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Damping in dilute Bose gases: A mean-field approach
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Damping in a dilute Bose gas is investigated using a mean-field approximation which describes the coupled
oscillations of condensate and noncondensate atoms in the collisionless regime. Explicit results for both
Landau and Beliaev damping rates are given for nonuniform gases. In the case of uniform systems, we obtain
results for the damping of phonons both at zero and finite temperature. The isothermal compressibility of a
uniform gas is also discussed.@S1050-2947~98!02804-2#

PACS number~s!: 03.75.Fi, 02.70.Lq, 67.40.Db
y
ur

xi-
pe
e

le

s
d
ti
n

on
re

e

nt
m
e
-
t

no
s
um
e
o

s
ca

-
sc
e

al
um
d
th

r of
led
dy-
the
m,
e

dy-
of

re-

es
ing
the
tly

el-
of

his
ou-
me-

ri-

the
by
be
ses

res-
se

e, it
h-
.
ap-
ibes
less
en-
cal-
ive
in-
I. INTRODUCTION

The low-lying collective excitations of magneticall
trapped Bose gases have been the object of very acc
experimental measurements@1–3#. The first experiments
@1,2# were carried out at low temperature, with appro
mately all the atoms in the condensate state. These ex
ments showed almost undamped oscillations of the cond
sate at frequencies which have been found in excel
agreement with theoretical predictions based on theT50
time-dependent Gross-Pitaevskii equation@4#. In more recent
experiments@3# the study of the low-energy collective mode
has been extended to higher temperatures, where the con
sate oscillates in the presence of a considerably large frac
of above-condensate atoms. In this case, evidence is give
large frequency shifts with unexpected features and of str
damping rates which have not yet been understood theo
cally.

On the theoretical side, extensions to finite temperatur
the Gross-Pitaevskii equation have been put forward@5–9#
and have been very successful in explaining experime
results on the thermodynamic properties of these syste
such as condensate fraction, internal energy, specific h
and critical temperature@6–8#. These mean-field descrip
tions, however, seem to be inadequate when applied to
study of collective excitations at finite temperature@6,9#.
First of all, the proposed mean-field approximations do
account for damping. Second, the resonance frequencie
predicted to vary with temperature, mainly because the n
ber of atoms in the condensate changes, and the depend
of the frequency shift upon this quantity is expected to sh
the same behavior as the correspondingT50 dependence on
the total numberN of atoms in the trap. None of the feature
exhibited by the experimental data on the frequency shift
be explained using these descriptions.

In the presently available finite-T extensions of the Gross
Pitaevskii equation, it is assumed that the condensate o
lates in a bath of thermally excited atoms at rest and in th
mal equilibrium in the effective mean-field potenti
generated by the average condensate density. This ass
tion is valid if the time scale on which the thermal clou
oscillates is much larger than the inverse frequency of
condensate oscillations. Since both the condensate and
571050-2947/98/57~4!/2949~9!/$15.00
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thermal cloud vary on comparable time scales of the orde
the trap frequency, a full dynamic treatment of the coup
oscillations of the two clouds should be developed. The
namic effects we are aiming to describe are irrelevant in
calculation of the thermodynamic properties of the syste
for which the standard finite-T mean-field approaches ar
well suited. In fact, as pointed out in Refs.@7,10#, the fine
details of the excitation energies do not affect the thermo
namic behavior, for which what matters is the density
states at a given energy.

Another problem arises as to whether the appropriate
gime to describe the experimental situation in@3# is colli-
sional or collisionless. In the collisional regime, which tak
place at high temperatures and densities, the damp
mechanisms are of dissipative type and the dynamics of
system is described by two-fluid hydrodynamics, recen
developed for trapped gases in Ref.@11#. For very dilute
systems at low temperatures the mean free path of the
ementary excitations becomes comparable with the size
the system and collisions play a minor role. Damping in t
regime is not related to thermalization processes but to c
pling between excitations, and can be described in the fra
work of mean-field theories. As suggested in Ref.@12#, the
collisionless regime may be appropriate for the JILA expe
ments@1,3#, but probably not for the MIT experiments@2#.

In the collisionless regime and at finite temperature
damping of the low-lying collective modes is dominated
Landau damping. The idea that this mechanism might
relevant to explain the damping rates in trapped Bose ga
was first suggested by Liu and Schieve@13# and was then
developed in Refs.@14–16#. In Ref. @14# Pitaevskii and
Stringari have derived, using perturbation theory, an exp
sion for Landau damping which is applicable to trapped Bo
gases, and have shown that, if applied to the uniform cas
reproduces known results for both the low- and hig
temperature asymptotic behavior of the phonon damping

In this paper we develop a time-dependent mean-field
proach based on the Popov approximation, which descr
the dynamics of a Bose-condensed gas in the collision
regime. We obtain a set of coupled equations for the cond
sate and noncondensate components which allow us to
culate damping coefficients. In nonuniform gases we der
explicit expressions both for Landau damping, which co
2949 © 1998 The American Physical Society
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2950 57S. GIORGINI
cides with the finding of Ref.@14#, and for Beliaev damping
In the uniform case, we reproduce all known results on
damping rates of phonons both atT50 and at finiteT.

