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Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling
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We consider the precise quantum state of two trapped, coupled Bose-Einstein condensates in the two-mode
approximation. We seek a representation of the state in terms of a Wigner-like distribution on the two-mode
Bloch sphere. The problem is solved using a self-consistent rotation of the unknown state to the south pole of
the sphere. The two-mode Hamiltonian is projected onto the harmonic-oscillator phase plane, where it can be
solved by standard techniques. Our results show how the number of atoms in each trap and the squeezing in the
number difference depend on the physical parameters. Considering negative scattering lengths, we show that
there is a regime of squeezing in the relative phase of the condensates which occurs for weaker interactions
than the superposition states found by Cieaal. (quant-ph/9706034 The phase squeezing is also apparent in
mildly asymmetric trap configurationsS1050-29478)06303-3

PACS numbdss): 03.75—b

[. INTRODUCTION treatment of this question, Lewenstein and Y/di0] sug-
gested that the condensate is actually in an amplitude quadra-
Traditionally, a Bose-Einstein condens&BEC) is often  ture eigenstate. In a fuller analysis, Dunningham and co-
viewed as a coherent state of the atomic field with a definitqvorkers [11,12 showed that for positive(repulsive
phasef1]. It is well known that there are problems with this interactions the state is strongly number squeezed, and re-
view, however, related to the fact that the phase of th&embles a bent version of the amplitude squeezed state that
atomic field is not an observablé—4]. The Hamiltonian for  minimizes number fluctuations. This has the potentially ob-
the atomic field is independent of the condensate phase argrvable consequence of increasing the revival time in col-
so the correct coherent state is only defined up to its meajpses and revivals of the relative ph4$8—16 due to the
number. Often it is convenient to invoke a symmetry-reduced number variance of the squeezed state. The ap-
breaking Bogoliubov field to select a particular phase, bubroach of Dunningham and co-workers was based on the
this does not correspond to any physical field, so the procesymmetry-breaking picture described above. Their model
dure is not totally satisfactory in a formal sense. In additionthus described the quantum state of a single damped driven
a coherent state implies a superposition of number stategondensate with the phase determined by some much larger
whereas in the current single-trap experim¢btsg| there is  reference condensate which does not appear in the calcula-
a fixed number of atoms in the trdpven if we are ignorant tion. Thus while the number squeezing they predicted is in-
of that numbey, and the state of a single trapped condensateuitively natural, the model faces the same formal difficulties
must be a number stat@r more precisely, a mixture of mentioned above in relation to symmetry breaking.
number statgs Both these problems are bypassed by consid- |n this paper, we combine these two ideas by seeking an
ering a system of two condensates for which the total numaccurate description of the ground state beyond the coherent
ber of atoms\ is fixed. Then, a general state of the system isstate picture, for a system of two coupled condensates with a
a superposition of number difference states of the form  fixed total number of atoms. We do this by reducing the full
quantum field-theoretical description to an approximate two-
mode problem, valid for condensates of a few thousand at-
oms. The problem is then well defined in the senses dis-
cussed above: we deal with relative rather than absolute
As we now have a well-defined superposition state, we caphases, and are able to consider a completely closed system
legitimately consider the relative phase of the two condenwithout the complications of driving and damping, so that
sates, which is an Hermitian observable. Indeed, the dramatitie ground state is unambiguously a pure state. Using a
observation of interference between two coherent BE@}s variational approach, we then find approximate solutions to
constitutes a measurement of exactly this. In the absence tifie two-mode problem which are natural analogs of the
atomic collisions, the expansion coefficients in Et).obey  single condensate states found by Dunningham and co-
a binomial rather than Poissonian distribution, as would bevorkers. Our approach also works for negatiadtractive
expected for a coherent state. interactions, and we predict a regime of significant phase
However, there is a more straightforward objection to thesqueezing in between the coherent-state-like behavior with
identification of the condensate with a coherent state. This igo interactions, and the Scliinger cat states reported pre-
that, in real experiments, the atoms experience collisions inviously [17,18 that occur with significant interactions.
troducing a nonlinearity into the Hamiltonian for the system. The paper is structured as follows. In Sec. Il we briefly
We then know immediately thafunless very strongly summarize the quantum field theory for the two-condensate
damped the true state can not be a coherent state, leavingroblem, and derive the approximate two-mode Hamiltonian.
aside issues of absolute versus relative phase. In the firtt Sec. Ill we discuss a representation of the two-mode states
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using the Bloch sphere, and outline our method for findingwhere

the ground state of the system. We construct the solution in

detail in Sec. IV. In Sec. V, we present our results and com- s 5 2 2

pare the predictions of our method with exact solutions for f d® ()| - —V +——| (1), )
systems with small numbers of atoms. We consider negative

scattering lengths and the associated phase squeezing in Sec. U.

