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Damping in dilute Bose gases: A mean-field approach
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Damping in a dilute Bose gas is investigated using a mean-field approximation which describes the coupled
oscillations of condensate and noncondensate atoms in the collisionless regime. Explicit results for both
Landau and Beliaev damping rates are given for nonuniform gases. In the case of uniform systems, we obtain
results for the damping of phonons both at zero and finite temperature. The isothermal compressibility of a
uniform gas is also discuss€$1050-29408)02804-3

PACS numbe(s): 03.75.Fi, 02.70.Lq, 67.40.Db

[. INTRODUCTION thermal cloud vary on comparable time scales of the order of
the trap frequency, a full dynamic treatment of the coupled
The low-lying collective excitations of magnetically oscillations of the two clouds should be developed. The dy-
trapped Bose gases have been the object of very accuratamic effects we are aiming to describe are irrelevant in the
experimental measuremenfd&—3]. The first experiments calculation of the thermodynamic properties of the system,
[1,2] were carried out at low temperature, with approxi- for which the standard finit&- mean-field approaches are
mately all the atoms in the condensate state. These expefiell suited. In fact, as pointed out in Refd,,10], the fine
ments showed almost undamped oscillations of the conderetails of the excitation energies do not affect the thermody-
sate at frequencies which have been found in excellemhamic behavior, for which what matters is the density of
agreement with theoretical predictions based on Twe0  states at a given energy.
time-dependent Gross-Pitaevskii equafiéh In more recent Another problem arises as to whether the appropriate re-
experiment$3] the study of the low-energy collective modes gime to describe the experimental situation[8] is colli-
has been extended to higher temperatures, where the condeienal or collisionless. In the collisional regime, which takes
sate oscillates in the presence of a considerably large fractignlace at high temperatures and densities, the damping
of above-condensate atoms. In this case, evidence is given ofechanisms are of dissipative type and the dynamics of the
large frequency shifts with unexpected features and of strongystem is described by two-fluid hydrodynamics, recently
damping rates which have not yet been understood theoretileveloped for trapped gases in Rgf1]. For very dilute
cally. systems at low temperatures the mean free path of the el-
On the theoretical side, extensions to finite temperature ofmentary excitations becomes comparable with the size of
the Gross-Pitaevskii equation have been put forw&rdd]  the system and collisions play a minor role. Damping in this
and have been very successful in explaining experimentakgime is not related to thermalization processes but to cou-
results on the thermodynamic properties of these systempling between excitations, and can be described in the frame-
such as condensate fraction, internal energy, specific heatjork of mean-field theories. As suggested in Hé®], the
and critical temperatur¢6—8]. These mean-field descrip- collisionless regime may be appropriate for the JILA experi-
tions, however, seem to be inadequate when applied to thments[1,3], but probably not for the MIT experimenfg].
study of collective excitations at finite temperatyi@&9]. In the collisionless regime and at finite temperature the
First of all, the proposed mean-field approximations do nodamping of the low-lying collective modes is dominated by
account for damping. Second, the resonance frequencies drandau damping. The idea that this mechanism might be
predicted to vary with temperature, mainly because the nunmrelevant to explain the damping rates in trapped Bose gases
ber of atoms in the condensate changes, and the dependeneas first suggested by Liu and SchieMS8] and was then
of the frequency shift upon this quantity is expected to showdeveloped in Refs[14—16. In Ref. [14] Pitaevskii and
the same behavior as the corresponding0 dependence on Stringari have derived, using perturbation theory, an expres-
the total numbeN of atoms in the trap. None of the features sion for Landau damping which is applicable to trapped Bose
exhibited by the experimental data on the frequency shift cagases, and have shown that, if applied to the uniform case, it
be explained using these descriptions. reproduces known results for both the low- and high-
In the presently available finit€-extensions of the Gross- temperature asymptotic behavior of the phonon damping.
Pitaevskii equation, it is assumed that the condensate oscil- In this paper we develop a time-dependent mean-field ap-
lates in a bath of thermally excited atoms at rest and in therproach based on the Popov approximation, which describes
mal equilibrium in the effective mean-field potential the dynamics of a Bose-condensed gas in the collisionless
generated by the average condensate density. This assumpgime. We obtain a set of coupled equations for the conden-
tion is valid if the time scale on which the thermal cloud sate and noncondensate components which allow us to cal-
oscillates is much larger than the inverse frequency of theulate damping coefficients. In nonuniform gases we derive
condensate oscillations. Since both the condensate and te&plicit expressions both for Landau damping, which coin-
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cides with the finding of Ref.14], and for Beliaev damping. nonequilibrium average, while time-independent equilibrium

