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Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling

M. J. Steel and M. J. Collett
Department of Physics, University of Auckland, Private Bag 92 019, Auckland, New Zealand

~Received 15 October 1997!

We consider the precise quantum state of two trapped, coupled Bose-Einstein condensates in the two-mode
approximation. We seek a representation of the state in terms of a Wigner-like distribution on the two-mode
Bloch sphere. The problem is solved using a self-consistent rotation of the unknown state to the south pole of
the sphere. The two-mode Hamiltonian is projected onto the harmonic-oscillator phase plane, where it can be
solved by standard techniques. Our results show how the number of atoms in each trap and the squeezing in the
number difference depend on the physical parameters. Considering negative scattering lengths, we show that
there is a regime of squeezing in the relative phase of the condensates which occurs for weaker interactions
than the superposition states found by Ciracet al. ~quant-ph/9706034!. The phase squeezing is also apparent in
mildly asymmetric trap configurations.@S1050-2947~98!06303-3#

PACS number~s!: 03.75.2b
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I. INTRODUCTION

Traditionally, a Bose-Einstein condensate~BEC! is often
viewed as a coherent state of the atomic field with a defi
phase@1#. It is well known that there are problems with th
view, however, related to the fact that the phase of
atomic field is not an observable@1–4#. The Hamiltonian for
the atomic field is independent of the condensate phase
so the correct coherent state is only defined up to its m
number. Often it is convenient to invoke a symmetr
breaking Bogoliubov field to select a particular phase,
this does not correspond to any physical field, so the pro
dure is not totally satisfactory in a formal sense. In additi
a coherent state implies a superposition of number sta
whereas in the current single-trap experiments@5–8# there is
a fixed number of atoms in the trap~even if we are ignoran
of that number!, and the state of a single trapped condens
must be a number state~or more precisely, a mixture o
number states!. Both these problems are bypassed by cons
ering a system of two condensates for which the total nu
ber of atomsN is fixed. Then, a general state of the system
a superposition of number difference states of the form

u &5 (
k50

N

ckuk,N2k&. ~1!

As we now have a well-defined superposition state, we
legitimately consider the relative phase of the two cond
sates, which is an Hermitian observable. Indeed, the dram
observation of interference between two coherent BEC’s@9#
constitutes a measurement of exactly this. In the absenc
atomic collisions, the expansion coefficients in Eq.~1! obey
a binomial rather than Poissonian distribution, as would
expected for a coherent state.

However, there is a more straightforward objection to
identification of the condensate with a coherent state. Th
that, in real experiments, the atoms experience collisions
troducing a nonlinearity into the Hamiltonian for the syste
We then know immediately that~unless very strongly
damped! the true state can not be a coherent state, leav
aside issues of absolute versus relative phase. In the
571050-2947/98/57~4!/2920~11!/$15.00
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treatment of this question, Lewenstein and You@10# sug-
gested that the condensate is actually in an amplitude qua
ture eigenstate. In a fuller analysis, Dunningham and
workers @11,12# showed that for positive~repulsive!
interactions the state is strongly number squeezed, and
sembles a bent version of the amplitude squeezed state
minimizes number fluctuations. This has the potentially o
servable consequence of increasing the revival time in
lapses and revivals of the relative phase@13–16# due to the
reduced number variance of the squeezed state. The
proach of Dunningham and co-workers was based on
symmetry-breaking picture described above. Their mo
thus described the quantum state of a single damped dr
condensate with the phase determined by some much la
reference condensate which does not appear in the calc
tion. Thus while the number squeezing they predicted is
tuitively natural, the model faces the same formal difficulti
mentioned above in relation to symmetry breaking.

In this paper, we combine these two ideas by seeking
accurate description of the ground state beyond the cohe
state picture, for a system of two coupled condensates wi
fixed total number of atoms. We do this by reducing the f
quantum field-theoretical description to an approximate tw
mode problem, valid for condensates of a few thousand
oms. The problem is then well defined in the senses
cussed above: we deal with relative rather than abso
phases, and are able to consider a completely closed sy
without the complications of driving and damping, so th
the ground state is unambiguously a pure state. Usin
variational approach, we then find approximate solutions
the two-mode problem which are natural analogs of
single condensate states found by Dunningham and
workers. Our approach also works for negative~attractive!
interactions, and we predict a regime of significant pha
squeezing in between the coherent-state-like behavior w
no interactions, and the Schro¨dinger cat states reported pre
viously @17,18# that occur with significant interactions.

The paper is structured as follows. In Sec. II we brie
summarize the quantum field theory for the two-condens
problem, and derive the approximate two-mode Hamiltoni
In Sec. III we discuss a representation of the two-mode st
2920 © 1998 The American Physical Society
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57 2921QUANTUM STATE OF TWO TRAPPED BOSE-EINSTEIN . . .
using the Bloch sphere, and outline our method for find
the ground state of the system. We construct the solutio
detail in Sec. IV. In Sec. V, we present our results and co
pare the predictions of our method with exact solutions
systems with small numbers of atoms. We consider nega
scattering lengths and the associated phase squeezing in
VI before we conclude.