VI before we conclude. Xi:?'J d3r ()%, (8)

II. GOVERNING HAMILTONIAN
A. Reduction to two-mode Hamiltonian X12:— d3r|¢1(r)|2|¢2(r)|2 9)

Our model describes two condensates of atoms of mass
m, with a linear Josephson coupling and weak nonlinear in- o) _
teractions. We consider a single trap with the condensates n= —f d3r (1) a(r) (10
distinguished by their internal atomic stdte7]. The cou- @0
pling is provided by laser-induced Raman transitions be-
tween the two atomic states. Following Cireical. [17], the
second quantized Hamiltonian takes the form

for i=1 and 2. Here we have moved into the interaction
picture and introduced dimensionless variables, scaling the
Hamiltonian by an appropriate energy, and the position
H=H1+H>+Hix+Hcoups (2 by the length scale,=A/Mmw, such thatr=x/x, and
&i(r)=x32¢(x). Further, \;=w;/wo, U;=4ma,/x,, and
U12—47Ta12/X0.
52 As shown by Milburnet al. [19], the same two-mode
— —V2+Vj(x) model also describes coupling between condensates in a
2m double-well potential. In this case, the two lowest modes are,
strictly speaking, the symmetric and antisymmetric modes of
f//]-(x), (3) the entire double well, but for a strong dividing potential
barrier it is an accurate approximation to use modes describ-
Amh2a ing gtoms'in one or thg other trgp. The linear coupling is
Hint:_lzf d3x JL(X) PH(X) g (X)Pp(x),  (4)  provided directly by spatial tunneling through the barrier and
2m has a strengtlpy=AE/wy whereAE is the frequency sepa-
a ration of the two(linea) moded 19]. Assuming the potential
H o= — TJ 3% [ D1(%) lp;(x)e—u&‘t_'_ ¢I(X) (e, \l;)vaerré(;rnlsmr;zllaeté\;eiglstrong, the modes are well separated, and
(5) Equation(6) defines our problem completely. For large
. . condensates, the mode functions are altered by the collisional
wherej =1 and 2. Here the field operato#g(x) and»(X) interactions, and the two-mode approximation breaks down.
annihilate atoms at positionin condensates 1 and 2, respec- As shown in Ref[19], a simple estimate shows this occurs
tively, and satisfy the relatio[fbi(x),z://;‘(x’)]: 8ij6(x—x").  when the number of atoni$ satisfiesNa>x,, wherea is a
The termH , describes each of the condensates in the abtypical scattering length an, is a measure of the trap size.
sence of interactions with the other. They experience spheriAssuminga~5 nm{[6,20] and a large trap witlg~10 um,
cal harmonic trap potentialé, , of frequenciesw; and w,, we find that the two-mode approximation should be accept-
and have scattering lengthe, and a,, respectively. The able forN<2000.
cross-phase modulation terry,; describes collisional inter-
actions between the condensates with scattering lesgth B. Angular momentum representation
The laser-induced coupling is described Hy,,,, with
the Rabi frequency and the detuning of the classical laser
field. In our work, we assume equal scattering lengahs
=a,=a,,, but allow the trap frequencies to differ.
The procedure to obtain the two-mode Hamiltonian is

with

H]:f d3x ¢ (%)

2 ~ ~
LT (%) (%)

The Hamiltonian can be reduced to a simpler form by
exploiting the equivalence between the algebra for two har-
monic oscillators and that for angular momentum, by intro-
ducing the new operatof21,19

well known [17,19. We approximate the field operators as ~blb,
U1(X)=b1d1(x) and ¢,(X)=b,p,(X) where ¢, A(x) are
(rea) normalized mode functions for the two condensates, J =b.b!

and b, , are the associated mode annihilation operators
which obey the standard commutation relatipbs,b;]=0, 1
[b;,b ]] dij - Then Eq.(2) becomes Jzzz(blbl_b;bZ) (11)

H~(w;+ 8)blb;+ w,bib,+ x1blblbib; + x,biblb,b, .
an

th.hih.— 2 (h.bf+ bt
+ X1201b10202 = 5 (byby+D1by), ®) J=3(3,+30), (12)
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A. Bloch sphere

1
JV:E(‘L =), (13 Our approach relies closely on the Bloch sphere represen-

tation of the angular momentum, which we must briefly in-
These operators do indeed satisfy the usual angular mometroduce. A detailed analysis was given by Arecehal.[23].
tum commutation relations, justifying the choice of notation.Quantum states in the angular momentum Hilbert space can
In addition, we find be usefully represented on the Bloch sphere. Certain states—
the atomic coherent states or “Bloch” statd®23]—
correspond to a single point on the sphere. Defined as the
rotated state$6,¢)=R, ,|J,—J),, where the rotation op-
erator

N/ N
FP=3+ 2+ =5 > +1

551, 14

where the total number of atonhs=n;+n,=hlb;+bjb, is i ”
a constant of the motion, so we deduce that we are working Ry ,=exg 0/2(J,e”'?=J_¢e'?)]

