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Low-temperature Bose-Einstein condensates in time-dependent traps:
Beyond theU„1… symmetry-breaking approach

Y. Castin and R. Dum
Ecole Normale Supe´rieure, Laboratoire Kastler Brossel, 24, Rue Lhomond, F-75231 Paris Cedex 05, France

~Received 25 February 1997; revised manuscript received 7 October 1997!

We present a method to calculate the dynamics of very-low-temperature Bose-Einstein condensates in
time-dependent traps. We consider a system with a well-defined number of particles, rather than a system in a
coherent state with a well-defined phase. This preserves theU(1) symmetry of the problem. We use a
systematic asymptotic expansion in the square root of the fraction of noncondensed particles. In lowest order
we recover the time-dependent Gross-Pitaevskii equation for the condensate wave function. The next order
gives the linear dynamics of noncondensed particles. The higher order gives corrections to the time-dependent
Gross-Pitaevskii equation including the effects of noncondensed particles on the condensate. We compare this
method with the Bogoliubov–de Gennes approach.
@S1050-2947~98!00604-0#
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I. INTRODUCTION

Recently dramatic progress has been made in the ex
mental demonstration of Bose-Einstein condensation in
lute gases@1–3#. The fact that these condensates are obtai
for a relatively small number of atoms~less than 107) that
are trapped in harmonic potentials leads to new phys
properties. The interaction between the atoms makes, h
ever, a theoretical treatment nontrivial. An exact althou
purely numerical approach to study systems in thermal e
librium is the quantum Monte Carlo method recently p
forward in @4#. The most widely used approach is a Hartre
Fock mean-field approach, which can be extended to n
equilibrium situations. In the case of zero temperature it
duces to a description of the state of the condensate by
so-called Gross-Pitaevskii equation@5,6#. In the context of
recent experiments this equation was studied initially
purely numerical means@7#. Recently analytical results hav
been obtained@8–11#. They allowed in@11# an easy quanti-
tative study of the experimental results, such as ballistic
pansion of the atomic cloud@12# and collective excitations o
the condensate@13#. Although the Hartree-Fock approac
leads to an intuitive understanding it does not lend itself t
systematic treatment and therefore no estimation of the ra
of validity of the time-dependent Gross-Pitaevskii equat
is obtained. We provide one in the present paper, as we
the deviations of the state of the condensate from the pre
tions of the Gross-Pitaevskii equation.

Going beyond the Gross-Pitaevskii equation, Bogoliub
proposed a method to study how the condensed state o
interacting homogeneous gas differs from that of a n
interacting Bose gas; de Gennes gave an extension to i
mogeneous gases@5,14#. U(1) symmetry breaking is an es
sential ingredient of the Bogoliubov–de Gennes approac
the state of the system is described by acoherentstate and
therefore the atomic field operator has a nonzero expecta
value. This mean value is a classical field characterizing
condensate; it constitutes an explicitU(1) symmetry break-
ing as the condensate has a well-defined phase. The at
571050-2947/98/57~4!/3008~14!/$15.00
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field operator has quantum fluctuations around this m
value; the basic idea of Bogoliubov is to treat the quant
fluctuations in a linear approximation.

Any consistent way of applying the symmetry breaki
approach has to reveal the fact that acoherentstate is not a
stationary state of the system, because it has not a w
defined number of particles. The Bogoliubov approach is
plied in a careful manner in@15#; a time divergence of quan
tum fluctuations is then predicted, and interpreted as
quantum phase spreading of the condensate. This sprea
invalidates the linearization around a classical field ve
soon in the trapped atomic gases because the number of
ticles is small. A similar conclusion is reached in@16# by
explicitly calculating how an initial coherent state is d
formed by the atomic interaction; due to this deformation
mean value of the field operator undergoes collapses
revivals ~see our Sec. V!.

In this paper we develop an approach based on a sys
atic expansion of the evolution equations for the atomic fi
operator in a system with exactlyN particles. We do not rely
on symmetry breaking and therefore we avoid the patho
gies associated with phase fluctuations of the condensate
split the atomic field operator into an operator with mac
scopic matrix elements, which describes the condensate,
the remainder, which describes the non-condensed part
and has matrix elements smaller by a factor;AN. This mo-
tivates an expansion in powers of 1/AN @17#. We thereby
give a justification for the prediction of the Gross-Pitaevs
equation for the condensate wave function. By includi
higher-order terms in our expansion we also derive dev
tions of the condensate wave function from the solution
the Gross-Pitaevskii equation. For a steady state we find
the predictions of the Gross-Pitaevskii equation are rema
ably accurate at low temperatures for typical experimen
parameters. For time-dependent systems, however, this
clusion is no longer true: the number of noncondensed p
ticles may diverge in time and the predictions of the tim
dependent Gross-Pitaevskii equation may eventually
@18#.
3008 © 1998 The American Physical Society
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57 3009LOW-TEMPERATURE BOSE-EINSTEIN CONDENSATES . . .
In Sec. II we define the condensate wave function a
identify the square root of the fraction of noncondensed p
ticles as the small physical parameter of our expansion.
also give a summary of the main results of the paper. In S
III we proceed explicitly with the expansion; this sectio
may be skipped by readers not interested in a thorough d
vation. To lowest order we recover the Gross-Pitaevs
equation for the condensate wave function; the next or
gives the nonsymmetry breaking version of t
Bogoliubov–de Gennes equations for the linearized quan
fluctuations. In Sec. IV we analyze the time evolution of t
quantum fluctuations; we establish a remarkably simple
between the dynamics of the noncondensed particles an
linearization of the time-dependent Gross-Pitaevskii eq
tion. We extend the concept of a modal decomposition of
quantum fluctuations to the explicitly time-dependent ca
The dynamics is completely contained in the time evolut
of the mode functions of the system, the operators co
sponding to these mode functions are time independen
Sec. V we compare our approach to the symmetry-break
one and we interpret the collapse of the classical atomic fi
as the collapse of the correlation function of the atomic fi
operator due to fluctuations in the number of particles.
Sec. VI we give a correction to the Gross-Pitaevskii equat
for the condensate wave function. We conclude in Sec.
and indicate future applications of the general method p
sented in this paper.

II. BASIC EQUATIONS AND ASSUMPTIONS

A. The effective Hamiltonian

In our model we considerN scalar bosons in a time
dependent trapping potentialU(rW,t). Those bosons underg
pair interactions, and as usual in theoretical treatments,
replace the true interaction potential by the local pseudo
tential

V~rW22rW1!5gd~rW22rW1!. ~1!

In this expression the coupling constantg between the par-
ticles is given by

g54p\2as /m, ~2!

whereas is thes-wave scattering length for the true intera
tion potential and wherem is the mass of the boson. Th
pseudopotential has to be regularized to be meaningful@19#.

In second quantized form the model Hamiltonian is giv
by

Ĥ5E drWĈ†~rW !FH~ t !1
1

2
gĈ†~rW !Ĉ~rW !GĈ~rW !, ~3!

where Ĉ is the particle field operator~we always use ˆ to
refer to operators acting in theN-body Fock space!. The
one-particle HamiltonianH(t) includes the kinetic energy o
the particle and the time-dependent trapping poten
U(rW,t):

H~ t !5
p2

2m
1U~rW,t !. ~4!
d
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The Hamiltonian in Eq.~3! is invariant under a global phas

change ofĈ referred to as theU(1) symmetry. An atomic

state with a nonvanishing mean value ofĈ would break this
symmetry; it would necessarily involve a coherent super
sition of states with different total number of particles.

