PHYSICAL REVIEW A VOLUME 57, NUMBER 4 APRIL 1998
Raman scattering from a Bose condensate
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We calculate Raman scattering of light from a Bose condensate of dilute gas confined in a harmonic trap.
We examine the changes in the Raman line shape as a function of temperature. The linewidth exhibits a
remarkable transition as the system is cooled down from the noncondensed to the condensed phase. We also
present results for sidebands arising from deeper traps. We show that all these results on Raman line shapes are
especially pronounced in the backward direction.
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I. INTRODUCTION form an effective potential that can be well approximated by
a harmonic-oscillator potential at the bottom of the trap.
Bose-Einstein condensation of low-density atomic vapors We briefly described the tools used in the calculation of
is now well demonstratefdl]. Optical spectroscopy methods the quantum statistics of the trapped gas. The distribution of
[2] are of prime interest in the analysis of the properties ofthe atoms in the states of the trap is given by the Bose-
the condensate. As is well known, Raman spectroscopy hdsinstein statistics
been an important tool for studying the properties of atomic ,
systems. Raman spectroscopy is also known to be especially Nr,gz()\‘leBEf— 1)1, 1)
useful for the study of systems undergoing phase transitions.
Thus one would think of Raman scattering as especiallwhere 8=1/kgT, E|1=Er— E, are the eigenenergies of the
suited for studying the characteristics of Bose condensatasarmonic-oscillator trap once the ground-state energy has
formed from weakly interacting atoms. In particular, the na-been substracted, andis the fugacity.\ can be calculated
ture of the transition can be explored as one goes from théhrough the normalization condition
noncondensed phase to the condensed phase. With this in
mind, we calculate the line shape for Raman scattering as a N_E N-
function of the transition temperature. We demonstrate dis- N - lg»
tinct changes in the linewidth as we change the temperature
from above to below the critical temperature. We find thatwhere N is the total number of particles in the trap. An
the line shapes are also quite sensitive to the direction cdinalytical approximation can be obtained for this summation
propagation of the pump and Stokes fields. We also examingt] as
the nature of the sidebands in Raman scattering for deeper
sidebands.
The trap potential is included in our treatment; however,
we treat only the case of noninteracting atoms. An exact
numerical treatment is incorporated in order to take into acHere v is the frequency of the harmonic trap=1.5 for an
count finite-size effects steaming from the finite number ofisotropic trap, gi(\)==,A"/n" are polylogarithmic func-
trapped atoms. tions, and\, is the number of particles in the ground state of
This paper is organized as follows. In Sec. Il the magnetothe trap. From Eq(1) one can readily see that the fugacity
optical harmonic trap and the Hamiltonian governing the dy-satisfies the relation
namics of the trapped atoms interacting with photons are
reviewed. Section Il is devoted to the calculation of Raman No=
transition amplitudes for the confined atoms. The results are 1-\°

discussed in Sec. IV. We end with conclusions and a sum- ) . N
mary of the results in Sec. V. so that =\ < 1. The fugacity and its polylogarithmic func-

tions increase monotonically as we cool down the gas. Since
gi(\) are bounded bg;(1), Eq.(3) can only be satisfied at
low temperature at the expense of populating the ground

Energy levels of alkali-metal atoms undergo Zeemarstate, originating the condensed phase. The critical tempera-
splitting when exposed to an external magnetic fidldde-  fure Tc at whichg;(A) saturates can be estimated by impos-
pending on the sign of the magnetic sublevel, the atom will"d No=0 in Eq.(3) for A\=1. One gets
experience an attractive or repulsive force that tends to con-

hvl N vé€(2) 1

o 1/3
fine it in the local minima ofB. Typically, in a magneto- _ e 7
ypically g 5(3)} [1 3637 N1’3]’ (5)

optical trap (MOT) [3], the magnetic field is designed to ¢ kg
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' ' ' condensed gas, so we can neglect collective optical
excitations. This is justified under the condition?<1.
The second quantized form of the Hamiltonian governing

—-— analitycal no the system can be obtained by taking the expectation value
1= —— numerical no | T of the particle Hamiltonian with respect to the quantum fields
fugacity W (r) satisfying the bosonic commutation relation
[W(r), ¥ (r)]=s8(—r"). (6)

Herer is the coordinate vector of the center of mass of the
atom in the trap, sa(r)="¥T(r)¥(r) represents the density
operator of particles associated with the quantum field.

