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Soliton generation in the nonlinear interaction of two waves
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We consider interaction of a laser field with surface waves propagating in a thin layer having a width much
less than that of the laser field. It is assumed that the laser field interacts concurrently with a two-level
transition. We show that generation of the surface waves in this scheme may be described by the completely
integrable Thirring model. We use this model for study of the evolution of a steplike pulse. It is found that a
leading edge is described asymptotically by a sequence of solitons. The modulation instability leading to the
formation of these solitons is treated in a hydrodynamic approximation. For this aim we find a solution to the
Whitham equations associated with deformation of the one-phase solution of the Thirring model. We show that
the results obtained here can be applied to other physical situations, for instance, the study of the three-wave
mixing in a bulk medium[S1050-294®8)07401-0

PACS numbgs): 42.65.Hw, 42.65.Dr, 42.65.Re

[. INTRODUCTION with one-photon resonant interaction with a two-level transi-
tion. Maxwell equations describing three-wave mixing in
The interest in the theoretical and experimental study othis scheme and the material equations are reduced to a pair
coherent phenomena in thin layers appears due to the devedf evolution equations. It will be shown that these equations
opment of coherent spectroscopy and potential application adre an integrable generalization of the Thirring mo@eW)
thin films [1,2]. Special attention has been paid to the mul-in some region of physical parameters.
tifrequency interaction in thin films of the molecular aggre-  The Thirring model had been derived first in the theory of
gates, surface films, interfaces, and so on. Multiwave mixingpinor fields[5]. The quantum and classical versions of this
processes in layers may yield a rich variety of nonlinear phemodel had been studied in elementary particles physics and
nomena. Novel effects may arise due to mixing of resonanin the theory of ferromagnetism. In nonlinear optics the com-
interactions with energetic transitions and multiwave interacpletely integrable TM has been applied for study of polariza-
tions in nonlinear media. It has been found in the experimention effects in the Bragg mediuf®] and “gap” solitons[7].
tal studies that nonlinear susceptibilities of thin films could Dynamics of the soliton solution of the TM now is well
reach high values. The property of small switching timeunderstood mainly due to application of the modern analyti-
makes such layers prospective candidates for application isal tool — the inverse scattering transfoi$T) [8]. The
microelectronics. This stimulates the special attention of reintegrable models attract the special attention of theorists
searchers to nonlinear optical phenomena in the films. because their investigation provides the most detailed ana-
It is known that interaction of a powerful laser field with lytical information about the nonlinear stage of field evolu-
surfaces leads to the generation of surface waves and surfatien. Many physically important systems in one space and
patterns[3,4]. Investigation of the patterns is important for one dimension have a Lax pair and are integrable using the
understanding of nonlinear phenomena in layers. In théST. The Lax representation for the TM was found by
present paper we consider interaction of external pumpin®likhailov [9]. The classical version of the IST had been
fields with a thin layer placed on a solid surface. We considedeveloped by Mikhailov and Kuznets¢%0]. In the present
two internal waves counterpropagating in the layer. It is aspaper the physical conditions allowing one to extend the ap-
sumed that both these waves have initial amplitudes anglication of the integrable TM for study of nonlinear optical
phases that are time and space independent. Being chosprocesses are found.
initially small, one field may be used for modeling of noise.  Frequently experimental situations involve a high density
Interaction of internal fields with an external field leads toof solitons or another nonlinear pulse. These packets of soli-
energy exchange between waves propagating in a layer. It {ons in a system, having small losses, may be approximated
known that creation of the packets of nonlinear pulses irby modulated quasiperiodic waves. The interaction of waves
multiwave processes has to be expected for sufficiently longnay involve a formation of nonlinear robust modes, whose
and powerful pulses. Interaction of nonlinear waves propastudy is interesting for both theoretical physics and applica-
gating in a thin layer may lead to formation of robust surfacetion. These modes may be generated due to developing of a
patterns consisting of dense packets of solitons. modulation instability in a layer. For nonlinear optical sys-
In this paper the formation of dense packets of solitongems numerical results show that periodic waves arise, for
near the leading edge of a long steplike pulse is investigateithstance, when the characteristic length of the instability is
analytically. The interaction of an external wave with two close to the length of the nonlinear medium and boundary
waves propagating in a thin layer is considered concurrentlgonditions are close to the periodic ones. Dense packets of
solitons may arise due to the development of the modulation
instability during propagation of a long steplike pulse. For
*Electronic address: zabolotskii@iae.nsk.su instance, it is proved numerically and analytically for the
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Korteveg—de Vries equation that the leading edge of the&sec. Il Maxwell and Bloch equations describing three-wave
steplike pulse transforms to a dense packet of nonlineamixing and resonant one-frequency interaction in a layer are
pulses[8]. These pulses tend to asymptotic solitons undereduced to the generalization of the Thirring model. Section
some initial conditions. Il is devoted to a derivation of the one-phase solution to the
Treating the nonlinear stage of evolution of the denselhirring model in a form convenient for our purposes. In
packets of pulses, one must operate with a large number §fec. IV the Whitham equations are presented and the simi-
degrees of freedom. Such treatment is possible, as a rullrity solution is found. Section V contains the conclusions.
only for completely integrable models, and even for them the\nother physical situation leading to the same TM model is
study faces tremendous analytical problems. On the othdfescribed in Sec.V as well. In Appendix A conventional IST
hand some experimental results of the generation of denstgchr)lques are used'for an anqu5|s of the asympto.tlcs of the
packets of pulses may be modeled using modulated period eplike pu_lse. The time evolution of SPECtTa_' _data IS fqund.
waves [8]. These observations motivate one to use the" App_end_|x B we prove that unde_r some initial conc_l|t|ons
Whitham approach for studying the behavior of a denséhe solitonic part of the spectrum gives rise to the main con-

packet of pulses. This approach consists of two steps. ThE-EibUtion to asymptoFics. Itis found also t_hat the .Ieading e(_jge
first step is a derivation of an exact on@o-) phase solu- of the generated train of pulses is associated with the soliton,

tion of the original equations with the periodic boundarythe parameters of which are fixed by the initial pulse param-

conditions. Then it is assumed that part of the spectral dat&"s:

associated with the periodic wave depends on space and time

variables. This dependence is slow in comparison with that Il. BASIC EQUATIONS

of a single oscillation constituting a packet. Averaging over ) ) . ) o

the period of rapid nonlinear oscillations yields the evolution L€t us consider a plane thin layer having widiftwhich is

equations for the parameters of the periodic wave. ThesBluch less than the length of the light wake In the coor-

equations are the hydrodynamic Whitham equaugﬂflgl] dinate system used here the plane pOSlthIF'@. The inci-

As shown in[12] these equations can be effectively obtaineddent external wave transmits from the medium>Q),

using the IST directly in a diagonal form. whose characteristics are labeled by the subirmlexd in-
We use the Whitham approach here for analysis of moduteracts with the layerz=0), whose characteristics are la-

lation instability arising in propagation of long steplike pulse beled by the subindel. For instance, the dielectric suscep-

in a layer. For this aim we construct the one-phase solutiofibility constants aree, and e, respectively. We consider

of the TM. We use here the IST version developed for thelE waves only. Let the incident field be

systems of evolution equations by Marchemkal.[13-15.