However, the calculation of the temperature depende
of the frequency shifts using the Popov approximation is
reliable. For a uniform system the calculation should give
the long wavelength limit, the correction to the velocity
zeroth sound due to quantum and thermal fluctuations.
the other hand, atT50, the velocity of zeroth sound is di
rectly related to the bulk compressibility of the system,
which we show that the Popov approximation gives an
correct result. By studying the isothermal compressibility
also find that the Popov approximation is inconsistent at
temperatures, because it neglects fluctuations which are
evant for temperatures smaller than the chemical poten
Since the same fluctuations are also important in the ca
lation of the velocity of zeroth sound in the low temperatu
regime, we draw the conclusion that a dynamic mean-fi
description, which gives a correct account of both damp
rates and frequency shifts, can only be developed going
yond the Popov approximation.

The paper is organized as follows. In Sec. II we deve
the formalism of the time-dependent mean-field approxim
tion. In Sec. III we study the damping of the oscillations in
nonuniform system obtaining explicit expressions for t
Landau and Beliaev damping. In Secs. IV A and IV B, w
apply the results of Sec. III to the uniform case. In Sec. IV
we investigate the isothermal compressibility of a unifo
gas beyond the Popov approximation.

II. TIME-DEPENDENT MEAN-FIELD APPROXIMATION

In the presence of a nonuniform external fieldVext(r ), the
grand-canonical Hamiltonian of the system has the form

K[H2mN5E drc†~r ,t ! S 2
\2¹2

2m
1Vext~r !2m Dc~r ,t !

1
g

2 E drc†~r ,t !c†~r ,t !c~r ,t !c~r ,t ! ~1!

in terms of the creation and annihilation particle field ope
tors c†(r ,t) andc(r ,t). In the above equation,g is the in-
teraction coupling constant, which to lowest order in t
s-wave scattering lengtha is given by g54p\2a/m. The
equation of motion for the particle field operator then follow
immediately and reads

i\
]

]t
c~r ,t !5@c~r ,t !,K#5S 2

\2¹2

2m
1Vext~r !2m Dc~r ,t !

1gc†~r ,t !c~r ,t !c~r ,t !. ~2!

According to the usual treatment for Bose systems with b
ken gauge symmetry, we define a time-dependent conden
wave functionF(r ,t) @17#,

F~r ,t !5^c~r ,t !&, ~3!

which allows us to describe situations where the system
displaced from equilibrium and the condensate is oscillat
in time. The averagê̄ & in Eq. ~3! is thus intended to be a
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nonequilibrium average, while time-independent equilibriu
averages will be indicated in this paper with the symb
^¯&0 . The particle field operator can then be decompo
into a condensate and a noncondensate component,

c~r ,t !5F~r ,t !1c̃~r ,t !, ~4!

and the noncondensate term satisfies, by definition, the
dition ^c̃(r ,t)&50. By applying the decomposition~4! to the
Heisenberg equation~2!, the term cubic in the field operator
becomes~all quantities depend onr and t!

c†cc5uFu2F12uFu2c̃1F2c̃ †12Fc̃ †c̃1F* c̃ c̃

1c̃ †c̃c̃ . ~5!

We assume that for dilute systems the cubic product of
noncondensate operators@last term in Eq.~5!# has a negli-
gible effect on the dynamics of the condensate and we se
average value equal to zero:

^c̃ †~r ,t !c̃~r ,t !c̃~r ,t !&50. ~6!

One thus obtains the following equation for the time rate
change of̂ c(r ,t)&:

i\
]

]t
F~r ,t !5S 2

\2¹2

2m
1Vext~r !2m DF~r ,t !

1guF~r ,t !u2F~r ,t !12gF~r ,t ! ñ~r ,t !

1gF* ~r ,t !m̃~r ,t !, ~7!

where we have introduced the normal and anomalous ti
dependent densities defined, respectively, as

ñ~r ,t !5^c̃ †~r ,t !c̃~r ,t !&,

m̃~r ,t !5^c̃~r ,t !c̃~r ,t !&. ~8!