II. GOVERNING HAMILTONIAN

A. Reduction to two-mode Hamiltonian

Our model describes two condensates of atoms of m
m, with a linear Josephson coupling and weak nonlinear
teractions. We consider a single trap with the condens
distinguished by their internal atomic state@17#. The cou-
pling is provided by laser-induced Raman transitions
tween the two atomic states. Following Ciracet al. @17#, the
second quantized Hamiltonian takes the form

H5H11H21H int1Hcoup, ~2!

with

H j5E d3x ĉ j
†~x!F2

\2

2m
¹21Vj~x!

1
4p\2aj

2m
ĉ j

†~x!ĉ j~x!G ĉ j~x!, ~3!

H int5
4p\2a12

2m E d3x ĉ1
†~x!ĉ2

†~x!ĉ1~x!ĉ2~x!, ~4!

Hcoup52
\V

2 E d3x @ĉ1~x!ĉ2
†~x!e2 idt1ĉ1

†~x!ĉ2~x!eidt#,

~5!

where j 51 and 2. Here the field operatorsĉ1(x) andĉ2(x)
annihilate atoms at positionx in condensates 1 and 2, respe
tively, and satisfy the relation@ĉ i(x),ĉ j

†(x8)#5d i j d(x2x8).
The termH1,2 describes each of the condensates in the
sence of interactions with the other. They experience sph
cal harmonic trap potentialsV1,2 of frequenciesv1 andv2 ,
and have scattering lengthsa1 and a2, respectively. The
cross-phase modulation termH int describes collisional inter
actions between the condensates with scattering lengtha12.
The laser-induced coupling is described byHcoup, with V
the Rabi frequency andd the detuning of the classical lase
field. In our work, we assume equal scattering lengthsa1
5a25a12, but allow the trap frequencies to differ.

The procedure to obtain the two-mode Hamiltonian
well known @17,19#. We approximate the field operators
ĉ1(x)5b1f1(x) and ĉ2(x)5b2f2(x) where f1,2(x) are
~real! normalized mode functions for the two condensat
and b1,2 are the associated mode annihilation operat
which obey the standard commutation relations@bi ,bj #50,
@bi ,bj

†#5d i j . Then Eq.~2! becomes

H'~v̄11d!b1
†b11v̄2b2

†b21x1b1
†b1

†b1b11x2b2
†b2

†b2b2

1x12b1
†b1b2

†b22
h

2
~b1b2

†1b1
†b2!, ~6!
g
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where

v̄ i5E d3r f̄ i~r !F2
1

2
¹21

l i
2r 2

2 G f̄ i~r !, ~7!

x i5
Ui

2 E d3r uf̄ i~r !u4, ~8!

x125
U12

2 E d3r uf̄1~r !u2uf̄2~r !u2, ~9!

h5
V

v0
E d3r f̄1~r !f̄2~r ! ~10!

for i 51 and 2. Here we have moved into the interacti
picture and introduced dimensionless variables, scaling
Hamiltonian by an appropriate energy\v0 and the position
by the length scalex05A\/mv0 such that r5x/x0 and
f̄ i(r )5x0

3/2f(x). Further, l i5v i /v0, Ui54pai /x0 , and
U1254pa12/x0 .

As shown by Milburnet al. @19#, the same two-mode
model also describes coupling between condensates
double-well potential. In this case, the two lowest modes a
strictly speaking, the symmetric and antisymmetric modes
the entire double well, but for a strong dividing potenti
barrier it is an accurate approximation to use modes desc
ing atoms in one or the other trap. The linear coupling
provided directly by spatial tunneling through the barrier a
has a strengthh5DE/v0 whereDE is the frequency sepa
ration of the two~linear! modes@19#. Assuming the potentia
barrier is relatively strong, the modes are well separated,
we can neglectH int .

Equation~6! defines our problem completely. For larg
condensates, the mode functions are altered by the collisi
interactions, and the two-mode approximation breaks do
As shown in Ref.@19#, a simple estimate shows this occu
when the number of atomsN satisfiesNa@x0 , wherea is a
typical scattering length andx0 is a measure of the trap size
Assuminga'5 nm@6,20# and a large trap withx0'10 mm,
we find that the two-mode approximation should be acce
able forN,2000.

B. Angular momentum representation

The Hamiltonian can be reduced to a simpler form
exploiting the equivalence between the algebra for two h
monic oscillators and that for angular momentum, by int
ducing the new operators@21,19#

J15b1
†b2 ,

J25b1b2
† ,

Jz5
1

2
~b1

†b12b2
†b2! ~11!

and

Jx5 1
2 ~J11J2!, ~12!
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Jy5
1

2i
~J12J2!, ~13!

These operators do indeed satisfy the usual angular mom
tum commutation relations, justifying the choice of notatio
In addition, we find

J25Jx
21Jy

21Jz
25

N

2 S N

2
11D , ~14!

where the total number of atomsN5n11n25b1
†b11b2

†b2 is
a constant of the motion, so we deduce that we are work
with the angular momentum algebra forJ5N/2. In terms of
the new variables, Eq.~6! takes the form

H5J~v̄11d1v̄22x12x2!1J2~x11x21x12!1Dv̄Jz

1x1Jz
22

h

2
~J11J2!

5Dv̄Jz1x1Jz
22hJx , ~15!

where in the last line we have dropped an unimportant c
stant, and introduced the effective detuning

Dv̄5v̄11d2v̄21~2J21!x2 ~16!

and effective nonlinearity

x15x11x22x12. ~17!