This method allows one to construct, in common, the exact E,(t,x,2)= Eo(t,x,2)exdi (kK¥x+kiz— wt)],

N-phase quasiperiodic solutions to the model under consid-

eration and was applied to the TM in Refd6,17. The . : a a :

authors of these works had received expressions for th\é/hereEo(t,x,z) s the arl‘p"ti‘de and, k, are the projec-

N-phase solution for the TM in a form that is not efficient for tions of the wave vectok®, |k*=we,/c. For they com-

the purposes Of the present paper_ Therefore we use hep@nents Of I‘eﬂected a.nd transm|tted waves we haVe

another form of the one-phase solution. Then we use this

solution as the robust nonlinear mode for modeling the non- (Er)y(t,x,z):Er(t,x,z)expﬁ(ki‘x—kgz— ot)], (2.1

linear stage of evolution of modulation instability. We sup-

pose that a change of the parameters of the nonlinear mode

during all stages of evolution obeys the Whitham equations,

i.e., the quasiclassicalhydrodynamics approximation is

valid. The dynamics of nonlinear waves is described by the

evolution of a few wave parameters obeying the WhithamwhereE(t,x,z), E(t,x,z) are the slow amplitudes of the

equations. For physical applications, the situation when theeflected and transmitted waves, respectiveIMZb|

highest soliton arises at the leading edge attracts the particu= w /e, /c, k3= kg_

lar interest of researchers. We find here the physical condi- The Maxwell equations for a thin layer are reduced to the

tions leading to this regime. It is shown that under theseollowing system of boundary conditions:

conditions any change of parameters of the wave is described

by the Whitham equations solutions. These solutions de- _ _

scribe the deformation of weak periodic modulation of the Ey(tx,+0)=E,(t.x,~0),

plane wave to a sequence of asymptotic quasiisolated soli-

tons. The isolated solitons of the TM are knojd®]. What H,(t,x,+0) =H,(t,x,—0), 2.3

is new for the TM is that the approach used here allows one

to describe the transform of the steplike pulse in a dense 4

packet of solitons due to evolution of the modulation insta- Hy(t,X,+0) —H,(t,x,—0) = — d;py(X,t),

bility. The approach used here allows one to study such a ¢

configuration. The tremendous problem of the study of a

system having a large number of degrees of freedom is rewherep=py(x,t) is a surface density of polarization.

duced to the analysis of a few nonlinear evolution equations. From conditiong2.3) we find the following relations be-
The remainder of this paper is organized as follows. Intween the slow changing field amplitudes and polarization:

(Eur)y(t,X,2) =Eq(t,x,2)exd i (kix + k3z— wt)],
(2.2
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2A  4rw equationg2.6) may describe the interaction with either mo-
Ev= Eoti P, lecular transition or impurity atoms implemented into a thin
A+B c(A+B) . .
(2.4  film. In the present paper we assume that the time scale of
A—B Ao the change of the amplitudes of fields is much more than
— ; . -1 ; .
EV_A+B Eqti c(A+B) p; Y12 - Then Eq.(2.6) can be easily solved:

_ No|d122(1—i 8p)E

between the vector orthogonal to the layer surface and the I fiya[ 1+ 85+ (|12l |E|A " H2(y1y2) "1
wave vectors of the reflected and transmitted field, respec-
tively. The contribution to the polarizatignarises due to the wheresd,= v/, . In addition we will consider the contribu-
resonant interaction of the field with energetic transitions oftion of a simultaneous three-wave interaction to the surface
a layer, e.g., interaction with molecular transitions in aggre{olarizationp, . Let us suppose that the fieidinteracts with
gates, with impurity atoms, and so on. Multiwave nonlineartwo waves propagating within the layer. In practice, the
processes also can make significant contributions to polarizgecond-order nonlinearity is the main nonlinearity at the sur-
tion if corresponding nonlinear susceptibilities are suffi-face due to the violation of the reflection symmetry contrary
ciently large. Denoting by, and p, the terms describing to a bulk crysta[2]. Thus we may treat the three-wave in-
contributions of the first and the second mechanisms, respetgraction as the main nonlinear process in a thin layer or
tively, we havep=p,+p,. interface. Let the external fieH(z,t) have an amplitude and
The macroscopic field may differ from the local field due phase that do not change during nonlinear interactsee
to the contribution of induced atomic polarizations. This con-below). Two surface fieldgor polariton wavesare assumed
tribution is described by the Lorentz field. Let us estimate thg0 be generated by some experimental scheme.
contribution of the Lorentz field to the polarizatiqn. We Let us introduce the two fields describing surface polar-
assume that the main contributionipis induced by coher- iton waves propagating along the layer:
ent excitation of a resonant mode of the medium by the

here A= e cosh,, B= \/ep,cod,. 6, and 6, are the angles _i

2.7)

_ N
external field. The contribution of the Lorentz field to the E1(t.x,y)=Va(t,x)exgi(pX—pyy —wit)], 2.8
surface polarizatiorp, is described by the following term: b b '
pL={.p; [18]. The real parametef, can be estimated for Ea(t,x,2) =V,(t,x)exd i (a,X+ayy — w,t)].

many media ag, =2,/(3lk), where{, is a scalar having
order of unity,k is the wave vector, andis the width of the
film. To find the contribution of the Lorentz field for a thin

The resonance conditions are the following:

layer one has to calculate the sum k=q+p, @=wiZwat o, 2.9
3(p P 5 2 2py? wherev is a frequency detuning. We assume, for simplicity,
N —pir? BVZ b_ b_ b_4b_
2 i i :2 J); j ~Co?=§|_pr, that py=0d,=0, py=0dx=4q. The z component of the wave

vector of the external fieldE(z,t) is not included in the
(2.5 resonance condition@.9). Indeed, condition$2.9) are de-
rived under approximations of slow changing amplitudes of
wherer, is a mean distance between ator@, is a real  the fields and after averaging over the fast oscillations. We
constant of the order of 1. The relative contribution of non-assume that the width of the layer is described by the delta
resonant terms to the Lorentz field is an order Offunction_ Then averaging a|0ng theaxis leads to the ab-
|d12?/(hwr3) and can be neglected here. sence of corresponding components of the wave vector of the
A two-frequency interaction with a two-level transition external fieldE(z,t) in conditions(2.9). Note that in experi-
also may give a contribution to the polarizatipp, if non-  mental physics special optical devices are used for effective
linear susceptibility of the second order is sufficiently large.coupling of the external fields with fields generated in a thin
This contribution to polarization arises at the frequeneies layer[2].
* w, We do not consider this contribution here, but the ob- The Maxwell equations for slow changing amplitudes de-
tained results can be easily generalized. scribing the three-wave mixing are the following:
We find the contribution of the resonant interaction to
surface polarizatiorp, using the Bloch equations of one- N(w») 275X P (wy)
photon interaction of a light with a two-level transition: (— X t) 1=l

