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Soliton generation in the nonlinear interaction of two waves
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We consider interaction of a laser field with surface waves propagating in a thin layer having a width much
less than that of the laser field. It is assumed that the laser field interacts concurrently with a two-level
transition. We show that generation of the surface waves in this scheme may be described by the completely
integrable Thirring model. We use this model for study of the evolution of a steplike pulse. It is found that a
leading edge is described asymptotically by a sequence of solitons. The modulation instability leading to the
formation of these solitons is treated in a hydrodynamic approximation. For this aim we find a solution to the
Whitham equations associated with deformation of the one-phase solution of the Thirring model. We show that
the results obtained here can be applied to other physical situations, for instance, the study of the three-wave
mixing in a bulk medium.@S1050-2947~98!07401-0#

PACS number~s!: 42.65.Hw, 42.65.Dr, 42.65.Re
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I. INTRODUCTION

The interest in the theoretical and experimental study
coherent phenomena in thin layers appears due to the d
opment of coherent spectroscopy and potential applicatio
thin films @1,2#. Special attention has been paid to the m
tifrequency interaction in thin films of the molecular aggr
gates, surface films, interfaces, and so on. Multiwave mix
processes in layers may yield a rich variety of nonlinear p
nomena. Novel effects may arise due to mixing of reson
interactions with energetic transitions and multiwave inter
tions in nonlinear media. It has been found in the experim
tal studies that nonlinear susceptibilities of thin films cou
reach high values. The property of small switching tim
makes such layers prospective candidates for applicatio
microelectronics. This stimulates the special attention of
searchers to nonlinear optical phenomena in the films.

It is known that interaction of a powerful laser field wit
surfaces leads to the generation of surface waves and su
patterns@3,4#. Investigation of the patterns is important fo
understanding of nonlinear phenomena in layers. In
present paper we consider interaction of external pump
fields with a thin layer placed on a solid surface. We consi
two internal waves counterpropagating in the layer. It is
sumed that both these waves have initial amplitudes
phases that are time and space independent. Being ch
initially small, one field may be used for modeling of nois
Interaction of internal fields with an external field leads
energy exchange between waves propagating in a layer.
known that creation of the packets of nonlinear pulses
multiwave processes has to be expected for sufficiently l
and powerful pulses. Interaction of nonlinear waves pro
gating in a thin layer may lead to formation of robust surfa
patterns consisting of dense packets of solitons.

In this paper the formation of dense packets of solito
near the leading edge of a long steplike pulse is investiga
analytically. The interaction of an external wave with tw
waves propagating in a thin layer is considered concurre
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with one-photon resonant interaction with a two-level tran
tion. Maxwell equations describing three-wave mixing
this scheme and the material equations are reduced to a
of evolution equations. It will be shown that these equatio
are an integrable generalization of the Thirring model~TM!
in some region of physical parameters.

The Thirring model had been derived first in the theory
spinor fields@5#. The quantum and classical versions of th
model had been studied in elementary particles physics
in the theory of ferromagnetism. In nonlinear optics the co
pletely integrable TM has been applied for study of polariz
tion effects in the Bragg medium@6# and ‘‘gap’’ solitons@7#.

Dynamics of the soliton solution of the TM now is we
understood mainly due to application of the modern anal
cal tool — the inverse scattering transform~IST! @8#. The
integrable models attract the special attention of theor
because their investigation provides the most detailed a
lytical information about the nonlinear stage of field evol
tion. Many physically important systems in one space a
one dimension have a Lax pair and are integrable using
IST. The Lax representation for the TM was found b
Mikhailov @9#. The classical version of the IST had bee
developed by Mikhailov and Kuznetsov@10#. In the present
paper the physical conditions allowing one to extend the
plication of the integrable TM for study of nonlinear optic
processes are found.

Frequently experimental situations involve a high dens
of solitons or another nonlinear pulse. These packets of s
tons in a system, having small losses, may be approxim
by modulated quasiperiodic waves. The interaction of wa
may involve a formation of nonlinear robust modes, who
study is interesting for both theoretical physics and appli
tion. These modes may be generated due to developing
modulation instability in a layer. For nonlinear optical sy
tems numerical results show that periodic waves arise,
instance, when the characteristic length of the instability
close to the length of the nonlinear medium and bound
conditions are close to the periodic ones. Dense packet
solitons may arise due to the development of the modula
instability during propagation of a long steplike pulse. F
instance, it is proved numerically and analytically for th
2958 © 1998 The American Physical Society
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57 2959SOLITON GENERATION IN THE NONLINEAR . . .
Korteveg–de Vries equation that the leading edge of
steplike pulse transforms to a dense packet of nonlin
pulses@8#. These pulses tend to asymptotic solitons un
some initial conditions.

Treating the nonlinear stage of evolution of the den
packets of pulses, one must operate with a large numbe
degrees of freedom. Such treatment is possible, as a
only for completely integrable models, and even for them
study faces tremendous analytical problems. On the o
hand some experimental results of the generation of de
packets of pulses may be modeled using modulated peri
waves @8#. These observations motivate one to use
Whitham approach for studying the behavior of a den
packet of pulses. This approach consists of two steps.
first step is a derivation of an exact one-~two-! phase solu-
tion of the original equations with the periodic bounda
conditions. Then it is assumed that part of the spectral d
associated with the periodic wave depends on space and
variables. This dependence is slow in comparison with t
of a single oscillation constituting a packet. Averaging ov
the period of rapid nonlinear oscillations yields the evoluti
equations for the parameters of the periodic wave. Th
equations are the hydrodynamic Whitham equations@8,11#.
As shown in@12# these equations can be effectively obtain
using the IST directly in a diagonal form.

We use the Whitham approach here for analysis of mo
lation instability arising in propagation of long steplike pul
in a layer. For this aim we construct the one-phase solu
of the TM. We use here the IST version developed for
systems of evolution equations by Marchenkoet al. @13–15#.
This method allows one to construct, in common, the ex
N-phase quasiperiodic solutions to the model under con
eration and was applied to the TM in Refs.@16,17#. The
authors of these works had received expressions for
N-phase solution for the TM in a form that is not efficient f
the purposes of the present paper. Therefore we use
another form of the one-phase solution. Then we use
solution as the robust nonlinear mode for modeling the n
linear stage of evolution of modulation instability. We su
pose that a change of the parameters of the nonlinear m
during all stages of evolution obeys the Whitham equatio
i.e., the quasiclassical~hydrodynamics! approximation is
valid. The dynamics of nonlinear waves is described by
evolution of a few wave parameters obeying the Whith
equations. For physical applications, the situation when
highest soliton arises at the leading edge attracts the par
lar interest of researchers. We find here the physical co
tions leading to this regime. It is shown that under the
conditions any change of parameters of the wave is descr
by the Whitham equations solutions. These solutions
scribe the deformation of weak periodic modulation of t
plane wave to a sequence of asymptotic quasiisolated
tons. The isolated solitons of the TM are known@10#. What
is new for the TM is that the approach used here allows
to describe the transform of the steplike pulse in a de
packet of solitons due to evolution of the modulation ins
bility. The approach used here allows one to study suc
configuration. The tremendous problem of the study o
system having a large number of degrees of freedom is
duced to the analysis of a few nonlinear evolution equatio

The remainder of this paper is organized as follows.
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Sec. II Maxwell and Bloch equations describing three-wa
mixing and resonant one-frequency interaction in a layer
reduced to the generalization of the Thirring model. Sect
III is devoted to a derivation of the one-phase solution to
Thirring model in a form convenient for our purposes.
Sec. IV the Whitham equations are presented and the s
larity solution is found. Section V contains the conclusion
Another physical situation leading to the same TM mode
described in Sec. V as well. In Appendix A conventional IS
techniques are used for an analysis of the asymptotics of
steplike pulse. The time evolution of spectral data is fou
In Appendix B we prove that under some initial conditio
the solitonic part of the spectrum gives rise to the main c
tribution to asymptotics. It is found also that the leading ed
of the generated train of pulses is associated with the soli
the parameters of which are fixed by the initial pulse para
eters.

