,0). (92  and a},exa¢ex—>N—de'A*(F')A(F'). We collect all these
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terms. With the same argument we used to idenfifyy Eq.  for systems in a steady state &t=0 that the fraction of
(56), we get a linear inhomogeneous equation for the comnoncondensed particles is approximately given(B\)/N
ponentd(?) orthogonal tod: ~/pad where p is the density at the center of the trap.
Applying this formula to the anisotropic traps used in recent
d2(1) Q(t)S(t) experiments at MIT[2] we predict a fraction of noncon-
D@ (1) = —Q*(1)SF (1) (99 densed particles of the order 1¥) which demonstrates the
L validity of the Gross-Pitaevskii equation &at=0 for a sys-
tem in a steady state.
What happens to a condensate that is not in a steady state?
This is a situation occurring in recent experiments. In a first
S(r)= —9N|¢(F)|2¢(F)<1+J dgjg(g)]\(g)> type of experiment the trap was abruptly switched off and
the expanding cloud monitored. We have analyzed this situ-
NN A e s ation in [11] with the Gross-Pitaevskii equation. With the
+2gnyP(N(AT(NA(r)) +gn@* () (A(r)A(r)) present theory we are able to show that the number of non-
A A A condensed particles is not increased by an abrupt opening of
~gu [ 030 RG0S + A @AM, the trap
In a second type of experiment the condensate is excited
(96) by a time modulation of the trap frequency and then oscil-
lates in the unperturbed potential. At very low temperature
The first term in Eq{(96) corrects the overestimation of the (T much smaller than the critical temperattrg and for a
number of condensed particles in calculating their mutuabtrongly enough driven system we have shown in a recent
interaction (N—-N—[1+(6N)]) in the Gross-Pitaevski paper[18] that the solution of the Gross-Pitaevskii equation
equation. The terms in the second line describe the intera@PProximating the condensate wave function is unstable. Ac-

tion of the condensed particles and the noncondensed onecsqrdmg to Sec. IV A the density of noncondensed particles

! . : Will then increase exponentially with time. This exponential
The fact that th? coupling constant igig rather thargy N increase of course will saturate at some stage, when the in-
the term involving the density of noncondensed particle

- _ _ _ Seraction between the noncondensed particles has to be taken
(ATA) can be understood in a mean-field picture: for theinto account, an effect that would require the calculation of
noncondensed particles one has to apply the Hartree-Fock() the first-order correction ta. [see Eq(2D)].
approximation, whereas for the condensed particles only the Note added in proofRecently an article appeared that
Hartree term is kept. For the zero range interaction potentighroposed an expansion of the evolution equations that is
Eqg. (1) the Hartree and the Fock terms have identical Contri-equiva|ent to our approach: C. W. Gardiner, Phys Rev. A
butions, hence the factor of two. The term(nA) is ob- 56, 1414(1997).

tained also in a Hartree-Fock-Bogoliubov mean-field treat-

ment[27]. The terms in the last two lines of E(6) involve ACKNOWLEDGMENTS
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the substitutionb(?)— ®(?) +jy®, wherey is any real num-
ber.

520
|ha—£(t)

where L is given by Eq.(46) and

APPENDIX A

The equations of motions foke(r,t) follow from

d
We have presented a systematic expansion of the evolu- iﬁa
tion equations of the field operator for a very-low-
temperature Bose-Einstein condensed gas with a well- At 307+ O
defined number of particled. The expansion is valid if the tlag, (HoF(rH,HU)]
fraction of noncondensed particles is small. It gives to lowest (A1)
order the condensate wave function as a solution of the L
Gross-Pitaevskii equation and to next order the linear dy@nd include an explicit time dependence duebig(t):
namics of the noncondensed particles. We can consistently .
include higher-order terms in the asymptotic expansion. This say) =J ds(a, % (s,1)W(s),
allows in particular to include the feedback of noncondensed .
particles on the condensate wave function resulting in a cor- . _ oA
rection of order 1M to the prediction of the Gross-Pitaevskii atS\If(r,t)=f ds(9;Qexr,S,1))¥ (S).
equation.
We have numerically showii22] for an isotropic trap and From this we get the exact Heisenberg equations

VIl. CONCLUSION AND OUTLOOK
@), ()oW(r,1))=iha@} (1)aw(r 1)

(A2)
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1 d 1 4 APPENDIX B
. ot L N > > >
ﬁ'ﬁa(ad’exw(r))_ ﬁf dsgo Ri(r.s), (A3) To prove theorent57) we define the operator
X(t)=Q(t)Ugp(t) Q(0), (B1)

where we collected terms in powers 0
e e A . where Q(t) is a generalized projector
Ro(r'S)=2}_as, Qed IS —ifd+H

L ) R Q(t) 0
+9(ah,_ 29, 1)|Pef(S)| 21Dl S), QU= o o) (B2)
Ry(r,8)=Qulr,S)[H+2g(al ap —1)|®eS)|? At t=0X(0)=Q(0)=U(0) since U is restricted to the
118 =QedS)] 92,20, NPedSN'] states orthogonal tp®(0),0] and[0,®* (0)]. To determine
xal sW(s)—Deyr) the evolution ofX we take the time derivative of EgB1):
- A s d
x[iha®(s)]ag_ SV (s) i 5 X(1)=Mx(HUc 1) Q(0),
. (B3)
N 2 (2 surtS)A
+Qex(r,S)ga(pexaq,exq)e)&S)5‘P (S)aq)ex Mx(t):,CQ(t)
—a} oW (N®LS)[—iha+H QB(FHIP  QI(F,t)2P*
+9 - -
+93j_an,| PedS)|*1Pex(S), "l Qe P~ P
.. T, (P=|®){®]). Using|®|?P=D?|d* )(D| we rewriteM x(t)
Ry(r,s)=—8W(s) oW (r)[—iha+H as
o 4 212 2 > 2 .
+29a¢exaq,ex|d>e>g(s)| ]‘I’ex(s)+ngx(r,S) Q|<I)(r,t)|2|<b> ol
X[é{%ixa\i,Z(é’)chx(é’) Mx(t)ZﬁQ(t)+gN _Q*|(D(F,t)|2|(b*> (< |'< |)
np A Ay s A s - B4
+2gal,_ap, oW'(5) 0V (S)Dey(S)] ®4
_ L o The last step consists in proving that
—gP(9)|PedS)|?ag, 25V () SW(r),
[(PD].(P* (1) JUgp(t) Q(0)=0. (B5)

> 2 S AT e T S22
Rs(rS) ng,g(r,s)aq,exé”\If(s) o (s) This relation holds at=0; it holds at any later time be-

A e A oA . A cause its time derivative vanishes. Therefore
—gov(s) s (s)ag, ®5(s)s¥(r)

—2g§«1r*(s)N(s)ag)exkbex(s)ﬁﬁwr), i 2 X0 =L(H QAU Q(0)=LHX(1)  (BE)

R,(F,5)=—goW T (5)6W (S)Do(S)sW(r). (A4)  andX(t)=U(t) Q.E.D.
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