Ey V3 explivgt),

k3c?
i|d12|2 (2.1@
HQF Y2QFTvQ=— 5 EN, n(wy) 2m0iP (o)
(2.6 Ixt 0t |Vo= TEnvlqulvot);
i 1
_ . (O*FE_ x .
INFy1(N=No)= 5 (Q"E—-QE"); here x?(w, 5 is the nonlinear susceptibility of the second

order,n(w, ) is the dielectric constant of the medium. The
hered, is the dipole momentum of the transitioN. is the  resonance conditions are fulfilled, for instance, if two fields
difference between level population§ is then the off- propagating in opposite directions and= w,,|k;|=|k,|.
diagonal part of the density matriX, is the density of reso- We rewrite the first equation in syste(@.4) in the fol-
nant atoms, ang , are the relaxation constants. The Bloch lowing form:
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E_E 2A oA Co dw o v
~EvTATB O C(ATB) N hiwy) V1
dw

Vs (2.11)

oA XY

The system of Eqg2.7), (2.10, (2.11) describes the nonlin-

= Go( IC1Egexpli g1 —i o) V3

_ C1|X2|47Tw

V1|V2|2exp(i 2¢1—ido) |,

ear mixing processes in a thin film with a resonant two-level 2A

transition. Let us rewrite this system in a form that can be (213
considered as a nonintegrable generalization of the Thirrin C
model: o+ I"I(—a)z)ﬁx V,
c
M nwp XV =Go( ICoEqeXpi 1~ i o) Vi
C,J Calxol4mw o
11 _TV2|V1|29XP(2|¢1—|¢0) :
—(a+6oB) —i(Soa—pB)
viE A 2 ,4Tw v, 2 where
ix2VoEortw Xz Vil V2
A+B A+B
(2.12 do=[(1+ 85— B— ado)®+(B— o) *]*?,
{aﬁ Lax}vz go=ard (1+ 63— B~ adg) ~i(B~ doa)],
n(w,)
|X2| 2 . . _ 2A
CyJ, Go= (1+60), x2=|xa2lexp(iey), F—m-
— + — —
(at6of)~1(S0a=p) We rewrite the last system in the following form:
2A  L4Amw , . Do
|X2V1E0A+B X2A+BV2|V1| ’ (7YV:|mU+glV|U| exq2|¢1_l¢0)1 (2119
axU=im*V+g,U|V|%exp —2i ¢, +i ¢y),
where
where
digfi =2 |DyV4|?
\]1:1+5g+|12| | 11|’
Y1Y2  |xoVal? X=—-Go(X/lv), Y=Go(t—2x/v), v=—"—,
N(wy)
72 2 .
J—14 824 |digi ™% [D,Vy| m=/C1C,Eq exdi (¢ — ¢o)],
Y1Y2 |xVil?
U=V* 47TwC1|X2| 12 V=V 47TwC2|X2| 12
¢ 2 2A : ! 2A ’
Di=|d+(-1) |, 1=12,
n(w) C1,2|X2|47Tw
91=Go— 5,
_ CoNo|d;|? _ 47Nl dy? _27T‘Ui2
 rohye ~ c(A+B)hy,’ ~kien; The above equations arise for the sigst ™ in the right-

hand side(rhs) of the frequency resonance conditi¢h9).

System(2.12 seems to be rather complicated for analyti- For the sign ‘“—" the analogous system appears up to the
cal study, therefore we use the additional simplifications. Fochange of one field amplitude to a complex conjugated one.
the intensity of fieldE having values far from that of satu- System(2.14) is valid for large parameteu=|m|?/|\o|?
ration relation(2.7) becomes linear it andJ;~1+ 5. We  >1, where|\3| is the maximum of amplitudes of the fielts
assume that intensities of the fieldls , are much less than andU.
that of the fieldE. In this case the dependence of the fiEld The complexity of the coefficients in the rhs of Egs.
on x,t is fixed and does not change due to interaction. Thig2.14 and the dependence of on the variables makes this
situation arises when the second-order nonlinearity yields aystem nonintegrable in the general case. But for some re-
small contribution to polarization in comparison to nonlineargion of the physical parameters systé2l4) can be reduced
resonance interactiofsee the last sectignif the intensity of to a new generalization of the integrable version of the
the field E is far from saturated the former system can beThirring model. The integrability conditions impose the re-
reduced to the following generally nonintegrable generalizastrictions on the coefficients and variable dependenaa.of
tion of the Thirring model The exact integrability provides the following condition
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Re exp{2¢,—idg)[1+ 5(2)_(a+ 5B)—i(&%a—p)]=0. How- mass known in the literature. Note finally that fpr+g,=0
ever, in a real physical situation this exact relation has to b&ystem(2.14 is reduced to a linear one by a simple gauge
replaced by the approximate one transform.

‘ exXp(i26b,—i o) | IIl. NONLINEAR EVOLUTION OF INITIAL

e1+52 (@t 6.8)—i(5 ﬁ)! PLANE WAVE
o— (& 0 —I1 o —

In this paper we restrict our consideration to a case of
exp(i2¢,—i¢g) ‘ m=m, exp(dv;X+2ivY). Herem, is a constant. After the

< Im1+5§—(a+5oﬂ)—i(5oa—,8)" (219 transformation
g . I _ V2u
The condition(2.15 can be easily fulfilled in experimental U— ———eli (9179212 [U[7dY+i(m X+ 0Y)]
optics. For the reak, and m the nonequality2.15 means VIg1+0ql
that |1+ 83— a— BSo|<|Sea—B|. The later nonequality
may be fulfilled for>1, §,=0 anda<< 8. Let us estimate Vo V2v ei[<grgz)/2]fEIU|2dei(vl><+vY)

the required density of surface atoms. Hdg,?/%w~3 /
x 10" 25 cm?® we find that the density of impurity atom, 03+ 0l
>10%y,(cm 2). For the relaxation constang,~10"c™!  system(2.14 changes to the following:
the atomic density may be 10'* cm™ 2, _ . ,

We will treat the integrable version of the modgl14), IxV=imoU +ieV[U[*=ir,V,
where the “mass”m depends on variables, in common. The
Lax representation for syste(8.14) has the following form:

(3.0
aU=imgV+ieU|V|2—ivU;

here e=*1 is the sign ofg;,. We assume that sgn

—i2+i %Mz /91+92§V =SQrg,. The Lax pair(2.16), (2.17) can be rewritten in the
2 following form:
Ixp= g, W,
_ * g2 91 2 i
91t 92fV* i i 2 V| E()\Z—€|V|2+V) AV
(2.1 Iy D= . @,
i
, —eNV* —=(N?—¢€|V|[?+v)
i |m_ +i % U 2 + m_*U 2
" 11T N+ g (3.2
dvip= b,
' —Vg1+9 EU* i@—i%|u|2 e
3 a2 i[m? moU
(2.17 | 2 U2+ —=
2\ )\2 ! A
where( is the spectral paramete¥, is the vector function = emaU* . O.
depending orX, Y, and{. Analysis shows that the system =0 - _(_0_ €|U|2+ V1>
(2.16), (2.17 is integrable by means of the IST if the condi- A 2\ \2
tion (2.19 is fulfilled and “mass” m admits the following (3.3

decomposition: ) ) _
Here @ is the two-component functiony is the spectral

MY, X)=mymy, dxm;=0, dymy=0, Im(my)=0. parameter. Additionallyy and v, are the arbitrary functions
(218) V= V(X), V1= Vl(Y). o ) ]
System(3.1) has the trivial plane-wave solution. To in-
The proof of this statement is direct. The dependencen of vest.igate the stability of this soIL!tion in the Iingar approxi-
on X does not alter the Lax pair, contrary to the dependencg'ation we transform the TM3.1) Into_one equation of the
on Y. But the latter dependence can be avoided if the Specs_econd order. Using the e_quat|613|v| =~ 9x|U|* follow-
tral parametet has the form¢=Z,m,, where(, is a con- N9 from Eq.(3.1), we obtain
stant. The condition Inm,) =0 is verified directly from the
above Lax pair. The dependence of the “mass” on “time”
Y yields the dependence of a spectral _parameter on “time. here W= U(X,Y)exdief[VI3X,Y)dX]. For simplicity we set
If m has the forrm=m,;exd 2iv;(Y)X+2iv(X)Y], wherem, v,=v=0.
satisfies thg ab_ove integrability conditions, theq the system™ The linear function
(2.14 remains integrable by the IST for the arbitrary func-
tions v(X) and v4(Y) (see below. W=Wyexdi(hX)] (3.5
So, we have shown that the integrable Thirring model
may be generalized to the case of a complex variablés the solution to Eq(3.4), where 2W,|2eh=m3;h andW,
“mass” in comparison to the case of the constant and reahre real constants.

AxIyW=—moW—i2e|W[29,W, (3.9



57

SOLITON GENERATION IN THE NONLINEAR ... 2963

The plane-wave solution stability of can be easily inves-
tigated in the linear approximation. L&t andA, be small-
amplitude deviations. After substitution of the perturbed so-
lution

W=Wpexdi(hX)[{1+A; exdi(QY+KX)]

+Aexd —i(QY+KX)]} (3.6

in Eq. (3.4) and linearization with respect t#, , we obtain
the linear homogeneous algebraic system for perturbations.
The compatibility condition yields the dispersion relation for

modulated waves:
[ m
K2—m2/h?

Equation(3.7) shows that for a sufficiently long wavelength  FIG. 1. The complexy=\ plane. The trajectories of, 4 as the
of perturbation, the frequend® has an imaginary part. This functions of the similarity variables= x/7 are show.n. The upper
means that the corresponding perturbation exponentiall/oWen curve corresponds tay, (7,). Transformation from the
grows, i.e., the modulation instability of solutidB.4) takes pointi to 7q correqunds to the transformation from a plane wave
place. to a sequence of solitons. Units are chosen to be arbitrary.
Linear analysis is restricted to small perturbations. To
study the nonlinear stage of instability one must apply theise thex® plane(Fig. 1). The spectrum associated with the
methods operating with nonlinear modes. We use here thigitial steplike pulse consists of the real axis and the finite
one-phase solution of the TM as a robust nonlinear mode fogontinuous interval, which is orthogonal to the real axis. The
the analysis of instability. This modulated robust mode maynterval lying in a solitonic regiortupper half of a plane, Fig.
describe a plane-wave transform to a sequence of solitons f 0f a complex plane is associated with a solitonic
the nonlinear stage of instability. Important information canasymptotic. For physical application the most interesting re-
be obtained by studying the spectrum of the spectral problerlime arises when powerful solitons are generated near the
(3.2) associated with an initial steplike pulse of the fisid  leading edge of the steplike pulse. In Appendixes A and B it
For an infinite length of the steplike pulse the spectral probis shown that such a regime may arise for the TM in an
lem can be easily solved. We omit the details of the solutiorinfinite medium. In Appendix B it is shown that the leading
of the spectral problem. We will mention only the main front of asymptotics is described by the soliton solution as-
steps. First, one can use a pulse having a triangular forngociated with the spectral poin . It is shown that for large
Then, one finds a set of spectral data in the same way as fbMg/\?| a contribution of the continuous spectrum to the
the Zakharov-Shabat spectral probl¢i®]. The associated asymptotic solution may be neglected. Therefore, for the de-
spectrum consists of a set of poles lying on some finite inscription of the evolution of the steplike pulse we may re-
tervals and on the real axis. If the length of the pulse tends tstrict ourselves to the consideration of the solitonic part of
infinity the number of poles tends to infinity and the distancethe spectrum. As shown in Appendix B, there are regions of
between each pair of neighboring poles vanishes. In thighe initial parameters of the plane wave satisfying this as-
limit one gets a spectrum consisting of the real axis and théumption.

Q

x

3.7

continuous intervals.
Let the steplike pulse have a heigh§. The positions of
finite intervals are determined by roots of the polynonial

1
K2=Z [N+ 2N%(€|Vol* = v) + (] Vol *+ »)?].

The equatiorK=0 has four roots. There are two different
cases of the roots, which depend on the sigr of
(I) sgne)=—1. Then

715= (%) 1,3= (v— €[ Vo|?) = 21| V|| v].
(Il sgn(e)=1. Then
71,5= (N?)1,3= (v— €[ Vo|?) = 2i V| V|| v].

Thus, the long-time modulation is associated with the
nonlinear stage of evolution, i.e., generation of asymptotic
solitons. The developing of the modulation instability corre-
sponds to the transform of long harmonic waves into a set of
asymptotic solitons. Application of the Whitham approach
allows one to describe the intermediate region between these
asymptotics by using the modulated periodic nonlinear
mode.