B. Definition of the condensate wave function

In this section we define the notion of a condensate@20#.
To this end we introduce the one-body density operatorr1 of
the particles by

^rW8ur1~ t !urW&[^Ĉ†~rW,t !Ĉ~rW8,t !&, ~5!

where theĈ ’s are taken in the Heisenberg picture and t
expectation^•••& is taken in the initial state att50. We
assume in this paper that the number of particles is w
defined and equal toN ~so that Tr@r1#5N) and we suppose
that theN-particle system is initially in thermal equilibrium
at temperatureT.

A condensate is present ifr1 has an eigenvectoruFex&
with eigenvalueNex of the order ofN much larger than all
other eigenvalues,

r1uFex&5NexuFex&. ~6!

The condensate wave functionuFex& is the exact state in
which a macroscopic numberNex of particles is condensed
In what follows it will be normalized to unity:

^FexuFex&51. ~7!

The existence of a macroscopically populated stateFex
motivates splitting the field operator into a part with macr
scopic matrix elements and a remainder, which accounts
noncondensed particles:

Ĉ~rW,t !5Fex~rW,t !âFex
~ t !1dĈ~rW,t !. ~8!

The mode operatorâFex
is given by

âFex
5E drWFex* ~rW,t !Ĉ~rW,t !. ~9!

In the Schro¨dinger pictureâFex
(t) annihilates a particle in

the condensate wave functionFex(rW,t). It has matrix ele-
ments on the order ofANex since the expectation valu

^âFex

† (t)âFex
(t)& is Nex. The remainderdĈ is obtained by

projection of the field operatorĈ(rW) orthogonally toFex:

dĈ~rW,t !5E drW8^rWuQex~ t !urW8&Ĉ~rW8,t !. ~10!

Qex(t)512uFex&^Fexu projects onto the one-particle state
orthogonal to the condensate wave functionFex. To sim-
plify the notation we introduce the operand+, which de-
scribes the action of a one-body operatorO onto a field
operator depending parametrically onrW, such asĈ(rW):

O+Ĉ[E dsWOusW&Ĉ~sW !. ~11!
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3010 57Y. CASTIN AND R. DUM
With this notation Eq.~10! reads

dĈ~ t !5Qex~ t !+Ĉ~ t !. ~12!

This relation implies thatdĈ is orthogonal toFex:

^Fexu+dĈ5E drWFex* ~rW,t !dĈ~rW,t !50. ~13!

It satisfies quasibosonic commutation relations

@dĈ~rW,t !,dĈ†~rW8,t !#5^rWuQex~ t !urW8&

and it commutes withâFex

† .

C. Identification of a small parameter

A first approach to analyze the properties of the Bo
Einstein condensate would be to use standard perturba
theory to treat the effect of the interactions. As shown
@5,21# in the spatially homogeneous case one has to resum
infinite number of terms in the expansion because the t
interaction energy (;Nrg, r is the spatial density! is much
larger than the splitting between the energy levels in the t

We prefer to use here a different approach, initiated
Bogoliubov @21# and generalized by de Gennes to the inh
mogeneous case@14#, that does not require any explicit re
summation. We consider the regime where the mean num
of noncondensed particles is much smaller than the num
of condensed particles:

^dN̂&[E drW^dĈ†~rW,t !dĈ~rW,t !&!Nex.N. ~14!

From the fact thatdĈ in Eq. ~8! has matrix elements scalin

asA^dN̂& whereas those ofâFex
are of orderAN we con-

clude that the small expansion parameter under considera

is the square root of the noncondensed fractionA^dN̂&/N
@17#.

A small value of^dN̂&/N requires that the temperatureT
be low enough, in particularT!Tc whereTc is the critical
temperature for Bose-Einstein condensation, to avoid de
tion of the condensate by thermal excitations. This condit
on the temperature, however, is not sufficient as even at
temperature not all the particles are condensed becaus
their interactions; for a homogeneous condensate the
condensed fraction scales asAas

3r for ras
3!1 @21#, a result

that approximately extends to the case of a condensate
harmonic trap as we have shown by numerical calculati
@22#. In the experimental conditions of@2# we haver;1014

cm23 and as;25 Å, which leads to a small noncondens
fractionAas

3r;1023.

D. Practical implementation of the expansion procedure

In the calculations to come we will use a characterizat
of uFex& that turns out to be more operational than Eq.~6!.
Using Eq.~6! projected ontô rWu, and Eqs.~5!, ~8!, and ~9!
we get

^âFex

† ~ t !dĈ~rW,t !&50. ~15!
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This means physically that there is no one-particle coh
ence, that is, no off-diagonal matrix elements of the o
body density operator, between the condensate and any
orthogonal touFex&.

Inspired by Eq.~15! we introduce the operatorL̂ex:

L̂ex~rW,t !5
1

AN̂
âFex

† ~ t !dĈ~rW,t !, ~16!

whereN̂ is the total number operator. The operatorL̂ex com-
mutes withN̂ and therefore conserves the number of p

ticles. The matrix elements ofL̂ex are of order one and the

expectation value ofL̂ex vanishes exactly

^L̂ex~rW,t !&50. ~17!

Equation~17! ensures thatFex is an eigenstate of the one
body density operator.

As stated before our expansion requires that the gas b
a weakly interactive regime (ras

3!1). We now identify a
limit where this condition is automatically satisfied and th
we shall use to perform our asymptotic expansion: This lim
corresponds formally to

N→1`,
~18!

Ng5 const[gN ,

which amounts to the limitas→0 for N→`. As we shall see
in this limit ^dN̂& converges to a finite value so that the sm
formal parameter of the expansion is

A^dN̂&/N̂}1/AN̂. ~19!

Whether we are allowed to use predictions resulting from
limit in Eq. ~18! has to be checked for a given experimen
situation at hand, that is, one has to compare the orde
magnitude of the successive terms in the expansion.

A physical way to implement this limit without puttingas
to zero is to open the trap as the number of particles
creases. More precisely we consider the limit

N→1`,

Nas

L
5 const, ~20!

kBT

\v
5 const

for a isotropic harmonic trap with frequencyv where L
5A\/2mv is the spatial extension of the ground state of t
trap. We thereby keep the interaction energy per particle c
stant in units of\v. The critical number of particles for the
formation of the condensateNc;(kBT/\v)3 is also kept
constant, so thatNc!N. In this limit we expect the state o
the condensate to become independent ofN when the length
is measured in units ofL.

Assuming the limit of Eq.~18! we expandL̂ex andFex in
powers of 1/AN:
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57 3011LOW-TEMPERATURE BOSE-EINSTEIN CONDENSATES . . .
L̂ex5L̂1
1

AN̂
L̂~1!1

1

N̂
L̂~2!1•••,

~21!

Fex5F1
1

AN̂
F~1!1

1

N̂
F~2!1•••.

From the normalization condition Eq.~7! we find thatuF& is
normalized to unity. From Eq.~17! we find that the expecta

tion value ofL̂ vanishes, which will determineF. From Eq.

~14! we note also thatL̂ obeys the commutation relation

@L̂~rW,t !,L̂†~rW8,t !#5^rWuQ~ t !urW8&, ~22!

whereQ projects onto the space orthogonal toF:

Q512uF&^Fu. ~23!

This expansion puts rather stringent limits on the tempe
ture, as the requirement^dN̂&!N imposes thatT be much
smaller than the critical temperatureTc . An expansion based
on the ratio of the density of noncondensed particles to
density of the condensate would have a broader rang
application. Due to the presence of a trap the conden
particles form indeed a high-density cloud with a low
density background of noncondensed particles. So even
a significant fraction of noncondensed particles an expan
with this ratio as small parameter might work. At therm
equilibrium the numerical calculations of@4# confirm this
expectation.

E. Summary of results

Imagine that a one-particle observableX̂5( i 51
N X( i ) of

the system is measured,X( i ) acting on the state of particlei .
An ensemble average over many experimental realizat
with a fixed numberN of particles will lead to the expecta
tion value

^X~ t !&5E drWE drW8^rWuX~1!urW8&^Ĉ†~rW,t !Ĉ~rW8,t !&.

