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Raman scattering from a Bose condensate

Jesu´s Martı́nez-Linares1 and G. S. Agarwal1,2

1Max-Planck-Institut fu¨r Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
2Physical Research Laboratory, Ahmedabad 380 009, India

~Received 17 September 1997!

We calculate Raman scattering of light from a Bose condensate of dilute gas confined in a harmonic trap.
We examine the changes in the Raman line shape as a function of temperature. The linewidth exhibits a
remarkable transition as the system is cooled down from the noncondensed to the condensed phase. We also
present results for sidebands arising from deeper traps. We show that all these results on Raman line shapes are
especially pronounced in the backward direction.
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I. INTRODUCTION

Bose-Einstein condensation of low-density atomic vap
is now well demonstrated@1#. Optical spectroscopy method
@2# are of prime interest in the analysis of the properties
the condensate. As is well known, Raman spectroscopy
been an important tool for studying the properties of atom
systems. Raman spectroscopy is also known to be espec
useful for the study of systems undergoing phase transiti
Thus one would think of Raman scattering as especi
suited for studying the characteristics of Bose condens
formed from weakly interacting atoms. In particular, the n
ture of the transition can be explored as one goes from
noncondensed phase to the condensed phase. With th
mind, we calculate the line shape for Raman scattering
function of the transition temperature. We demonstrate
tinct changes in the linewidth as we change the tempera
from above to below the critical temperature. We find th
the line shapes are also quite sensitive to the direction
propagation of the pump and Stokes fields. We also exam
the nature of the sidebands in Raman scattering for de
sidebands.

The trap potential is included in our treatment; howev
we treat only the case of noninteracting atoms. An ex
numerical treatment is incorporated in order to take into
count finite-size effects steaming from the finite number
trapped atoms.

This paper is organized as follows. In Sec. II the magne
optical harmonic trap and the Hamiltonian governing the
namics of the trapped atoms interacting with photons
reviewed. Section III is devoted to the calculation of Ram
transition amplitudes for the confined atoms. The results
discussed in Sec. IV. We end with conclusions and a s
mary of the results in Sec. V.

II. HAMILTONIAN FORMALISM

Energy levels of alkali-metal atoms undergo Zeem
splitting when exposed to an external magnetic fieldBW . De-
pending on the sign of the magnetic sublevel, the atom
experience an attractive or repulsive force that tends to c
fine it in the local minima ofBW . Typically, in a magneto-
optical trap ~MOT! @3#, the magnetic field is designed t
571050-2947/98/57~4!/2931~7!/$15.00
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form an effective potential that can be well approximated
a harmonic-oscillator potential at the bottom of the trap.

We briefly described the tools used in the calculation
the quantum statistics of the trapped gas. The distribution
the atoms in the states of the trap is given by the Bo
Einstein statistics

NlW,g5~l21ebE
lW
8
21!21, ~1!

whereb51/kBT, ElW
85ElW2E0 are the eigenenergies of th

harmonic-oscillator trap once the ground-state energy
been substracted, andl is the fugacity.l can be calculated
through the normalization condition

N5(
lW

NlW,g , ~2!

where N is the total number of particles in the trap. A
analytical approximation can be obtained for this summat
@4# as

N5N01S kBT

\n D 3

g3~l!1gS kBT

\n D 2

g2~l!. ~3!

Heren is the frequency of the harmonic trap,g51.5 for an
isotropic trap, gi(l)5(nln/ni are polylogarithmic func-
tions, andN0 is the number of particles in the ground state
the trap. From Eq.~1! one can readily see that the fugaci
satisfies the relation

N05
l

12l
, ~4!

so that 0<l,1. The fugacity and its polylogarithmic func
tions increase monotonically as we cool down the gas. Si
gi(l) are bounded bygi(1), Eq.~3! can only be satisfied a
low temperature at the expense of populating the gro
state, originating the condensed phase. The critical temp
ture Tc at whichgi(l) saturates can be estimated by impo
ing N050 in Eq. ~3! for l51. One gets

Tc5
\n

kB
F N

j~3!G
1/3H 12

gj~2!