05 - We express the field operators in the Fock representation,
i.e., in terms of operators that describe the degree of occupa-
tion of the state in the base given by the eigenstates of the
bare Hamiltonian. This Hamiltonian corresponds to the states
of a three-dimensional harmonic-oscillator potential. There-

fore, we introduce the operato{gr,glt} that anihilate or
create atoms in thé state of the ground-state potential,
{e,;],e:ﬁ}, which play the same role for the intermediate

0r - Raman states, an{fﬁ,f;g}, which describe the vibrational
. . . structure of the final state.
0.0 05 1.0 15 20 The occupation number operators fulfill the standard com-
0 mutation relations for bosonic atoms:
FIG. 1. Temperature dependence of the fugagitgshed ling I TP TR TP L T
and of the fractiSn of atomsF?n the condensate.ql'hc:asolid line gives lor.gp]=dir.  [em.eq]=dmm. [fp.f51=05
the exact(numerical calculation and the dot-dashed line the ana- (7)

lytical approximation derived by Grossman. Small finite-size effectsIn this representation the field operators reads
(Nt=2000) can be appreciated around the critical temperature.
whereg(i)=g;(1). o WI(r)=2 gi oA,
As we cool the system below this critical temperature the I
fraction of particles in the condensate increases until all par-
ticles occupy the condensate Bt0. This can be seen in o o e, -
Fig. 1, where the Bose-condensate fractiogs- Ny /N cal- b (r)—z €m®(r),
culated numerically after E2) (solid line) and according to m
the analytical expressiof8) (dot-dashed linegare plotted as
a function of the normalized temperatute: T/T,. We have vin=2 f; ¢:;(F), (8)
considered an isotropical trap witkh=2000. Finite-size ef- p
fects can be appreciated around the critical temperature. The - . . .
numerically calculated fugacity is also plotted in Fig. Lwhere t_he co.efﬂmen.ts are given bY the thfee'd'm‘?”s'o"‘?'
showing an asymptotical approach to unity in the Condensaharmomc—osmIlator eigenstates. For instance, for an isotropic
tion regime§<<1. tra
Let us now describe the tools used to model the Raman

optical response of the gas. We start from the quantum field $H(nN=(r|l,g)= G0 B (V) B (2),

theory of trapped atoms interacting with photons developed

by Lewensteinet al. [5]. We restrict the discussion to the 1 7 22
following approximationg6]: the three-level atom approxi- d(2)= H, exg ——— |, (9
mation, in which a Hilbert space expanded by three states Vayv272'I! \/Eab 4a2

{l9),|e),|f)} suffices to describe the atomic electronic struc-

ture; the rotating-wave approximation, in which we pick outyhereH, are Hermite polynomials ana,= \#/2mv is the
only the terms of the interaction Hamiltonian that conservesize of the bare ground-state wave function determined by
the number of excitations; the atom-field interaction in thethe atomic mass and the frequency of the trap

dipole approximation, in which the resonant wavelength Within the approximations given before, the Hamiltonian

is much larger than the typical atomic siag, and the ideal  of the system in the Fock representation becomes
gas approximations, in which the density of the gas low

enough to neglect atom-atom interactiditss condition re- H=Ho+Hs+ Has+ Hae (10)
quiresna8< 1). This allow us to use bare photons and ex-
cited atoms as good elementary excitations inside a Bosavhere the bare atomic Hamiltonian reads
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E (f)=c,eka o tcc, a=L,S, 1
Ho=2, iwlglgi+ >, A(WE+wo)eken oD =€ “ (17
' m is determined by the interaction Hamiltonian in the dipole
approximation
+2 h(w+wy)f g ap P
P