Note the useful fact that both the difference in the se
nonlinearitiesx25x12x2 and the cross-nonlinearityx12

merely shift the values ofDv̄ andx1 and introduce no new
terms. Thus there is no restriction of the physics by assum
equal scattering lengths. We now calculate these param
for realistic experimental values. Taking the23Na atom, for
example, we havea'5 nm, and suppose trap frequencies
orderv i51000 s21 @6#. Then taking the scaling frequenc
v051 s21, we obtainv̄i'1500 andx i'1.4. Therefore, the
detuningDv̄ may range from zero to a few hundred. Th
coupling strengthh is largely arbitrary. In the spatial case,
can take values up to the order of the trap frequencies@19#,
or can be made as small as desired by incresing the
separation.

III. OUTLINE OF APPROACH

For the remainder of the paper we are concerned with
ground state of Eq.~15!. Milburn et al. @19# presented nu-
merical calculations of the energy spectrum of this Ham
tonian, and the dynamical problem was also studied@19,22#.
Rather than the spectrum or dynamics, however, our con
is with the detailed properties of the lowest eigenstate
their dependence on the effective detuning and nonlinea
In general, the eigenstates of Eq.~15! cannot be written ana
lytically. For systems with at most a few hundred atoms, i
feasible to find the exact eigenstates in the basis ofJz eigen-
statesuJ,m52J, . . . ,J&z numerically. Our semianalytic ap
proach can be used for systems of arbitrary size, and le
considerable insight to the problem.
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A. Bloch sphere

Our approach relies closely on the Bloch sphere repres
tation of the angular momentum, which we must briefly i
troduce. A detailed analysis was given by Arecchiet al. @23#.
Quantum states in the angular momentum Hilbert space
be usefully represented on the Bloch sphere. Certain stat
the atomic coherent states or ‘‘Bloch’’ states@23#—
correspond to a single point on the sphere. Defined as
rotated statesuu,w&5Ru,wuJ,2J&z , where the rotation op-
erator

Ru,w5exp@u/2~J1e2 if2J2eif!#

5exp@2 iu~Jxsin w2Jycosw!#, ~18!

they are labeled by the spherical coordinatesu andw corre-
sponding to the state’s point on the sphere. Note that in te
of our BEC problem, the north poleuu5p& and south pole
uu50& represent the states with all atoms in mode 1 o
respectively. States lying on the equator withu5p/2 repre-
sent an equal division of atoms between the modes@which
for hÞ0, doesnot imply the number stateuN/2,N/2&, but
rather an entanglement of form~1! with a binomial distribu-
tion of expansion coefficients#. The Bloch states are the ana
logs in the angular momentum algebra of the standard co
ent states of the harmonic oscillator@23#. They share a
number of properties with the coherent states, for insta
minimum uncertainty in the natural variables. In additio
more general nonclassical states described by the state v
uc& or density matrixr can be naturally pictured in terms o
a quasiprobability distribution function on the sphere,

Q̃ uc&~u,w!5u^u,wuc&u2, ~19!

Q̃r~u,w!5^u,wuruu,w&, ~20!

in analogy to the familiarQ function in the harmonic-
oscillator phase plane@24#. Functions analogous to the sta
dard Glauber-SudarshanP and Wigner distributions can als
be defined. As discussed below, these analogies can be m
precise using a formal contraction from the angular mom
tum Hilbert space to the Hilbert space for a single harmo
oscillator@23#. While the Bloch states lack some of the us
ful properties of the coherent states@23,25# , nonetheless, we
see below that the Wigner orQ̃ functions make for usefu
measures of quantities such as the squeezing in the num
difference or relative phase in the ground state.

B. Mathematical procedure

The angular momentum commutation relations make
direct solution to our problem in the full Hilbert space diffi
cult. Section III A suggests the following alternative a
proach. We assume that the ground state we seek has a
siprobability distribution localized to a particular part of th
Bloch sphere.~Thus we immediately exclude Schro¨dinger
cat states such as those found by Ciracet al. @17# and Ru-
ostekoskiet al @18#, which we treat numerically in Sec. VI.!
We apply a rotation to the Hamiltonian to bring the me
value of the state to the south pole of the Bloch sphere. T
must be done self-consistently, as we do not actually kn
the mean value of the state until we have solved the probl
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We then project the problem to the harmonic-oscillator ph
plane using the contraction operation of Ref.@23#. The prob-
lem can then be solved in the plane and the ground s
plotted as a Wigner distribution. Finally, we project this d
tribution back on to the sphere, and rotate it to the origi
mean value, which has by now been determined. Equ
lently, we can think of the problem being solved in the o
cillator phase plane that is tangent to the sphere at the m
value of the state. In Sec. IV we make these ideas precise
provide the solution.

C. Linear problem

In the absence of the nonlinear term (x150), the prob-
lem is trivial. Hamiltonian~15! becomes

H5Dv̄Jz2hJx , ~21!

and, using the rotation relations in Appendix A, it is easy
see that the rotated HamiltonianH85Ru,pHRu,p

21 , where

tanu5h/Dv̄, is just a multiple ofJz with ground state
uJ,2J&z . Inverting the rotation, the exact ground sta
for the original Hamiltonian is simply the Bloch sta
uu,f&5utan21(h/Dv̄),0&. Thus the the ground state o
coupled ideal gas condensates is the entangled state a
of the coherent state. This result is well known, though i
more commonly expressed in the number difference b
@26#. As expected, for vanishingDv̄, the traps are equiva
lent, and there is an equal number of atoms in each, whe
for Dv̄Þ0, the ground state has more atoms in the wea
trap. Note that the relative phase of the condensatesw50.
This is the reason for our choice of the negative sign in fr
of h in the original Hamiltonian~15!. Even when we con-
sider the more complicated states of the nonlinear syst
we see by symmetry that the mean value of the state m
still havew50, simplifying the rotation operators we need
consider. In practice, the phase ofh is determined by the
phase of the driving laser field. By a suitable choice of c
ordinates we may always take it to be zero.