3j~3!2/3

1

N1/3J , ~5!
2931 © 1998 The American Physical Society
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wherej( i )[gi(1).
As we cool the system below this critical temperature

fraction of particles in the condensate increases until all p
ticles occupy the condensate atT50. This can be seen in
Fig. 1, where the Bose-condensate fractionsn05N0 /N cal-
culated numerically after Eq.~2! ~solid line! and according to
the analytical expression~3! ~dot-dashed line! are plotted as
a function of the normalized temperatureu5T/Tc . We have
considered an isotropical trap withN52000. Finite-size ef-
fects can be appreciated around the critical temperature.
numerically calculated fugacity is also plotted in Fig.
showing an asymptotical approach to unity in the conden
tion regimeu,1.

Let us now describe the tools used to model the Ram
optical response of the gas. We start from the quantum fi
theory of trapped atoms interacting with photons develo
by Lewensteinet al. @5#. We restrict the discussion to th
following approximations@6#: the three-level atom approxi
mation, in which a Hilbert space expanded by three sta
$ug&,ue&,u f &% suffices to describe the atomic electronic stru
ture; the rotating-wave approximation, in which we pick o
only the terms of the interaction Hamiltonian that conse
the number of excitations; the atom-field interaction in t
dipole approximation, in which the resonant wavelength|L
is much larger than the typical atomic sizea0, and the ideal
gas approximations, in which the density of the gasn is low
enough to neglect atom-atom interactions~this condition re-
quiresna0

3!1). This allow us to use bare photons and e
cited atoms as good elementary excitations inside a B

FIG. 1. Temperature dependence of the fugacity~dashed line!
and of the fraction of atoms in the condensate. The solid line g
the exact~numerical! calculation and the dot-dashed line the an
lytical approximation derived by Grossman. Small finite-size effe
(NT52000) can be appreciated around the critical temperature
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condensed gas, so we can neglect collective opt
excitations. This is justified under the conditionn|L

3!1.
The second quantized form of the Hamiltonian govern

the system can be obtained by taking the expectation v
of the particle Hamiltonian with respect to the quantum fie
C(rW) satisfying the bosonic commutation relation

@C~rW !,C†~rW8!#5d~rW2rW8!. ~6!

Here rW is the coordinate vector of the center of mass of
atom in the trap, son(rW)5C†(rW)C(rW) represents the densit
operator of particles associated with the quantum field.

We express the field operators in the Fock representat
i.e., in terms of operators that describe the degree of occu
tion of the state in the base given by the eigenstates of
bare Hamiltonian. This Hamiltonian corresponds to the sta
of a three-dimensional harmonic-oscillator potential. The
fore, we introduce the operators$glW ,glW

†
% that anihilate or

create atoms in thelW state of the ground-state potentia

$emW ,emW
†
%, which play the same role for themW intermediate

Raman states, and$ f pW , f pW
†
%, which describe the vibrationa

structure of the final state.
The occupation number operators fulfill the standard co

mutation relations for bosonic atoms:

@glW ,glW8
†

#5d lW lW8, @emW ,emW 8
†

#5dmW mW 8, @ f pW , f pW 8
†

#5dpW pW 8.
~7!

In this representation the field operators reads

Cg~rW !5(
lW

glW f lW
g
~rW !,

Ce~rW !5(
mW

emW fmW
e

~rW !,

C f~rW !5(
pW

f pW fpW
f
~rW !, ~8!

where the coefficients are given by the three-dimensio
harmonic-oscillator eigenstates. For instance, for an isotro
trap

f lW
g
~rW ![^rWu lW,g&5f l x

g ~x!f l y
g ~y!f l z

g ~z!,

f l~z!5
1

AabA2p2l l !
HlS z

A2ab

D expS 2
z2

4ab
2D , ~9!

whereHl are Hermite polynomials andab5A\/2mn is the
size of the bare ground-state wave function determined
the atomic massm and the frequency of the trapn.

Within the approximations given before, the Hamiltonia
of the system in the Fock representation becomes

H5H01Hf1Ha f1Haa , ~10!

where the bare atomic Hamiltonian reads

s
-
s
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57 2933RAMAN SCATTERING FROM A BOSE CONDENSATE
H05(
lW

\wlW
g
glW

†
glW1(

mW
\~wmW

e
1w0!emW

†
emW

1(
pW

\~wpW
f
1wf ! f pW

†
f pW . ~11!