II. BASIC EQUATIONS

Let us consider a plane thin layer having widthl , which is
much less than the length of the light wavel. In the coor-
dinate system used here the plane position isz50. The inci-
dent external wave transmits from the medium (z.0),
whose characteristics are labeled by the subindexa and in-
teracts with the layer (z50), whose characteristics are la
beled by the subindexb. For instance, the dielectric susce
tibility constants areea and eb , respectively. We conside
TE waves only. Let the incident field be

Ey~ t,x,z!5E0~ t,x,z!exp@ i ~kx
ax1kz

az2vt !#,

whereE0(t,x,z) is the amplitude andkx
a , kz

a are the projec-

tions of the wave vectorkWa, ukWau5vAea/c. For they com-
ponents of reflected and transmitted waves we have

~Er !y~ t,x,z!5Er~ t,x,z!exp@ i ~kx
ax2kz

az2vt !#, ~2.1!

~Etr !y~ t,x,z!5Etr~ t,x,z!exp@ i ~kx
ax1kz

az2vt !#,
~2.2!

whereEr(t,x,z), Etr(t,x,z) are the slow amplitudes of th
reflected and transmitted waves, respectively.ukWbu
5vAeb/c, kx

a5kx
b .

The Maxwell equations for a thin layer are reduced to
following system of boundary conditions:

Ey~ t,x,10!5Ey~ t,x,20!,

Hz~ t,x,10!5Hz~ t,x,20!, ~2.3!

Hx~ t,x,10!2Hx~ t,x,20!5
4p

c
] tpy~x,t !,

wherep5py(x,t) is a surface density of polarization.
From conditions~2.3! we find the following relations be-

tween the slow changing field amplitudes and polarizatio
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Etr5
2A

A1B
E01 i

4pv

c~A1B!
p,

~2.4!

Er5
A2B

A1B
E01 i

4pv

c~A1B!
p;

hereA5Aeacosua , B5Aebcosub . ua and ub are the angles
between the vector orthogonal to the layer surface and
wave vectors of the reflected and transmitted field, resp
tively. The contribution to the polarizationp arises due to the
resonant interaction of the field with energetic transitions
a layer, e.g., interaction with molecular transitions in agg
gates, with impurity atoms, and so on. Multiwave nonline
processes also can make significant contributions to pola
tion if corresponding nonlinear susceptibilities are su
ciently large. Denoting bypr and pn the terms describing
contributions of the first and the second mechanisms, res
tively, we havep5pr1pn .

The macroscopic field may differ from the local field du
to the contribution of induced atomic polarizations. This co
tribution is described by the Lorentz field. Let us estimate
contribution of the Lorentz field to the polarizationpr . We
assume that the main contribution topr is induced by coher-
ent excitation of a resonant mode of the medium by
external field. The contribution of the Lorentz field to th
surface polarizationpL is described by the following term
pL5zLpr @18#. The real parameterzL can be estimated fo
many media aszL52z0 /(3lk), wherez0 is a scalar having
order of unity,k is the wave vector, andl is the width of the
film. To find the contribution of the Lorentz field for a thi
layer one has to calculate the sum

(
j

3~pW j rW j !rW j2pW j r j
2

r j
5

5(
j

2pjyyj
2

r j
5

'C0

pr

r 0
5zLpr ,

~2.5!

where r 0 is a mean distance between atoms,C0 is a real
constant of the order of 1. The relative contribution of no
resonant terms to the Lorentz field is an order
ud12u2/(\vr 0

3) and can be neglected here.
A two-frequency interaction with a two-level transitio

also may give a contribution to the polarizationpr , if non-
linear susceptibility of the second order is sufficiently larg
This contribution to polarization arises at the frequenciesv
6v2. We do not consider this contribution here, but the o
tained results can be easily generalized.

We find the contribution of the resonant interaction
surface polarizationpr using the Bloch equations of one
photon interaction of a light with a two-level transition:

] tQ1g2Q1 in0Q52
i ud12u2

\
EN,

~2.6!

] tN1g1~N2N0!5
i

2\
~Q* E2QE* !;

hered12 is the dipole momentum of the transition.N is the
difference between level populations,Q is then the off-
diagonal part of the density matrix,N0 is the density of reso-
nant atoms, andg1,2 are the relaxation constants. The Blo
e
c-

f
-
r
a-
-

c-

-
e

e

-
f

.

-

equations~2.6! may describe the interaction with either m
lecular transition or impurity atoms implemented into a th
film. In the present paper we assume that the time scal
the change of the amplitudes of fields is much more th
g1,2

21 . Then Eq.~2.6! can be easily solved:

Q5 i
N0ud12u2~12 id0!E

\g2@11d0
21~ ud12uuEu\21!2~g1g2!21#

, ~2.7!

whered05n0 /g2 . In addition we will consider the contribu
tion of a simultaneous three-wave interaction to the surf
polarizationpn . Let us suppose that the fieldE interacts with
two waves propagating within the layer. In practice, t
second-order nonlinearity is the main nonlinearity at the s
face due to the violation of the reflection symmetry contra
to a bulk crystal@2#. Thus we may treat the three-wave in
teraction as the main nonlinear process in a thin layer
interface. Let the external fieldE(z,t) have an amplitude and
phase that do not change during nonlinear interaction~see
below!. Two surface fields~or polariton waves! are assumed
to be generated by some experimental scheme.

Let us introduce the two fields describing surface pol
iton waves propagating along the layer:

E1~ t,x,y!5V1~ t,x!exp@ i ~px
bx2py

by2v1t !#,
~2.8!

E2~ t,x,z!5V2~ t,x!exp@ i ~qx
bx1qy

by2v2t !#.

The resonance conditions are the following:

kW5qW 1pW , v5v16v21n0 , ~2.9!

wheren0 is a frequency detuning. We assume, for simplici
that py

b5qy
b50, px

b5qx
b5q. The z component of the wave

vector of the external fieldE(z,t) is not included in the
resonance conditions~2.9!. Indeed, conditions~2.9! are de-
rived under approximations of slow changing amplitudes
the fields and after averaging over the fast oscillations.
assume that the width of the layer is described by the d
function. Then averaging along thez axis leads to the ab
sence of corresponding components of the wave vector of
external fieldE(z,t) in conditions~2.9!. Note that in experi-
mental physics special optical devices are used for effec
coupling of the external fields with fields generated in a th
layer @2#.