. f Haa=—f dr p(r)-Eq(rt). (18)
Herewlg JWe andwﬁ are the eigenfrequencies of the center-

of-mass motion of the atoms corresponding to e [€),  Here a=L,S stands for the pump and Stokes field, respec-

and|f) electronic states, namely, tively. Converting to the Fock representation given in Egs.
(8), we find the second quantized form of the Hamiltonian to
wi=p{l, +1,+1,+3/2, be
Wi = p{me+my+m,+3/2, Ha = —d* e e ™) Fri(—K)ergi+H.c.,
I,m
Wi = v{py+ py+p,+3/2. (12

Has= —d* ece™Ws'>) Fp(— IZS)e}qu;Jr H.c. (19
Note that the energy differencésvy andzw;, correspond- p,m
ing, respectively, to the electronic transition from the ground
state|g) to the intermediate Raman sta&® and to the final
state|f), have been written down explicitly in E¢L1).
The Hamiltonian for the free electromagnefian field is

Usual parity selection rules are exhibited by the dipole
moment matrix elements appearing in the prefactor of the
interaction Hamiltonians(19), as stated by the Wigner-
Eckart theoren{7]. On the other hand, the quantization of

. the atomic center-of-mass motion reveals itself in the
Hi=2 f dkic kaE,#a;,,L, (13 Franck-Condon factors entering the expression of the Hamil-
# tonian. As will be stressed in Sec. IV, additional selection

rules between vibrational levels can be brought about by the

where al;,l,v,aJ£ are anihilation and creation operators of

ki N R oscillatory behavior of the Franck-Condon factors.
photons of momentunk and linear polarizatioreg ,. A
summation over the polarizatign= 1,2 states has to be done 1. RAMAN SCATTERING FROM A MOT
in order to account for all possible transitions in the Zeeman
multiplet. In this section we calculate the transition probability per

H,¢ characterizes the interaction between the atom andnit time Vg for the scattering of light from a confined gas
the vacuum modes of the em field. For instance, for|the €xposed to two weak fields of frequencieg andw, . This

—|g) transition it reads rate can be derived from the general expression for radiative
transition rates carried in second-order time-dependent per-
i% turbation theory[8]. We obtain

27 <f,5|H|S|e,nﬁ><e,rﬁ|H,L|g,r>‘2

Har= d3kk(d- e
of 260(277)3% % Vk(d-eg,,) i
Hp_
()

X Fir(Kiay 07 eqtH.e. (14 AT Aworhwg—we

X S(Wi— (WL —Ws) +Wpi), (20

Hered is the dipole moment of the electronic transition. The
conservation of momentum is expressed by the Franckwhere the vibrational transition energies are
Condon matrix elements
L Wi = V{(mx_Ix)+(my_|y)+(mz_|z)}- (21
Fi(K)=(Tle" "|m). 15 L . .
k) =(1] Im A9 The Diracé in Eq. (20) ensures conservation of energy in the

| F(—K)|2 is proportional to the probability that an atom transition from the initialg,!) state to the finalf,p) state.
will make the transition fronjm,e) to |I,g) by emitting a H{>") are the interaction Hamiltonians for these stimulated

photon of frequencgk,+ v(m—1) with any polarization. Raman transitions. o _
Finally, the interaction between the atomic dipole of the ~The matrix elements appearing in Hg0) can be readily

atom characterized by the dipole moment operator calculated after Eq(19) to yield

B(7) =3 L1 W o(F) + AW L)W 4(F) + H.c. (f,p|Hle;m)(e,mH|g, 1) =[Fai( —K_)degel ]

X[ Fom(Ks)die€s 1. (22)

éw

=d%,>, ehgips (NN +d5 2 elizos (Nek(r)
p.m In the large detuning regima>v (A=wy—w,), the de-
+H.c. (16) nominator in Eq(20) can be approximated biyA. The sum-
mation over intermediate vibrational states can now be per-
and the laser fields formed with the help of the closure relation, namely,
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2 R R E R o IV. RAMAN SCATTERING FROM A CONDENSATE
Fom(kg) Fai(— k) = ,gle’™s"Im,e
= pri(Ks) Frii —ku) = (p.g| Im.e) The quantization of the c.m. motion of the atoms leads to
a vibrational structure of the spectrum of the scattered light

x(m,ele 7|, g) given in Eq.(29). The line shape of the scattered light is
I mainly determined by the Franck-Condon Factor between
=Fpi(ks—ky). (23 vibrational transitions. In order to see this, first consider the