with the angular momentum algebra fb+ N/2. In terms of _ s e

the new variables, Ed6) takes the form ex —10(,sin ¢=Jycos )], (18

they are labeled by the spherical coordinadegnd ¢ corre-

H=J(or+ 8+ m— x1— x2) + I2(x1+ X2+ X1 + Awd, sponding to the state’s point on the sphere. Note that in terms
of our BEC problem, the north pol&= ) and south pole
+X+J§_ g(J++J_) |6=0) represent the states with all atoms in mode 1 or 2

respectively. States lying on the equator with 77/2 repre-
sent an equal division of atoms between the mdadsich

for #0, doesnot imply the number stat¢éN/2,N/2), but
rather an entanglement of for(t) with a binomial distribu-

tion of expansion coefficientsThe Bloch states are the ana-
logs in the angular momentum algebra of the standard coher-
ent states of the harmonic oscillatp23]. They share a
number of properties with the coherent states, for instance
minimum uncertainty in the natural variables. In addition,
more general nonclassical states described by the state vector
| ) or density matrixp can be naturally pictured in terms of

a quasiprobability distribution function on the sphere,

Note the useful fact that both the difference in the self- _ 5
nonlinearities y_ = x;— x> and the cross-nonlinearity;, Q 1y (6,0)=(0,0|M)%, (19

merely shift the values ah w andy, and introduce no new ~
terms. Thus there is no restriction of the physics by assuming Q,(0,0)=(0.¢lp|0,¢), (20

equal scattering lengths. We now calculate these parameters

for realistic experimental values. Taking tk&Na atom, for n z'al?alogyhto th? familiarQ fgncUon Iln the harr;:omc-
example, we hava~5 nm, and suppose trap frequencies of 03¢ ator phase plang24] Funct!ons analogous to the stan-

a el ’ . . dard Glauber-Sudarshd@hand Wigner distributions can also
order w;=1000 s * [6]. Then taking the scaling frequency

4 : be defined. As discussed below, these analogies can be made
wo=1s"", we obtainy~1500 andy;~1.4. Therefore, the  precise using a formal contraction from the angular momen-
detuningAw may range from zero to a few hundred. The tum Hilbert space to the Hilbert space for a single harmonic
coupling strengthy is largely arbitrary. In the spatial case, it oscillator[23]. While the Bloch states lack some of the use-
can take values up to the order of the trap frequendi®%  ful properties of the coherent staf&8,25 , nonetheless, we

or can be made as small as desired by incresing the tragee pelow that the Wigner @ functions make for useful

separation. measures of quantities such as the squeezing in the number
difference or relative phase in the ground state.

=Awd,+ x, I2— ndy, (15)

where in the last line we have dropped an unimportant con
stant, and introduced the effective detuning

Aw=w+ 66— wp+ (23— 1) y_ (16)
and effective nonlinearity

X+=X1T X2~ X12- (17

Ill. OUTLINE OF APPROACH

For the remainder of the paper we are concerned with the B. Mathematical pracedure

ground state of Eq(15). Milburn et al. [19] presented nu- The angular momentum commutation relations make a
merical calculations of the energy spectrum of this Hamil-direct solution to our problem in the full Hilbert space diffi-
tonian, and the dynamical problem was also stu@ij22.  cult. Section Il A suggests the following alternative ap-
Rather than the spectrum or dynamics, however, our conceproach. We assume that the ground state we seek has a qua-
is with the detailed properties of the lowest eigenstate angiprobability distribution localized to a particular part of the
their dependence on the effective detuning and nonlinearityBloch sphere(Thus we immediately exclude Scliiager

In general, the eigenstates of Ef5) cannot be written ana- cat states such as those found by Ciea@l. [17] and Ru-
lytically. For systems with at most a few hundred atoms, it isostekoskiet al [18], which we treat numerically in Sec. VI.
feasible to find the exact eigenstates in the basiy, @igen- We apply a rotation to the Hamiltonian to bring the mean
stategJ,m=—1J, ... ,J), numerically. Our semianalytic ap- value of the state to the south pole of the Bloch sphere. This
proach can be used for systems of arbitrary size, and lendsust be done self-consistently, as we do not actually know
considerable insight to the problem. the mean value of the state until we have solved the problem.
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We then project the problem to the harmonic-oscillator phase 1
plane using the contraction operation of R&3]. The prob- J,—a'a— — (24)
lem can then be solved in the plane and the ground state 2c

plotted as a Wigner distribution. Finally, we project this dis- 1123 . -
tribution back on to the sphere, and rotate it to the originalVN€rec=1/v2J, and the spaces are formally identical in the
limit c—0. In the same limit, we can contract eigenstates of

mean value, which has by now been determined. Equiva _ i
lently, we can think of the problem being solved in the os-Jz {0 the harmonic-oscillator number states,

cillator phase plane that is tangent to the sphere at the mean 13,M)—|n=J+M) (25)
value of the state. In Sec. IV we make these ideas precise and ' '
provide the solution. and we relate the coordinates according to