The equation of motion~7! with ñ5m̃50 corresponds to the
usual T50 Gross-Pitaevskii equation for the condens
wave function, while its extension including the normal a
anomalous densities has been already discussed by man
thors both in the study of thermodynamic properties and
the collective modes at finite temperature@5–9,11#. The nov-
elty here is that we will treat both terms within a time
dependent mean-field approximation holding in the collisio
less regime, which is the object of the present work@18#.

We are interested in the small-amplitude regime in wh
the condensate is only slightly displaced from its station
valueF0(r )5^c(r )&0 ,

F~r ,t !5F0~r !1dF~r ,t !, ~9!

wheredF(r ,t) is a small fluctuation. In the same way w
consider small fluctuations of the normal and anomalo
densities,

ñ~r ,t !5 ñ 0~r !1d ñ~r ,t !,

m̃~r ,t !5m̃ 0~r !1dm̃~r ,t !, ~10!
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57 2951DAMPING IN DILUTE BOSE GASES: A MEAN-FIELD . . .
around their equilibrium valuesñ 0(r )5^c̃ †(r )c̃(r )&0 and
m̃ 0(r )5^c̃(r )c̃(r )&0 .

In the so-called Popov approximation the effects aris
from the equilibrium value of the anomalous density in E
~7! are neglected and the following ansatz is introduced
the mean-field scheme:

m̃ 0~r !50. ~11!

This approximation was first introduced by Popov in t
study of a uniform weakly interacting Bose gas at finite te
perature@19# ~for a detailed discussion, see Refs.@5# and
@20#!. More recently, the Popov approximation has been
tensively used in the study of properties of magnetica
trapped Bose gases at finite temperature@5–7,9,11#. The
Popov approximation gives a gapless spectrum of elemen
excitations, which atT50 coincides with the well-known
Bogoliubov dispersion relation, while at highT it approaches
the finite-temperature Hartree-Fock spectrum@21#.

By using the Popov prescription~11!, the real wave func-
tion F0(r ) satisfies the stationary equation

S 2
\2¹2

2m
1Vext~r !2m1g@n0~r !12 ñ 0~r !# DF0~r !50,

~12!

wheren0(r )5uF0(r )u2 is the condensate density, while th
time-dependent equation fordF(r ,t) is obtained by linear-
izing the equation of motion~7!,

i\
]

]t
dF~r ,t !5S 2

\2¹2

2m
1Vext~r !2m12gn~r ! D dF~r ,t !

1gn0~r !dF* ~r ,t !12gF0~r !d ñ~r ,t !

1gF0~r !dm̃~r ,t !, ~13!

where we have introduced the total equilibrium dens
n(r )5n0(r )1 ñ 0(r ).

From Eq.~13! one clearly sees that the oscillations of t
condensate are coupled to the fluctuationsd ñ(r ,t) and
dm̃(r ,t) of the normal and anomalous densities. It is wo
reminding at this point that the Popov ansatz~11! imposes a
constraint on the equilibrium value of the anomalous dens
but not on its fluctuations, which are important to descr
properly the coupling between the oscillations of the cond
sate and noncondensate part. In order to obtain the equa
of motion for d ñ(r ,t) and dm̃(r ,t) it is convenient to ex-
press the noncondensate operatorsc̃ ,c̃ † in terms of quasi-
particle operatorsa j ,a j

† by means of the Bogoliubov linea
transformations

c̃~r ,t !5(
j

@~uj r !a j~ t !1v j* ~r !a j
†~ t !#,

c̃ †~r ,t !5(
j

@uj* ~r !a j
†~ t !1v j~r !a j~ t !#. ~14!
g
.
n

-

-
y
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The normalization condition for the functionsuj (r ),v j (r ),
which ensures that the quasiparticle operatorsa j ,a j

† satisfy
Bose commutation relations, reads

E dr @ui* ~r !uj~r !2v i* ~r !v j~r !#5d i j . ~15!

By using the transformations~14!, the quantitiesñ(r ,t) and
m̃(r ,t) can be expressed in terms of the normal and ano
lous quasiparticle distribution functions defined by

f i j ~ t !5^a i
†~ t !a j~ t !&,

gi j ~ t !5^a i~ t !a j~ t !&. ~16!

The time evolution of these functions is fixed by the follow
ing equations of motion:

i\
]

]t
f i j ~ t !5^@a i

†~ t !a j~ t !,K#&,

i\
]

]t
gi j ~ t !5^@a i~ t !a j~ t !,K#&. ~17!

In order to calculate the commutators of Eq.~17!, one no-
tices that, after substituting the decomposition~4! of the par-
ticle field operator into the Hamiltonian~1!, only the terms
quadratic and quartic in the noncondensate operatorsc̃ ,c̃ †

give nonvanishing contributions, because, according to
~6!, we set to zero all averages of cubic products of
noncondensate operators. The terms in the grand-cano
Hamiltonian relevant for the calculation of the commutato
are thus given by

K21K45E dr F c̃ †~r ,t !S 2
\2¹2

2m
1Vext~r !2m D c̃~r ,t !