Let us now find the simplest nonlinear mode — the one-
phase solution of the TM. Following the approach developed
in Ref.[13], we introduce the following quadratic eigenfunc-
tions:

f=(i12)(drp2+ ba¢h1), h=¢,¢,,

(3.8

9= ¢1t1,

It is known that isolated poles lying in quadrants | and Il whereg, »i, , are the different solutions of the systé&?),
of the complex\ plane are associated with the solitons of the(3.3).
TM. For the present consideration it is more convenient to These functions satisfy the following system:
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Ixf=i(Bh—Cg), dyf=i(Gh—Hg),
Ixg=2iBf+2Ag, dyg=2iGf+2Fg, (3.9
dxh=—2iCf—2Ah, dyh=—-2iHf—-2Fh;
here
i
A=§()\2—E|V|2+V), B=\V, C=-—e\V*,
2 *
_ | o 2 _ mou Emou
_2( )\2 E|U| +V1 y G= N y = N .

It can be easily checked from systéf9) that the value

P(\)=f2—gh is independent of both the variables, i.e.,

dyP(N\) =0, 9xP(N\)=0. The periodic solution is determined
by the dependence of the polynomRlon the spectral pa-

rameter\. For instance, the one-phase solution is fixed by

the following polynomial:

4

4
f2—gh= P()\)zkgl (AZ—xﬁ):JZO PA%. (3.10
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solution of Eq.(3.9). Therefore if the relations;=f ,g;
=—ehj* hold for the initial conditions, the same relations
hold for the solution. The functiorg andh have the follow-
ing representations:

g=—2\V(\2—pu), h=2eAV*(\2—pu*). (3.14

Substituting Eq(3.14) in Eqg. (3.9) and using Eq(3.14) and
f2(N%2=pu)=P(u) we have

Ixg(N2= ) =2iAVF(u=\3?),

2
m
IvG(N2= p) = — 21 —=AVF(u=2\2).

VP,

The latter pair of the equations yields

H 1/2 2 Y
dop=i[P(w)]™4 0=X—m0\/?. (3.19
0

Using Egs.(3.10, (3.12 we find thatV is a function ofy.
To find U it is convenient to use the symmetry property of

Egs. (3.2 and (3.3). Equations(3.2) and (3.3) remain un-
changed after the transformation:

Here \ are the roots of the polynomial. We assume that a
pair of the spectral datlsli3 is fixed by asymptotics. These (3.16
roots are assumed to be independent of the variables. Thi§s introduce an inverse auxiliary functign=1/u. Repeat-
choice of P is dictated by the fact that the correspondinging the above steps and using E8.16), we obtain
solution (see beloyw must coincide with the plane-wave so- '

A==*1/\, U=V, XY,

Ve vy,

lution (asx— — ) and asymptoticallfasx— ) coincides
with the “top soliton.” On the other hand this form &f(\)
includes “free” roots 7,=\3,7,=\3. The variable depen-

Gp=ilQ1 =" v @1
¢ NGH

dence of these roots describes the deformation of a plane

wave to a train of solitons.

Here Q(p) is the polynomial of the fourth order having the

_ 2
It can be shown that the quadratic functions, satisfying thé00tSpj=1A\7, j=1-4.

system(3.2), (3.3), have for the one-phase case the form

2
f=> A% g=A(go+g:Ad), h=\(hg+h\2).

k=0
(3.11)

From system(3.9), one can find the following relations:

dxfo=0dyf,=0, g1=-2V, (3.12

go=—2Uf0, h1=2€v*f2, h0=26U*f0.
Substituting these relations in E(.10 and using decom-
position in degrees of, we find for the zeroth and the fourth

degrees oh.:

f0:\/P_! f2:\/P_:1-

We chooseP, equal to unity without loss of generality. We
introduce the “auxiliary function”

n(N,Xy)=—+P (3.13

meV"

To recover Egs(3.9), we note the following: if f; ,g; ,h;} is
a solution of Eq.(3.9 then {ff,—ehf,—e€g}} is also a

Using Egs.(3.1) and(3.13 one can express solutions to
the TM in terms ofu(6). These relations are the following:

H(INV[D)=i(p—pw*)mg/fo, (3.18
Ix(In|U[?)=ifo(p—p*); (3.19
avInV=iumi/fo—ielU|?+ v, (3.20
anU=ipfo—ielV|?+v,. (3.21)

The condition of the reality of; following from Eq. (3.18
requires that the rootsﬁ must be in complex conjugated
pairs or be either pure imaginary or pure real. Integration of
Egs. (3.15, (3.20, (3.2)) yields a one-phase solution. For
some physical applications it is convenient to express the
solution in terms of the parameters, which can be related
with maximal and minimal intensities of the fields. For this
aim we solve the following system of algebraic relations:

P3:2f1_|(0), P1=2f1f2—|(¢9),u,,u,*,

(3.22
P,=f3+2f,—21(0)(u+u*),

wherel (8) =4¢| V|2 Equations(3.22 are easily derived us-
ing the integral of motiorP=f?—gh as a polynomial in
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and using the relation.11). Let us expresg in terms of
[(6). Trivial but tedious calculation yields

w=—S/(81)+1/8—Pa/d—i\—S(1)/(8I).

Here,
S(1)=[4P,=8\Pg— (1~ P5)?]2—~64I[ P+ \Po(l — P3)?],
So=1415l3l4, 1 =1(6). PolynomialS(l) has four roots:

== (A= A3—N5205)2%

(3.23

l4=— A2+ N3+ N2E03)2

(3.29

Here\Z are the roots of the polynomid(\) (3.10. From

l1=—(\5+N3—\3F2N9)2,

l3=—(A2=\3+\3F2\3)?,

Egs.(3.195 and(3.18 it can be easily found that the function

[ () obeys the equation

A _N=S() _N=(-1)(-12)( =151 —14)

0 4 4

(3.29

Integrate Eq.(3.25 for the reall,. Let [;>1,>13>1,. A
common solution to Eq(3.29 for 1,=1(6)>1, is the fol-
lowing:

L1 (1= 14)+14(11=12)SIP(61, %)

1(6)= = (3.2

0 lo= 14+ (11— 12)sMP(81,x) (829
for I;=1(6)>1, we have

(o= AT DT lsHo, 0

l1= 13+ (I3~ 14)SP(6y, %)

Here the Jacobi function sn has a modulks k%= (I,
—12)(I3—=14)/[(11—=13)(I3—14)] and 20,=6[(11—13)(I2
—14)]*2 In the limit1 ,— 15 solutions(3.26), (3.27 describe
the following isolated solitons, respectively:

(I~ 1)1~ 1)
1(6)=1,+ , (3.28
O a8 — (1)
1(6) =14+ (I3=14)(I1=13) (329

(|4_|1)Ch2(92)+(|3_|4).

Here 20,=60 [(1;—1,)(1,—1,)]¥2 Solution (3.28 is the
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11=4(BotB), 1:=4(Bo—B), |3=—4(ag—a),
|3=—4(a'0+a')
From Eq.(3.20 we have

InV=% InI—if (E—l—

8l 8

da+ivv+ief 1d9+iC,X.