. 0
C. Linear problem Eexp(i ¢)—ca. (26)

In the absence of the nonlinear term,(=0), the prob-

lem is trivial. Hamiltonian(15) becomes Later we also use the quadrature operabérsa+a’ and

H=AwJoe ] 21) Y=—i(a—a"), which are the contractions af, and Jy,
2= o respectively. Geometrically, we visualize this contraction as

and, using the rotation relations in Appendix A, it is easy to@ Projection from the Bloch sphere to the phase plane with
see that the rotated Hamiltoniad’ =R, HR;I where the south pole of the sphere coincident with the origin of the
tand= n/AJ is just a multiple ofJ with grand state phase plane. Note that the coherent amplitudgan tal_<e.
13,-2) In’verting the rotation thé exact ground Statevalues throughout the whole phase plane only in the lanit

) Z" il

for the original Hamiltonian is simply the Bloch state —0, and there is naturally a distortion involved in the pro-
jection. Physically, by performing the contraction we discard

0.¢)=tan”*(n/Aw),0). Thus the the ground state of the knowledge that the true ladder of states is bounded at
coupled ideal gas condensates is the entangled state analggth ends rather than just the lower end. However, providing
of the coherent state. This result is well known, though it isine state is localized near the south pole anekl (large
more commonly expressed in the number difference basigiom numbey, the distortion is small. The contraction pro-
[26]. As expected, for vanishing w, the traps are equiva- cess also maps functions from the sphere to the plane, so for
lent, and there is an equal number of atoms in each, wheredsstance we can identify th@otated Bloch sphere distribu-

for Aw#0, the ground state has more atoms in the weaketion functionQ( 6, ¢) with the standard phase plane function
trap. Note that the relative phase of the condensate®.  Q(a)=(a|p|a). Here we define the Wigner-like distribution
This is the reason for our choice of the negative sign in fronion the sphere by a projection of the harmonic-oscillator
of # in the original Hamiltonian(15). Even when we con- Wigner distribution using Eg(26) in reverse.

sider the more complicated states of the nonlinear system,

we see by symmetry that the mean value of the state must B. Variational solution

still have ¢ =0, simplifying the rotation operators we need to
consider. In practice, the phase gfis determined by the
phase of the driving laser field. By a suitable choice of co- We are at last ready to find our approximate solution to

1. Gaussian part

ordinates we may always take it to be zero. the full problem. The procedure is somewhat involved math-
ematically, and we state only the main intermediate steps
IV. NONLINEAR PROBLEM here, leaving the details to Appendix A. The first step is to

rotate Hamiltonian(15) around the positivey axis by an
undetermined anglé, and perform the contraction operation
to the single oscillator phase space to find the new Hamil-

The nonlinear problem is much more involved. As indi- tonianF. Following Ref.[12], we write this Hamiltonian as
cated earlier, the first step is to perform a rotation of the
Hamiltonian by an undertermined angle and then project F=Fc+Fna, 27
the new Hamiltonian into the harmonic oscillator phase, i i
plane with operatora and a' satisfying[a,a’]=1. This I terms of a Gaussian pdf; and non-Gaussian pafiyg,

procedure can be made rigorous through the concept of &€ latter of which satisfies the constraints

A. Contraction from angular momentum
to harmonic-oscillator Hilbert space

group contraction from the angular momentum Hilbert space (Frno)=0
to the harmonic-oscillator Hilbert space. The details can be NG '
found in Ref.[23], to which we refer the interested reader. = —(a' F =0
Quoting the results, the contraction is made by the identifi- {[a.Frnel)=([a",Fral) =0,
cation of operators according to ([a,[a,Fnel]) =([a,[a,Fne]]) =0. (28)
J+_>Ea1“ (22) This separation allows us to find the ground state of the
c ' Gaussian part first, and by assuming a weak nonlinearity,

treat the non-Gaussian part as a perturbation. Appendix A
3 Hla 23) contains the expression for the non-Gaussian part. The
- ¢’ Gaussian part is



2924 M. J. STEEL AND M. J. COLLETT 57

Fe=K+L(a+a')+Saa+T(a?+a'?, (29) Fe=K+(S costfr—2T coshr sinhr)+/S?—4T?b'b.
(37

The first two terms are constants, so the ground state is just
the vacuum in théb representation. As the transformation

K=yx.,J/2 Sir]20+X+J200526_J(Aa_)0080+ 7 sin 6) (35) is induced by the squeezing opera®®(r)=exqr(a’
—a'?)/2] [24], theb eigenstate$i) transform back as

where

+2/2Jx . cos 6 sin 8(a’a?) + y, cofa((a'?a?)
—2(a%)?-4(a'a)?), (30 TYa=S(r)]i). (38)

Thus the ground state in tha representation is just the

J — . squeezed vacuum with
L= E{Aw sin 6— 5 cos 0+ y,sin 6 cos [ —(2J—1)