IV. NONLINEAR PROBLEM

A. Contraction from angular momentum
to harmonic-oscillator Hilbert space

The nonlinear problem is much more involved. As ind
cated earlier, the first step is to perform a rotation of
Hamiltonian by an undertermined angleu, and then project
the new Hamiltonian into the harmonic oscillator pha
plane with operatorsa and a† satisfying @a,a†#51. This
procedure can be made rigorous through the concept
group contraction from the angular momentum Hilbert sp
to the harmonic-oscillator Hilbert space. The details can
found in Ref.@23#, to which we refer the interested reade
Quoting the results, the contraction is made by the iden
cation of operators according to

J1→
1

c
a†, ~22!

J2→
1

c
a, ~23!
e

te
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-
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e
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Jz→a†a2
1

2c2
, ~24!

wherec51/A2J, and the spaces are formally identical in th
limit c→0. In the same limit, we can contract eigenstates
Jz to the harmonic-oscillator number states,

uJ,M &→un5J1M &, ~25!

and we relate the coordinates according to

u

2
exp~ iw!→ca. ~26!

Later we also use the quadrature operatorsX5a1a† and
Y52 i (a2a†), which are the contractions ofJx and Jy ,
respectively. Geometrically, we visualize this contraction
a projection from the Bloch sphere to the phase plane w
the south pole of the sphere coincident with the origin of
phase plane. Note that the coherent amplitudea can take
values throughout the whole phase plane only in the limic
→0, and there is naturally a distortion involved in the pr
jection. Physically, by performing the contraction we disca
the knowledge that the true ladder of states is bounde
both ends rather than just the lower end. However, provid
the state is localized near the south pole andc !1 ~large
atom number!, the distortion is small. The contraction pro
cess also maps functions from the sphere to the plane, s
instance we can identify the~rotated! Bloch sphere distribu-
tion functionQ̃(u,w) with the standard phase plane functio
Q(a)5^aurua&. Here we define the Wigner-like distributio
on the sphere by a projection of the harmonic-oscilla
Wigner distribution using Eq.~26! in reverse.

B. Variational solution

1. Gaussian part

We are at last ready to find our approximate solution
the full problem. The procedure is somewhat involved ma
ematically, and we state only the main intermediate st
here, leaving the details to Appendix A. The first step is
rotate Hamiltonian~15! around the positivey axis by an
undetermined angleu, and perform the contraction operatio
to the single oscillator phase space to find the new Ham
tonianF. Following Ref.@12#, we write this Hamiltonian as

F5FG1FNG, ~27!

in terms of a Gaussian partFG and non-Gaussian partFNG,
the latter of which satisfies the constraints

^FNG&50,

^@a,FNG#&5^@a†,FNG#&50,

^†a,@a,FNG#‡&5^†a,@a†,FNG#‡&50. ~28!

This separation allows us to find the ground state of
Gaussian part first, and by assuming a weak nonlinea
treat the non-Gaussian part as a perturbation. Appendi
contains the expression for the non-Gaussian part.
Gaussian part is
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FG5K1L~a1a†!1Sa†a1T~a21a†2!, ~29!

where

K5x1J/2 sin2u1x1J2cos2u2J~Dv̄ cosu1h sin u!

12A2Jx1cosu sin u^a†a2&1x1cos2u~^a†2a2&

22^a2&224^a†a&2!, ~30!

L5AJ

2
$Dv̄ sin u2h cosu1x1sin u cosu@2~2J21!

12^a2&14^a†a&#%, ~31!

S5h sin u1Dv̄ cosu1x1$J sin2u1cos2u@2~2J21!

14^a†a&#%, ~32!

T5x1S J

2
sin2u1cos2u^a2& D . ~33!

In Eqs.~30!–~33!, we took^a2&5^a†2&, which follows from
the choice ofh as real. Note thatFG depends on moment
taken over the state which is the solution we are seeking.
can solve the Gaussian part to different levels of accur
according to how we account for these expectation value

(a) Non-self-consistent approach.We first assume we
have known values for the expectation values. For exam
we may take a mean-field approximation in which all t
moments are zero, or as explained below we may have
tained estimates for the moments from a previous less a
rate calculation~such as the mean-field one!. We consider a
self-consistent approach in Sec. IV B 2. The rotation anglu
is fixed by requiring that the linear terms should vanish,

L50. ~34!

Except for a constant term,FG is now purely quadratic, and
we perform a Boguliobov diagonalization by writing

a5b coshr 2b†sinh r ,

a†5b†coshr 2b sinh r . ~35!

Substituting Eqs.~35! into Eq. ~29! and setting the terms in
b2 andb†2 to zero, we obtain

exp~22r !5AS22T

S12T
, ~36!

while the diagonalized Hamiltonian is
e
y
.

e,

b-
u-

FG5K1~S cosh2r 22T coshr sinh r !1AS224T2b†b.
~37!