HerewlW
g , wmW

e , andwpW
f are the eigenfrequencies of the cent

of-mass motion of the atoms corresponding to theug&, ue&,
and u f & electronic states, namely,

wlW
g
5n$ l x1 l y1 l z13/2%,

wmW
e

5n$mx1my1mz13/2%,

wpW
f
5n$px1py1pz13/2%. ~12!

Note that the energy differences\w0 and\wf , correspond-
ing, respectively, to the electronic transition from the grou
stateug& to the intermediate Raman stateue& and to the final
stateu f &, have been written down explicitly in Eq.~11!.

The Hamiltonian for the free electromagnetic~em! field is

Hf5(
m

E dkW\ckakW ,m
†

akW ,m , ~13!

where akW ,m ,akW ,m
† are anihilation and creation operators

photons of momentumkW and linear polarization«W kW ,m . A
summation over the polarizationm51,2 states has to be don
in order to account for all possible transitions in the Zeem
multiplet.
Ha f characterizes the interaction between the atom

the vacuum modes of the em field. For instance, for theue&
→ug& transition it reads

Ha f5
i\

A2e0~2p!3(m (
lW,mW

E d3kWAk~dW •«W kW ,m!

3FlWmW ~kW !akW ,m
†

glW
†

emW 1H.c. ~14!

HeredW is the dipole moment of the electronic transition. T
conservation of momentum is expressed by the Fran
Condon matrix elements

FlWmW ~kW !5^ lWue2 ikW•rWumW &. ~15!

uFml(2k)u2 is proportional to the probability that an ato
will make the transition fromum,e& to u l ,g& by emitting a
photon of frequencyck01n(m2 l ) with any polarization.

Finally, the interaction between the atomic dipole of t
atom characterized by the dipole moment operator

pW ~rW !5dW eg* Ce
†~rW !Cg~rW !1dW e f* Ce

†~rW !C f~rW !1H.c.

5dW eg* (
lW,mW

emW
†

glWfmW
e* ~rW !f lW

g
~rW !1dW e f* (

pW ,mW
emW

†
f pWfmW

e* ~rW !fpW
f
~rW !

1H.c. ~16!

and the laser fields
-

d

n

d

k-

EW a~rW,t !5eWaei ~kWarW2vat !1c.c., a5L,S, ~17!

is determined by the interaction Hamiltonian in the dipo
approximation

Haa52E drW pW ~rW !•EW a~rW,t !. ~18!

Here a5L,S stands for the pump and Stokes field, resp
tively. Converting to the Fock representation given in E
~8!, we find the second quantized form of the Hamiltonian
be

HaL52d* eLe2 iwLt(
lW,mW
FmW lW~2kWL!emW

†
glW1H.c.,

HaS52d* eSe2 iwSt(
pW ,mW
FmW pW~2kWS!emW

†
f pW1H.c. ~19!

Usual parity selection rules are exhibited by the dipo
moment matrix elements appearing in the prefactor of
interaction Hamiltonians~19!, as stated by the Wigner
Eckart theorem@7#. On the other hand, the quantization
the atomic center-of-mass motion reveals itself in t
Franck-Condon factors entering the expression of the Ha
tonian. As will be stressed in Sec. IV, additional selecti
rules between vibrational levels can be brought about by
oscillatory behavior of the Franck-Condon factors.

III. RAMAN SCATTERING FROM A MOT

In this section we calculate the transition probability p
unit timeWR for the scattering of light from a confined ga
exposed to two weak fields of frequencieswS andwL . This
rate can be derived from the general expression for radia
transition rates carried in second-order time-dependent
turbation theory@8#. We obtain

WR
~ lW→pW !5

2p

\2U(m ^ f ,pW uHI
Sue,mW &^e,mW uHI

Lug, lW&

\w01\wmW lW2\wL
U2

3d„wf2~wL2wS!1wpW lW…, ~20!

where the vibrational transition energies are

wmW lW5n$~mx2 l x!1~my2 l y!1~mz2 l z!%. ~21!

The Diracd in Eq. ~20! ensures conservation of energy in th
transition from the initialug,l & state to the finalu f ,p& state.
HI

(S,L) are the interaction Hamiltonians for these stimulat
Raman transitions.