+2(a2)+4<aTa>]}, (31 ) S—2T
(X ):epr(—Zr):\15+2T. (39
S= 7 sin 6+ Aw cos 6+ y {J sirf6+cofe[ —(2J—1) In the mean-field limit we have the simple results
+4(a'a)]}, (32
Aw=17 cot 6+ y,cos (2J—1), (40)
J
T=x. Esin20+ cog6(a?)|. (33

o Y
X)=\—————= (41)
In Egs.(30—(33), we took(a?)=(a'?), which follows from 7+ Ny sire

the choice ofy as real. Note thaF; depends on moments o
taken over the state which is the solution we are seeking. WEor A w= 0, we find symmetric states wit= /2 as is natu-
can solve the Gaussian part to different levels of accuracyy). Moreover, in the limitgd— =/2 (that is, for Aw/[(2J
according to how we account for these expectation values. 1), ]-0), the non-Gaussian part of the Hamiltonian
(8) Non-self-consistent approaclWe first assume we E -0 (see Appendix A and Fg is independent of any
have known values for the expectation values. For exampleypectation values. Thus in this limit, the projected state is
we may take a mean-field approximation in which all theexactly a squeezed state withX2>=\/m. We
moments are zero, or as explained below we may have olste in passing that for a negative nonlinearity, E¢d)
tained estimates for the moments from a previous less aCC‘b'redicts(Xz)>1, which indicates a possibility of phase-
rate calculationsuch as the mean-field onéVe consider a squeezing. We return to this in Sec. VI.
self-consistent approach in Sec. IV B 2. The rotation amgle )y self.consistent approaciiVe can also find the ground
is fixed by requiring that the linear terms should vanish,  giate of Eq(29) with a self-consistent approach in which the
expectation values are determined to Gaussian approxima-
tion in the course of the calculation. In this case, the first two
L=0. (34) terms in Eq.(37) can not be considered constants, and in
general theéb vacuum is not the lowest eigenstate. The cor-
Except for a constant ternf,g is now purely quadratic, and gct approach is to assume a squeezed vacuum solution
we perform a Boguliobov diagonalization by writing =3(r)|0) to Eq.(29), and find6 andr by minimizing the
expectation value of the energy subject to the constraint in
) Eq. (34). Performing transformatio(85) with this value ofr
a=b coshr —b'sinhr, gives a Hamiltonian in thé representation with a small
off-diagonal part which can be transfered to the non-
Gaussian parE g yet to be treated. In fact, we have found
a'=b'coshr—b sinhr. (35  that we can obtain virtually identical results by proceeding
directly with the Boguliobov diagonalization, and solving
Substituting Eqs(35) into Eq. (29) and setting the terms in  Egs. (34) and (39) simultaneously ford andr, whereL, S,
b2 andb'? to zero, we obtain and T now depend om through the quadratic moments.

2. Non-Gaussian part

exp(—2r)= [S—2T (36) We now include the effects of the non-Gaussian pait
S+2T as a perturbation to the squeezed state just found. We use

second-order perturbation theory to write the corrected state
while the diagonalized Hamiltonian is as
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a<F|FNG|6>a|~

2y =10
|(I) >a_|0>a+k§0 EE)O)—Ef(O) k>a (42)

o5 [[s FFsdDasTIFl]  sFIFue®)asDlF O] @3
& || % (ED-E0)(ED_ED) (EQP—EP)? ;

where from Eq.(37) EQ'=k\/S?—4T? is the energy of the mum uncertainty in the natural variables. We discuss this
unperturbed statk),. We then calculate the Wigner distri- Shortly. For comparison, stafe) is just the Bloch state so-
bution lution to the linear problemy(, =0), with Aw=—0.44, for
which the contours are circles. Note that the mean adgte
1 . . the same distance from the equafisr /2 for stategb) and
W(a)= _2j d?z &7 ~ 9 2y(2), (44)  (c) despite very different values of the magnitude of the de-
7T tuning|Aw|. As indicated by Eq(40), the positive nonlin-
earity tends to push states back toward the equator and is
=Tr{p.expla —z*a)} and p,=|d®@), (D). The details balan;:ed by a much larger ;(?Iueboftvtvhe d(:-rt]un;ng. This de-
of these calculations are given in Appendix B. The final an-veS ToM an energy competition between the ermeJiy

swer has a closed form in terms of Hermite Gaussians but ignd<‘]2> in Hamiltonian(15).
too long to write here.

where the symmetric characteristic function ig(z)

B. Comparison with the model

3. Combined approach We illustrate the results of our semianalytic method by
In finding ground states, we used the above steps in afptating the nonlinear statés) and(b) in Fig. 1 to the south
iterative scheme. A first approximation is found using thePole, and projecting them to the plane in Figéa)zand 2b),
self-consistent approach to the Gaussian part followed by theespectively. The contours are et */2 of the maximum of
perturbation theory. The quadratic moments appearing ithe Wigner function. Here we see the effect of the fact that
Eqgs.(34) and(39) [throughL, S, andT] are calculated using the orientation of the squeezing is along the parallels of lati-
this first approximation, and a new Gaussian state is choseftde. The state originally af#= /2 [Fig 1(@] is a precise