12guF~r ,t !u2c̃ †~r ,t !c̃~r ,t !

1
g

2
F2~r ,t !c̃ †~r ,t !c̃ †~r ,t !

1
g

2
F* 2~r ,t !c̃~r ,t !c̃~r ,t !G

1
g

2 E dr c̃ †~r ,t !c̃ †~r ,t !c̃~r ,t !c̃~r ,t !, ~18!

where we have indicated withK2 the term quadratic in
c̃ ,c̃ †, while K4 is the term quartic in these operators. B
expandingK2 up to terms linear in the fluctuationsdF(r ,t),
we can rewrite it as the sumK25K2

(0)1K2
(1) , whereK2

(0)

does not contain the fluctuations of the condensate
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K2
~0!5E dr F c̃~r ,t !S 2

\2¹2

2m
1Vext~r !2m

12gn0~r ! D c̃~r ,t !1
g

2
n0~r !@ c̃ †~r ,t !c̃ †~r ,t !

1c̃~r ,t !c̃~r ,t !#G , ~19!

while K2
(1) is linear in the fluctuationsdF,

K2
~1!5E dr$2gF0~r !@dF~r ,t !1dF* ~r ,t !#c̃ †~r ,t !c̃~r ,t !

1gF0~r !@dF~r ,t !c̃ †~r ,t !c̃ †~r ,t !

1dF* ~r ,t !c̃~r ,t !c̃~r ,t !#%. ~20!

In the quartic termK4 we first use the mean-field decomp
sition ~all quantities depend onr and t!

c̃ †c̃ †c̃c̃54 ñc̃ †c̃1m̃c̃ †c̃ †1m̃* c̃ c̃ , ~21!

and then we expand the resulting expression up to lin
terms in the fluctuationsd ñ anddm̃, thereby obtaining

K45K4
~0!1K4

~1!

52gE dr ñ 0~r !c̃ †~r ,t !c̃~r ,t !

1
g

2 E dr $4d ñ~r ,t !c̃ †~r ,t !c̃~r ,t !

1@dm̃~r ,t !c̃ †~r ,t !c̃ †~r ,t !1dm̃* ~r ,t !c̃~r ,t !c̃~r ,t !#%,

~22!

where we have made use of the Popov ansatz~11!. In the
above equation,K4

(0) is the zeroth order term, whileK4
(1) is

linear in the fluctuationsd ñ and dm̃. In the equations of
motion ~17! the commutators ofa i

†a j and a ia j with K2
(1)

yield, in the small-amplitude regime, the coupling to t
fluctuations of the condensate, whereas the commuta
with K4

(1) give the coupling to the fluctuations of the norm
and anomalous particle densities. If the density of the n
condensate particles is much smaller than the densityn0 of
the condensate, the coupling to the condensate is more
portant than the coupling tod ñ anddm̃ and we can conse
quently neglect the contributions to the commutators aris
from the termK4

(1) .
One can easily show that the operatorK2

(0)1K4
(0) is diag-

onal in the quasiparticle operatorsa j ,a j
† if the functionsuj

andv j satisfy the coupled Bogoliubov equations,

Luj~r !1gn0~r !v j~r !5e juj~r !,

Lv j~r !1gn0~r !uj~r !52e jv j~r !, ~23!

where we have introduced the Hermitian operator
ar

rs

-

m-

g

L52
\2¹2

2m
1Vext~r !2m12gn~r !. ~24!

As a consequence, the relevant terms in the Hamiltonian
come

K21K45(
j

e ja j
†~r !a j~r !1K2

~1! , ~25!

where the quasiparticle energiese j are obtained from the
solutions of the Bogoliubov equations~23!.

The commutators in the equations of motion~17! can be
now calculated straightforwardly. To lowest order in th
fluctuations one gets

i\
]

]t
f i j ~ t !5~e j2e i ! f i j ~ t !12g~ f i

02 f j
0!E drF0~r !

3$@dF~r ,t !1dF* ~r ,t !#@ui~r !uj* ~r !

1v i~r !v j* ~r !#1dF~r ,t !v i~r !uj* ~r !

1dF* ~r ,t !ui~r !v j* ~r !% ~26!

for the time evolution off i j , while the equation of motion
for gi j is given by

i\
]

]t
gi j ~ t !5~e j1e i !gi j ~ t !12g~11 f i

01 f j
0!E drF0~r !

3$@dF~r ,t !1dF* ~r ,t !#@ui* ~r !v j* ~r !