~24!

The splitting Eq.~8! allows one to distinguish the contribu
tions of the condensed and the noncondensed particles:

^X&5^âFex

† âFex
&^FexuX~1!uFex&1E drWE drW8^rWuX~1!urW8&

3^dĈ†~rW,t !dĈ~rW8,t !&. ~25!

Note that there is no crossed term between the conde
and noncondensed particles in this expression, a co
quence of Eq.~17!. The expansion Eq.~21! allows the cal-
culation of this expectation value with an error scaling
A^dN̂&/N̂, where^dN̂& is the number of noncondensed pa
ticles defined in Eq.~14!:
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^X&.(N2^dN̂&)^FuX~1!uF&

1^FuX~1!uF~2!&1^F~2!uX~1!uF&

1E drWE drW8^rWuX~1!urW8&^L̂†~rW !L̂~rW8!&. ~26!

The first line in Eq.~26! contains the leading contribution t
^X&, scaling asN. It involves the contribution of the lowest
order approximationF to the condensate wave function;F
is always normalized to unity and is obtained from t
Gross-Pitaevskii equation:

i\] tF~rW,t !52
\2

2m
DF~rW,t !1@U~rW,t !

1NguF~rW,t !u2#F~rW,t !, ~27!

whereU(rW,t) is the trapping potential of Eq.~4!. The factor
N2^dN̂& in Eq. ~26! is the number of particles in the con
densate, which is less than the total number of particlesN in
the system.

The second line of Eq.~26! is of orderN0; it is also a
contribution of the condensed particles. It originates from
fact that the exact condensate wave function differs from
predictionF of the Gross-Pitaevskii equation by a term
order 1/N, giving rise to a contribution tôX& of orderN0.
To our knowledge this correction was not systematica
taken into account before in the literature. The derivation
this correction is presented in Sec. VI; it accounts for t
action of noncondensed particles onto the particles in
condensate.

The third line in Eq.~26!, also of orderN0, corresponds to
the direct contribution of the noncondensed particles. It
volves the field operatorL̂(rW,t), defined by Eqs.~16! and
~21!, which describes the dynamics of the noncondensed
ticles to lowest order. For example, the leading order
proximation for the mean number of noncondensed partic
is

^dN̂&.E drW^L̂†~rW,t !L̂~rW,t !&. ~28!

As we show in Sec. III, the field operatorL̂(rW,t) fulfills
partial differential equations reminiscent of th
Bogoliubov–de Gennes equations@5#:

i\] tS L̂~rW,t !

L̂†~rW,t !
D 5L~ t !S L̂~rW,t !

L̂†~rW,t !
D . ~29!

The partial differential operatorL(t), given explicitly in Eq.
~46!, has a very simple physical interpretation, as shown
Sec. IV: consider a solution of the Gross-Pitaevskii equat
arbitrarily close toF; its deviation fromF will evolve ac-
cording to the linearized Gross-Pitaevskii equation. The p
dF' of this deviation orthogonal toF evolves then exactly

as L̂,L̂† in Eq. ~29!:

i\] tS dF'~rW,t !

dF'
* ~rW,t !

D 5L~ t !S dF'~rW,t !

dF'
* ~rW,t !

D . ~30!
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3012 57Y. CASTIN AND R. DUM
One can therefore determine the dynamics of the nonc
densed particles from a linear stability analysis of the GP

As we do not break theU(1) symmetry in this paper we
find that our equation Eq. ~29! differs from the
Bogoliubov–de Gennes equations usually found in the lite
ture. In the time-independent case the predictions for
excitation spectra coincide but the mode functions of
excitations and their population differ: as shown in Sec. V
our treatment the excitations are produced only in states
thogonal to the condensate wave functionF. The phase
spreading predicted in theU(1) symmetry-breaking ap
proach is obtained in our approach for a system being
statistical mixtures of stationary states with different num
of particles~see Sec. V!.

III. ASYMPTOTIC EXPANSION IN THE LIMIT
OF LARGE N

We now work out explicitly the 1/N̂1/2 expansion outlined
in the previous section. In this way we give a rigorous de
vation to the time-dependent Gross-Pitaevskii equat
which determinesF, the lowest-order approximation toFex.

We also derive the evolution equations forL̂,L̂†, the lowest-

order approximation toL̂ex,L̂ex
† ; those equations are simila

to the Bogoliubov–de Gennes equations@14#. We finally
show that the first-order correction to the Gross-Pitaev
approximationF for the condensate wave function is of o
der 1/N, to be calculated explicitly in Sec. VI.

In this section we proceed as follows:~1! We calculate the

terms in (d/dt)L̂ex of order k in 1/AN, where k5
21,0, . . . successively.~2! We take the mean value of th
expression obtained in point 1. This mean value has to v

ish exactly, aŝ L̂ex& is zero to all order; this gives an equ
tion for F (k11), the term of the condensate wave function
order k11. The remainder of the expression obtained

point 1 is exactly (d/dt)L̂(k).

A. Order N̂1/2: Gross-Pitaevskii equation

We now calculate the time derivative ofL̂ex keeping only
the leading terms. We show that this time derivative conta

terms of orderAN̂, which at first sight contradicts the expa
sion chosen in Eq.~21!. In fact these terms will be shown t
depend onFex only and vanish for an appropriate definitio
of F.

From the definitions Eq.~16! and Eq.~12! we get

d

dt
L̂ex5

1

AN̂
âFex

† F S d

dt
QexD +Ĉ1Qex+S d

dt
Ĉ D G

1
1

AN̂
S d

dt
âFex

† DQex+Ĉ. ~31!

In this expression the first term in the right-hand side isa

priori of order AN̂, which we therefore take here as th
leading order. This is apparent from the following rewritin
of the first term inside the brackets:
n-
.

-
e
e

r-

in
r

-
n,

ii

n-

f

s

S d

dt
QexD +Ĉ52QexS d

dt
uFex& D âFex

2uFex&S d

dt
^Fexu D +dĈ

~32!

resulting from Eq.~8! and from the time derivative of Eq
~7!.

To calculate the second term inside the brackets of

~31! we determine the time evolution ofĈ from the Hamil-
tonian and keep the pertinent order:

i\
d

dt
Ĉ~rW,t !5H~ t !Ĉ~rW,t !1gĈ†~rW,t !Ĉ~rW,t !Ĉ~rW,t ! ~33!

5H~ t !Fex~rW,t !âFex
~ t !1guFex~rW,t !u2Fex~rW,t !

3âFex

† ~ t !âFex
~ t !âFex

~ t !1O~N̂0!. ~34!

We turn to the last term in the right-hand side of Eq.~31!:
taking the time derivative of Eq.~9! we find that

1

AN̂

d

dt
âFex

5
~d/dt ^Fexu!uFex&

AN̂
âFex

1
1

AN̂
S d

dt
^Fexu D +dĈ

1
1

AN̂
^Fexu+

d

dt
Ĉ. ~35!

This is of orderN̂0 so that this last term does not contribu

to the present orderAN̂.
Further reductions consistent with the leading order

obtained by replacingFex by its lowest orderF, and by
identifying âFex

† âFex
with N̂:

âFex

† âFex
5N̂2E drWdĈ†~rW !dĈ~rW !5N̂1O~N̂0!. ~36!

We finally get

i\
d

dt
L̂ex~rW,t !5AN̂^rWuQ~ t !FHGP~ t !2 i\

d

dtG uF&1O~N̂0!,

~37!

whereQ defined in Eq.~23! projects orthogonally toF. The
operatorHGP is given by

HGP~ t !5
p2

2m
1U~rW,t !1gNuF~rW,t !u2. ~38!