The Maxwell equations for slow changing amplitudes d
scribing the three-wave mixing are the following:

S 2]x1
n~v2!

c
] tDV15 i

2pv2
2x~2!~v2!

k2
2c2

EtrV2* exp~ in0t !,

~2.10!

S ]x1
n~v1!

c
] tDV25 i

2pv1
2x~2!~v1!

k1
2c2

EtrV1* exp~ in0t !;

herex (2)(v1,2) is the nonlinear susceptibility of the secon
order,n(v1,2) is the dielectric constant of the medium. Th
resonance conditions are fulfilled, for instance, if two fiel
propagating in opposite directions andv15v2 ,uk1u5uk2u.

We rewrite the first equation in system~2.4! in the fol-
lowing form:
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E5Etr5
2A

A1B
E01FC0

r 0
1 i

4pv

c~A1B!GQ
1 i

4pv

c~A1B!
x2V1V2 . ~2.11!

The system of Eqs.~2.7!, ~2.10!, ~2.11! describes the nonlin
ear mixing processes in a thin film with a resonant two-le
transition. Let us rewrite this system in a form that can
considered as a nonintegrable generalization of the Thir
model:

F] t2
c

n~v1!
]xGV1

5
C1J1

J12~a1d0b!2 i ~d0a2b!

3S ix2V2* E0

2A

A1B
2x2

2 4pv

A1B
V1uV2u2D ,

~2.12!

F] t1
c

n~v2!
]xGV2

5
C2J2

J22~a1d0b!2 i ~d0a2b!

3S ix2V1* E0

2A

A1B
2x2

2 4pv

A1B
V2uV1u2D ,

where

J1511d0
21

ud12u\22

g1g2

uD1V1u2

ux2V2u2
,

J1511d0
21

ud12u\22

g1g2

uD2V2u2

ux2V1u2
,

Di5F] t1~21! i
c

n~v i !
]xG , i 51,2,

a5
C0N0ud12u2

r 0\g2
, b5

4pvN0ud12u2

c~A1B!\g2
, Ci5

2pv i
2

kicni
.

System~2.12! seems to be rather complicated for analy
cal study, therefore we use the additional simplifications.
the intensity of fieldE having values far from that of satu
ration relation~2.7! becomes linear inE andJi'11d0

2. We
assume that intensities of the fieldsV1,2 are much less than
that of the fieldE. In this case the dependence of the fieldE
on x,t is fixed and does not change due to interaction. T
situation arises when the second-order nonlinearity yield
small contribution to polarization in comparison to nonline
resonance interaction~see the last section!. If the intensity of
the field E is far from saturated the former system can
reduced to the following generally nonintegrable generali
tion of the Thirring model
l
e
g

r

is
a

r

-

F] t2
c

n~v1!
]xGV1

5G0S iC1E0exp~ if12 if0!V2*

2
C1ux2u4pv

2A
V1uV2u2exp~ i2f12 if0! D ,

~2.13!

F] t1
c

n~v2!
]xGV2

5G0S iC2E0exp~ if12 if0!V1*

2
C2ux2u4pv

2A
V2uV1u2exp~2if12 if0! D ,

where

d05@~11d0
22b2ad0!21~b2d0a!2#1/2,

f05arg@~11d0
22b2ad0!2 i ~b2d0a!#,

G05
ux2uF

d0
~11d0

2!, x25ux2uexp~ if1!, F5
2A

A1B
.

We rewrite the last system in the following form:

]YV5 imU1g1VuUu2exp~2if12 if0!,
~2.14!

]XU5 im* V1g2UuVu2exp~22if11 if0!,

where

X52G0~x/v !, Y5G0~ t22x/v !, v5
c

n~v1!
,

m5AC1C2E0 exp@ i ~f12f0!#,

U5V2* S 4pvC1ux2u
2A D 1/2

, V5V1S 4pvC2ux2u
2A D 1/2

,

g1,25G0

C1,2ux2u4pv

2A
.

The above equations arise for the sign ‘‘1 ’’ in the right-
hand side~rhs! of the frequency resonance condition~2.9!.
For the sign ‘‘2 ’’ the analogous system appears up to t
change of one field amplitude to a complex conjugated o
System ~2.14! is valid for large parameteru5umu2/ul0u2

@1, whereul0
2u is the maximum of amplitudes of the fieldsV

andU.
The complexity of the coefficients in the rhs of Eq

~2.14! and the dependence ofm on the variables makes thi
system nonintegrable in the general case. But for some
gion of the physical parameters system~2.14! can be reduced
to a new generalization of the integrable version of t
Thirring model. The integrability conditions impose the r
strictions on the coefficients and variable dependence ofm.
The exact integrability provides the following conditio
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Re exp(i2f22if0)/@11d0
22(a1d0b)2i(d0a2b)#50. How-

ever, in a real physical situation this exact relation has to
replaced by the approximate one

URe
exp~ i2f22 if0!

11d0
22~a1d0b!2 i ~d0a2b!

U
!U Im exp~ i2f22 if0!

11d0
22~a1d0b!2 i ~d0a2b!

U . ~2.15!

The condition~2.15! can be easily fulfilled in experimenta
optics. For the realx2 and m the nonequality~2.15! means
that u11d0

22a2bd0u!ud0a2bu. The later nonequality
may be fulfilled forb@1, d050 anda!b. Let us estimate
the required density of surface atoms. Forud12u2/\v'3
310225 cm3 we find that the density of impurity atomsN0
@102g2(cm22). For the relaxation constantg2;1011c21

the atomic density may be;1014 cm22.
We will treat the integrable version of the model~2.14!,

where the ‘‘mass’’m depends on variables, in common. T
Lax representation for system~2.14! has the following form:

]Xc5S 2 i z21 i
g1

2
uVu2 Ag11g2zV

2Ag11g2zV* i z22 i
g1

2
uVu2

D c,

~2.16!

]Yc5S 2 i
umu2

4z2
1 i

g2

2
uUu2 Ag11g2

m*

2z
U

2Ag11g2

m

2z
U* i

umu2

4z2
2 i

g2

2
uUu2D c,

~2.17!

wherez is the spectral parameter.C is the vector function
depending onX, Y, andz. Analysis shows that the system
~2.16!, ~2.17! is integrable by means of the IST if the cond
tion ~2.15! is fulfilled and ‘‘mass’’ m admits the following
decomposition:

m~Y,X!5m1m2 , ]Xm150, ]Ym250, Im~m2!50.
~2.18!

The proof of this statement is direct. The dependence om
on X does not alter the Lax pair, contrary to the depende
on Y. But the latter dependence can be avoided if the sp
tral parameterz has the formz5z0m2 , wherez0 is a con-
stant. The condition Im(m2)50 is verified directly from the
above Lax pair. The dependence of the ‘‘mass’’ on ‘‘time
Y yields the dependence of a spectral parameter on ‘‘tim
If m has the formm5m1exp@2in1(Y)X12in(X)Y#, wherem1
satisfies the above integrability conditions, then the sys
~2.14! remains integrable by the IST for the arbitrary fun
tions n(X) andn1(Y) ~see below!.