(3.3

Real constan€, can be expressed in termsBf. We used
the equalitydy|U|?>= — y|V|? following from the TM. An
analogous relation betweéhandp can be derived using the
above formulas. The nonlinear phase factor of the Netzhn
be found from Eq(3.31) using the table integral0].

In addition, initial conditions impose a relation between
©(0,0) and the initial value of the fields. Following to
Kotljarov et al. [21] we write down this condition as the
following

(@)= |V(0,0|’[w— u(0,0][w— u*(0,0]

4

=11 (w-n), (3.32
j=1

where n; are the constant values satisfying to conditions of

reality, i.e., coefficient®, of the polynomialP must be real.

IV. THE WHITHAM EQUATIONS

In this paper we assume that external perturbation is ab-
sent. Dispersion phenomena vyield a transformation of a
dense packet of oscillation. To explain the origin of modu-
lations, we consider the packet of nonlinear oscillations with
periodic boundaries. Let the boundaries be extended to infin-
ity. Dispersion produces space and time modulation of the
solution, and resulting modulations are required to balance
each other and yield the dependence of the spectral param-
eters on variables.

The exact solutions obtained in Sec. Ill describe the non-
linear waves repeating themselves after some pefiod
Smoothed shock waves or a modulated wave train may be
described in a quasiclassical approximation. In this approxi-
mation it is assumed that the scales of the modulation of the
train are much greater than that of each soliton or other non-
linear spikes filling the region of the oscillations. We sug-
gest, in addition, that characteristic parameters of the peri-
odic solution (the roots of a polynomial P: )\iz,i
=1,...,4) aresmooth functions of the variableX,Y.
These parameters obey the equations, which may be derived
by averaging some integrals over the period of fast pulsa-
tions. By this way one can reduce the cumbersome problem
of analysis of the complex system with many degrees of

“pright” soliton on the nonzero background, whereas solu-fréédom to a solution of a few evolution equations.

tion (3.29 is the “gray” soliton. In the limitsl;—1,, I3

The Whitham equations for the one-phase solution to in-

.1, the solutiong3.26), (3.27 are transformed to quasihar- €grable systems can be found directly in a diagaiaé-

monic periodic waves having a constant intensityand| 4,

manrn form. We use here the approach developed by

respectively. Let us consider, for instance, the case of twé'aschkaet al. [12,14. We present below final results; see

pairs of complex conjugated rooks :

Niz=ag*iBy, Aag=axip. (3.30

Then we have for the roots of the polynom&for the upper

sign in Eq.(3.24):

Ref.[12], for detalils,.
We denoten,:)\jz. Averaging over the period of fast
oscillationsT yields

1
(3X77n+ U—&YnnZO (41)
n



2966 ALEXANDER A. ZABOLOTSKII 57

Here plete elliptic integral of the first and the second kind, respec-
1 1 1 -1 tively, with the modulusk: k2=[ (51— 72) (73— 7) [ (71
—=— 1— , —13) (72— 714) 1. )\ﬁz 7 are the roots of the polynomial

Un I~ P(\?=7) such thaty;> 7,> 73> 7,.
< 1 > (72— 73) E(K) + (71— 12)K(K) As considered in the previous section, the rogtand\3
~7 2 KK) of the ponnomiaIP are fixed by asymptotics and the two
e (1= m2) (2= 7K (K) roots\5 and\3 may change. We consider the most interest-
< 1 >: — 7)) E(K)+ (71— 72)K(K) .2 |ng case of comple>;] r03t$3 .30, i.e. f)\%] 71=ag+iBo,
4( )( K(K) . )\3 ng—ao—lﬂo The y_namlcs of t e two remallnlng
T2k ) 2 “moving” roots \, and\, will obey the Whitham equations
< 1 > — 94)E(K)— (73— 14)K(K) (4.1). Solving these equations, we find the trajectory of roots
= 4 Kk in the complex plane associated with the transform of weak
3T H (7= m3) (75~ 1) K(K) quasilinear modulation of a plane wave to a set of isolated
1\ (73~ n2)E(K)—(n3— na)K(K) solitons.
Na— b 4(m— ma)(p3— na)K(K) Let )\2 ny=a+ipB, )\4 n4=a—ipB, and 7, , depend

on the similarity variableY/X. Using an equation fom,
Here vo=\Po=(7172m374) % K(k),E(k) are the com- from system(4.1), we have

1 [1_ 1 4i Blag— a+i(Bo— B)IK(k)
VPl atiplag—ati(Bo—B)IK(k)—[ag—a+i(Bot B)]E(k)

Y
< 4.3

Let us separate the real and the imaginary parts of£8): The study of the spectral proble(B8.3) (see Appendixes A
and B shows that information can be derived by analysis of

E(x) a(ad+ a?+ Bi+ B —2a(aga+ BoB) the phase facto® =i[\3(X+S)+ (A2 Y]. Here d(\) is
K(x) =G(k)= 2 2. 2. a2 PPN determined by the “time” ¥) dependence of spectral data.
aagt a®+ Bot B7) —2a0(a”+ %) This dependence is nontrivial fdy (x— —o)#0. A group
(4.4 velocity Y of the soliton solutions to the TM is determined
by the conditions R® =0. RewriteY in the physical vari-
M 2, 2 2 ablesx, t:
< VPo1(a?+ BA){(ag— a)*(1-G)
Y=c/n(wy) (B—1)/(1+p),
+[Bo— B+ (Bot B)GI?} _ , -
B _ where=—Imd/|Im(\?)|>0 [Im&(\?)<0]. The physical
=4p{(a0— a)(aof—afo)(1-C)+[Bo= A conditions used in the above derivation of the TM require
+(Bo+ B)GI(BBo— B2+ aay— o). (4.5  B>1. Let us choose a poiny in the finite interval of the

soliton part of the continuous spectrum, see Fig. 1. This in-

Equations(4.4) and(4.5) can be solved for and 8 as func- terval is symmetric and orthogonal to the real axis and its
tions of E(x)/K () and the modulus: highest values correspond to the poizln;:)\g. It can be
easily established that solitons associated with the smaller

value Im » move faster. This means that a distance between

2_ 4BBo _ (4.6) solitons decreases asincreases. Close behavior is revealed
(gt a)?+(Bo—B)? by a numerical study of the above solution; see Fig. 2.
Trajectories of the rootg,— 7, 74— 73 as the functions V. DISCUSSION OF THE APPLICATION
of Y/X consist of the monotonic curves, which are symmet- OF OBTAINED RESULTS

ric with respect to the real axis, Fig. 1. The upper curve starts We showed that the TM can be used for a description of
from the real axis and monotonically tends to the “top” th

value - of the imaginary part of the spectrum. The case of e modulation instability in some nonlinear optical phenom-
70 ginary p b ena. We investigate the transformation of two plane waves
coalescing roots n,=17n, corresponds to the plane-

wave limit, which we startedpointi in Fig. 1). The soliton propagating in a thin layer into a set of densely packed non-