From the requirement Eq.~17!, (d/dt) ^L̂ex&50, and the
expectation value of Eq.~37! determines the lowest-orde
approximation toFex:

Q~ t !F2 i\
d

dt
1HGP~ t !G uF~ t !&50. ~39!

Therefore we have

F2 i\
d

dt
1HGP~ t !G uF~ t !&5j~ t !uF~ t !&, ~40!



-

s

a

th

is

f
en

de

of
e

der

-

e

57 3013LOW-TEMPERATURE BOSE-EINSTEIN CONDENSATES . . .
where the arbitrary real functionj(t) corresponds to an ar
bitrary global phase of the wave functionF. We recover the
time-dependent Gross-Pitaevskii equation@5#, which is usu-
ally written with the choicej(t)[0. The last term in the
one-particle HamiltonianHGP(t) describes an effective
mean-field potential due to particle interactions.

When the system is in a steady state, the one-body den
matrix r1 is time independent andF can be chosen time
independent as well; Eq.~40! then reduces to

HGPuF&5muF&, ~41!

wherej(t)[m is a constant determined from the normaliz
tion of F to unity. It is known thatm corresponds to the
lowest-order approximation to the chemical potential of
system@5#. In what follows we take the solution of Eq.~41!
as the initial condition for the time evolution ofF(t), in
particular we set

j~ t50!5m. ~42!

B. Order N̂0:
Time-dependent Bogoliubov–de Gennes equations

In this subsection we collect the terms of orderN̂0 in
(d/dt)L̂ex to derive the time evolution ofL̂. The correction
F (1) is obtained by a calculation to the same order; it
shown in the next subsection thatF (1) is in fact zero, and we
directly use this result here.

We take again the exact Eq.~31!. The terms of orderN̂1/2

vanish due to our choice ofF so we are left with terms o
order N̂0. The first term inside the brackets is already giv
by Eq. ~32!; as âFex

† âFex
5N̂1O(N̂0), only the last term of

Eq. ~32! contributes to Eq.~31!.
The second term inside the brackets of Eq.~31! is ob-

tained to orderN̂0 by substituting Eq.~8! into Eq. ~33! and
keeping only terms linear indĈ; the terms involving only
âFex

have already contributed indeed to the previous or

AN̂ and their next-order contribution to Eq.~31! is found to

be of order N̂21/2 rather than N̂0 becauseâFex

† âFex
5N̂

1O(N̂0). One is left with
od
ity

-

e

r

i\
d

dt
dĈ52 i\uFex&S d

dt
^Fexu D +dĈ

1Q+$@H12gâFex

† âFex
uFex~rW,t !u2#dĈ

1gNFex~rW,t !2âFex

2 dĈ†%1O~1/AN̂!. ~43!

Finally the last term on the right hand side of Eq.~31! is
obtained from Eq.~35!; in this last equation (d/dt)Ĉ is cor-

rectly replaced by its approximation of orderAN̂ @Eq. ~34!#,
so that

i\
1

AN̂

d

dt
âFex

5
1

AN̂
^FexuFHGP~ t !2 i\

d

dt
G uFex&âFex

1O~1/AN̂!

5j~ t !
1

AN̂
âFex

1O~1/AN̂!. ~44!

The reader interested in obtaining a more global point
view on the derivation is referred to our Appendix A; th
exact value of (d/dt)L̂ex is given in this appendix; from this
expression one can straightforwardly identify the terms or
by order.

We collect the previous results and identifyFex and
gâFex

† âFex
with F andgN̂, respectively, in a manner consis

tent with the orderN̂0 of the calculation, keeping in mind th
asymptotic expansion Eq.~18!, that is,g5O(1/N). We ob-
tain the time evolution of the operatorsL̂,L̂† of Eq. ~21!:

i\
d

dtS L̂~ t !

L̂†~ t !
D 5L~ t !+S L̂~ t !

L̂†~ t !
D ~45!

with
L~ t !5SHGP~ t !1gNQ~ t !uF~rW,t !u2Q~ t !2j~ t ! gNQ~ t !F2~rW,t !Q* ~ t !

2gNQ* ~ t !F* 2~rW,t !Q~ t ! 2HGP~ t !2gNQ* ~ t !uF~rW,t !u2Q* ~ t !1j~ t !
D . ~46!
ons
ors
id-
ar-
tro-

al
dis-
In this expression the complex conjugate of any one-b
operatorh is defined in the basis of the localized statesurW&,
that is

^rWuX* urW&[~^rWuXurW&! ~47!

For example,Q* (t) projects orthogonally to the stateuF* &
whose wave function isF* (rW,t).

When the system is in a steady statez(t)5m, as dis-
ycussed in the previous section, and our equations~45! be-
come very similar to the Bogoliubov–de Gennes equati
@5#; the only difference is the emergence of the project
Q,Q* . This difference is due to the fact that we are cons
ering states of the total system with a fixed number of p
ticles, whereas the standard treatments in the literature in
duce states with ‘‘broken symmetry.’’ The physic
consequences of the presence of the projectors will be
cussed in Sec. V.
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C. Order N̂21/2: Corrections to the Gross-Pitaevskii equation

Neglecting terms of orderO(1/AN̂) in (d/dt)L̂ex in Eq.
~A3! given in Appendix A, we get from the requirement E

~17! that (d/dt) ^L̂&50 and therefore

QexF2 i\
d

dt
1H1gNuFexu2G uFex&5O~1/AN̂!. ~48!

Consistently we replaceQex andFex by their expansion up

to order 1/AN̂; this leads to

S Q~ t ! 0

0 Q* ~ t !
D S i\

d

dt
2LGP~ t ! D S F~1!~ t !

F~1!* ~ t !
D 50, ~49!

where

LGP5SH12gNuF~rW !u22j gNF2~rW !

2gNF*
2
~rW ! 2H22gNuF~rW !u21j

D .

~50!

We have used the fact that^F (1)uF&1^FuF (1)&50 from the
normalization condition Eq.~7!. The operatorLGP corre-
sponds to the linear evolution of small deviations from t
solutionF(t) in the Gross-Pitaevskii equation~40! as shown
in the next section. Equation~49! for F (1) is linear and ho-
mogeneous so that

F~1!~ t ![0 ~51!

;t if F (1)(t50)[0.
The system is initially in thermal equilibrium; in this cas

from a time-reversal symmetry argument, theN-particle
wave function is real and thereforeFex(rW,t50),F(rW,t50),
andF (1)(rW,t50) can be chosen real. From the normalizati
condition Eq.~7! we find thatuF (1)(t50)& is orthogonal to
uF(t50)&. We project Eq.~49! for t50 onto uF (1)(t50)&:

^F~1!u@H13gNF~rW !22m#uF~1!&50, ~52!

which imposes

F~1![0 ~53!

as the operator in the above equation is strictly positive
causeF is the ground state ofHGP ~at least forg.0).

The first correction toF is therefore ofO(1/N). It will be
discussed in Sec. VI.

IV. TIME EVOLUTION OF L̂

We show that the time evolution of the operatorsL̂, that
is, the dynamics of the noncondensed particles, amoun
propagating orthogonal perturbations toF.

The time evolution ofL̂ is performed most convenientl
by choosing a basis which diagonalizesL at t50. At t50

we expandL̂ in this eigenbasis of modal functions with co
efficients that are operator valued. We give an interpreta
of these operators as annihilation operators of elemen
excitations of the system. For time-dependent problems
-

to

n
ry
e

evolution ofL̂ is totally contained in the time dependence
the modal functions and the operator-valued coefficients
constants of motion.