The first two terms are constants, so the ground state is
the vacuum in theb representation. As the transformatio
~35! is induced by the squeezing operatorS(r )5exp@r(a2

2a†2)/2] @24#, theb eigenstatesu i & transform back as

u ĩ &a5S~r !u i &. ~38!

Thus the ground state in thea representation is just the
squeezed vacuum with

^X2&5exp~22r !5AS22T

S12T
. ~39!

In the mean-field limit we have the simple results

Dv̄5h cot u1x1cosu~2J21!, ~40!

^X2&5A h

h1Nx1sin3u
. ~41!

For Dv̄50, we find symmetric states withu5p/2 as is natu-
ral. Moreover, in the limitu→p/2 „that is, for Dv̄/@(2J
21)x1#→0…, the non-Gaussian part of the Hamiltonia
FNG50 ~see Appendix A! and FG is independent of any
expectation values. Thus in this limit, the projected state
exactly a squeezed state witĥX2&5Ah/(h1x1N). We
note in passing that for a negative nonlinearity, Eq.~41!
predicts ^X2&.1, which indicates a possibility of phase
squeezing. We return to this in Sec. VI.

(b) Self-consistent approach.We can also find the ground
state of Eq.~29! with a self-consistent approach in which th
expectation values are determined to Gaussian approx
tion in the course of the calculation. In this case, the first t
terms in Eq.~37! can not be considered constants, and
general theb vacuum is not the lowest eigenstate. The c
rect approach is to assume a squeezed vacuum solutiour &
5S(r )u0& to Eq. ~29!, and findu and r by minimizing the
expectation value of the energy subject to the constrain
Eq. ~34!. Performing transformation~35! with this value ofr
gives a Hamiltonian in theb representation with a sma
off-diagonal part which can be transfered to the no
Gaussian partFNG yet to be treated. In fact, we have foun
that we can obtain virtually identical results by proceedi
directly with the Boguliobov diagonalization, and solvin
Eqs.~34! and ~39! simultaneously foru and r , whereL, S,
andT now depend onr through the quadratic moments.

2. Non-Gaussian part

We now include the effects of the non-Gaussian partFNG
as a perturbation to the squeezed state just found. We
second-order perturbation theory to write the corrected s
as
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uF~2!&a5u 0̃&a1 (
kÞ0

a^ k̃ uFNGu 0̃&a

E0
~0!2Ek

~0!
u k̃ &a ~42!

1 (
kÞ0

H F(
lÞ0

a^ k̃ uFNGu l̃ &aa^ l̃ uFNGu 0̃&a

~E0
~0!2Ek

~0!!~E0
~0!2El

~0!!
G2

a^ k̃ uFNGu 0̃&aa^ 0̃ uFNGu 0̃&a

~E0
~0!2Ek

~0!!2 J u k̃ &a , ~43!
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where from Eq.~37! Ek
(0)5kAS224T2 is the energy of the

unperturbed stateu k̃ &a . We then calculate the Wigner distr
bution

W~a!5
1

p2E d2z eaz* 2a* zx~z!, ~44!

where the symmetric characteristic function isx(z)
5Tr$raexp(za†2z*a)% and ra5uF (2)&aa^F

(2)u. The details
of these calculations are given in Appendix B. The final a
swer has a closed form in terms of Hermite Gaussians bu
too long to write here.

3. Combined approach

In finding ground states, we used the above steps in
iterative scheme. A first approximation is found using t
self-consistent approach to the Gaussian part followed by
perturbation theory. The quadratic moments appearing
Eqs.~34! and~39! @throughL, S, andT] are calculated using
this first approximation, and a new Gaussian state is cho
Finally the perturbation theory is applied again.

4. Antirotation

To complete the problem, the contours of the Wign
function just obtained must be projected back to the sph
and the original rotation of the Hamiltonian by angleu re-
versed. This is completely elementary and we reserve
equations for Appendix C.

V. RESULTS

A. Exact states

In this section, we present a mixture of exact numeri
results and those obtained by our semianalytic proced
This allows us to test the agreement in the regime where
size of the Hilbert space is small enough to permit a co
plete numerical solution. To begin, in Fig. 1, we show thr
sample exact states forN5100 atoms plotted as contours
Wigner functions on the surface of the Bloch sphere. Th
are two contours for each state at heightse21 ande21/4 of
the maximum of the Wigner function. States~a! and ~b!
show states with a nonlinearityx150.75 and detuningDv
50 and 30, respectively. Both states show strong squee
in the number difference~the vertical axisJz), while for the
asymmetric case~b! the atoms are predominantly found
the trap of lower energy. Note that the sense of squeezin
along parallels of latitude and not along the great cir
through the mean-field point. This is rather obvious—we
pect squeezing along the number difference axisJz , but it
has the effect that the states are in most cases far from m
-
is

n

e
in

n.

r
re

e

l
e.
e
-

e

e

ng

is
e
-

ni-

mum uncertainty in the natural variables. We discuss t
shortly. For comparison, state~c! is just the Bloch state so
lution to the linear problem (x150), with Dv520.44, for
which the contours are circles. Note that the mean angleu is
the same distance from the equatoru5p/2 for states~b! and
~c! despite very different values of the magnitude of the d
tuning uDvu. As indicated by Eq.~40!, the positive nonlin-
earity tends to push states back toward the equator an
balanced by a much larger value of the detuning. This
rives from an energy competition between the terms in^Jz&
and ^Jz

2& in Hamiltonian~15!.