Finally the perturbation theory is applied again. squeezed state with no bending, but the asymmetric state in
Fig. 1(b) is distorted on projectiofisolid line in Fig. Zb)].
4. Antirotation The other lines in Fig. @) indicate our semianalytic predic-

To complete the problem, the contours of the Wignert'ﬁg t;) tieecgg?'?éﬂerSpsrtl:aga%)ga:f;g'aThfo qgi:%?] I}lgre
function just obtained must be projected back to the spher e\(lavx ectatiorllj\l/alugsIingEq§O)—(33) lrhe dgﬁdz;slhedlline
and the original rotation of the Hamiltonian by anglere- is for tﬁe improved result in which thé expectation values are
versed. This is completely elementary and we reserve th €1mp . . P
) . irst estimated using the self-consistent approach. The bend-
equations for Appendix C. : ! : .
ing we find here is a clear analog of that found for a single

V. RESULTS
A. Exact states

In this section, we present a mixture of exact numerical
results and those obtained by our semianalytic procedure.
This allows us to test the agreement in the regime where the
size of the Hilbert space is small enough to permit a com-
plete numerical solution. To begin, in Fig. 1, we show three
sample exact states fof= 100 atoms plotted as contours of
Wigner functions on the surface of the Bloch sphere. There
are two contours for each state at heights ande™ /4 of
the maximum of the Wigner function. Statéa) and (b)
show states with a nonlinearity,. =0.75 and detuning\ o
=0 and 30, respectively. Both states show strong squeezing
in the number differencé&he vertical axisl,), while for the
asymmetric cas¢b) the atoms are predominantly found in
the trap of lower energy. Note that the sense of squeezing is
along parallels of latitude and not along the great circle FIG. 1. Contours of the Wigner function on the Blgch sphere for
through the mean-field point. This is rather obvious—we ex-exact solutions wittN=100 atoms anda) detuningA =0, non-
pect squeezing along the number difference dxisbut it linearity y, =0.75; (b) Aw=30, y., =0.75; and(c) Aw=—0.44,
has the effect that the states are in most cases far from minj-,.=0.
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FIG. 2. Contours of the Wigner function projected into the plane ~ FIG. 3. () Mean angular positiod as a function of nonlinearity
for stateg(@) and(b) in Fig. 1. The solid lines are the exact results. x, for Aw=0, 25, 50, 75, and 10Qb) Discrepancy in the mean
In (b), we also show the prediction of the mean-field approximationangleé from the exact result as calculated by the mean-field picture
(dashed ling and that using corrected versions of the quadratic(dotted and corrected moments pictu¢golid). The curves are la-
moments(dot-dashed ling beled by the detuning .

condensate in Ref12], but in our case arises purely from consistent predictiongsolid line), from the exact value cal-

the geometric effect of projection. As our theory gives theculated numerically. The curves are labeled with the value of

exact symmetric state, the lines are CO'”C'de.”.t in Fig).2 the detuningAZ There is a clear improvement over the
Theitilependence of the mean af‘gu'af position of _the Stalgsif-consistent case, though it is less dramatic for the larger

=tan ~(—(J,)/{J,)) on the detuning and nonlinearity for detuning.

exact solutions witiN=200 is shown in Fig. @&). This, of

course, is a measure of the imbalance in the populations

each trap:(n,)=J(1-cos6) and (ny)=J(1+cosf). We  oiorqin Fig. 4. The solid lines are the exact result, the dotted
plot the mean angl@ as a function of the nonlinearity. |inag our approximate result using the corrected quadratic
for detunings ofAw =0, 5, 25, 50, 75, and 100 which label moments, and again the curves are labeled by the detuning
the curves. Asy. increases, the mean value increases fromy - ForAw =0, the state is always centered on the equator

the linear resultp=tan '(7/Aw) toward the symmetric and the number squeezing grows stronger with the nonlin-
value #= m/2, with the curves for larger detuning shifting at earity. For this case, in the limié— 0, when the projection
larger nonlinearities. From Ed40), we see that the most gives the exact solution, we havesn=N[7/(7
rapid change occurs fog,~A«/(2J—1). As explained +y,N)]¥% The discrepancy of this curve from the exact
above, the tendency toward symmetric states is a result of amsult is not visible in Fig. 4. The behavior is somewhat
increasing energy penalty for asymmetric states from thelifferent for the other cases. Initially the spread in number
(J2) term in the Hamiltonian. We check the accuracy of ourincreases, before turning around and becoming coincident
model in Fig. 3b) showing the discrepancy in the mean with the decreasing symmetric case. The initial rise in the
angle # according to the mean-fiel(Hotted ling and self- variance agrees closely with the Bloch state resiit

We consider the behavior of the spread in number differ-
Unce sn= JVar(n,—n,)=4+Var(J,) for the same param-
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cessful for cases with large detunings. These states are highly
asymmetric, and therefore the projected states show signifi-
cant bending. The perturbation from the Gaussian squeezed
state is thus larger and our calculation less accurate.