In the uniform case, we reproduce all known results on thewverages will be indicated in this paper with the symbol

damping rates of phonons both Bt 0 and at finiteT. (--*)o. The particle field operator can then be decomposed
However, the calculation of the temperature dependencito a condensate and a honcondensate component,

of the frequency shifts using the Popov approximation is not _

reliable. For a uniform system the calculation should give, in P(rt)y=d(r,t)+(r,t), 4

the long wavelength limit, the correction to the velocity of

zeroth sound due to guantum and thermal fluctuations. oﬁnd the noncondensate term satisfies, by definition, the con-

the other hand, at =0, the velocity of zeroth sound is di- dition (Z(r,t)>=0. By applying the decompositig@) to the

rectly related to the bulk compressibility of the system, forHeisenberg equatiof2), the term cubic in the field operators

which we show that the Popov approximation gives an in-becomedall quantities depend onandt)

correct result. By studying the isothermal compressibility we

also find that the Popov approximation is inconsistent at low ¢ = |®|?® +2|® |2+ D%y T+ 20y T+ d* Yy

temperatures, because it neglects fluctuations which are rel- o

evant for temperatures smaller than the chemical potential. +4 T, 6)

Since the same fluctuations are also important in the calcu- . .
lation of the velocity of zeroth sound in the low temperature V& @ssume that for dilute systems the cubic product of the

regime, we draw the conclusion that a dynamic mean-fieldoncondensate operatdiast term in Eq.(5)] has a negli-
description, which gives a correct account of both dampindg'ble effect on the dynamics .of the condensate and we set its
rates and frequency shifts, can only be developed going béiverage value equal to zero:
yond the Popov approximation. T DR DI D=0 5

The paper is organized as follows. In Sec. Il we develop (1O P(r,Oe(r,1))=0. (6)
the formalism of the time-dependent mean-field approximag, . 1.\ obtains the following equation for the time rate of
tion. In Sec. Il we study the damping of the oscillations in a

nonuniform system obtaining explicit expressions for thechange oR Y(r.1)):

Landau and Beliaev damping. In Secs. IV A and IV B, we p 2y2
apply the results of Sec. Il to the uniform case. In Sec. IVC iﬁﬁd)(r,t): - WﬂLVext(r)—,u D(r,t)
we investigate the isothermal compressibility of a uniform
gas beyond the Popov approximation. +g|CI>(r,t)|2<I>(r,t)+Zg®(r,t)'ﬁ(r,t)
II. TIME-DEPENDENT MEAN-FIELD APPROXIMATION +g<I)*(r,t)'rﬁ(r,t), @)

In the presence of a nonuniform external figlgl(r), the  where we have introduced the normal and anomalous time-
grand-canonical Hamiltonian of the system has the form  gependent densities defined, respectively, as

h2v2

+ V(1) — | (1, 1) nr,H) = (noery),

2m

KEH—MN=f dryt(r,t)

g m(r,t)=((r (T .0). ®
+3 f drg () (rogr ) (@) - -
The equation of motio7) with n=m=0 corresponds to the
usual T=0 Gross-Pitaevskii equation for the condensate
wave function, while its extension including the normal and
anomalous densities has been already discussed by many au-
thors both in the study of thermodynamic properties and of
the collective modes at finite temperat{ite-9,11. The nov-
elty here is that we will treat both terms within a time-
dependent mean-field approximation holding in the collision-
9 #2v2 less regime, which is the object of the present widr&].
i —(r,)=[g(r,t),K]=| — —=—+ Ve r) — | (r,t) We are interested in the small-amplitude regime in which
Jt 2m the condensate is only slightly displaced from its stationary