) ) Lamb-Dicke limit — 0. In this case Eq29) reduces to the
On the other hand, we can take into account the '”COhere@xpression

effects by means of replacing the Dirat function by a
Lorentzian characterized by the half-width i.e.,

— N
Wr=——, 31
r R 2442 (Y
5(Wf—(WL_Ws)+W;5F)—>(— 5 5 o . ,
T/ T2+ {Ws— W +Wg+Wpj where we have used the normalization conditi@gn In this
(24)  limit the line shape does not contain any information con-

' _ _ ' ~ cerning the energy distribution of the gas since the light can-
ThusT' is the width of the Raman I_me for a single atom in a not resolve the momentum distribution of the trap. A case
trap. After all of these considerations, we can approximatevhere 5 will be close to zero corresponds to copropagating

the total transition rate by the expression pump and Stokes fields so thﬁ.;—lzs= (W, —wg) /cz and
thus » will be proportional to - (wg/w,), which in many

fﬁF(Es— lzL)|2 typical cases is close to zero.
(2 For a small Lamb-Dicke parameter, we can perform a
series expansion of the Franck-Condon factors in the form

_ . N? |
WRE;C—lz W(RHP)ZE lg
I,p

fp D2H{o+w}?

where have taken the normalizatidbiz= Wg /K, with Fol(=7)= 8y, +i U{\ﬂ 5p,|71+\/m 5p,|+1}+O(EE).
* (32
co1e ( degdfeeLES

r
n2N |

(260 In the limit casen=0 no c.m. transitions are allowed. The
first-order correction iny in Eq. (32) introduces contribu-
tions from one-level c.m. transitions. As the Lamb-Dicke
; . R e arameteryn increaseqgoing to a deeper trap or changin
N."g is the number of particle distribution in the initial state 'I[Dhe directig]n of the Rir%angﬁel)jsthe speitial st?ucture of%heg
given by Eq.(l). ~ ) L. states of the trap gets resolved, as seen iNH&g3). The zeros
Choosing as the direction the one given bgs—k_, the  of the Laguerre polynomialé30) can be viewed as expres-
Lamb-Dicke parameten is defined by the relation sions of destructive quantum interference between the differ-

and we have defined the Raman detunésgw; —w, +wsg.

ap(ks— k)= 7z. (27)

Because of momentum conservation, the light can only ex-

cite vibrational states in the direction of the vecﬁgﬁ K.
This fact is expressed by the factorization property of the
Franck-Condon factors

i(Ks= K =351, 8p 1 Fo (), (28)
reducing Eq.(25) to the expression

NF ol Fp ()]
i, D2+ {8+ v(p,—1,)}?

We= (29)

Furthermore, the Franck-Condon factors can be calculated in
closed form as

0 S 10 15 20

> 1!
| Fi( = 2= " Ve S [LM ()12, (30) |

2 ] ] . FIG. 2. Density plot of the Franck-Condon factors for transi-
whereL[" " are associated Laguerre polynomials. Equationions between differentng,|) vibrational states fory=1. The gray
(29), together with Eq(30), is our central result for the line level covers from black to white the numerical intenjdle™!
shape of the Raman scattering of light from a MOT. ~0.37].
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FIG. 3. Temperature dependence of the normalized Raman line FIG. 5. Temperature dependence of the line shape of the scat-
shape of the scattered light given in EQ9) for »/I'=1 andn  tered light for /=4 and »=1. The curves are plotted fof
=1. The curves are plotted f@r=0, 0.4, 0.8, 1, and 1.8, respec- =0, 0.5, 1, 1.5, and 2, respectively.
tively.