So, we have shown that the integrable Thirring mo
may be generalized to the case of a complex varia
‘‘mass’’ in comparison to the case of the constant and r
e

e
c-

’’

m

l
le
l

mass known in the literature. Note finally that forg11g250
system~2.14! is reduced to a linear one by a simple gau
transform.

III. NONLINEAR EVOLUTION OF INITIAL
PLANE WAVE

In this paper we restrict our consideration to a case
m5m0 exp(2in1X12inY). Here m0 is a constant. After the
transformation

U→
A2U

Aug11g2u
e[ i ~g12g2!/2*0

YuUu2dY1 i ~n1X1nY!] ,

V→
A2V

Aug11g2u
ei @~g12g2!/2#*0

YuUu2dY2 i ~n1X1nY!

system~2.14! changes to the following:

]XV5 im0U1 i eVuUu22 in1V,
~3.1!

]YU5 im0V1 i eUuVu22 inU;

here e561 is the sign ofg1,2. We assume that sgng1
5sgng2. The Lax pair~2.16!, ~2.17! can be rewritten in the
following form:

]XF5S i

2
~l22euVu21n! lV

2elV* 2
i

2
~l22euVu21n!

D F,

~3.2!

]YF

5S i

2S m0
2

l2
2euUu21n1D m0U

l

2
em0U*

l
2

i

2S m0
2

l2
2euUu21n1D D F.

~3.3!

Here F is the two-component function;l is the spectral
parameter. Additionally,n andn1 are the arbitrary functions
n5n(X), n15n1(Y).

System~3.1! has the trivial plane-wave solution. To in
vestigate the stability of this solution in the linear appro
mation we transform the TM~3.1! into one equation of the
second order. Using the equation]YuVu252]XuUu2 follow-
ing from Eq.~3.1!, we obtain

]X]YW52m0
2W2 i2euWu2]YW, ~3.4!

hereW5U(X,Y)exp@ie*uVu2(X,Y)dX#. For simplicity we set
n15n50.

The linear function

W5W0exp@ i ~hX!# ~3.5!

is the solution to Eq.~3.4!, where 2uW0u2eh5m0
2 ;h andW0

are real constants.
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The plane-wave solution stability of can be easily inve
tigated in the linear approximation. LetA1 andA2 be small-
amplitude deviations. After substitution of the perturbed
lution

W5W0exp@ i ~hX!#$11A1 exp@ i ~VY1KX!#

1A2exp@2 i ~VY1KX!#% ~3.6!

in Eq. ~3.4! and linearization with respect toA1,2 we obtain
the linear homogeneous algebraic system for perturbati
The compatibility condition yields the dispersion relation f
modulated waves:

V56A m0
4

K22m0
2/h2

. ~3.7!

Equation~3.7! shows that for a sufficiently long waveleng
of perturbation, the frequencyV has an imaginary part. Thi
means that the corresponding perturbation exponent
grows, i.e., the modulation instability of solution~3.4! takes
place.

Linear analysis is restricted to small perturbations.
study the nonlinear stage of instability one must apply
methods operating with nonlinear modes. We use here
one-phase solution of the TM as a robust nonlinear mode
the analysis of instability. This modulated robust mode m
describe a plane-wave transform to a sequence of soliton
the nonlinear stage of instability. Important information c
be obtained by studying the spectrum of the spectral prob
~3.2! associated with an initial steplike pulse of the fieldV.
For an infinite length of the steplike pulse the spectral pr
lem can be easily solved. We omit the details of the solut
of the spectral problem. We will mention only the ma
steps. First, one can use a pulse having a triangular fo
Then, one finds a set of spectral data in the same way a
the Zakharov-Shabat spectral problem@19#. The associated
spectrum consists of a set of poles lying on some finite
tervals and on the real axis. If the length of the pulse tend
infinity the number of poles tends to infinity and the distan
between each pair of neighboring poles vanishes. In
limit one gets a spectrum consisting of the real axis and
continuous intervals.

Let the steplike pulse have a heightV0 . The positions of
finite intervals are determined by roots of the polynomialK:

K25
1

4
@l412l2~euV0u22n!1~euV0u21n!2#.

The equationK50 has four roots. There are two differe
cases of the roots, which depend on the sign ofe n:

~I! sgn(ne)521. Then

h1,35~l2!1,35~n2euV0u2!62AuV0u2unu.

~II ! sgn(ne)51. Then

h1,35~l2!1,35~n2euV0u2!62iAuV0u2unu.

It is known that isolated poles lying in quadrants I and
of the complexl plane are associated with the solitons of t
TM. For the present consideration it is more convenient
-
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use thel2 plane~Fig. 1!. The spectrum associated with th
initial steplike pulse consists of the real axis and the fin
continuous interval, which is orthogonal to the real axis. T
interval lying in a solitonic region~upper half of a plane, Fig
1! of a complex plane is associated with a soliton
asymptotic. For physical application the most interesting
gime arises when powerful solitons are generated near
leading edge of the steplike pulse. In Appendixes A and B
is shown that such a regime may arise for the TM in
infinite medium. In Appendix B it is shown that the leadin
front of asymptotics is described by the soliton solution
sociated with the spectral pointh0 . It is shown that for large
u m0

2/l2 u a contribution of the continuous spectrum to t
asymptotic solution may be neglected. Therefore, for the
scription of the evolution of the steplike pulse we may r
strict ourselves to the consideration of the solitonic part
the spectrum. As shown in Appendix B, there are regions
the initial parameters of the plane wave satisfying this
sumption.

Thus, the long-time modulation is associated with t
nonlinear stage of evolution, i.e., generation of asympto
solitons. The developing of the modulation instability corr
sponds to the transform of long harmonic waves into a se
asymptotic solitons. Application of the Whitham approa
allows one to describe the intermediate region between th
asymptotics by using the modulated periodic nonline
mode.

Let us now find the simplest nonlinear mode — the on
phase solution of the TM. Following the approach develop
in Ref. @13#, we introduce the following quadratic eigenfun
tions:

f 5~ i /2!~f1c21f2c1!, g5f1c1 , h5f2c2 ,
~3.8!

wheref1,2c1,2 are the different solutions of the system~3.2!,
~3.3!.

These functions satisfy the following system:

FIG. 1. The complexh5l2 plane. The trajectories ofh2,4 as the
functions of the similarity variabless5x/t are shown. The uppe
~lower! curve corresponds toh2 (h4). Transformation from the
point i to h0 corresponds to the transformation from a plane wa
to a sequence of solitons. Units are chosen to be arbitrary.
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]Xf 5 i ~Bh2Cg!, ]Yf 5 i ~Gh2Hg!,

]Xg52iB f 12Ag, ]Yg52iG f 12Fg, ~3.9!

]Xh522iC f 22Ah, ]Yh522iH f 22Fh;

here

A5
i

2
~l22euVu21n!, B5lV, C52elV* ,

F5
i

2S m0
2

l2
2euUu21n1D , G5

m0U

l
, H52

em0U*

l
.

It can be easily checked from system~3.9! that the value
P(l)5 f 22gh is independent of both the variables, i.e
]YP(l)50, ]XP(l)50. The periodic solution is determine
by the dependence of the polynomialP on the spectral pa
rameterl. For instance, the one-phase solution is fixed
the following polynomial:

f 22gh5P~l!5)
k51

4

~l22lk
2!5(

j 50

4

Pjl j
2 . ~3.10!