A. Physical interpretation of the time evolution operator

In this section we show the equivalence of the time e

lution of the quantum fluctuations described byL̂ and the
time evolution of small perturbationsdF of the time-
dependent solutionF of the Gross-Pitaevskii equation. Lin
earizing the time-dependent Gross-Pitaevskii equa
around the solutionF, we obtain

i\
d

dtS dF~ t !

dF* ~ t !
D 5LGP~ t !S dF~ t !

dF* ~ t !
D , ~54!

whereLGP(t) has already been introduced in Eq.~50!.
LGP(t) is different fromL because of the presence

projectorsQ,Q* in L. Physically this results from the or

thogonality toF of the quantum fluctuations described byL̂
@see Eq.~13!#. We therefore consider the evolution of th
components of the perturbationsdF(t) orthogonal toF, that
is, of udF'(t)&5Q(t)udF(t)&. We take the time derivative
of this relation and splitudF& into udF'& and a part propor-
tional to uF&:

i\
d

dt S dF'~ t !

dF'
* ~ t ! D 5F S Q~ t ! 0

0 Q* ~ t ! DLGP~ t !

1 i\
d

dt S Q~ t ! 0

0 Q* ~ t ! D G S dF'~ t !

dF'
* ~ t ! D

1gN~^FudF&1^dFuF&!

3S QuFu2uF&

2Q* uFu2uF* &
D , ~55!

where we useduFu2uF&5F2uF* & and Q̇F52QḞ. The
source term that couplesdF' to the component ofdF pro-
portional toF vanishes due to the normalization conditio
^FuF&5(^Fu1^dFu)(uF&1udF&)51 obeyed to first order
in dF. The homogeneous term can be identified withL de-
fined in Eq.~46! using the identityi\ (d/dt) Q5@HGP,Q#:

i\
d

dtS dF'~ t !

dF'
* ~ t ! D 5L~ t !S dF'~ t !

dF'
* ~ t ! D . ~56!

Remarkably this shows that, in the linear response regi
the quantum fluctuations associated withL̂ evolve in exactly
the same way as the classical orthogonal perturbationdF' .

We can restate the same conclusion in terms of the t
evolution operators. LetUGP(t) be the evolution operato
corresponding toLGP. Let U(t) be the evolution operato
corresponding toL and restricted to the space orthogonal
@F(t50),0# and@0,F* (t50)#. From Eqs.~54! and~56! we
get, as shown explicitly in Appendix B,

U~ t !5S Q~ t ! 0

0 Q* ~ t !
DUGP~ t !S Q~0! 0

0 Q* ~0!
D . ~57!
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This result shows that propagating withL amounts to propa-
gating withLGP and projecting the result withQ(t),Q* (t).
If one can determine how a small deviation from a giv
solution F(t) of the Gross-Pitaevskii equation evolves
time one can from that immediately derive the dynamics
the noncondensed particles.

In a recent work@18# we have identified physical situa
tions where the wave functionF(t) is an unstable solution o
the Gross-Pitaevskii equation, i.e., a small initial deviat
from F(0) will be amplified exponentially with time. From
the above discussion we conclude that the same prop
holds for the field operatorL̂; the density of noncondense
particles,^L̂†L̂&, will then diverge exponentially with time
until the Bogoliubov approximation fails.

B. Time-dependent modal decomposition

To study the dynamics of the noncondensed particles
have to solve Eq.~45! for L̂,L̂†. We obtain in this section a
solution to this equation in terms of an infinite sum of tim
independent operators with time-dependent coefficie
Those coefficients correspond to the time propagation
U(t) of the eigenmodes ofL at t50. The time-independen
operators constitute a complete set of ‘‘constants of motio
for Eq. ~45!.

1. Spectral decomposition ofL(t50)

We consider first the case of the system being in a ste
state. The operatorL in Eq. ~45! is time independent withj
given by Eq.~42! and we diagonalize it. We start by explo
ing the symmetries ofL. The first one corresponds to a tim
reversal spin-flip symmetry:

s1Ls152L* , ~58!

where s15(1
0

0
1) is the first Pauli matrix. The second on

expresses the fact thatL is Hermitian for the spinorial scala
product of signature (1,21):

s3Ls35L†, ~59!

wheres35(0
1

21
0) is the third Pauli matrix. This has the fo

lowing consequences for the eigenvectors ofL. If ( u,v) is an
eigenvector with eigenvalueE, (v* ,u* ) is an eigenvector of
L with the eigenvalue2E* and (u,2v) is an eigenvector of
L† with the eigenvalueE.

We assume thatL(t50) is diagonalizable and that a
eigenvalues are real @23#. In this case if
$(uk ,vk),Ek.0,k51, . . .% is the set of eigenvectors wit
strictly positiveeigenvaluesEk , we can write the eigenbasi
of L(t50) as$(uk ,vk),(F,0),(0,F* ),(vk* ,uk* ),k51, . . .%.
We have embodied the fact that (F,0) and (0,F* ) span the
zero eigenvalue subspace ofL.

With Eq. ~59! we get an eigenbasis ofL† ~left eigenvec-
tors of L) from the one ofL by action ofs3: $(uk ,2vk),
(F,0),(0,F* ),(2vk* ,uk* ),k51, . . .% ~where we choose the
signs for convenience!. The vectors (uk ,vk) and (uk8,
2vk8) (kÞk8) are orthogonal because they correspond
different eigenvalues forL and L†. For the same reaso
(uk ,vk) and (2vk8

* ,uk8
* ) (;k,k8) are orthogonal and as we
f

rty

e

s.
y

’’

dy

o

uuk& and uvk& are orthogonal touF& and uF* &, respectively.
The eigenbasis can be normalized so that@24#

^ukuuk8&2^vkuvk8&5dkk8, ~60!

^vkuuk8
* &2^ukuvk8

* &50.

With this normalization we get the decomposition of unity

15S uF&

0 D ~^Fu,0!1S 0

uF* &
D ~0,̂ F* u!1 (

k.0
S uuk&

uvk&
D

3~^uku,2^vku!1S uvk* &

uuk* &
D ~2^vk* u,^uk* u! ~61!

and of the operatorL

L5 (
k.0

EkS uuk&

uvk&
D ~^uku,2^vku!2EkS uvk* &

uuk*
D ~2^vk* u,^uk* u!.

~62!

We finally expand (L̂,L̂†) at time t50 in the eigenbasis o
L(t50):

S L̂~rW,t50!

L̂†~rW,t50!
D 5 (

k51

`

b̂kS uk~rW !

vk~rW !
D 1b̂k

†S vk* ~rW !

uk* ~rW !
D . ~63!

The coefficientsb̂k are obtained by projection on the eige
vector (uk ,vk) using the adjoint vector (uk ,2vk):

b̂k5E drWuk* ~rW !L̂~rW !2vk* ~rW !L̂†~rW !. ~64!

They are in fact operators, and they form a bosonic alge
as a consequence of Eq.~60!:

@ b̂k ,b̂k8
†

#5dkk8, ~65!

@ b̂k ,b̂k8#50. ~66!

2. Time evolution of the modes

To get (L̂,L̂†) at any later timet we have to evolve the
decomposition Eq.~63! by action ofU(t) onto the vectors
(uk ,vk); this simply means that they satisfy

i\
d

dtS uuk~ t !&

uvk~ t !&
D 5L~ t !S uuk~ t !&

uvk~ t !&
D ~67!

for all modesk. The b̂k’s have the desired property of bein
time independent:

d

dt
b̂k50. ~68!

The decomposition Eq.~63! extends tot.0 as

S L̂~rW,t !

L̂†~rW,t !
D 5 (

k51

`

b̂kS uk~rW,t !

vk~rW,t !
D 1b̂k

†S vk* ~rW,t !

uk* ~rW,t !
D ~69!
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which shows explicitly that the time evolution ofL̂(rW,t) is
contained in the time dependence of the mode functi
uk(rW,t),vk(rW,t). Such an expression is very convenient, b
cause one has to deal only with the evolution of regu
functions rather than with operators to calculate the evo

tion of L̂. Note that this time evolution conserves the deco
position of unity of Eq.~61!.