1v i* ~r !uj* ~r !#1dF~r ,t !ui* ~r !uj* ~r !

1dF* ~r ,t !v i* ~r !v j* ~r !%. ~27!

In Eqs.~26! and~27!, f j
0 is the equilibrium density of quasi

particles

f j
05^a j

†a j&05@exp~be j !21#21, ~28!

in terms of which the noncondensate particle density,
equilibrium, is written as

ñ 0~r !5(
j

$@ uuj~r !u21uv j~r !u2# f j
01uv j~r !u2%. ~29!

The last term in Eq.~29! accounts atT50 for the quantum
depletion of the condensate. The fluctuationsd ñ anddm̃ of
the normal and anomalous particle densities can be stra
forwardly expressed in terms off i j (t) and gi j (t), and Eq.
~13! for the oscillations of the condensate takes the fi
form

i\
]

]t
dF~r ,t !5S 2

\2¹2

2m
1Vext~r !2m12gn~r ! D dF~r ,t !

1gn0~r !dF* ~r ,t !

1gF0~r !(
i j

$2@ui* ~r !uj~r !1v i* ~r !v j~r !

1v i* ~r !uj~r !# f i j ~ t !1@2v i~r !uj~r !

1ui~r !uj~r !#gi j ~ t !1@2ui* ~r !v j* ~r !

1v i* ~r !v j* ~r !#gi j* ~ t !%. ~30!
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The equations of motion~26!, ~27!, and ~30! describe the
small-amplitude coupled oscillations of the condensate
noncondensate particles in the collisionless regime. T
represent the main result of this section.

III. DAMPING OF THE OSCILLATIONS

Let us suppose that the condensate oscillates with
quencyv

dF~r ,t !5dF1~r !e2 ivt, dF* ~r ,t !5dF2~r !e2 ivt.
~31!

Through the coupling term in the equations of motion~26!
and ~27!, the fluctuations of the condensate act as a tim
dependent external drive inducing oscillations inf i j andgi j .
The Fourier component off i j at the driving frequencyv is
given by

f i j ~v!52g
f i

02 f j
0

\v1~e i2e j !1 i0 E dr

3F0@dF1~uiuj* 1v iv j* 1v iuj* !

1dF2~uiuj* 1v iv j* 1uiv j* !#, ~32!

where the frequencyv has been chosen with an infinites
mally small component on the positive imaginary ax
Analogously, for the component ofgi j oscillating at the fre-
quencyv, one finds

gi j ~v!52g
11 f i

01 f j
0

\v2~e i1e j !1 i0 E dr

3F0@dF1~ui* v j* 1v i* uj* 1ui* uj* !

1dF2~ui* v j* 1v i* uj* 1v i* v j* !#. ~33!

If one neglects in Eq.~30! the coupling terms involving the
fluctuations of the noncondensate particles, the conden
componentsdF1

0,dF2
0 satisfy the unperturbed RPA equatio

@6#,

S L gn0~r !

2gn0~r ! 2L D S dF1
0~r !

dF2
0~r ! D 5\v0S dF1

0~r !

dF2
0~r ! D ,

~34!

and the normalization condition

E dr ~ udF1
0u22udF2

0u2!51, ~35!

where v0 is the unperturbed RPA eigenfrequency of t
mode. We treat the coupling terms in Eq.~30! as small per-
turbations and we write the solution of the normal mode

S dF1

dF2
D5S dF1

0

dF2
0D 1S dF18

dF28
D , ~36!

and the perturbed eigenfrequency as

\v5\v01dE2 ig. ~37!
d
y

e-

-

.

ate

s

In Eq. ~37!, dE represents the shift in the real part of th
frequency andg is the damping coefficient, while the eigen
vector correction in Eq.~36! is chosen to be orthogonal t
the unperturbed eigenvector,

E dr ~dF18* dF1
02dF28* dF2

0!50. ~38!

Starting from the equations for the perturbed compone
dF1 anddF2 @Eq. ~30! and its complex conjugate# we mul-
tiply the first equation bydF1* and the latter bydF2* , take
the difference of the two equations, and finally integrate o
space. By using Eqs.~35! and ~38! we get the following
relation for the perturbed eigenfrequency:

\v5\v014g2(
i j

~ f i
02 f j

0!
uAi j u2

\v01~e i2e j !1 i0

12g2(
i j

~11 f i
01 f j

0!S uBi j u2

\v02~e i1e j !1 i0

2
uB̃i j u2

\v01~e i1e j !1 i0
D , ~39!

where the matrix elementsAi j , Bi j , and B̃i j are, respec-
tively, given by

Ai j 5E drF0@dF1
0~uiuj* 1v iv j* 1v iuj* !