Franck-Condon factors from transitions starting from any
ent nonlinear processes appearing in ) corresponding  other statel oscillate. As a matter of fact, even forbidden
to the transition|l,g)—|p,f). This is illustrated in Fig. 2, transitions corresponding to nodes of the Franck-Condon
where the density plot, of the Franck-Condon factors correfactors can be appreciated in Fig.(Black-ruled squargs
sponding tony=1 is shown. As can be seen in this plot, the This behavior allows the Bose condensate to manifest itself
Franck-Condon factor for the transition starting from thein the line shape, even for relatively smafk 1, as we pro-
ground state does not oscillate. In contrast to this, theeed to show now.
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FIG. 4. Temperature dependence of the line shape of the scat- FIG. 6. Temperature dependence of the line shape of the scat-
tered light for v/I'=2 and »=1. The curves are plotted fof tered light forv/I'=4 and »=0.5. The curves are plotted far
=0, 0.5, 1, 1.5, and 2, respectively. =0, 0.5, 1, 1.5, and 2, respectively.



2936 JESUS MARTINEZ-LINARES AND G. S. AGARWAL 57

v=4T" densate phase. Above the critical temperature, the oscillation
of the Franck-Condon factors leads to a very broad Raman

30 response when averaged over the occupation state distribu-
al ' ' ' tion. On the other hand, these oscillations do not appear for
the condensate, allowing a strong Raman response to build
up. This effect can be appreciated in Fig. 7, where the tem-
perature dependence of the linewidth defined below is shown
for =1 (solid line) and »=0.5 (dashed ling A strong
narrowing of the line is apparent as we cool down over the
condensate phase. The change of the linewidth around the
critical temperature is stronger ag increases. It is worth
remarking that in order to account for sidebands we calcu-
lated the total normalized linewidth in terms of the disper-

% sion of the line shape, i.e.,
§ — g
2 o=——, (33
- Jle=0
where
o=\(8%)—(8)% (34)
V. SUMMARY

Our analysis has established the strong dependence of Ra-
man scattering on the parameter For oppositely directed

w : . : wavesk, = —Kg, 7 will be proportional to & (ws/w,) and
0 05 19 1.5 2 could thus be large, depending on the relative size between
the wavelength and the trap dimensp For a fixed value
FIG. 7. Temperature dependence of the Raman linewidth of th@f a,, 7 will also change over a range of values depending
scattered light fow/T'=4 andzn=1 (solid line) and7=0.5(dashed  on the relatives directions of the wave vectdsand Ks.

line). The curves are normalized to the linewidth at zero temperaNOte further that in spontaneous Raman scattedﬁggwill
ture. The linewidth is defined in E¢34). correspond to the direction in which scattered radiation is
. . - ) ) observed. It is thus clear that the observed spectra are very

_ First consider the case of broad transitions in which thesensitive to the direction of observation in the case of spon-

vibrational sideband structure cannot be resolved since it iggneous Raman scattering or to the direction of the Stokes

eradicated byl". This case is illustrated in Fig. 3, where the fie|d in the case of stimulated Raman scattering. Thus the

lineshape(29) is plotted forv/I'=1 at several temperatures. comparison between E¢31), which would apply to the for-

It can be seen in the plot that the line width exhibits a reyyard scattering, and Fig. 3 shows the important differences

markable transition as the system is cooled down from thenat one will see in forward and backward scattering. The

noncondensed to the condensed phase. The Franck-Condg@ebands arising from deeper traps will also be observable
factors also reveal themselves by the displacement of thg packward scattering.

peak of the line shape.

The sideband structure arises in the line shape as we in-
crease the parametefI". This can be appreciated in Fig. 4,
where the line shape is plotted fofT'=2. A well-defined G.S.A. thanks Herbert Walther for hospitality at the Max-
sideband structure is already present/dt=4, as exhibited Planck-Institut fu Quantenoptik. J.M.-L thanks Pierre Mey-
in Figs. 5 and 6, where the line shapes fp=1 and »  stre for his encouraging and constructive comments and the
=0.5 are plotted respectively. It can be seen by a comparisoMax-Planck-Gesellschaft (Quantenoptik for  support.
of the two plots that the intensity of the Franck-Condon fac-J.M.-L. was also supported by the TMR Program under Con-
tors clearly determines the peak of the sidebands in the cortract No. ERBFMBICT950426.
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