C. Physics contained in theb̂k’s: Elementary excitations

We express the Hamiltonian Eq.~3! up toO(N̂0) in terms

of F and L̂,L̂†, specializing for simplicity to the time inde
pendent case wherej(t)[m,(d/dt) uF(t)&[0. We find that

terms linear indĈ disappear because of Eqs.~41!, ~13!. We
get @25#

Ĥ5N̂^FuH1
~N21!g

2
uF~rW !u2uF&2

1

2
Tr@Q~HGP2m

1gNuFu2!#1
1

2
~L̂†,2L̂!+L+S L̂

L̂†D 1O~1/AN̂!.

~70!

The first line contains two terms depending onN only; the
first term is the mean energy one would get if all theN
particles were in the same quantum stateuF&. The second

line is quadratic in the field operatorL̂ and is at the origin of
the dynamics of the noncondensed particles described by
~46!.

We now insert in Eq.~70! the modal expansion ofL̂,L̂†

@Eq. ~63!#. Since these modes are eigenvectors ofL, Eq. ~70!
simply reads as

Ĥ5E0~N̂!1 (
k.0

Ekb̂k
†b̂k1O~1/AN̂!,

~71!

E0~N̂!5N̂^FuH1
~N21!g

2
uF~rW !u2uF&2 (

k.0
Ek^vkuvk&.

This corresponds to a set of uncoupled harmonic oscilla
@26#. The ground state of theN-particle system is given by
the vacuum of theb̂k’s. The excited states are obtained
successively applying the operatorsb̂k

† on the vacuum. The

excitation operatorb̂k
† is a superposition of a transfer of

particle out of the condensate into the stateuk (ukL̂
†) and a

transfer of a particle from statevk* into the condensate

(vkL̂). One recovers the same algebra as for the us
Bogoliubov–de Gennes equations; as shown in Sec. V A,
spectrumEk coincides with the well-known Bogoliubov one
whereas the modes functions are different. Another diff
ence is that our excitation operatorsbk

† conserve the tota
number of particles in the system.

Note that even for a time-dependent problem the num
of excitations(k.0^b̂k

†b̂k& is preserved by the time evolutio
because of Eq.~68!. This conclusion, however, does not ho
for the mean number̂dN̂& of noncondensed particles, whic
s
-
r
-

-

q.

rs

al
e

r-

er

depends explicitly on the mode functions; e.g., for a syst
initially prepared at temperatureT we get at any later time

^dN̂~ t !&5(
k

^b̂k
†b̂k&^uk~ t !uuk~ t !&1^b̂k

†b̂k11&

3^vk~ t !uvk~ t !&, ~72!

where^b̂k
†b̂k&5@exp(Ek /kBT)21#21.

Two different types of excitations of the system are co
sidered in the literature. A state with a time-dependent c
densate wave functionF(t) constitutes a collective excita
tion of the system. Such a collective excitation can
produced, e.g., by a time modulation of the trapping pot
tial. This is distinct from the one-particle excitation creat
by b̂k

† even though, as a consequence of Eq.~57!, the spec-
trum of the collective excitations~defined as the eigenfre
quencies of the linearized Gross-Pitaevskii equation aro
time independent solution! coincide with the spectrum
formed by theEk /\ ’s.

V. COMPARISON WITH THE SYMMETRY-BREAKING
APPROACH

In the approach used in the literature up to now@5# the
U(1) symmetry is broken by splitting the field operat

Ĉ(rW) into a classical fieldANF(rW) and a part describing
quantum fluctuations. These quantum fluctuations can
shown@5# to have a time evolution similar to that ofL̂,L̂†

@Eq. ~45!# with L replaced byLGP given by Eq.~50!. In this
section we investigate the physical differences in the dyna
ics induced byL andLGP, restricting for simplicity to a time
independent condensate wave function@with the convention
j(t)[m andF(t)[F(0)].

MathematicallyLGP contrarily toL does not involve the
projectorQ orthogonally toF. L andLGP still have the same
spectrum, leading to identical elementary excitation spe
for the U(1) symmetry-conserving andU(1) symmetry-
breaking approaches. However, the eigenvectors ofLGP do
not form a complete basis: there is a ‘‘missing eigenvecto
which is at the origin of the ‘‘momentum’’ operator of th
condensate introduced in@15#. In the U(1) symmetry-
breaking approach this ‘‘missing eigenvector’’ is responsi
for a divergence linear in time of the quantum fluctuation
resulting in a phase spreading of the condensate. We s
how this phase spreading emerges in theU(1) symmetry-
preserving approach.

A. Comparison of the spectral properties:
The ‘‘missing eigenvector’’

Even though the symmetries forLGP are the same as thos
mentioned forL, the modal decomposition performed in Se
IV B has to be adapted. A remarkable property is that
eigenvalues ofL and ofLGP are the same; for eigenvalue
EÞ0 we find indeed a one-to-one correspondence betw
the eigenvectors (u,v) for L and the eigenvectors (U,V) of
LGP:



y

be

ity
e

t
t

ed
um

m

w

d
-

ctly

ody-
are

ot
a
in-

to

57 3017LOW-TEMPERATURE BOSE-EINSTEIN CONDENSATES . . .
uu&5QuU&,

uv&5Q* uV&

@^uuu&2^vuv&5^UuU&2^VuV&51 and Q is given by Eq.
~23!#.

For the eigenvalueE50, however, we find as the onl
eigenvector forLGP: (F,2F* ). One vector is therefore
missing in order to form a basis. This missing vector will
obtained as an eigenvector (ua ,va) of LGP

2 with eigenvalue
zero. As a consequence the action ofLGP on (ua ,va) gives
an eigenvector ofLGP with eigenvalue zero, so that

LGPS uua&

uva&
D 5aS uF&

2uF&
D . ~73!

Herea is a complex number and without loss of general
we assume thatF is real. By adding and/or subtracting th
two lines in Eq.~73! we get

~HGP2m!~ uua&2uva&)50,
~74!

~HGP12gNuF~rW !u22m!~ uua&1uva&)52auF&.

The first line imposesuua&2uva&}uF&. We wish to have
(ua ,va) orthogonal to the only eigenvector ofLGP with E
50, which imposesuua&5uva&5uFa&. The second line@Eq.
~74!# determines uniquelyuFa&. We construct the adjoin
basis as done in Sec. IV B~this is possible due to the fac
thatLGP andL have the same symmetries!. By choosinga
such that (F,F) is the adjoint vector of (Fa ,Fa), we have

^FuFa&51/2 ~75!

and we get the decomposition of unity

15S uF&

2uF* & D ~^Fau,2^Fa* u!1S uFa&

uFa*
D ~^Fu,^F* u!

1 (
k.0

S uUk&

uVk
D ~^Uku,2^Vku)1S uVk* &

uUk*
D ~2^Vk* u,^Uk* u!

~76!

and of the operatorLGP

LGP5aS uF&

2uF* & D ~^Fu,^F* u!1 (
k.0

EkS uUk&

uVk
D

3~^Uku,2^Vku!2EkS uVk* &

uUk*
D ~2^Vk* u,^Uk* u!. ~77!

Comparing this with the expansion Eq.~62! for L we see that
there is an extra term in the expansion ofLGP. The physical
implications for the Bogoliubov Hamiltonian are discuss
now, and the implications for the dynamics of the quant
fluctuations are the subject of the next section.

In the symmetry-breaking point of view, the quantu

field operator is split asĈ5ANF1Ĉ̃, whereANF is the
classical field. Reproducing the analysis of Sec. IV C,
find that the Bogoliubov Hamiltonian is now
e

ĤU~1!5„function~N!…1
1

2
~ Ĉ̃†,2Ĉ̃ !LGPS Ĉ̃

Ĉ̃†
D . ~78!