Here lk are the roots of the polynomial. We assume tha
pair of the spectral datal1,3

2 is fixed by asymptotics. Thes
roots are assumed to be independent of the variables.
choice of P is dictated by the fact that the correspondi
solution ~see below! must coincide with the plane-wave so
lution ~asx→2`) and asymptotically~asx→`) coincides
with the ‘‘top soliton.’’ On the other hand this form ofP(l)
includes ‘‘free’’ rootsh25l2

2,h45l4
2 . The variable depen

dence of these roots describes the deformation of a p
wave to a train of solitons.

It can be shown that the quadratic functions, satisfying
system~3.2!, ~3.3!, have for the one-phase case the form

f 5 (
k50

2

f kl
2k, g5l~g01g1l2!, h5l~h01h1l2!.

~3.11!

From system~3.9!, one can find the following relations:

]Xf 05]Yf 250, g1522V,
~3.12!

g0522U f 0 , h152eV* f 2 , h052eU* f 0 .

Substituting these relations in Eq.~3.10! and using decom-
position in degrees ofl, we find for the zeroth and the fourt
degrees ofl:

f 05AP0, f 25AP451.

We chooseP4 equal to unity without loss of generality. W
introduce the ‘‘auxiliary function’’

m~l,x,y!52AP0

U

m0V
. ~3.13!

To recover Eqs.~3.9!, we note the following: if$ f j ,gj ,hj% is
a solution of Eq.~3.9! then $ f j* ,2ehj* ,2egj* % is also a
y

a

his

ne

e

solution of Eq.~3.9!. Therefore if the relationsf j5 f j* ,gj*
52ehj* hold for the initial conditions, the same relation
hold for the solution. The functionsg andh have the follow-
ing representations:

g522lV~l22m!, h52elV* ~l22m* !. ~3.14!

Substituting Eq.~3.14! in Eq. ~3.9! and using Eq.~3.14! and
f 2(l25m)5P(m) we have

]Xg~l25m!52ilV f~m5l2!,

]Yg~l25m!522i
m0

2

AP0

lV f~m5l2!.

The latter pair of the equations yields

]um5 i @P~m!#1/2, u5X2m0
2 Y

AP0

. ~3.15!

Using Eqs.~3.10!, ~3.12! we find thatV is a function ofm.
To find U it is convenient to use the symmetry property
Eqs. ~3.2! and ~3.3!. Equations~3.2! and ~3.3! remain un-
changed after the transformation:

l↔61/l, U↔V, X↔Y, n↔n1 . ~3.16!

We introduce an inverse auxiliary functionr51/m. Repeat-
ing the above steps and using Eq.~3.16!, we obtain

]zr5 i @Q~r!#1/2, z5
m0X

AP0

2Y. ~3.17!

HereQ(r) is the polynomial of the fourth order having th
rootsr j51/l j

2 , j 51 – 4.
Using Eqs.~3.1! and ~3.13! one can express solutions t

the TM in terms ofm(u). These relations are the following

]Y~ lnuVu2!5 i ~m2m* !m0
2/ f 0 , ~3.18!

]X~ lnuUu2!5 i f 0~r2r* !; ~3.19!

]YlnV5 imm0
2/ f 02 i euUu21n, ~3.20!

]XlnU5 ir f 02 i euVu21n1 . ~3.21!

The condition of the reality off 0 following from Eq. ~3.18!
requires that the rootslk

2 must be in complex conjugate
pairs or be either pure imaginary or pure real. Integration
Eqs. ~3.15!, ~3.20!, ~3.21! yields a one-phase solution. Fo
some physical applications it is convenient to express
solution in terms of the parameters, which can be rela
with maximal and minimal intensities of the fields. For th
aim we solve the following system of algebraic relations:

P352 f 12I ~u!, P152 f 1f 22I ~u!mm* ,
~3.22!

P25 f 1
212 f 222I ~u!~m1m* !,

whereI (u)54euVu2. Equations~3.22! are easily derived us
ing the integral of motionP5 f 22gh as a polynomial inl
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and using the relations~3.11!. Let us expressm in terms of
I (u). Trivial but tedious calculation yields

m52AS0/~8I !1I /82P3/42 iA2S~ I !/~8I !.

Here,

S~ I !5@4P268AP02~ I 2P3!2#2264I @P16AP0~ I 2P3!2#,

S05I 1I 2I 3I 4 , I 5I (u). PolynomialS(I ) has four roots:

I 152~l1
21l2

22l3
27l4

2!2, I 252~l1
22l2

22l3
26l4

2!2,
~3.23!

I 352~l1
22l2

21l3
27l4

2!2, I 452~l1
21l2

21l3
26l4

2!2.
~3.24!

Herelk
2 are the roots of the polynomialP(l) ~3.10!. From

Eqs.~3.15! and~3.18! it can be easily found that the functio
I (u) obeys the equation

]I

]u
5

A2S~ I !

4
5

A2~ I 2I 1!~ I 2I 2!~ I 2I 3!~ I 2I 4!

4
.

~3.25!

Integrate Eq.~3.25! for the realI k . Let I 1.I 2.I 3.I 4 . A
common solution to Eq.~3.25! for I 1>I (u).I 2 is the fol-
lowing:

I ~u!5
I 1~ I 22I 4!1I 4~ I 12I 2!sn2~u1 , k̃ !

I 22I 41~ I 12I 2!sn2~u1 , k̃ !
; ~3.26!

for I 3>I (u).I 4 we have

I ~u!5
I 4~ I 12I 3!1I 1~ I 32I 4!sn2~u1 , k̃ !

I 12I 31~ I 32I 4!sn2~u1 , k̃ !
. ~3.27!

Here the Jacobi function sn has a modulusk̃ : k̃25(I 1
2I 2)(I 32I 4)/@(I 12I 3)(I 32I 4)# and 2u15u@(I 12I 3)(I 2
2I 4)] 1/2. In the limit I 2→I 3 solutions~3.26!, ~3.27! describe
the following isolated solitons, respectively:

I ~u!5I 21
~ I 22I 4!~ I 12I 2!

~ I 12I 4!ch2~u2!2~ I 12I 2!
, ~3.28!

I ~u!5I 31
~ I 32I 4!~ I 12I 3!

~ I 42I 1!ch2~u2!1~ I 32I 4!
. ~3.29!

Here 2u25u @(I 12I 2)(I 22I 4)#1/2. Solution ~3.28! is the
‘‘bright’’ soliton on the nonzero background, whereas so
tion ~3.29! is the ‘‘gray’’ soliton. In the limits I 1→I 2 , I 3
→I 4 the solutions~3.26!, ~3.27! are transformed to quasiha
monic periodic waves having a constant intensityI 1 and I 4 ,
respectively. Let us consider, for instance, the case of
pairs of complex conjugated rootslk :

l1,35a06 ib0 , l2,45a6 ib. ~3.30!

Then we have for the roots of the polynomialS for the upper
sign in Eq.~3.24!:
-

o

I 154~b01b!, I 254~b02b!, I 3524~a02a!,

I 3524~a01a!.

From Eq.~3.20! we have

lnV5
1

2
lnI 2 i E SAS0

8I
2

I

8D du1 inY1 i eE Idu1 iC1X.