+out(r)wr D). (2 value®o(r)=(y(r))o,
D(r,t)=Dg(r)+ 5D(r,1), 9)

in terms of the creation and annihilation particle field opera
tors '(r,t) and ¥(r,t). In the above equatiomy is the in-
teraction coupling constant, which to lowest order in the
s-wave scattering length is given byg=4=#2a/m. The
equation of motion for the particle field operator then follows
immediately and reads

According to the usual treatment for Bose systems with bro-

ken gauge symmetry, we define a time-dependent condensat . :
wave functiond(r,t) [17], w%ere o®(r,t) is a small fluctuation. In the same way we

consider small fluctuations of the normal and anomalous
D(r,t)=(y(r,t)), (3  densities,

which allows us to describe situations where the system is n(r,H=nor)+sn(r,),
displaced from equilibrium and the condensate is oscillating _ _ _
in time. The averagé --) in Eq. (3) is thus intended to be a m(r,t)=m°r)+ ém(r,t), (10
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around their equilibrium values °(r)= (% T(r)¥(r)), and  The normalization condition for the functiong(r),v;(r),

ﬁo(r)z(i(r)'&(r)>o. which ensures t_hat the quasiparticle operatmqrsalfr satisfy
In the so-called Popov approximation the effects arisingB0S& commutation relations, reads

from the equilibrium value of the anomalous density in Eq.

(7) are neglected and the following ansatz is introduced in

the mean-field scheme: f drluf (Nuj(r) —ovi(Noj(r)]=8; . (15

mO(r)=0. (11) _
By using the transformationd4), the quantities(r,t) and
This approximation was first introduced by Popov in them(r,t) can be expressed in terms of the normal and anoma-
study of a uniform weakly interacting Bose gas at finite tem-lous quasiparticle distribution functions defined by
perature[19] (for a detailed discussion, see Ref§] and
[20]). More recently, the Popov approximation has been ex-

ot
tensively used in the study of properties of magnetically fij (0 =(ai (D (1),
trapped Bose gases at finite temperat[Be-7,9,11. The
Popov approximation gives a gapless spectrum of elementary gii (O =(e(V)a;(1)) (16)
ij i j .

excitations, which aff=0 coincides with the well-known

Bogoliubov dispersion relation, while at highit approaches

the finite-temperature Hartree-Fock spectri]. The time evolution of these functions is fixed by the follow-
By using the Popov prescriptidid 1), the real wave func- ing equations of motion:

tion dy(r) satisfies the stationary equation

2y2 0 ot
(‘%+Vext<r>—u+g[no<r)+2’ﬁ°<r>] Py(1)=0, gt (0= (e O a0,
(12)
J
whereny(r)=|®y(r)|? is the condensate density, while the 17— 9ij (D =([ai(Da;(t),K]). (17)

time-dependent equation f&®d(r,t) is obtained by linear-

izing the equation of motioK7),

In order to calculate the commutators of E@7), one no-
tices that, after substituting the decompositidnof the par-

h2v2
Vel —p+ Zgn(r)) od(r,t) ticle field operator into the Hamiltoniafl), only the terms

4 _(
ih—o0(rt)=| -

2m
quadratic and quartic in the noncondensate operafoys’
+gng(r) 8D* (r,t) +2gdo(r)sn(r,t) give nonvanishing contributions, because, according to Eg.
_ (6), we set to zero all averages of cubic products of the
+gPy(r)om(r,t), (13)  noncondensate operators. The terms in the grand-canonical

Hamiltonian relevant for the calculation of the commutators
where we have introduced the total equilibrium densityare thus given by
n(r)=ng(r)+n°(r).
From Eq.(13) one clearly sees that the oscillations of the _ £2v2 _
condensate are coupled to the fluctuatiofis(r,t) and K;z"‘K4=f df[lﬂ(ﬁﬂ(‘ om +Vext(r)—ﬂ)¢(f,t)
sm(r,t) of the normal and anomalous densities. It is worth

reminding at this point that the Popov ansélt1) imposes a +2g|®(r,0)| %% T(r,t) P(r 1)

constraint on the equilibrium value of the anomalous density,

but not on its fluctuations, which are important to describe + gq)z(r AR AR
2 L 7 1

properly the coupling between the oscillations of the conden-
sate and noncondensate part. In order to obtain the equations

of motion for sn(r,t) and m(r,t) it is convenient to ex- + gdb* 2(r,t)Z(r,t)Z(r,t)}
press the noncondensate operatgrg ™ in terms of quasi-