Inserting the spectral decomposition Eq.~77! in this expres-
sion, we recover the form obtained in@15#:

ĤU~1!5EU~1!~N!1
1

2
a P̂U~1!

2 1 (
k.0

EkB̂k
†B̂k , ~79!

with

S Ĉ̃~rW !

Ĉ̃†~rW !
D 5

1

i\
Q̂U~1!S F~rW !

2F* ~rW !
D 1 P̂U~1!S Fa~rW !

Fa* ~rW !
D

1 (
k.0

B̂kS Uk~rW !

Vk~rW !
D 1B̂k

†S Vk* ~rW !

Uk* ~rW !
D , ~80!

Q̂U~1!5 i\~^Fau+Ĉ̃2^Fa* u+Ĉ̃†!, ~81!

P̂U~1!5^Fu+Ĉ̃1^F* u+Ĉ̃†, ~82!

B̂k5^Uku+Ĉ̃2^Vku+Ĉ̃†. ~83!

As discussed in@15# ĤU(1) corresponds to a set of uncouple
harmonic oscillators plus the ‘‘kinetic’’ energy of an un
bound ‘‘phase’’ coordinateQ̂U(1) conjugate to the ‘‘momen-
tum’’ P̂U(1) .

The frequencies of the harmonic oscillators inĤU(1) con-
stitute the spectrum of elementary excitations. They exa
coincide with the ones obtained in ourU(1) symmetry-
preserving approach, as expected from the fact thatLGP and
L have the same spectrum. As a consequence the therm
namical properties predicted from the two approaches
identical.

B. Phase spreading of the condensate

The state (Fa ,Fa) introduced in the last subsection is n
a regular mode ofLGP and we will see now that it has
contribution to the dynamics of the quantum fluctuations l
early diverging in time.

The physical meaning ofFa and a is clarified by the
following observation. Taking the derivative with respect
N of the time-independent Gross-Pitaevskii equation~41! for
a fixedg (]NgN5g) and for a realF we obtain an equation
similar to Eq.~74!:

~H13NgF22m!]N~ANuF&)5m8ANuF& ~84!

from which we conclude

a5Nm8 ~85!

and

uFa&5AN]N~ANuF&), ~86!
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where we use the normalization condition^FuFa&51/2.
A crucial consequence of the fact thatLGP is not diago-

nalizable is a linear divergence of the time evolution opera
UGP:

UGP~ t !S uFa&

uFa&
D 5~12 iLGPt/\!S uFa&

uFa&
D

;
t→`

2 iNm8t/\S uF&

2uF&
D ~87!

@since the series expansion of exp(2iLGPt/\) in this expres-
sion terminates#. As the eigenmodes ofLGP are subject to a
mere oscillation in time, according to Eq.~77!, we can write
more generally:

UGP~ t ! ;
t→`

2 iNm8t/\S uF&

2uF&
D ~^Fu,^Fu!. ~88!

We examine now the consequence of this divergenc
the Bogoliubov approach with symmetry breaking. T
quantum fluctuating partCC of the quantum atomic field
evolves as

S Ĉ̃~ t !

Ĉ̃†~ t !
D 5UGP~ t !S Ĉ̃~0!

Ĉ̃†~0!
D ~89!

so that (Ĉ̃,Ĉ̃†) will diverge linearly with time:

Ĉ̃~rW,t ! ;
t→`

2
iNm8t

\
F~rW !P̂U~1! , ~90!

where the ‘‘momentum’’P̂U(1) defined in the previous sub
section is a constant of motion. This divergence Eq.~90!
renders the Bogoliubov approach with symmetry break
invalid at timest.tc where

tc5
\

m8AN
. ~91!

For those times indeed quantum fluctuationsĈ̃ become com-
parable to the classical fieldANF. This problem was iden-
tified already in@15# and interpreted as a quantum pha
spreading of the condensate. In an alternative treatmenttc is

identified with the collapse time@16# of the mean value ofĈ
for an initial coherent state. In the asymptotic limit Eq.~18!
we find thatm8 scales as 1/N so thattc diverges asAN. For
typical experimental parameters (N5106 sodium atoms in a
harmonic trap with a frequency 100 Hz! we find tc50.2 s.

This collapse timetc can be justified in ourU(1)

symmetry-preserving approach as follows. Since^Ĉ&50 the
appropriate quantity to consider is the correlation function

the field operatorĈ(rW,t)

C~rW,rW8,t !5^Ĉ†~rW,t !Ĉ~rW8,0!&. ~92!
r

in

g

f

For a fixed number of particlesN we calculateC(rW,rW8,t)
in the steady state using Eq.~8!. The main contribution stems

from âF ; the contribution fromdĈ is smaller and vanishe
in the long time limit. This can be seen from the mod
decomposition Eq.~63!: the different terms oscillate with
different frequenciesEk2Ek8(kÞk8) and interfere destruc
tively. Finally we predict

CN~rW,rW8,t ! ;
t→`

Neimt/\F* ~rW !F~rW8!1O~N0!. ~93!

No damping is observed for the correlation function of t
condensed part.

If we allow a Poissonian distribution for the total numb
of particles the average ofCN(rW,rW8,t) will result in a col-
lapse~and subsequent revival! of the correlation function as
m and F depend onN. To get an estimate of the collaps
time we neglect theN dependence ofF and linearizem(N)
around the mean valueN̄:

C~rW,rW8,t !5(
N

N̄N

N!
e2N̄CN~rW,rW8,t !

.N̄eimt/\exp@N̄~eim8t/\212 im8t/\!#

3F* ~rW !F~rW8!

.m8t!1N̄eimt/\e2 1/2 ~ t/tc!2
F* ~rW !F~rW8! ~94!

with tc given by Eq.~91! with N5N̄. This derivation seems
more intuitive than the one based on the symmetry break
approach.

VI. CORRECTIONS TO THE GROSS-PITAEVSKII
EQUATION

The discussion presented in Sec. II E has shown that
calculation of the expectation value of atomic observab
~such as the spatial density! to orderN0 includes, in addition
to the intuitively expected contribution of the noncondens
particles, a term of the same order due to the deviat
F (2)/N of the exact condensate wave function from t
Gross-Pitaevskii approximationF. This complication, ab-
sent from the homogeneous case~where the condensate wav
function is exactly a plane wave!, cannot be avoided in har
monic traps.

In order to get an equation forF (2) we follow the general
procedure outlined at the beginning of Sec. III; we calcul

the terms of order 1/AN̂ in the exact Eq.~A3! of the Appen-
dix and we use the requirement Eq.~17! on their mean value
to get an equation forF (2). In the termR2 of Eq. ~A3! we
keep the lowest-order terms (âFex

† âFex
→N̂,Fex

→F,âFex

† dĈ→AN̂L̂,dĈ†dĈ→L̂†L̂). The substitutions

âFex

† âFex
→N̂ and Fex→F can also be effected in the term

R1, as the terms neglected in these substitutions areN times
smaller than the leading terms. The mean value ofR1 in this
order is therefore zero and does not contribute to Eq.~17!.
Finally in R0 we make the substitutionFex→F1F (2)/N̂

and âFex

† âFex
→N̂2*drW8L̂†(rW8)L̂(rW8). We collect all these
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terms. With the same argument we used to identifyL in Eq.
~56!, we get a linear inhomogeneous equation for the co
ponentF'

(2) orthogonal toF:

S i\
d

dt
2L~ t ! D S F'

~2!~ t !

F'
~2!* ~ t !

D 5S Q~ t !S~ t !