B. Comparison with the model

We illustrate the results of our semianalytic method
rotating the nonlinear states~a! and~b! in Fig. 1 to the south
pole, and projecting them to the plane in Figs. 2~a! and 2~b!,
respectively. The contours are ate21/2 of the maximum of
the Wigner function. Here we see the effect of the fact t
the orientation of the squeezing is along the parallels of l
tude. The state originally atu5p/2 @Fig 1~a!# is a precise
squeezed state with no bending, but the asymmetric sta
Fig. 1~b! is distorted on projection@solid line in Fig. 2~b!#.
The other lines in Fig. 2~b! indicate our semianalytic predic
tion to second-order perturbation theory. The dashed
shows the solution using the mean-field approximation
the expectation values in Eqs.~30!–~33!. The dot-dashed line
is for the improved result in which the expectation values
first estimated using the self-consistent approach. The be
ing we find here is a clear analog of that found for a sin

FIG. 1. Contours of the Wigner function on the Bloch sphere

exact solutions withN5100 atoms and~a! detuningDv̄50, non-

linearity x150.75; ~b! Dv̄530, x150.75; and~c! Dv̄520.44,
x150.
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condensate in Ref.@12#, but in our case arises purely from
the geometric effect of projection. As our theory gives t
exact symmetric state, the lines are coincident in Fig. 2~a!.

The dependence of the mean angular position of the s
u5tan21(2^Jx&/^Jz&) on the detuning and nonlinearity fo
exact solutions withN5200 is shown in Fig. 3~a!. This, of
course, is a measure of the imbalance in the population
each trap:^n1&5J(12cosu) and ^n2&5J(11cosu). We
plot the mean angleu as a function of the nonlinearityx1

for detunings ofDv̄ 50, 5, 25, 50, 75, and 100 which labe
the curves. Asx1 increases, the mean value increases fr
the linear resulth5tan21(h/Dv̄) toward the symmetric
valueu5p/2, with the curves for larger detuning shifting
larger nonlinearities. From Eq.~40!, we see that the mos
rapid change occurs forx1'Dv̄/(2J21). As explained
above, the tendency toward symmetric states is a result o
increasing energy penalty for asymmetric states from
^Jz

2& term in the Hamiltonian. We check the accuracy of o
model in Fig. 3~b! showing the discrepancy in the mea
angleu according to the mean-field~dotted line! and self-

FIG. 2. Contours of the Wigner function projected into the pla
for states~a! and~b! in Fig. 1. The solid lines are the exact resul
In ~b!, we also show the prediction of the mean-field approximat
~dashed line!, and that using corrected versions of the quadra
moments~dot-dashed line!.
te

of

an
e
r

consistent predictions~solid line!, from the exact value cal-
culated numerically. The curves are labeled with the value
the detuningDv̄. There is a clear improvement over th
self-consistent case, though it is less dramatic for the lar
detuning.

We consider the behavior of the spread in number diff
encedn5AVar(n12n2)54AVar(Jz) for the same param
eters in Fig. 4. The solid lines are the exact result, the do
lines our approximate result using the corrected quadr
moments, and again the curves are labeled by the detu
Dv̄. For Dv̄ 50, the state is always centered on the equa
and the number squeezing grows stronger with the non
earity. For this case, in the limitc→0, when the projection
gives the exact solution, we havedn5AN@h/(h
1x1N)#1/4. The discrepancy of this curve from the exa
result is not visible in Fig. 4. The behavior is somewh
different for the other cases. Initially the spread in numb
increases, before turning around and becoming coincid
with the decreasing symmetric case. The initial rise in
variance agrees closely with the Bloch state resultdn5

n
c

FIG. 3. ~a! Mean angular positionu as a function of nonlinearity

x1 for Dv̄50, 25, 50, 75, and 100.~b! Discrepancy in the mean
angleu from the exact result as calculated by the mean-field pict
~dotted! and corrected moments picture~solid!. The curves are la-

beled by the detuningDv̄.
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ANsinu ~not shown in figure! until just before the maxima

of the curves. Thus we see that initially the nonlinear
shifts the mean value of the state without affecting its sha
In this plot, we see that our approximate method is less s

FIG. 4. Spread in the number differencedn5@var(n12n2)#1/2.
Solid lines are exact results, and dotted lines are predictions o
corrected moments theory. The curves are labeled by the detu

Dv̄.
e.
c-

cessful for cases with large detunings. These states are h
asymmetric, and therefore the projected states show sig
cant bending. The perturbation from the Gaussian squee
state is thus larger and our calculation less accurate.

VI. NEGATIVE NONLINEARITIES

We demonstrate briefly here that for a negative nonline
ity there is a regime of phase squeezing rather than num
squeezing. Using a mean-field picture, Ciracet al. @17# found
a range of superposition states for negative nonlinearities~at-
tractive interactions!. They showed the two lowest-energ
states are even and odd superpositions of states in w
most of the atoms are in trap 1 or most are in trap 2. In
notation they arise as follows. In the mean-field approxim
tion of Eq. ~40!, and taking the symmetric caseDv̄50, we
have

sinu5
2h

x1~N21!
. ~45!