The matrix elements appearing in Eq.~20! can be readily
calculated after Eq.~19! to yield

^ f ,pW uHI
Sue,mW &^e,mW uHI

Lug, lW&5@FmW lW~2kWL!degeL#

3@FpW mW ~kS
W !df eeS* #. ~22!

In the large detuning regimeD@n (D[w02wL), the de-
nominator in Eq.~20! can be approximated by\D. The sum-
mation over intermediate vibrational states can now be p
formed with the help of the closure relation, namely,
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(
mW
FpW mW ~kWS!FmW lW~2kWL!5(

mW
^pW ,gueikWS•rWumW ,e&

3^mW ,eue2 ikWL•rWu lW,g&

5FpW lW~kWS2kWL!. ~23!

On the other hand, we can take into account the incohe
effects by means of replacing the Diracd function by a
Lorentzian characterized by the half-widthG, i.e.,

d„wf2~wL2wS!1wpW lW…→S 1

p D G

G21$wf2wL1wS1wpW lW%
2

.

~24!

ThusG is the width of the Raman line for a single atom in
trap. After all of these considerations, we can approxim
the total transition rate by the expression

W̄R[K21(
lW,pW
WR

~ lW→pW !5(
lW, pW

NlW,g
0 uFpW lW~kWS2kWL!u2

G21$d1wpW lW%
2

, ~25!

where have taken the normalizationW̄R5WR /K, with

K215S degdf eeLeS*

\2D
D 2

G

p
, ~26!

and we have defined the Raman detuningd5wf2wL1wS .
Nl ,g is the number of particle distribution in the initial sta
given by Eq.~1!.

Choosing as theẑ direction the one given bykWS2kWL , the
Lamb-Dicke parameterh is defined by the relation

ab~kWS2kWL!5h ẑ. ~27!

Because of momentum conservation, the light can only
cite vibrational states in the direction of the vectorkWS2kWL .
This fact is expressed by the factorization property of
Franck-Condon factors

FpW lW~kWS2kWL!5dpxl x
dpyl y
Fpzl z

~h!, ~28!

reducing Eq.~25! to the expression

W̄R5(
lW,pz

NlW,g
0 uFpzl z

~h!u2

G21$d1n~pz2 l z!%
2

. ~29!

Furthermore, the Franck-Condon factors can be calculate
closed form as

uFml~2h!u25h2~m2 l !e2h2 l !

m!
@Ll

m2 l~h2!#2, ~30!

whereLl
m2 l are associated Laguerre polynomials. Equat

~29!, together with Eq.~30!, is our central result for the line
shape of the Raman scattering of light from a MOT.
nt

e
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e
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n

IV. RAMAN SCATTERING FROM A CONDENSATE

The quantization of the c.m. motion of the atoms leads
a vibrational structure of the spectrum of the scattered li
given in Eq. ~29!. The line shape of the scattered light
mainly determined by the Franck-Condon Factor betwe
vibrational transitions. In order to see this, first consider
Lamb-Dicke limith→0. In this case Eq.~29! reduces to the
expression

W̄R5
N

G21d2
, ~31!

where we have used the normalization condition~2!. In this
limit the line shape does not contain any information co
cerning the energy distribution of the gas since the light c
not resolve the momentum distribution of the trap. A ca
whereh will be close to zero corresponds to copropagat
pump and Stokes fields so thatkWL2kWS5(wL2wS)/cẑ and
thush will be proportional to 12(wS /wL), which in many
typical cases is close to zero.

For a small Lamb-Dicke parameter, we can perform
series expansion of the Franck-Condon factors in the for

Fpl~2h!5dp,l1 ih$Al dp,l 211Al 11 dp,l 11%1O~ k̄L
2!.
~32!

In the limit caseh50 no c.m. transitions are allowed. Th
first-order correction inh in Eq. ~32! introduces contribu-
tions from one-level c.m. transitions. As the Lamb-Dic
parameterh increases~going to a deeper trap or changin
the direction of the Raman fields!, the spatial structure of the
states of the trap gets resolved, as seen in Eq.~30!. The zeros
of the Laguerre polynomials~30! can be viewed as expres
sions of destructive quantum interference between the dif

FIG. 2. Density plot of the Franck-Condon factors for tran
tions between different (m,l ) vibrational states forh51. The gray
level covers from black to white the numerical interval@0,e21

'0.37#.
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57 2935RAMAN SCATTERING FROM A BOSE CONDENSATE
ent nonlinear processes appearing in Eq.~32! corresponding
to the transitionu l ,g&→up, f &. This is illustrated in Fig. 2,
where the density plot, of the Franck-Condon factors co
sponding toh51 is shown. As can be seen in this plot, t
Franck-Condon factor for the transition starting from t
ground state does not oscillate. In contrast to this,

FIG. 3. Temperature dependence of the normalized Raman
shape of the scattered light given in Eq.~29! for n/G51 and h
51. The curves are plotted foru50, 0.4, 0.8, 1, and 1.8, respec
tively.