1dF2
0~uiuj* 1v iv j* 1uiv j* !#,

Bi j 5E drF0@dF1
0~ui* v j* 1v i* uj* 1ui* uj* !

1dF2
0~ui* v j* 1v i* uj* 1v i* v j* !#, ~40!

B̃i j 5E drF0@dF1
0~uiv j1v iuj1v iv j !

1dF2
0~uiv j1v iuj1uiuj !#.

The imaginary part of the right-hand side of Eq.~39!
gives the damping coefficientg. There are two distinct con
tributions tog : one arises from the process of one quant
of oscillation \v0 being absorbed by a thermal excitatio
with energye i , which is turned into another thermal excita
tion with energye j5e i1\v0 . This mechanism is known a
Landau (L) damping and is given by the imaginary part
the second term on the right-hand side of Eq.~39!,

gL54pg2(
i j

uAi j u2~ f i
02 f j

0!d~\v01e i2e j !. ~41!

The above result coincides with the finding of Ref.@14# ob-
tained by direct use of perturbation theory. A differe
mechanism of damping comes from the process wher
quantum of oscillation\v0 is absorbed and two excitation
with energiese i1e j5\v0 are created. The damping assoc
ated with the decay of an elementary excitation into a pai
excitations, which has been studied by Beliaev in the cas
uniform Bose superfluids@22#, is present also atT50, but is
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not active for the lowest energy modes in the case of a t
ping potential because of the discretization of levels. T
Beliaev (B) damping is given by the imaginary part of th
first term in brackets on the right-hand side of Eq.~39!, and
reads

gB52pg2(
i j

uBi j u2~11 f i
01 f j

0!d~\v02e i2e j !. ~42!

The total damping coefficient is the sum of the two con
butions g5gL1gB , the Beliaev damping becomes dom
nant at low temperatures (kBT!\v0), while the Landau
damping becomes dominant in the opposite regime of t
peratures (kBT@\v0).

In the case of magnetically trapped Bose gases, res
~41! and~42! give the damping coefficientg both at low and
high temperatures in the collisionless regime. This quan
has been measured at JILA over a wide range of temp
tures for them50 and m52 modes@3#, revealing a very
strong temperature dependence. To carry out the calcula
at a given temperatureT one must start from the unperturbe
condensate eigenfrequency with the required symmetry,
tained from Eq.~34!, and the elementary excitation energi
e j calculated from Eqs.~23!. One has then to calculate th
matrix elementsAi j andBi j @see Eq.~40!# and then carry out
the double summation in Eqs.~41! and ~42!. The explicit
calculation ofg in magnetically trapped gases will be th
object of a future work.

By analyzing the real part of Eq.~39!, one can calculate
the eigenfrequency shiftdE in the Popov approximation
However, for temperatureskBT<m the effects arising from
the equilibrium anomalous densitym̃ 0(r ) are important for
the calculation of the frequency shift and cannot be
glected. In Sec. IV C we will present a calculation of t
velocity of sound atT50 for a uniform gas, and it will be
shown that the inclusion ofm̃ 0 is crucial to obtain the cor-
rect result. From this finding we conclude that a reliab
calculation of the frequency shiftdE should be based on
more accurate dynamic theory, beyond the simple Popov
satz~11!.

IV. UNIFORM BOSE-CONDENSED GASES

In this section we apply the results~41! and ~42! to uni-
form Bose gases, for which we reproduce well known res
for the damping of phonons, both at finite and zero tempe
ture, in the collisionless regime.

For homogeneous systems the stationary condensate
function is constant throughout spaceF05An0, while the
condensate fluctuations and the excitations are describe
plane wave functions,

dF1~r !5
uq

AV
eiq•r, dF2~r !5

vq

AV
eiq•r,

up~r !5
up

AV
eip•r, vp~r !5

vp

AV
eip•r, ~43!

whereup andvp are real functions defined through the usu
Bogoliubov relations
p-
e

-

-

lts

y
a-

on

b-

-

n-

ts
a-

ve

by

l

up
2511vp

25
~ep

21g2n0
2!1/21ep

2ep
,

upvp52
gn0

2ep
, ~44!

and ep is the energy of the elementary excitations as o
tained from the Bogoliubov equations~23!,

ep5F S p2

2m
1gn0D 2

2g2n0
2G1/2

. ~45!

In these equations,n0[n0(T) is the condensate density a
the given temperatureT obtained from the self-consisten
calculation in thermodynamic equilibrium~see Ref.@7#!.

A. Thermal regime \v0!kBT

We consider the long-wavelength limit for the fluctu
tions of the condensate

\v0[eq.cq, ~46!

wherec5Agn0 /m is the velocity of sound calculated at tem
peratureT. In this limit theu andv functions associated with
the oscillations of the condensate can be expanded as

uq.S mc2

2eq
D 1/2

1
1

2 S eq

2mc2D 1/2

,

vq.2S mc2

2eq
D 1/2

1
1

2 S eq

2mc2D 1/2

. ~47!