This equation clearly only has solutions forux1u sufficiently
large. When this is true, there are two degenerate mean-
ground statesuu,0& and up2u,0&. Cirac et al. showed that
the superposition or ‘‘Schro¨dinger’’ cat statesu6&5(1/
A2)(uu,0&6up2u,0&) give a lower value for the energy, an

he
ng
FIG. 5. Exact states for negative nonlinearities.~a! Wigner function for x1520.01 andDv̄50. ~b! Wigner function for x1

520.0115 andDv̄50. ~c! Q̃ function for x1520.012 andDv̄50. ~d! Wigner function forx1520.0115 andDv̄50.001.
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thus are a better approximation to the lowest energy lev
Ruostekoski and Walls@18# proposed a scheme for genera
ing similar superpositions in number for free condensa
Numerically, we have found that the exact ground state
this regime are indeed of a superposition nature, though
course they are superpositions of distorted Bloch states,
of true Bloch states. What about the regimeh.ux1u(2J
21) for which Eq.~45! has no solutions? Equations~40! and
~41! give solutions withu5p/2 and ^X2&.1. As in the
Gaussian approximation the states have minimum un
tainty, we are led to expect phase squeezing. While
method is applicable for negative nonlinearities, the sta
can be highly non-Gaussian, and the variational metho
not always very successful. Therefore we use numerica
sults to indicate that the phase squeezing does indeed o
We reduce the number of atoms toN5100 to make squeez
ing more obvious in the figures. Thus in the mean-field
proximation, we expect superposition states forx1,21/99
'20.0101. In Figs. 5~a! and 5~b! we show the Wigner func-
tion for a succession of states withDv̄50, and nonlinearities
~a! x1520.01 and~b! x15 20.0115. For a vanishing non
linearity we have circles centered on the equator. The s
becomes increasingly elongated in the number difference
rection and strongly squeezed in the relative phase direc
around the equator. Note that state~b! lies in the range where
the mean-field picture predicts a cat state. With a furt
increase tox1520.012, the phase squeezed state bifurca
to the cat state. This is seen in Fig. 5~c!, where we plot theQ̃
function rather than the Wigner function to avoid interfe
ence fringes. In Fig. 5~d! we treat an asymmetric case wi
Dv̄50.001 andx1520.0115. Here the energy gained b
adopting the superposition state is outweighed by the en
difference between the two traps, and the lowest-energy s
is a single drawn out ‘‘teardrop.’’ The extended tail is clea
a vestige of the superposition states that are favorable
vanishing or very small asymmetries. The long tail and ph
squeezing may be thought of as a ‘‘best attempt’’ to attai
catlike state. In Fig. 6 we show the phase varianceDf
5(^Jy

2&2^Jy&
2)/(J/2) as a function of the nonlinearity for sev

eral values of the detuningDv̄. For small asymmetries ther

FIG. 6. Relative phase varianceDf5(^Jy
2&2^Jy&

2)/(J/2) as a
function of nonlinearityx1 . The legend indicates line types fo
different detunings.
ls.
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is strong phase squeezing. At larger detunings, the syste
too far from the superposition state regime, and the resid
phase squeezing is quenched out.

VII. CONCLUSION

In this paper we studied the quantum statistics of
ground state of a two-mode model for coupled Bose-Eins
condensates. We found strong squeezing of the number
ference for positive nonlinearities and a regime of squeez
in the relative phase for negative nonlinearities. Within t
validity of the two-mode approximation, our model can tre
systems of arbitrary numbers of atoms. However, its ap
cability is limited by the eventual distortion of the conde
sate mode functions that occurs for condensates of more
a few thousand atoms. In order to treat larger condensa
one must account for a larger number or possibly all of
trap modes. This might be attempted by a variational so
tion of the full second-quantized Hamiltonian. In this fas
ion, Ciracet al. @17# calculated the energies of superpositi
state, while Spekkens and Sipe@27# considered the coher
ence properties of double traps, but neither discussed
detailed shape of the ground state. Other authors are
rently using stochastic simulations of generalized Gro
Pitaevski equations with additional quantum noise terms
account for the higher modes@28#.
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APPENDIX A: SEPARATION OF THE CONTRACTED
HAMILTONIAN

Here we provide a fuller account of some of the steps
finding the ground state in the single oscillator Hilbert spa
We first note that the rotation operator~18! transformsJx
andJz as

Ru,pJxRu,p
21 5Jxcosu2Jzsin u, ~A1!

Ru,pJzRu,p
21 5Jxsin u1Jzcosu. ~A2!

Using these relations, we rotate the original Hamiltonian~15!
to obtain

H85Ru,pHRu,p
21 5Jx~Dv̄ sin u2h cosu!

1Jz~Dv̄ cosu1h sin u!1x1@Jx
2sin2u1Jz

2cos2u

1sin u cosu~JxJz1JzJx!#. ~A3!

Performing the contraction to the harmonic-oscillator Hilb
space, we find the new Hamiltonian
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F5x1JS 1

2
sin2u1J cos2u D2J~h sin u1Dv̄ cosu!

1~a1a†!AJ

2
@Dv̄ sin u2h cosu2x1sin u cosu

3~2J21!#1~a21a†2!x1

J

2
sin2u1a†a$h sin u

1Dv̄ cosu1x1@J sin2u2~2J21!cos2u#%

1~a†a21a†2a!x1A2J sin u cosu1a†2a2x1cos2u.