~3.31!

Real constantC1 can be expressed in terms ofPk . We used
the equality]XuUu252]YuVu2 following from the TM. An
analogous relation betweenU andr can be derived using the
above formulas. The nonlinear phase factor of the fieldV can
be found from Eq.~3.31! using the table integrals@20#.

In addition, initial conditions impose a relation betwee
m(0,0) and the initial value of the fields. Following t
Kotljarov et al. @21# we write down this condition as the
following

f 2~Ã!2uV~0,0!u2@Ã2m~0,0!#@Ã2m* ~0,0!#

5)
j 51

4

~Ã2h j !, ~3.32!

whereh j are the constant values satisfying to conditions
reality, i.e., coefficientsPk of the polynomialP must be real.

IV. THE WHITHAM EQUATIONS

In this paper we assume that external perturbation is
sent. Dispersion phenomena yield a transformation o
dense packet of oscillation. To explain the origin of mod
lations, we consider the packet of nonlinear oscillations w
periodic boundaries. Let the boundaries be extended to in
ity. Dispersion produces space and time modulation of
solution, and resulting modulations are required to bala
each other and yield the dependence of the spectral pa
eters on variables.

The exact solutions obtained in Sec. III describe the n
linear waves repeating themselves after some periodT.
Smoothed shock waves or a modulated wave train may
described in a quasiclassical approximation. In this appro
mation it is assumed that the scales of the modulation of
train are much greater than that of each soliton or other n
linear spikes filling the region of the oscillations. We su
gest, in addition, that characteristic parameters of the p
odic solution ~the roots of a polynomial P: l i

2 ,i
51, . . . ,4) aresmooth functions of the variablesX,Y.
These parameters obey the equations, which may be der
by averaging some integrals over the period of fast pu
tions. By this way one can reduce the cumbersome prob
of analysis of the complex system with many degrees
freedom to a solution of a few evolution equations.

The Whitham equations for the one-phase solution to
tegrable systems can be found directly in a diagonal~Rie-
mann! form. We use here the approach developed
Flaschkaet al. @12,14#. We present below final results; se
Ref. @12#, for details,.

We denoteh j5l j
2 . Averaging over the period of fas

oscillationsT yields

]Xhn1
1

vn
]Yhn50. ~4.1!
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Here

1

vn
5

1

v0
F12S hnK 1

hn2m L D 21G ,
K 1

h12m L 5
~h22h3!E~k!1~h12h2!K~k!

4~h12h2!~h12h3!K~k!
,

K 1

h22m L 5
~h42h1!E~k!1~h12h2!K~k!

4~h12h2!~h22h4!K~k!
, ~4.2!

K 1

h32m L 5
~h12h4!E~k!2~h32h4!K~k!

4~h12h3!~h32h4!K~k!
,

K 1

h42m L 5
~h32h2!E~k!2~h32h4!K~k!

4~h22h4!~h32h4!K~k!
.

Here v05AP05(h1h2h3h4)1/2. K(k),E(k) are the com-
et
ar
’’
o
-

plete elliptic integral of the first and the second kind, resp
tively, with the modulusk: k25@(h12h2)(h32h4)#/@(h1
2h3)(h22h4)#. lk

25hk are the roots of the polynomia
P(l25h) such thath1.h2.h3.h4 .

As considered in the previous section, the rootsl1
2 andl3

2

of the polynomialP are fixed by asymptotics and the tw
rootsl2

2 andl4
2 may change. We consider the most intere

ing case of complex roots~3.30!, i.e., l1
25h15a01 ib0 ,

l3
25h35a02 ib0 . The dynamics of the two remainin

‘‘moving’’ roots l2 andl4 will obey the Whitham equations
~4.1!. Solving these equations, we find the trajectory of ro
in the complex plane associated with the transform of we
quasilinear modulation of a plane wave to a set of isola
solitons.

Let l2
25h25a1 ib, l4

25h45a2 ib, and h2,4 depend
on the similarity variableY/X. Using an equation forh2
from system~4.1!, we have
Y

X
5

1

AP0
H 12

1

a1 ib

4ib@a02a1 i ~b02b!#K~k!

@a02a1 i ~b02b!#K~k!2@a02a1 i ~b01b!#E~k! J . ~4.3!
of

a.

d

ire

in-
its

ller
een
ed

of
m-
ves
on-

with
h.
all

y be
ts.
Let us separate the real and the imaginary parts of Eq.~4.3!:

E~k!

K~k!
5G~k!5

a~a0
21a21b0

21b2!22a~a0a1b0b!

a~a0
21a21b0

21b2!22a0~a21b2!
,

~4.4!

S Y

X
AP021D ~a21b2!$~a02a!2~12G!

1@b02b1~b01b!G#2%

54b$~a02a!~a0b2ab0!~12G!1@b02b

1~b01b!G#~bb02b21aa02a2!%. ~4.5!

Equations~4.4! and~4.5! can be solved fora andb as func-
tions of E(k)/K(k) and the modulusk:

k25
4bb0

~a01a!21~b02b!2
. ~4.6!

Trajectories of the rootsh2→h1 ,h4→h3 as the functions
of Y/X consist of the monotonic curves, which are symm
ric with respect to the real axis, Fig. 1. The upper curve st
from the real axis and monotonically tends to the ‘‘top
valueh0 of the imaginary part of the spectrum. The case
coalescing roots h25h4 corresponds to the plane
wave limit, which we started~point i in Fig. 1!. The soliton
limit is achieved ask→1. In the vicinity of the pointh0 we
obtain

h25h0F11
2 Imh0~12k!1/2

uh0u G1O~12k!.
-
ts

f

The study of the spectral problem~3.3! ~see Appendixes A
and B! shows that information can be derived by analysis
the phase factorQ5 i @l2(X1S)1q̃(l2)Y#. Here q̃(l) is
determined by the ‘‘time’’ (Y) dependence of spectral dat
This dependence is nontrivial forU(x→2`)Þ0. A group
velocity Y of the soliton solutions to the TM is determine
by the conditions ReQ50. RewriteY in the physical vari-
ablesx, t:

Y5c/n~v1! ~b21!/~11b!,

whereb52Imq̃/uIm(l2)u.0 @ Imq̃(l2),0#. The physical
conditions used in the above derivation of the TM requ
b.1. Let us choose a pointh in the finite interval of the
soliton part of the continuous spectrum, see Fig. 1. This
terval is symmetric and orthogonal to the real axis and
highest values correspond to the pointh05l0

2 . It can be
easily established that solitons associated with the sma
value Imh move faster. This means that a distance betw
solitons decreases asx increases. Close behavior is reveal
by a numerical study of the above solution; see Fig. 2.

V. DISCUSSION OF THE APPLICATION
OF OBTAINED RESULTS

We showed that the TM can be used for a description
the modulation instability in some nonlinear optical pheno
ena. We investigate the transformation of two plane wa
propagating in a thin layer into a set of densely packed n
linear oscillations due to mutual interaction.