As has been shown in Ref.@14#, using the above expansio
for uq andvq one obtains the following low-q behavior for
the matrix elementsApp8 defined in Eqs.~40!:

App85dp8,p1q

An0

AV
S eq

2mc2D 1/2S up
21vp

21upvp

2
vg

c
cosu

2up
2vp

2

up
21vp

2D , ~48!

wheredpp8 is the Kronecker symbol,u is the angle formed
between the directions ofp and q, and vg5]ep /]p is the
group velocity of the excitations. By introducing the abo
expansion into Eq.~41! and carrying out the integration ove
u, one finds the result~see Ref.@14#!

g

eq
.

gL

eq
5~a3n0!1/2F~t!, ~49!

wheret5kBT/mc2 is a reduced temperature andF(t) is the
dimensionless function

F~t!58ApE dx~ex2e2x!22S 12
1

2u
2

1

2u2D 2

, ~50!

where we have introduced the quantityu5A114t2x2.
For temperaturest@1 the function F takes the

asymptotic limitF→3p3/2t/4, and the damping coefficien
is given by
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g

eq
5

3p

8

kBTa

\c
. ~51!

This regime of temperatures was first investigated by Sz´p-
falusy and Kondor@23#. As discussed in Ref.@14#, the nu-
merical coefficient in Eq.~51! coincides with the one ob
tained in@20#, while it slightly differs from the one of@23#.

In the opposite regime of temperatures,t!1, one finds
the asymptotic limitF→3p9/2t4/5 and one recovers the we
known result for the phonon damping@17,24,25,14#,

g

eq
5

3p3

8

~kBT!4

mn\3c5 . ~52!

In Fig. 1, the dimensionless functionF(t) is plotted as a
function of t together with its asymptotic behavior both
small and larget’s. One can see thatF departs rather soon
from the low-temperaturet4 behavior, while it approache
the high-temperature linear law very slowly.

B. Quantum regime \v0@kBT

At T50, the damping of the long-wavelength fluctuatio
of the condensate with energy~46! is obtained through resul
~42! with f j

050. For uniform gases the matrix elementsBpp8
entering Eq.~42! read

Bpp85dp8,2p1q

An0

AV
@uq~upvp2q1vpup2q1upup2q!

1vq~upvp2q1vpup2q1vpvp2q!#. ~53!

In the Beliaev damping mechanism the momenta of the th
excitations involved in the process are comparable,q.p
.up2qu. For p!mc one can use the following expansion
for the excitation energiesep and the functionsup andvp :

ep.cp1
p3

8m2c
, ~54!

FIG. 1. Dimensionless functionF as a function oft ~solid line!.
The asymptotic behaviors fort!1 ~dashed line! and for t@1
~long-dashed line! are also reported.
e

up.S mc

2p D 1/2

1
1

2 S p

2mcD
1/2

1
1

8 S p

2mcD
3/2

2
1

8 S p

2mcD
5/2

,

vp.2S mc

2p D 1/2

1
1

2 S p

2mcD
1/2

2
1

8 S p

2mcD
3/2

2
1

8 S p

2mcD
5/2

.

If one substitutes the above expressions for all theu’s and
v ’s in Eq. ~53! and makes use of the condition for ener
conservation

up2qu1p5q1
1

8m2c2 ~q31p31up2qu3!, ~55!

after long but straightforward algebra one gets the result

Bpp85dp8,2p1q

An0

AV

3

4&

~qpup2qu!1/2

~mc!3/2 . ~56!

Once the low-energy behavior of the matrix elements ofB
has been obtained, the calculation of the damping coeffic
follows directly:

g.gB5
3q5

640p\3mn
, ~57!

and coincides with the well known result first obtained
Beliaev using diagrammatic techniques@22,26# ~for a review
of the second-order Beliaev approximation atT50 and its
extension to finite temperature, see Ref.@20#!.

C. Bulk compressibility

In this subsection we calculate the isothermal inve
compressibilitykT

215n2(]m/]n)V,T . In a uniform system at
T50 it is fixed by the velocity of sound through the relatio

kT50
21 5rS ]P

]r D
N,T50

5rc2~T50!, ~58!

where r5mn is the mass density. We will show that th
Popov approximation gives an incorrect result for the inve
compressibility in the low-temperature regime and that o
must go beyond this approximation in order to obtain t
correct low-T behavior ofkT

21 .
Without making the Popov assumption~11! and including

the term proportional tom̃ 0(r ), the stationary equation fo
the real wave functionF0(r ) becomes

S 2
\2¹2

2m
1Vext~r !2m1g@n0~r !12 ñ 0~r !