~A4!

SeparatingF into Gaussian and non-Gaussian parts by
posing the constraints in Eqs.~28! gives

FG5x1S J

2
sin2u1cos2u~J22^a2&222^a†a&2! D

2J~h sin u1Dv̄ cosu!1~a1a†!AJ

2
$Dv̄ sin u

2h cosu1x1sin u cosu@2~2J21!12^a2&

14^a†a&#%1~a21a†2!x1S J

2
sin2u1cos2u^a2& D

1a†a„h sin u1Dv̄ cosu1x1$J sin2u

1cos2u@2~2J21!14^a†a&#%… ~A5!

and

FNG5~a†a21a†2a!x1A2J sin u cosu1a†2a2x1cos2u

2~a1a†!x1A2J sin u cosu~^a2&12^a†a&!

2~a21a†2!x1cos2u^a2&2a†a4x1cos2u^a†a&

1x1cos2u~^a2&212^a†a&2!. ~A6!

In these expressions, we have taken^a2&5^a†2&, which
must be true by symmetry (^w&50).

APPENDIX B: EFFECTS OF THE NONGAUSSIAN
HAMILTONIAN

Here we show the details of the perturbation calculat
to find the effects of the non-Gaussian part of the Ham
tonian FNG. We show working only for the first-order cor
rection. The second-order calculation proceeds identic
but is much longer. We begin with the expression for t
first-order perturbation to the Gaussian ground state:

uF~1!&a5u 0̃&a1 (
kÞ0

a^ k̃ uFNGu 0̃&a

E0
~0!2Ek

~0!
u k̃ &a . ~B1!

It is easier to work in theb representation with the state

uF~1!&b5u0&1 (
kÞ0

^kuFNGu0&

E0
~0!2Ek

~0!
u0&, ~B2!
-

n
-

ly
e

whereFNG must be expressed in theb basis. Applying the
Bogoliubov transformation~35!, we obtain

FNG5x1cos2u@c2s2~b†41b4!2~c3s1cs3!~b†3b1b†b3!

1~c41s414c2s2!b†2b2#1x1A2J sin u cosu

3@~cs22c2s!~b†31b3!1~c32s312cs222c2s!

3~b†2b1b†b2!#1D~b†21b2!, ~B3!

wherec5coshr and s5sinhr, and D5T(c21s2)2csS ac-
counts for any quadratic part left over from the se
consistent approach. We have typically found this to be n
ligibly small. Substituting Eq.~B3! in Eq. ~B2!, we find the
unnormalized new state as

uF~1!&5k0u0&1k2u2&1k3u3&1k4u4&, ~B4!

with

k051, ~B5!

k252
D

A2AS224T2
~B6!

k352A2

3

x1A2J sin u cosu~cs22c2s!

AS224T2
, ~B7!

k452A3

2

x1cos2uc2s2

AS224T2
. ~B8!

Setting the density matrixra5uF (1)&aa^F
(1)u, we define the

characteristic function

x~z!5Tr$raeza†2z* a%5Tr$S†~r !raS~r !S†~r !eza†2z* aS~r !%

5Tr$rbeb†~zc1z* s!2b~zs1z* c!%

5 (
$ i , j %P$0,2,3,4%

kikj^ i ueb†~zc1z* s!e2b~zs1z* c!u j &

3exp@2~zc1z* s!~zs1z* c!/2#, ~B9!

from which the Wigner function is found as

W~a!5
1

p2E eaz* 2a* zx~z!d2z. ~B10!

Expanding the exponential in the expectation value of E
~B9! and using Rodrigues’ formula for the Hermite polyn
mials Hn(x)5(21)nexp(x2)dn/dxnexp(2x2) @29#, one finds
that the Wigner function has a closed-form expression a
sum of two-dimensional harmonic-oscillator functions. Th
makes for rapid numerical calculation, but the expression
too lengthy to warrant inclusion.

APPENDIX C: INVERSE ROTATION OF DISTRIBUTIONS
ON THE SPHERE

Suppose a contourC0
p of the Wigner function in the plane

is parametrized as
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C0
p~ t !5„x0~ t !,y0~ t !…, ~C1!

where x5a1a* and y52 i (a2a* ) are quadrature vari
ables. Projecting onto the sphere using the inverse of
~26! we obtain

u0~ t !5cAx0
2~ t !1y0

2~ t !, ~C2!

w0 ~ t !5tan21S y0~ t !

x0~ t ! D , ~C3!

where care must be taken in determining the correct quad
of w0 . In Cartesian coordinates, the contour on the spher
expressed
tl

et

d,

v

tt
q.

nt
is

C0
s5„j x~ t !, j y~ t !, j z~ t !…5J~sin u0cosw0 ,sin u0sin w0 ,

2cosu0!, ~C4!

and is transformed by the rotation to

C1
s5~ j xcosu2 j zsin u, j y , j xsin u1 j zcosu!, ~C5!

which may then be reexpressed in terms of new spher
coordinatesu1 andw1. Finally, if u is small so that the num
ber of atoms in trap 2 greatly exceeds that in trap 1, we
obtain a Wigner contour for the state of a ‘‘single’’ conde
sate by projecting the contourC1

s(u1 ,w1) directly back to the
plane using Eq.~26!.
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