particle operators; ,aJ-T by means of the Bogoliubov linear g ~ ~ 4 ~ ~
transformations +§fdl’lﬂ (I’,t)lﬂ (rlt)w(rlt)lﬂ(rlt)v (18)
P(r,)=2 [(una;()+vF(Nef (0], where we have indicated witk, the term quadratic in
i

w4, while K, is the term quartic in these operators. By
expandingK, up to terms linear in the fluctuatiordb (r,t),
~ 4o * T we can rewrite it as the sub,=K{?+K{, whereK{?
rt)= uf(Nai () +ov (rea;t)]. 14 . 22 2 2
vy EJ: [ (e ) Hui(NeV)] (149 does not contain the fluctuations of the condensate
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h2v2 2v2
K<2°>=fdr{¢(r t)( S T Vex() ~ L= = 5+ Vex(r) = p+29n(r). (24)
- g - - As a consequence, the relevant terms in the Hamiltonian be-
+29n0(r)) RN OITARIA R come
%(r,tm(r,t)]} 19 Kot Ka= 3 €af(Dag(r) +KE, (25)

_ 0 _ _ where the quasiparticle energies are obtained from the
while K$ is linear in the fluctuationsxd, solutions of the Bogoliubov equatiori&3).
The commutators in the equations of motid¥) can be

(1) . ~4 ~ now calculated straightforwardly. To lowest order in the
K2 :f dr{2g®o(r)[ 6P (r,t)+6P*(r,t)J¢ '(r,(r,t)  fluctuations one gets

+gPo(N[SP(r,t) g T(r,t) g T(r,1) m i ()= (€ — &) i (1) + 2g(F0— fo)fdrrb ()

+ 0 (r, ) Y(r, 1) g(r,1)]}. (20 X{[SD(r,t)+ 8D* (r,t) J[us(r)u* ()
In the quartic ternK, we first use the mean-field decompo- +oi(NvX(r)]+ 8D (r,t)vi(r)u*(r)
sition (all quantities depend onandt) : :
+80* (r,t)ui(nv; (N} (26)

AT AT AT T e T AT, T
G p=Ang Tt my Ty T mt g, 2D for the time evolution off;;, while the equation of motion

i i . for g;; is given by

and then we expand the resulting expression up to linear
, = ~ . d

terms in the fluctuationgn and ém, thereby obtaining |ﬁEgij(t):(éj"f_5i)gij(t)+29(1+fi0+f?)f drdy(r)

Ka=K+ K5 X{L D (r,t)+ 8* (r,t)][uF (v (r)

=2gf drn o)y T(r.t)g(r,t) o (Nuf (N]+8®(r,Huf (ruf(r)
. +80* (r,t)vF (NvF(n}. (27)
t5 J dr{4sn(r,t)y (r,O)¥(r,b) In Eqgs.(26) and(27), f] is the equilibrium density of quasi-
particles

+18m(r,t) g T(r,t) g T(r,t) + om* (r,t) (r,t)g(r,1)1},

f9=(af aj)o=[exp Be;) — 1172, (28)
(22

in terms of which the noncondensate particle density, at

where we have made use of the Popov angaty. In the  €quilibrium, is written as
above equationK ") is the zeroth order term, whilk§® is _ .
linear in the fluctuationsSn and ém. In the equations of n O(r):; {Uu P+ oI+ oD% (29)
motion (17) the commutators OfozTal and aja; with K(l)

yield, in the small-amplitude regime, the coupling to the The last term in Eq(29) accounts a =0 for the quantum
fluctuations of the condensate, whereas the commutatorgepletion of the condensate. The fluctuatidims and Sm of

with Kﬁﬂ) give the coupling to the fluctuations of the normal the normal and anomalous particle densities can be straight-
and anomalous particle densities. If the density of the nonforwardly expressed in terms df;(t) and g;;(t), and Eq.
condensate particles is much smaller than the demgijtyf (13) for the oscillations of the condensate takes the final
the condensate, the coupling to the condensate is more infierm

portant than the coupling tén and sm and we can conse- P _ n2ve

guently neglect the contributions to the commutators arlsmgm 5q>(r t)=

from the termK (Y, 2m

+Veul(r)—p+2gn(r) | 6®(r,t)