VI. NEGATIVE NONLINEARITIES

Var(An)

We demonstrate briefly here that for a negative nonlinear-
ity there is a regime of phase squeezing rather than number
sgueezing. Using a mean-field picture, Cied@l.[17] found
______ o a range of superposition states for negative nonlineasiies

R tractive interactions They showed the two lowest-energy
states are even and odd superpositions of states in which
most of the atoms are in trap 1 or most are in trap 2. In our
, notation they arise as follows. In the mean-field approxima-
M 15 2 tion of Eq. (40), and taking the symmetric cagew="0, we

FIG. 4. Spread in the number differenéa=[var(n,—n,)]*2 have
Solid lines are exact results, and dotted lines are predictions of the _
corrected moments theory. The curves are labeled by the detuning sing= —77_
Aw. X+(N—-1)

(45

i o o ) This equation clearly only has solutions far, | sufficiently
\/ Nsiné (not shown in figurg until just before the maxima |5yge. When this is true, there are two degenerate mean-field

of the curves. Thus we see that initially the nonlinearityground state$,0) and |7 — 6,0). Cirac et al. showed that
shifts the mean value of the state without affecting its shapehe superposition or “Schdinger” cat states|+)=(1/
In this plot, we see that our approximate method is less sucﬁ)(| 6,0)=|7— 0,0)) give a lower value for the energy, and

(d)

FIG. 5. Exact states for negative nonlineariti€a) Wigner function for y,.=—0.01 andAw=0. (b) Wigner function for y,

=-0.0115 andAw=0. (c) Q function for y, = —0.012 andA w=0. (d) Wigner function fory, = —0.0115 andA w=0.001.
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is strong phase squeezing. At larger detunings, the system is
too far from the superposition state regime, and the residual
phase squeezing is quenched out.

VII. CONCLUSION

In this paper we studied the quantum statistics of the

5 ground state of a two-mode model for coupled Bose-Einstein
0.8r condensates. We found strong squeezing of the number dif-
06l ference for positive nonlinearities and a regime of squeezing

in the relative phase for negative nonlinearities. Within the
04 validity of the two-mode approximation, our model can treat
0.2 systems of arbitrary numbers of atoms. However, its appli-

. . . . . cability is limited by the eventual distortion of the conden-
-0.04 -0.02 2 0.02 0.04 sate mode functions that occurs for condensates of more than
a few thousand atoms. In order to treat larger condensates,
FIG. 6. Relative phase varianmz;:((J§>—<Jy>2)/(J/2) asa oOne must account for a larger number or possibly all of the
function of nonlinearityy. . The legend indicates line types for trap modes. This might be attempted by a variational solu-
different detunings. tion of the full second-quantized Hamiltonian. In this fash-
ion, Ciracet al.[17] calculated the energies of superposition
thus are a better approximation to the lowest energy levelstate, while Spekkens and Sip27] considered the coher-
Ruostekoski and Wallgl8] proposed a scheme for generat- ence properties of double traps, but neither discussed the
ing similar superpositions in number for free condensatesdetailed shape of the ground state. Other authors are cur-
Numerically, we have found that the exact ground states imently using stochastic simulations of generalized Gross-
this regime are indeed of a superposition nature, though dPitaevski equations with additional quantum noise terms to
course they are superpositions of distorted Bloch states, naiccount for the higher modé¢28].
of true Bloch states. What about the regime>|y.|(2J
— 1) for which Eq.(45) has no solutions? Equatiof#0) and
(41) give solutions withd=x/2 and (X?)>1. As in the ACKNOWLEDGMENTS

Gaussian approximation the states have minimum uncer- \yqo acknowledge support of the Marsden fund of the

tainty, we are led to expect phase squeezing. While ougp. | society of New Zealand, the University of Auckland

method is applicable for negative nonlinearities, the stategegearch Committee, and the New Zealand Lotteries’ Grants
can be highly non-Gaussian, and the variational method IBoard.