S . . . linear oscillations due to mutual interaction.
limit is achieved asc— 1. In the vicinity of the pointz, we In the above used approach the phenomena related with
obtain

the modulation instability have to evolve slowly enough.
o Such a situation can be realized in a ring scheme with small
2 1mno(1—«) +O(1—k) losses. For this scheme periodic boundary conditions may be

72= 70| 1+ | 70] a good approximation for modeling of optical experiments.
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4 - ‘ , ‘ particles and ferromagnetism. The solutions found in this
i | W M ﬂ paper can be used to study nonlinear mixing in a bulk me-
/ / / \ H dium in optics as well and in others branches of physics.
| Application of the TM in the nonlinear optics relates to a
specific form of the third-order nonlinearity in resonant me-
‘ dia. This nonlinearity associates with nonlinear energy ex-
. change. It may dominate for some schemes of the resonant
|
|

X
(s

\ interaction of weak light fields. This weak limit is important
for the application in optical devices having small sizes. It is
| known that nonlinear structurésolitons and so onappear
k when high intensities of the interacting fields are used. At
another side such intensities may damage the optical me-
dium. Therefore it is important to find and study the nonlin-
ear processes, which may occur for the lowest possible in-
X 4 tensities. The TM describes nonlinear processes, which may
be treated as the weak limit of resonant multifrequency in-
FIG. 2. Transformation of the leading edge of the initially step- teraction. For instance, it may be shown that the TM may be
like seed pulse as a consequence of solitons due to the modulatiéterived as a reduction of integrable four-wave-mixing mod-
instability. The dependence of the intensity) =|V(x)|? is found  els[22].
by the numerical solution of the Whitham equations for the param- Let us present the physical scheme of nonlinear resonant
eter 77, and shown in arbitrary units. wave mixing leading to the Thirring model in a bulk me-
dium. We consider the two-frequency interaction of a me-
The analysis of the modulation instability in a finite medium dium polarizationR with laser waves. The material equation
under the periodic boundary conditions has to include thdor low excitation is
study of the unstable behavior of a set of discrete modes,
which associate with harmonic waves. The spectrum consists R+ (I'+ivg)R=i% " k1,E,1E, exp[ —i(k,+ky)z]}
of a set of discrete eigenvalues lying in the intervals in the 5 ]
complex plane. As shown above under some initial condi- — koEgexp(—i2kez) J; (5.2
tions, such a finite interval arises in the “solitonic” region of
the complex plane. For a large number of modes and a smaflerex, o are the resonant two-photon nonlinear susceptibili-
interval between the eigenvalues the above results can his, T is the relaxation constar, E, , are the amplitudes
applied. For a steplike pulse the experimental scheme mayf fields having the carrying frequencies, w1, and vec-

be the following. Consider two plane wavsandV propa-  torsk,, k; ,, respectively. The resonance conditions are
gating in counterdirections in a medium placed within the

interval[ —d<x<d]. The fieldU is the plane wave having
nonzero amplitude in this interval and the fidlthas the
form of steplike pulse injected in a medium at the poipt ) . . . o
=—d. Let a small disturbance initiate development of thel€réo is @ detuning. Let the intensity of the pumping field
modulation instability at the point,. The leading edge of Eo P& much more than that of fields, ,. Then the depen-
pulse will transform in a dense packet of nonlinear oscilla-dénce of the fielde, on variables is fixed and does not
tions. The shape of these oscillations initially located neaf"@nge due to interaction.

w1+w2=2w0=w+ Vo, k1+k2:2k0,

x=0 tends to solitons as increases. For sufficiently large et R adiabatically followE,, ,. For largev, one can
and a long pulse of the field the dynamics of the leading find R from Eq. (5.1) integrating by parts. Neglecting the
front may be described by the above solution. terms of ordeiO(d;/vo)R, one gets

The present study of developing modulation instability is
based on an analysis of the spectral probl&2). Analo-

i :
gous results can be derived using the linear systg®) as R= (T +ivg) 1k 12E1 Eex —i (kg +kp)Z]
the spectral problem instead of E.2). One can investigate
the initial conditions leading to solitonic asymptotics for the — koE2exp(—i2kq2)}. (5.2

steplike pulse of the second field.

Application of thin films as a nonlinear-optical mediumis  The Maxwell equations for the slow amplitudes for the
dictated by the needs of microelectronics. The coefficientyo-frequency resonance are the following:
x® for many media is about 10~ ¢ SGSE, therefore the
intensity of the fields about #08GSE is enough to observe 1 2 ok N
the effects predicted above. If combined frequencies of fields ( 9,4 _(9t) E =—— 21270 *R, (5.3
are close to the frequency of a resonant transition of media V12 ' CNy 2
the coefficienty(?) may be increased up to 1@mes[2]. The
required intensities of the field may be decreased correspongvhere v, , are the phase velocitiesy, , are the reflection
ingly up to \/10° times. coefficients, and\, is the atomic density.

The results obtained in this paper for the TM may be used Substituting the expressiof.2) in Eq. (5.3), one finds
not only in nonlinear optics but in the theories of elementarythat the fieldsE, , obey to the following system:
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1 27wy Nof k% , (2) Change the field§))}—{\}expi(ef3|V|> dx—ivy).
d,+ U—ﬁt T V—OE1,2| Eadl (3) Change a spectral parameter>/2¢. Then the spec-
' tral problem (3.3 is transformed to the spectral problem
koE2k studied in Ref[23]:
-2 legl), (5.4
VO_|F !

=%+
wherev;#v,. The terms having orded(x1,E3 I/ voroEg) =181+ LY,

are neglected.