One can easily show that the operadf’+ K(?) is diag- +gng(r) 8D* (r 1)
onal in the quasiparticle operatoas@,a;r if the functionsu;
andv; satisfy the coupled Bogoliubov equations, +g<I>o(r)E {2[u¥ (r)u;(r) + o (Nvj(r)
i

FU ) anolre (1= 640, o (DU (DT (0 +[ 20,0y (1)

Luj(r)+gno(r)u;(r)=—ev;(r), (23 +ui(n)u;(n]1gi; (1) +[2uf (o] (r)

where we have introduced the Hermitian operator +of(Nuf(n]gf ()} (30
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The equations of motiori26), (27), and (30) describe the In Eq. (37), SE represents the shift in the real part of the
small-amplitude coupled oscillations of the condensate anérequency andy is the damping coefficient, while the eigen-
noncondensate particles in the collisionless regime. Theyector correction in Eq(36) is chosen to be orthogonal to

represent the main result of this section. the unperturbed eigenvector,
Ill. DAMPING OF THE OSCILLATIONS J dr(sd}* 5(1)2_ oD L* 5q)g):o_ (38)
Let us suppose that the condensate oscillates with fre- .
quencyw Starting from the equations for the perturbed components
6®, and 6P, [Eq. (30) and its complex conjugateve mul-
6D (r,t)=56D(r)e ',  5D*(r,t)=5D,(r)e et tiply the first equation bys®; and the latter bysd} , take

(31))  the difference of the two equations, and finally integrate over
space. By using Eqg35 and (38) we get the following
Through the coupling term in the equations of moti@%)  relation for the perturbed eigenfrequency:
and (27), the fluctuations of the condensate act as a time-

dependent external drive inducing oscillationd inandg;; .
The Fourier component df;; at the driving frequency is
given by

A2
wot(€—€)+i0

hiwo=hoo+492>, (f7—19) -
1]

|B;;]
ﬁwo—(ei-i-e]—)—l—io

f , £O— 0 fd 4—292i2j (1+0+19)
i(@)=29 o+ (€—¢€)+i0 ' ~
|Bjj|?

X D[ 6@ (uiuf +ojuf +ouf’) ~hent(ete)Ti0
ot (€t €

: (39

+80,(uiuf o} +upf)], (32
where the matrix elementa
where the frequencw has been chosen with an infinitesi- tively, given by
mally small component on the positive imaginary axis.
Analogously, for the component gf; oscillating at the fre- Aj :J drd [ 5®2(Uiuj* +uuf +ouk)
guencyw, one finds

ij» Bij, andBj; are, respec-

+8DY(uiur +vvf +upl)],

, 1+ 0 +1) fd
gij(w)= gﬁw—(6i+fj)+i0 '
N PR
X D[ 6@ (Ui v +ofuf +uiuy)

O/ % * * ok *_ k
+ oD, (UF v FoFuF +urut)] (39 T oPa(ufvf Hofuituivil, (40
If one neglects in Eq(30) the coupling terms involving the B :f dr @[ (U +viUj+viv))
fluctuations of the noncondensate particles, the condensate

components?@o,ad)g satisfy the unperturbed RPA equation
[6],

+5(Dg(uivj+viuj+uiuj)].

0 The imaginary part of the right-hand side of E@9)
_ 6®(r) gives the damping coefficient There are two distinct con-
—@o 5®g(r) k tributions toy: one arises from the process of one quantum

(39 of oscillation 2w, being absorbed by a thermal excitation

with energye; , which is turned into another thermal excita-

and the normalization condition tion with energye;= €+ wy. This mechanism is known as
Landau () damping and is given by the imaginary part of
the second term on the right-hand side of E2§),

( L gno(r))(&bg(r))
—gno(r) —L |\ 8dYr)

| arqooge-is0g9-1, 35

where wq is the unperturbed RPA eigenfrequency of the

mode. We treat the coupling terms in E§0) as small per-

turbations and we write the solution of the normal mode asThe above result coincides with the finding of Reff4] ob-
tained by direct use of perturbation theory. A different