In the above used approach the phenomena related
the modulation instability have to evolve slowly enoug
Such a situation can be realized in a ring scheme with sm
losses. For this scheme periodic boundary conditions ma
a good approximation for modeling of optical experimen
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The analysis of the modulation instability in a finite mediu
under the periodic boundary conditions has to include
study of the unstable behavior of a set of discrete mod
which associate with harmonic waves. The spectrum cons
of a set of discrete eigenvalues lying in the intervals in t
complex plane. As shown above under some initial con
tions, such a finite interval arises in the ‘‘solitonic’’ region o
the complex plane. For a large number of modes and a s
interval between the eigenvalues the above results can
applied. For a steplike pulse the experimental scheme m
be the following. Consider two plane wavesU andV propa-
gating in counterdirections in a medium placed within t
interval @2d,x,d#. The fieldU is the plane wave having
nonzero amplitude in this interval and the fieldV has the
form of steplike pulse injected in a medium at the pointx0
52d. Let a small disturbance initiate development of t
modulation instability at the pointx0 . The leading edge of
pulse will transform in a dense packet of nonlinear oscil
tions. The shape of these oscillations initially located ne
x50 tends to solitons asx increases. For sufficiently larged
and a long pulse of the fieldV the dynamics of the leading
front may be described by the above solution.

The present study of developing modulation instability
based on an analysis of the spectral problem~3.2!. Analo-
gous results can be derived using the linear system~3.3! as
the spectral problem instead of Eq.~3.2!. One can investigate
the initial conditions leading to solitonic asymptotics for th
steplike pulse of the second field.

Application of thin films as a nonlinear-optical medium
dictated by the needs of microelectronics. The coeffici
x (2) for many media is about 102526 SGSE, therefore the
intensity of the fields about 104 SGSE is enough to observ
the effects predicted above. If combined frequencies of fie
are close to the frequency of a resonant transition of me
the coefficientx (2) may be increased up to 103 times@2#. The
required intensities of the field may be decreased correspo
ingly up to A103 times.

The results obtained in this paper for the TM may be us
not only in nonlinear optics but in the theories of elementa

FIG. 2. Transformation of the leading edge of the initially ste
like seed pulse as a consequence of solitons due to the modul
instability. The dependence of the intensityI (x)5uV(x)u2 is found
by the numerical solution of the Whitham equations for the para
eterh2 and shown in arbitrary units.
e
s,
ts

e
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all
be
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t
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particles and ferromagnetism. The solutions found in t
paper can be used to study nonlinear mixing in a bulk m
dium in optics as well and in others branches of physics

Application of the TM in the nonlinear optics relates to
specific form of the third-order nonlinearity in resonant m
dia. This nonlinearity associates with nonlinear energy
change. It may dominate for some schemes of the reso
interaction of weak light fields. This weak limit is importan
for the application in optical devices having small sizes. It
known that nonlinear structures~solitons and so on! appear
when high intensities of the interacting fields are used.
another side such intensities may damage the optical
dium. Therefore it is important to find and study the nonli
ear processes, which may occur for the lowest possible
tensities. The TM describes nonlinear processes, which
be treated as the weak limit of resonant multifrequency
teraction. For instance, it may be shown that the TM may
derived as a reduction of integrable four-wave-mixing mo
els @22#.

Let us present the physical scheme of nonlinear reson
wave mixing leading to the Thirring model in a bulk me
dium. We consider the two-frequency interaction of a m
dium polarizationR with laser waves. The material equatio
for low excitation is

] tR1~G1 in0!R5 i\21@k12E1E2 exp$@2 i ~k11k2!z#%

2k0E0
2exp~2 i2k0z!#; ~5.1!

herek12,0 are the resonant two-photon nonlinear susceptib
ties,G is the relaxation constant,E0, E1,2 are the amplitudes
of fields having the carrying frequenciesv0 , v1,2 and vec-
tors k0 , k1,2, respectively. The resonance conditions are

v11v252v05v1n0 , k11k252k0 ;

heren0 is a detuning. Let the intensity of the pumping fie
E0 be much more than that of fieldsE1,2. Then the depen-
dence of the fieldE0 on variables is fixed and does no
change due to interaction.

Let R adiabatically followE0,1,2. For largen0 one can
find R from Eq. ~5.1! integrating by parts. Neglecting th
terms of orderO(] t /n0)R, one gets

R5
i

\~G1 in0!
$k12E1E2exp@2 i ~k11k2!z#

2k0E0
2exp~2 i2k0z!%. ~5.2!

The Maxwell equations for the slow amplitudes for th
two-frequency resonance are the following:

S ]z1
1

v1,2
] tDE1,252

2pv1,2k1,2N0

cn1,2
E2,1* R, ~5.3!

where v1,2 are the phase velocities,n1,2 are the reflection
coefficients, andN0 is the atomic density.

Substituting the expression~5.2! in Eq. ~5.3!, one finds
that the fieldsE1,2 obey to the following system:

-
ion

-
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S ]z1
1

v1,2
] tDE1,25

2pv1,2N0

n1,2c
S k12

2

n0
E1,2uE2,1u2

2
k0E0

2k12

n02 iG
E2,1* D , ~5.4!

wherev1Þv2 . The terms having orderO(k12E1,2
2 G/n0k0E0

2)
are neglected.

In the following new notations:

]Y52
n1cn0

2pv1N0k12
2 F]z1

1

v1
] tG ,

]X5
n2cn0

2pv2N0k12
2 F]z1

1

v2
] tG ,

m5
k0E0

2n0~G1 in0!

k12~G21n0
2!

,

V5E1 , U5E2* ,

system~5.4! transforms to system~3.1!, where n5n150.
The physical conditions of complete integrability are t
same as above. The last example shows that the result
tained in this paper can be applied to the analysis of mu
wave-mixing in bulk media.

The Thirring model may be used in the study of the tw
component field propagation in waveguides in the Bragg m
dium @6# and of the ‘‘gap’’ solitons@7#. It is worth mention-
ing that the regimes of the optical wave mixing described
the TM may crucially differ from regimes described by th
two-component nonlinear Schro¨dinger equation, which ha
wide application in nonlinear optics. For instance, the in
grable version of the latter model does not describe the co
terpropagation of two fields in one-dimensional case@2#.
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APPENDIX A: THE INVERSE SCATTERING
TECHNIQUES AND THE TIME DEPENDENCE

OF SCATTERING DATA

To establish asymptotics asx→` of an initially steplike
pulse we apply the conventional ‘‘solitonic’’ version of IST
Here we shall follow to the paper of Kaup and Newell@23#.
These authors developed the IST for the derivative nonlin
Schrödinger equation. After some modifications their resu
can be applied to those considered here. This modifica
relates, for instance, to the ‘‘time’’ dependence of the sc
tering data.

Let us make the following changes:
~1! Change the variablesX→x5G0x/v, Y→t5G0(t

22x/v).
ob-
i-

-
-

y

-
n-

-

.
n
e

ar
s
n

t-

~2! Change the fields$U
V%→$U

V%exp i(e*0
xuVu2 dx2inx).

~3! Change a spectral parameterl→A2z. Then the spec-
tral problem ~3.3! is transformed to the spectral proble
studied in Ref.@23#:

]xc152 i z2c11zqc2 ,
~A1!

]xc25 i z2c21zrc1 ,

whereq52A2V exp i(e*0
xuVu2 dx2inx), r 52eq* .