(A1)

In the following new notations: 3 =i §21//2+§r v,
nlcVO 1

dy=— = 9+ — |, whereq=— V2V expi(ef3V2 dy—ivx), = — eq*.
2mw1Ngk1, U1

We formulate an initial problem. We consider an infinite
medium spread from-o to +. A long pulse of the “po-

gum N2Cvo gt i& tential” q(x) having lengthd propagates from-c to + .
X 2mwNgk2) © v2 ) Then, we shall put the length of this pulseds: .
We consider the vanishing gs— = field g. For these
KOE(Z)VO(F+iV0) asymptotics, the IST techniques had been developeq in Ref.
= [23], therefore we present here only the results required for
k1 T+ vp%) our purposes. Define
V=E,, U=E},
_ TE(x 2 . "€ +e 2
system(5.4) transforms to systen(3.1), where v=1,=0. K= 7OO|V| dx, u'=—- . VI"dx.  (A2)

The physical conditions of complete integrability are the
same as above. The last example shows that the results ob-
tained in this paper can be applied to the analysis of multiThe potentialq is determined by a diagonal of a kernel
wave-mixing in bulk media. Ki(x,o) [23]

The Thirring model may be used in the study of the two-
component field propagation in waveguides in the Bragg me- .
dium [6] and of the “gap” solitong7]. It is worth mention- a(x)=—2Ks(x.x)exp(—2ip"), (A3)
ing that the regimes of the optical wave mixing described by
the TM may CrUCia”y differ from regimes described by the where the kerneH(l and K2 Satisfy the fo"owing Mar-
two-component nonlinear Schiimger equation, which has chenko equations:
wide application in nonlinear optics. For instance, the inte-
grable version of the latter model does not describe the coun-
terpropagation of two fields in one-dimensional cp2e E(XJ’)—J Ki(x.0)F' (o4 y)do=0,

§ (A4)
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APPENDIX A: THE INVERSE SCATTERING F(X):if @exp(igzx)dg,
TECHNIQUES AND THE TIME DEPENDENCE 2w ) a(?) (A5)
OF SCATTERING DATA
To establish asymptotics as— of an initially steplike _dF(x)

pulse we apply the conventional “solitonic” version of IST. F'(x)= dx

Here we shall follow to the paper of Kaup and Newe8].

These authors developed the IST for the derivative nonlinear ) . o
Schralinger equation. After some modifications their resultsThe time dependence of the scattering coefficipiit)
can be applied to those considered here. This modificatiorr (b/@) (7) is defined by the second linear syst€si3). We

relates, for instance, to the “time” dependence of the scatconsider the following asymptotic conditions: gs-—,
tering data. field U is a plane wave having a constant amplitugigand

Let us make the following changes: U—0 as y— t. The time dependence of the scattering
(1) Change the variableX— y=Gyx/v, Y— 7=G(t data can be obtained using the linear syst@m). For the
—2x/v). matrix D,
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. a b a=[(iv+Apexp—idn)+(id—Apexpidr)]ag
T|—eb* —a)’ (A9) +boAs exp( —id7)—expidr)], (A8)
the following evolution can be easily found: b=aoAf exp —i 97) — expli 97)]
d.D(1)=—DA(xy— —©)+A(y—»)D. (A7) +b [(i9—A)exp—id7n)+ (I 9+A)expidn)];
For the zero asymptotics valu@s y— +) of the off- (A9)

diagonal part of the matriA and for a constant meaning of hereA;; are the elements of the matri such thatA,,=
A at y— — we have the following solution for the compo- —Agy. 92=—AZ—AA,.

nents of the matriD: Finally we have for the scattering coefficiemt

Ay exp(—id7)—expi )]+ ?[(i §—Ar)exp —i 97) + (i 0+ Ay expi 97)]
0

P = = (ot Aexi—197)+ (19— Ar)expi 97+ (bo/ag) Aglexg —1on)—expi9n] 0

herepy=p(7=0)= bgy/a,. For largeu= mé/)\2 (Ju|>1), we obtain, using decomposition in the degrees @i Eq. (3.3,

9=(a+u)’>+15~u 1+E+1|g_2a2+o(u‘3)l,
HZ (A1)
Axn=ip1Vu, Ap=isiJu, Ap=i(l;—l5u).
Neglecting the terms having ordéx(u~?) we have
e,—le_ e_ S 1
P =ro ﬁ){“ﬁ PR CIrR <e+Tellz>} 1+o G”; (AL

heree. =exp(~id7)=exp(d). For the Lax pair used above mum value of the facto® (7, 7)=[i7+2i37], where 5
we havel,=—1. As a consequence E@A12) can be sim- =\2, T=1/(x+y). Consider the case of largéu|

pifiec to =|m3/ 7|, i.e., 9~u. The derivative of®(£) on C, with
~ e 1 respect to é=Imy is equal to zero for&=—7/2

p(t)=poexp(2i J7) 1+ﬁQ1 1+0 G” +\ 7214+ 2727, here{y=Ren,. For largeT we have¢?
(A13)  ~— 72+ 721+ 4Ly T)~ {6~L5. In Sec. Il it is found

that for the initial steplike pulse having highty ée
whereQ; is a function ofe.. . We choose the “minus” sign [ — &0 £.1, | &l =2|VolV[7], Zo=(€|Vo|2—v). We find the
of 9=—(—A2,—AA,)Y2=—7 to link this ¥ to the so- condition when the maximum o (&) lies exterior to the
lution obtaining for the asymptotidd —0 asx— * o, interval[ {o—i&g,{ot+i&p]. For v>0,e>0 this condition is

APPENDIX B: EVALUATION OF ASYMPTOTICS ve[|Vo|2(3—8),|Vo|A(3+8)]. (B2)

Let us present the integrdA5) as a sum of integrals N ) ] )

integral, which is calculated along the contaDg over the =~ Mate the integralo(x+ y) over the pathC, for large (x

upper part of the “soliton” branch +7). The function@(n,';) has the nonzero dfrivative with
1 respect ton on C, and the maximum of R®(7,7)] is
+9=—1| n ; T +i2T . attained at the poingg={y+ié&,, i.e., at the “top point” of
Jolx+7) ZWJCO (mexdin(x+y)+i2d(n)7ldxy, the solitonic branch of the spectrum. Therefore, by integrat-

(B1) ing by parts, we obtain the following:

hereh(#) is some function, which does not coincide with h( 70 exili (x+ )( 1 1
b(#)/a(7) . But this function yields only a shift of the phase 3 () + )= o XTY " .7 [ 10 )
of solution and its exact meaning is not required for the i(xt7y)0'(n9,7) [ Xty
present estimation. To estimate the integral we find the maxi- (B3)
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Now let us estimate the contribution of the real continuousfirst term in Eq.(B4) does not yield a significant contribution

spectrum. For this aim we estimate the integral to asymptotics. The function R », 7) for a realy attained
the maximum aty=0. The contribution of the second term

1 ( b(n) . e may be essential. However, according to assumptions used in
Jx+y)=5- c,aln) exin(x+y) +i29(n)7] Sec. Il,u is supposed to be largéu(>1). Thus we are able
to neglect the second term in the rhs of EB4). Conse-
e Q quently integral(B3) gives rise to the main contribution to
X11+0 dn. (B4)  the leading front of the asymptotic. Substituting this integral
Ju and its derivative in the Marchenko equatidigl) one may

) . find the soliton solution to the TM. This asymptotic soliton is
We use ther dependence of spectral data found in Appendixcharacterized by the spectral parameggrand describes the
A. Study of the phas@ (#, 7) for the realn shows that the leading edge of the packet of pulses.
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