Y =4mg? 2 A - 1)) d(hwot e—€).  (41)
ij

od, 59 6D mechanism of damping comes from the process where a
oD, - 5(1)2 + 8D,/ (36) qguantum of oscillatiorh w, is absorbed and two excitations
with energiese; + €; =% w, are created. The damping associ-
and the perturbed eigenfrequency as ated with the decay of an elementary excitation into a pair of

excitations, which has been studied by Beliaev in the case of
ho=hwy+ SE—ivy. (37 uniform Bose superfluidg22], is present also a&=0, but is
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not active for the lowest energy modes in the case of a trap- ) ) (6’2)+ 92n3)1/2+ €

ping potential because of the discretization of levels. The Up=1+v,= 5e ,

Beliaev B) damping is given by the imaginary part of the P

first term in brackets on the right-hand side of E89), and gn

reads Uplp= — 2_50’ (44)

p

yB=27ngz |Bij|2(1+fi°+f?)5(hw0—ei—e]-). (42 and €p is the energy _of the elementary excitations as ob-
" tained from the Bogoliubov equatior23),

2

~g°ng

The total damping coefficient is the sum of the two contri- 1/2
butions y= vy, + yg, the Beliaev damping becomes domi- €=

nant at low temperaturesk§T <A wg), while the Landau

damping becomes dominant in the opposite regime of temMy, these equations),=ny(T) is the condensate density at

peratures KgT>7: wo). the given temperatur@ obtained from the self-consistent

In the case of magnetically trapped Bose gases, resuligy|culation in thermodynamic equilibriuisee Ref[7]).
(41) and(42) give the damping coefficient both at low and

high temperatures in the collisionless regime. This quantity
has been measured at JILA over a wide range of tempera-
tures for them=0 andm=2 modes[3], revealing a very We consider the long-wavelength limit for the fluctua-
strong temperature dependence. To carry out the calculatidiPns of the condensate
at a given temperaturk one must start from the unperturbed
condensate eigenfrequency with the required symmetry, ob-
tained from Eq(34), and the elementary excitation energies
€ calculated from Eqs(23). One has then to calculate the
matrix elementg\;; andB;; [see Eq(40)] and then carry out
the double summation in Eq$41) and (42). The explicit
calculation of y in magnetically trapped gases will be the mc?
object of a future work. Uq:<¥
By analyzing the real part of Eq39), one can calculate q
the eigenfrequency shif6E in the Popov appr_o>_<imation. ma\2 1 € 12
Howeve.r., fgr temperaturelqusM.jr:)e eﬁect§ arising from Ugq ( Zeq) + 5 (W)
the equilibrium anomalous densitg “(r) are important for
the calculation of the frequency shift and cannot be neAs has been shown in RdfL4], using the above expansion
glected. In Sec. IV C we will present a calculation of the for ugq andv, one obtains the following love behavior for
velocity of sound aff=0 for a uniform gas, and it will be the matrix elements,,,, defined in Eqs(40):
shown that the inclusion ah© is crucial to obtain the cor- "
rect result. From this finding we conclude that a reliable A =5 @( €q )
calculation of the frequency shiiE should be based on a PP’ “p'ipta W 2mc?
more accurate dynamic theory, beyond the simple Popov an-
satz(11). vg 2u§v§

——C0SO——>
c us+up

o (45

2
(p—+gno

A. Thermal regime fiwy<kgT

hwo=€eg=cq, (46)

wherec= \gng/mis the velocity of sound calculated at tem-
peraturerl. In this limit theu andv functions associated with
the oscillations of the condensate can be expanded as

1/2 1 €q )1/2

(47)

2,.2
up+vp+ Upl,

, (48)

IV. UNIFORM BOSE-CONDENSED GASES
_ _ ) where 6, is the Kronecker symbolg is the angle formed
In this section we apply the resultl) and (42) to uni-  patween the directions @ andq, andvy=de,/ap is the
form Bose gases, for which we reproduce well known resuligy o, velocity of the excitations. By introducing the above
for the damping of phonons, both at finite and zero temperagy ansion into Eq41) and carrying out the integration over

ture, in the collisionless regime. 6, one finds the resulisee Ref[14])
For homogeneous systems the stationary condensate wave
function is constant throughout spade = yn,, while the Y N s
condensate fluctuations and the excitations are described by P e—q:(a No)““F(7), (49