2Q* ~ t !S* ~ t !
D ~95!

whereL is given by Eq.~46! and

S~rW !52gNuF~rW !u2F~rW !K 11E dsWL̂†~sW !L̂~sW !L
12gNF~rW !^L̂†~rW !L̂~rW !&1gNF* ~rW !^L̂~rW !L̂~rW !&

2gNE dsWuF~sW !u2^@L̂†~sW !F~sW !1L̂~sW !F* ~sW !#L̂~rW !&.

~96!

The first term in Eq.~96! corrects the overestimation of th
number of condensed particles in calculating their mut
interaction „N→N2@11^dN̂&#… in the Gross-Pitaevski
equation. The terms in the second line describe the inte
tion of the condensed particles and the noncondensed o
The fact that the coupling constant is 2gN rather thangN in
the term involving the density of noncondensed partic

^L̂†L& can be understood in a mean-field picture: for t
noncondensed particles one has to apply the Hartree-F
approximation, whereas for the condensed particles only
Hartree term is kept. For the zero range interaction poten
Eq. ~1! the Hartree and the Fock terms have identical con

butions, hence the factor of two. The term in^L̂L̂& is ob-
tained also in a Hartree-Fock-Bogoliubov mean-field tre
ment@27#. The terms in the last two lines of Eq.~96! involve
the spatial correlation function of the noncondensed p
ticles.

No explicit equation can be obtained for the componen
F (2) along F. One can in fact show that, apart from th
normalization constraint Eq.~7! imposing that this compo
nent is purely imaginary, it can be chosen at will, using
arbitrariness of the global phase ofFex. This is why, in
particular, the expectation value in Eq.~26! is unaffected by
the substitutionF (2)→F (2)1 igF, whereg is any real num-
ber.

VII. CONCLUSION AND OUTLOOK

We have presented a systematic expansion of the ev
tion equations of the field operator for a very-low
temperature Bose-Einstein condensed gas with a w
defined number of particlesN. The expansion is valid if the
fraction of noncondensed particles is small. It gives to low
order the condensate wave function as a solution of
Gross-Pitaevskii equation and to next order the linear
namics of the noncondensed particles. We can consiste
include higher-order terms in the asymptotic expansion. T
allows in particular to include the feedback of nonconden
particles on the condensate wave function resulting in a
rection of order 1/N to the prediction of the Gross-Pitaevsk
equation.

We have numerically shown@22# for an isotropic trap and
-
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for systems in a steady state atT50 that the fraction of
noncondensed particles is approximately given by^dN̂&/N
.Aras

3 where r is the density at the center of the tra
Applying this formula to the anisotropic traps used in rece
experiments at MIT@2# we predict a fraction of noncon
densed particles of the order 1023, which demonstrates the
validity of the Gross-Pitaevskii equation atT50 for a sys-
tem in a steady state.

What happens to a condensate that is not in a steady s
This is a situation occurring in recent experiments. In a fi
type of experiment the trap was abruptly switched off a
the expanding cloud monitored. We have analyzed this s
ation in @11# with the Gross-Pitaevskii equation. With th
present theory we are able to show that the number of n
condensed particles is not increased by an abrupt openin
the trap.

In a second type of experiment the condensate is exc
by a time modulation of the trap frequency and then os
lates in the unperturbed potential. At very low temperatu
(T much smaller than the critical temperatureTc) and for a
strongly enough driven system we have shown in a rec
paper@18# that the solution of the Gross-Pitaevskii equati
approximating the condensate wave function is unstable.
cording to Sec. IV A the density of noncondensed partic
will then increase exponentially with time. This exponent
increase of course will saturate at some stage, when the
teraction between the noncondensed particles has to be t
into account, an effect that would require the calculation

L̂(1), the first-order correction toL̂ @see Eq.~21!#.
Note added in proof. Recently an article appeared th

proposed an expansion of the evolution equations tha
equivalent to our approach: C. W. Gardiner, Phys. Rev
56, 1414~1997!.
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APPENDIX A

The equations of motions forL̂ex(rW,t) follow from

i\
d

dt
„âFex

† ~ t !dĈ~rW,t !…5 i\] t„âFex

† ~ t !dĈ~rW,t !…

1@ âFex

† ~ t !dĈ~rW,t !,Ĥ~ t !#

~A1!

and include an explicit time dependence due toFex(t):

] tâFex

~ t ! 5E dsW„] tFex* ~sW,t !…Ĉ~sW !,
~A2!

] tdĈ~rW,t !5E dsW„] tQex~rW,sW,t !…Ĉ~sW !.

From this we get the exact Heisenberg equations



3020 57Y. CASTIN AND R. DUM
1

AN̂
i\

d

dt
„âFex

† dĈ~rW !…5
1

AN̂
E dsW (

k50

4

Rk~rW,sW !, ~A3!

where we collected terms in powers ofdĈ

R0~rW,sW !5âFex

† âFex
Qex~rW,sW !@2 i\] t1H

1g~ âFex

† âFex
21!uFex~sW !u2#Fex~sW !,

R1~rW,sW !5Qex~rW,sW !@H12g~ âFex

† âFex
21!uFex~sW !u2#

3âFex

† dĈ~sW !2Fex~rW !

3@ i\] tFex* ~sW !#âFex

† dĈ~sW !

1Qex~rW,sW !gâFex

† âFex
Fex

2 ~sW !dĈ†~sW !âFex

2âFex

† dĈ~rW !Fex* ~sW !@2 i\] t1H

1gâFex

† âFex
uFex~sW !u2#Fex~sW !,

R2~rW,sW !52dĈ~sW !†dĈ~rW !@2 i\] t1H

12gâFex

† âFex
uFex~sW !u2#Fex~sW !1gQex~rW,sW !

3@ âFex

†2 dĈ2~sW !Fex* ~sW !

12gâFex

† âFex
dĈ†~sW !dĈ~sW !Fex~sW !#

2gFex* ~sW !uFex~sW !u2âFex
†2dĈ~sW !dĈ~rW !,

R3~rW,sW !5gQex~rW,sW !âFex

† dĈ~sW !†dĈ~sW !2

2gdĈ†~sW !dĈ†~sW !âFex
Fex

2 ~sW !dĈ~rW !

22gdĈ†~sW !dĈ~sW !âFex

† uFex~sW !u2dĈ~rW !,

R4~rW,sW !52gdĈ†2
~sW !dĈ~sW !Fex~sW !dĈ~rW !. ~A4!
an
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APPENDIX B

To prove theorem~57! we define the operator

X~ t !5Q~ t !UGP~ t !Q~0!, ~B1!

whereQ(t) is a generalized projector

Q~ t !5S Q~ t ! 0

0 Q* ~ t !
D . ~B2!

At t50,X(0)5Q(0)5U(0) since U is restricted to the
states orthogonal to@F(0),0# and@0,F* (0)#. To determine
the evolution ofX we take the time derivative of Eq.~B1!:

i\
d

dt
X~ t !5MX~ t !UGP~ t !Q~0!,

~B3!

MX~ t !5LQ~ t !

1gNS QuF~rW,t !u2P QF~rW,t !2P*

2Q* F~rW,t !*
2
P 2Q* uF~rW,t !u2P*

D
(P5uF&^Fu). UsinguFu2P5F2uF* &^Fu we rewriteMX(t)
as

MX~ t !5LQ~ t !1gNS QuF~rW,t)u2uF&

2Q* uF(rW,t)u2uF* &D ~^Fu,^F* u!.

~B4!

The last step consists in proving that

@^F~ t !u,^F* ~ t !u#UGP~ t !Q~0![0. ~B5!

This relation holds att50; it holds at any later timet be-
cause its time derivative vanishes. Therefore

i\
d

dt
X~ t !5L~ t !Q~ t !UGP~ t !Q~0!5L~ t !X~ t ! ~B6!

andX(t)5U(t) Q.E.D.
P.

,
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