1m̃ 0~r !# DF0~r !50, ~59!

instead of Eq.~12!. In terms of the quasiparticle operato
defined in Eq.~14!, the anomalous density at equilibrium
given by
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m̃ 0~r !5(
j

@2uj~r !v j* ~r ! f j
01uj~r !v j* ~r !#. ~60!

For a uniform system the above equation~59! fixes the value
of the chemical potential

m5gn1g~ ñ 01m̃ 0! ~61!

which differs from the valuemP5g(n1 ñ 0) obtained in the
Popov approximation@27#. At T50 this approximation gives
mP(T50)54p\2an@118(a3n)1/2/3Ap#/m, where the cor-
rection togn comes from the quantum depletion of the co
densate. Thea5/2 order of the correction is correctbut the
numerical coefficient is wrong. To obtain theT50 chemical
potential to ordera5/2, one must use Eq.~61! and expand the
coupling constantg to second order in the scattering lengt

g5
4p\2a

m S 11
4p\2a

m

1

V (
p

m

p2D . ~62!

The need of the above renormalization ofg for the calcula-
tion of the ground-state energy of a Bose gas has been
pointed out by Lee, Huang, and Yang@28# and is discussed
in many textbooks~see, e.g., Ref.@29#!. By substituting the
renormalized value ofg into the first term of Eq.~61!, one
gets

m~T50!5
4p\2an

m F11
8

3Ap
~a3n!1/2

1
4p\2a

m

1

V (
p

S m

p2 2
1

2ep
D G

5
4p\2an

m S 11
32

3Ap
~a3n!1/2D , ~63!

which coincides with the well-known result for the chemic
potential of a dilute Bose gas atT50 @30#. In the above
equation we have used Eqs.~43! and ~44! for the product
up(r )vp* (r ) with the Bogoliubov spectrum~45!. Notice that
in the integral overp the ultraviolet divergencies arisin
from the renormalization ofg and fromm̃ 0 cancel out. By
differentiating Eq.~63! with respect ton one obtains for the
velocity of sound

c~T50!5A4p\2an

m2 S 11
8

Ap
~a3n!1/2D , ~64!

a result which was first derived by Beliaev@22#. In a self-
consistent dynamic theory, result~64! should also be ob-
tained from the frequency shift of the long-wavelength ex
tations. However, it cannot be found within the Pop
approximation because the crucial ingredients, renormal
tion of g and equilibrium value of the anomalous density, a
not accounted for in this approximation.

At finite T one gets from Eq.~61!
-

,

rst

l

-

a-
e

m~T!5
4p\2an

m S 11
32

3Ap

n0

n
~a3n0!1/2D

1
4p\2an

m

A32

Ap

n0

n
~a3n0!1/2t

3E
0

`

dx
~A11t2x221!3/2

A11t2x2

1

ex21
, ~65!

wheret5kBT/mc2 is the reduced temperature. Result~65!
coincides with the finding of Ref.@20# obtained using the
second-order Beliaev approximation. In the low-temperat
regime,t!1, one has

m~T!5m~T50!1
p2

60

~kBT!4

n\3c3 ~66!

for the chemical potential, and

kT
215rc2~T50!2

p2

24

~kBT!4

\3c3 ~67!

for the inverse compressibility. The above results coinc
with the ones obtained from the thermodynamic relationm
5(]Fph/]N)V,T , whereFph is the free energy of a phono
gas. In the same temperature regime,kBT!mc2, the Popov
approximation gives mP(T)5mP(T50)
1m2c(kBT)2/(12n\3) and the inverse compressibility ex
hibits an unphysicalT2 dependence which is not consiste
with the T4 dependence obtained by differentiating the ph
non free energy.

In the low-temperature limit the frequency shift of coll
sionless phonons is proportional toT4 log(T) @24,25#,
whereas the Popov approximation again yields an unphys
T2 dependence arising from the low-T expansion ofn0(T).
The analogy with the result for the chemical potential su
gests that also for this calculation the inclusion ofm̃ 0 is
crucial to obtain the correct result.

From the above results we conclude that a self-consis
dynamic theory, aiming to describe both the damping and
frequency shifts of the oscillations of the condensate, sho
go beyond the Popov ansatz~11!. The ingredients that this
theory should contain are the following:~i! the equilibrium
anomalous densitym̃ 0 has to be taken into account,~ii ! the
renormalization~62! of the interaction coupling constant i
needed in order to reproduce the energetics atT50, and~iii !
the elementary excitation energiesep have to be gapless an
must coincide with the Bogoliubov spectrum at low tempe
tures.
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