plane wave functions,
wherer=kgT/mc? is a reduced temperature aR(r) is the
Vg dimensionless function

eiq-r,
W

5(1)1(r):u—J\‘i/eW‘f, 5D,(r)=

1 1\2
1_Z_ﬁ , (50

F(T)=sﬁf dx(e*—e™%)"2

= i ip-r = Up ipr
Up(r) \/Ve + vlr) \/Ve ’ “3 where we have introduced the quantitys 1+ 4 72x2.
For temperaturest>1 the function F takes the
whereu, anduv , are real functions defined through the usualasymptotic limitF —37°%27/4, and the damping coefficient
Bogoliubov relations is given by
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L L o B o e B mcl/2+1 p 1/2+1 p 32 4 p 5/2
12 b ] U=12p 2l 2mc 8lamc/  8l2mc)

,'I mc 1/2 1 p 1/2 1 p 3/2 1 p 5/2
UPZ_(%) +§(2mc) _§(ch _§(ch)

If one substitutes the above expressions for all ureand
v’'s in Eg. (53) and makes use of the condition for energy
conservation

1
gz (@ Tpi+lp—af®), (59

lp—al+p=q+

FIG. 1. Dimensionless functiok as a function ofr (solid line). after long but straightforward algebra one gets the result
The asymptotic behaviors for<1 (dashed ling and for r>1
(long-dashed lingare also reported.
Vo 3 (aplp—a)*?

B r= 5 r —_— . (56)
y 3mkgTa - PPN 42 (o
€ 8 fc Once the low-energy behavior of the matrix element8Bof

] ] o . , has been obtained, the calculation of the damping coefficient
This regime of temperatures was first investigated bypSze tg|1ows directly:
falusy and Kondof23]. As discussed in Ref14], the nu-
merical coefficient in Eq(51) coincides with the one ob-
tained in[20], while it slightly differs from the one of23].

In the opposite regime of temperaturesg1, one finds
the asymptotic limi —37%274/5 and one recovers the well
known result for the phonon dampind7,24,25,14

3q°
Y= Y8 Batmn mn &7

and coincides with the well known result first obtained by
Beliaev using diagrammatic techniqye®,26 (for a review

of the second-order Beliaev approximationTat 0 and its

y 37 (kgT)* - extension to finite temperature, see H&M)).

€q 8 mni’c® 52

In Fig. 1, the dimensionless functid?(7) is plotted as a C. Bulk compressibility

function of 7 together with its asymptotic behavior both at  |n this subsection we calculate the isothermal inverse
small and |arga"5. One CE}‘n see th&t depart§ I’ather soon Compressib”ityK_l__l: nz(aM/an)V,T' In a uniform System at
from the low-temperature” behavior, while it approaches T=q it is fixed by the velocity of sound through the relation
the high-temperature linear law very slowly.

-1 _ (9P o f2(T—
_ K1=0=P| 5, =pci(T=0), (58
B. Quantum regime iw >kgT N, T=0
At T=0, the damping of the long-wavelength fluctuationswhere p=mn is the mass density. We will show that the
of the condensate with ener@¥6) is obtained through result Popov approximation gives an incorrect result for the inverse
(42) with f?=0. For uniform gases the matrix elemeBts, compressibility in the low-temperature regime and that one
entering Eq.(42) read must go beyond this approximation in order to obtain the
correct lowT behavior ofx;!.
o Without making the Popov assumpti@til) and including
Bpp' = 5p’,—p+qW[uq(upvp—q+Upup—q+ UpUp—g) the term proportional tan°(r), the stationary equation for
the real wave functiomy(r) becomes

Fvq(Upvp—gqtvpUp_qTvpvp-g)l- (53

2y 2
~0
In the Beliaev damping mechanism the momenta of the three (‘ o T Ve —p+9lno(r)+2n 7(r)
excitations involved in the process are comparahle,p

=|p—q|. For p<mc one can use the following expansions +ﬁ°(r)])®o(r)=o, (59

for the excitation energies, and the functionsi, andv,:

instead of Eq.(12). In terms of the quasiparticle operators

_ defined in Eq.(14), the anomalous density at equilibrium is
p=cp+ 8m’c’ (54) given by