We formulate an initial problem. We consider an infini
medium spread from2` to 1`. A long pulse of the ‘‘po-
tential’’ q(x) having lengthd propagates from2` to 1`.
Then, we shall put the length of this pulse asd→`.

We consider the vanishing asx→6` field q. For these
asymptotics, the IST techniques had been developed in
@23#, therefore we present here only the results required
our purposes. Define

m25
2e

2 E
2`

x

uVu2dx, m15
2e

2 E
x

1`

uVu2dx. ~A2!

The potentialq is determined by a diagonal of a kern
K1(x,s) @23#

q~x!522K1~x,x!exp~22im1!, ~A3!

where the kernelsK1 and K2 satisfy the following Mar-
chenko equations:

K2* ~x,g!2E
x

`

K1~x,s!F8~s1g!ds50,

~A4!

2eK1~x,g!1F~x1g!1 i E
x

`

K2* ~x,s!F* ~s1g!ds50,

where

F~x!5
1

2pE b~z!

a~z!
exp~ i z2x!dz,

~A5!

F8~x!5
dF~x!

dx
.

The time dependence of the scattering coefficientr(t)
5 (b/a) (t) is defined by the second linear system~3.3!. We
consider the following asymptotic conditions: asx→2`,
field U is a plane wave having a constant amplitudeU0 and
U→0 as x→1`. The time dependence of the scatteri
data can be obtained using the linear system~3.3!. For the
matrix D̂,



f
-
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D̂5F a b

2eb* 2aG , ~A6!

the following evolution can be easily found:

]tD̂~t!52D̂Â~x→2`!1Â~x→`!D̂. ~A7!

For the zero asymptotics value~as x→1`) of the off-
diagonal part of the matrixÂ and for a constant meaning o
Â at x→2` we have the following solution for the compo
nents of the matrixD̂:
e

th
e
he
ax
a5@~ iq1A11!exp~2 iqt!1~ iq2A11!exp~ iqt!#a0

1b0A21@exp~2 iqt!2exp~ iqt!#, ~A8!

b5a0A12@exp~2 iqt!2exp~ iqt!#

1bo@~ iq2A11!exp~2 iqt!1~ iq1A11!exp~ iqt!#;

~A9!

here Ai j are the elements of the matrixÂ such thatA115
2A22. q252A11

2 2A12A21.
Finally we have for the scattering coefficientr
r~t!5
b

a
5

A21@exp~2 iqt!2exp~ iqt!#1
b0

a0
@~ iq2A11!exp~2 iqt!1~ iq1A11!exp~ iqt!#

~ iq1A11!exp~2 iqt!1~ iq2A11!exp~ iqt!1 ~b0 /a0! A21@exp~2 iqt!2exp~ iqt!#
; ~A10!

herer05r(t50)5 b0 /a0 . For largeu5 m0
2/l2 (uuu@1), we obtain, using decomposition in the degrees ofu in Eq. ~3.3!,

q5A~a1u!21 l 0
2'uF11

a

u
1

1

2

l 0
22a2

u2
1o~u23!G ,

~A11!

A215 ip1Au, A125 is1Au, A115 i ~ l 12 l 2u!.

Neglecting the terms having orderO(u23/2) we have

r~ t !5r0S e12 l 2e2

e11 l 2e2
D H 11

e2

Au
F p1

r0~e12e2l 2!
2

r0s1

~e11e2l 2!G J F11OS 1

uD G ; ~A12!
h

rat-
heree65exp(2iqt)6exp(iqt). For the Lax pair used abov
we havel 2521. As a consequence Eq.~A12! can be sim-
plified to

r~ t !5r0exp~2i q̃t!S 11
e2

Au
Q1D F11OS 1

uD G ,
~A13!

whereQ1 is a function ofe6 . We choose the ‘‘minus’’ sign
of q52(2A11

2 2A12A21)
1/252q̃ to link this q̃ to the so-

lution obtaining for the asymptoticsU→0 asx→6`.

APPENDIX B: EVALUATION OF ASYMPTOTICS

Let us present the integral~A5! as a sum of integrals
along the contoursC0 and C1 ~Fig. 1!. We estimate this
integral, which is calculated along the contourC0 over the
upper part of the ‘‘soliton’’ branch

J0~x1g!5
1

2pEC0

h~h!exp@ ih~x1g!1 i2q̃~h!t#dh;

~B1!

hereh(h) is some function, which does not coincide wi
b(h)/a(h) . But this function yields only a shift of the phas
of solution and its exact meaning is not required for t
present estimation. To estimate the integral we find the m
 i-

mum value of the factorQ̃(h, t̃ )5@ ih12i q̃ t̃ #, whereh
5l2, t̃ 5t/(x1g). Consider the case of largeuuu
5u m0

2/h u, i.e., q̃'u. The derivative ofQ̃(j) on C0 with

respect to j5Imh is equal to zero for j1
252 t̃ /2

6A t̃ 2/412z0
2 t̃ ; herez05Reh0 . For large t̃ we havej1

2

'2 t̃ /21 t̃ /2(114z0
2/ t̃ )2z0

2'z0
2 . In Sec. II it is found

that for the initial steplike pulse having highV0 jP
@2j0 ,j0#, uj0u52uV0uAunu, z05(euV0u22n). We find the
condition when the maximum ofQ(j) lies exterior to the
interval @z02 i j0 ,z 0̄1 i j0#. For n.0,e.0 this condition is

n¹@ uV0u2~32A8!,uV0u2~31A8!#. ~B2!

Assume that the condition~B2! is fulfilled. Let us now esti-
mate the integralJ0(x1g) over the pathC0 for large (x
1g). The functionQ̃(h, t̃ ) has the nonzero derivative wit
respect toh on C0 and the maximum of Re@Q̃(h, t̃ )# is
attained at the pointh05z01 i j0 , i.e., at the ‘‘top point’’ of
the solitonic branch of the spectrum. Therefore, by integ
ing by parts, we obtain the following:

J0~x1g!5
h~h0!exp@ i ~x1g!Q̃~h0 , t̃ !#

i ~x1g!Q̃8~h0 , t̃ !
F11OS 1

x1g D G .
~B3!
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Now let us estimate the contribution of the real continuo
spectrum. For this aim we estimate the integral

J1~x1g!5
1

2pEC1

b~h!

a~h!
exp@ ih~x1g!1 i2q̃~h!t#

3F11OS e2Q1

Au
D Gdh. ~B4!

We use thet dependence of spectral data found in Appen
A. Study of the phaseQ̃(h, t̃ ) for the realh shows that the
.

a

P.

n

s

x

first term in Eq.~B4! does not yield a significant contributio
to asymptotics. The function ReQ̃(h, t̃ ) for a realh attained
the maximum ath50. The contribution of the second term
may be essential. However, according to assumptions use
Sec. II,u is supposed to be large (uuu@1). Thus we are able
to neglect the second term in the rhs of Eq.~B4!. Conse-
quently integral~B3! gives rise to the main contribution t
the leading front of the asymptotic. Substituting this integ
and its derivative in the Marchenko equations~A4! one may
find the soliton solution to the TM. This asymptotic soliton
characterized by the spectral parameterh0 and describes the
leading edge of the packet of pulses.
.
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