FIG. 4. Temperature dependence of the line shape of the s
tered light for n/G52 and h51. The curves are plotted foru
50, 0.5, 1, 1.5, and 2, respectively.
-

e

Franck-Condon factors from transitions starting from a
other statel oscillate. As a matter of fact, even forbidde
transitions corresponding to nodes of the Franck-Con
factors can be appreciated in Fig. 2~black-ruled squares!.
This behavior allows the Bose condensate to manifest it
in the line shape, even for relatively smallh'1, as we pro-
ceed to show now.

ne

at-

FIG. 5. Temperature dependence of the line shape of the s
tered light for n/G54 and h51. The curves are plotted foru
50, 0.5, 1, 1.5, and 2, respectively.

FIG. 6. Temperature dependence of the line shape of the s
tered light for n/G54 and h50.5. The curves are plotted foru
50, 0.5, 1, 1.5, and 2, respectively.
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First consider the case of broad transitions in which
vibrational sideband structure cannot be resolved since
eradicated byG. This case is illustrated in Fig. 3, where th
lineshape~29! is plotted forn/G51 at several temperature
It can be seen in the plot that the line width exhibits a
markable transition as the system is cooled down from
noncondensed to the condensed phase. The Franck-Co
factors also reveal themselves by the displacement of
peak of the line shape.

The sideband structure arises in the line shape as we
crease the parametern/G. This can be appreciated in Fig. 4
where the line shape is plotted forn/G52. A well-defined
sideband structure is already present atn/G54, as exhibited
in Figs. 5 and 6, where the line shapes forh51 and h
50.5 are plotted respectively. It can be seen by a compar
of the two plots that the intensity of the Franck-Condon fa
tors clearly determines the peak of the sidebands in the

FIG. 7. Temperature dependence of the Raman linewidth of
scattered light forn/G54 andh51 ~solid line! andh50.5 ~dashed
line!. The curves are normalized to the linewidth at zero tempe
ture. The linewidth is defined in Eq.~34!.
an
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densate phase. Above the critical temperature, the oscilla
of the Franck-Condon factors leads to a very broad Ram
response when averaged over the occupation state dist
tion. On the other hand, these oscillations do not appear
the condensate, allowing a strong Raman response to b
up. This effect can be appreciated in Fig. 7, where the te
perature dependence of the linewidth defined below is sho
for h51 ~solid line! and h50.5 ~dashed line!. A strong
narrowing of the line is apparent as we cool down over
condensate phase. The change of the linewidth around
critical temperature is stronger ash increases. It is worth
remarking that in order to account for sidebands we cal
lated the total normalized linewidth in terms of the dispe
sion of the line shape, i.e.,

s̄5
s

suu50
, ~33!

where

s5A^d2&2^d&2. ~34!

V. SUMMARY

Our analysis has established the strong dependence o
man scattering on the parameterh. For oppositely directed
waveskWL52kWS , h will be proportional to 11(wS /wL) and
could thus be large, depending on the relative size betw
the wavelength and the trap dimensionab . For a fixed value
of ab , h will also change over a range of values depend
on the relatives directions of the wave vectorskWL and kWS .
Note further that in spontaneous Raman scattering,kWS will
correspond to the direction in which scattered radiation
observed. It is thus clear that the observed spectra are
sensitive to the direction of observation in the case of sp
taneous Raman scattering or to the direction of the Sto
field in the case of stimulated Raman scattering. Thus
comparison between Eq.~31!, which would apply to the for-
ward scattering, and Fig. 3 shows the important differen
that one will see in forward and backward scattering. T
sidebands arising from deeper traps will also be observa
in backward scattering.
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