3
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A7h?an 32 n
mO(r)=2 [2u;(Nv¥ (N +u(nuF(n]. (60 ()= 2 n D0 (a3n,)12
i m 3J/z n
For a uniform system the above equati®®) fixes the value 4mh%an 32 n,
of the chemical potential —(a%ng) Y27
m \/_ n
p=gn+g(n°+m?° (61) Xfwd (V1T 22-1)%2 1 o
e e

which differs from the valug.p=g(n+n °) obtained in the
Popov approximatiof27]. At T=0 this approximation gives
wp(T=0)=4x#k2an[1+8(a%n)¥43\/=]/m, where the cor-
rection togn comes from the quantum depletion of the con-
densate. The@®? order of the correction is corretiut the
numerical coefficient is wrong. To obtain tiie=0 chemical

where 7=kgT/mc® is the reduced temperature. Res(@6)
coincides with the finding of Ref.20] obtained using the
second-order Beliaev approximation. In the low-temperature
regime,7<1, one has

potential to ordea®?, one must use Eq61) and expand the 72 (kgT)*
coupling constang to second order in the scattering length, w(T)=pn(T=0)+ B0 Th3E (66)
4nh%a 477ﬁ2a 1 , .
g= 2 —z (62)  for the chemical potential, and
4
'I_'he need of the above renormalizationgfor the calcula- _ k7= pcA(T=0)— — m? (k 22 (67)
tion of the ground-state energy of a Bose gas has been first 24 h°c

pointed out by Lee, Huang, and Yahg8] and is discussed
in many textbookgsee, e.g., Ref.29]). By substituting the for the inverse compressibility. The above results coincide
renormalized value of into the first term of Eq(61), one  With the ones obtained from the thermodynamic relation
gets =(0Fpn/dN)y 1, whereF,, is the free energy of a phonon
gas. In the same temperature regikgl <mc?, the Popov
8 3 12 approximation gives up(T)=wup(T=0)

1+ 3\/—(3 n) +m?c(kgT)?/(12n%3) and the inverse compressibility ex-

. hibits an unphysicall?> dependence which is not consistent
with the T* dependence obtained by differentiating the pho-
non free energy.

In the low-temperature limit the frequency shift of colli-
32 sionless phonons is proporti_onal ti_ﬂ“ qu(r) [24,25, .
n (aSn)UZ) , (63) whereas the Popov approximation again yields an unphysical

T T2 dependence arising from the Iolvexpansion ofg(T).
The analogy with the result for the chemical potential sug-

gests that also for this calculation the inclusionrof is

4xh2an
m

4wh2a12< 1)

26p

u(T=0)=

B 4xh2an
om

which coincides with the well-known result for the chemical
potential of a dilute Bose gas at=0 [30]. In the above . cial to obtain the correct result.

equaUgn we have used Eqsl3) and (44) for the product From the above results we conclude that a self-consistent
up(r)up (r) with the Bogoliubov spectrunds). Notice that  gynamic theory, aiming to describe both the damping and the
in the integral overp the ultraviolet divergencies arising frequency shifts of the oscillations of the condensate, should
from the renormalization of and fromm© cancel out. By go beyond the Popov ansattl). The ingredients that this
differentiating Eq.(63) with respect tan one obtains for the theory should contain are the following{i) the equilibrium

velocity of sound anomalous densityn® has to be taken into accourtti) the
g 8 renormalization(62) of the interaction coupling constant is
mhan ded in order to reproduce the energeticb=a0, and(iii )
c(T=0)=\/—7—| 1+ —=(@n)¥2|, (64 NI ep! © energ '
( ) m (@) ©4 the elementary excitation energieshave to be gapless and

must coincide with the Bogoliubov spectrum at low tempera-
a result which was first derived by Belia¢22]. In a self- tures.

consistent dynamic theory, resulé4) should also be ob-

tained from the frequency shift of the long-wavelength exci-

tations. However, it cannot be found within the Popov

approximation because the crucial ingredients, renormaliza- The author wishes to thank L. P. Pitaevskii and S. Strin-

tion of g and equilibrium value of the anomalous density, aregari for enlightening discussions and useful criticisms about

not accounted for in this approximation. the manuscript. Useful remarks made by A. Griffin and F.
At finite T one gets from Eq(61) Dalfovo are also gratefully acknowledged.
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