not always very successful. Therefore we use numerical re-
sults to indicate that the phase squeezing does indeed occur.
We reduce the number of atomsiis=100 to make squeez- APPENDIX A: SEPARATION OF THE CONTRACTED

ing more obvious in the figures. Thus in the mean-field ap- HAMILTONIAN
proximation, we expect superposition states for< —1/99 ) .
~—0.0101. In Figs. &) and 5b) we show the Wigner func- Here we provide a fuller account of some of the steps in

finding the ground state in the single oscillator Hilbert space.
We first note that the rotation operat(t8) transformsJ,
t%nd J, as

tion for a succession of states withw = 0, and nonlinearities
(@ x+=—0.01andb) y, = —0.0115. For a vanishing non-
linearity we have circles centered on the equator. The sta
becomes increasingly elongated in the number difference di-

rection and strongly squeezed in the relative phase direction RﬁwaXqusz‘chos 6—J,sin 0, (A1)
around the equator. Note that stédtelies in the range where '

the mean-field picture predicts a cat state. With a further

increase tgy, = —0.012, the phase squeezed state bifurcates ngszRgﬂl,szsin 0+J,cos 6. (A2)

to the cat state. This is seen in Figch where we plot th&
function rather than the Wigner function to avoid interfer-
ence fringes. In Fig. @) we treat an asymmetric case with

Aw=0.001 andy, =—0.0115. Here the energy gained by

adopting the superposition state is outweighed by the energy o

difference between the two traps, and the lowest-energy stateH' =R, ,H R;}T: Jy(Awsin 6— 7 cos 6)

is a single drawn out “teardrop.” The extended tail is clearly _

a vestige of the superposition states that are favorable for +J,(Awcos 6+ 7 sin 0)+X+[J§sinz¢9+ Jicosze
vanishing or very small asymmetries. The long tail and phase )

squeezing may be thought of as a “best attempt” to attain a +5in 6 cos 6(JxJ+ Iz |- (A3)
catlike state. In Fig. 6 we show the phase variadcé

=((IH)—(3)A/I2) as a function of the nonlinearity for sev- performing the contraction to the harmonic-oscillator Hilbert
eral values of the detuninrw. For small asymmetries there space, we find the new Hamiltonian

Using these relations, we rotate the original Hamiltor(iEs)
to obtain
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—J(7 sin 6+Aw cos6)

1
F:X+J(§sinzt9+3 cosé
J  — .
+(a+ah) \/;[Aw sin 6— 7 cos #— y . sin 6 cos 6

J
X (2J—1)]+(a%+a')y. Esinsz— a'a{7 sin ¢

+Aw cos 6+ y,[J sifo—(2J—1)cod]}

+(a'a?+a'2a)y. v2Jsin 6 cos 6+a'2a2y., cods.
(A4)

Separating- into Gaussian and non-Gaussian parts by im-

posing the constraints in EqR8) gives

Fo=x+ %sin20+ cog6(J?>—(a?)?—2(a'a)?)

_ 3
—J(7 sin +Aw cos )+ (a+a’) \[E{Aw sin @
— 77 COS @+ x.sin A cos 0] — (21— 1) +2(a?)

+4(a'a)]}+(a?+a'?)y. %sin20+ cog6(a?)

+a'a(y sin 6+Aw cos 6+ y.{J sirte
+cogd[—(2)-1)+4(a'a)]}) (A5)

and

Fne=(ata?+a'2a) ., V2 sin 6 cos 6+a'2a2y, cod
—(a+af)y,2Jsin 6 cos 6((a?) +2(a'a))
—(a?+a')y,cofe(a?)—a'ady, cogh(a’a)
+x:cog0((a?)?+2(a'a)?). (AB)

In these expressions, we have takgf)=(a'?), which
must be true by symmetry ¢)=0).

APPENDIX B: EFFECTS OF THE NONGAUSSIAN
HAMILTONIAN

Here we show the details of the perturbation calculation

2929

whereFyg must be expressed in thebasis. Applying the
Bogoliubov transformatiori35), we obtain

Frno= x4+ coS0[c?s?(b*+b*) —(c3s+cs)(b™b+bTb3)
+(c*+ 5%+ 4c2s)b 2]+ y, \2J sin 6 cos 6
X[(cs?—c?s)(b™3+b3) +(c3— s+ 2cs?—2¢2s)

X (b"b+b™b?)]+A(bT2+b?), (B3)

wherec=cosh ands=sintr, and A=T(c?>+s?)—csSac-
counts for any quadratic part left over from the self-
consistent approach. We have typically found this to be neg-
ligibly small. Substituting Eq(B3) in Eq. (B2), we find the
unnormalized new state as

| W) =ko|0) +kz|2) +K3|3) +ky|4), (B4)
with

koz 1, (BS)
k,= A (B6)

2 2412
e 2 x-\/2Jsin 6 cos 6(cs?— c3s) ®7)

: 3 JS—4T? ’
3y cosfc?s?

kKy=—\/z—F/——=—. (B8)

2 $?—4T1?

Setting the density matrip,=|®), (®1)|, we define the
characteristic function

X(2)=Tr{p&@ ~Z A =Tr{S'(1)p,S(r)S'(r)e?® ~7"a5(r)}

— Tr{pbebT(zc-f—z* s)—b(zs+z* c)}

. T _ .
= kikj<||eb (zc+z*s)e b(zs+z*c)|J>
{i.i}e{0,2,3,4

Xexd —(zc+z*s)(zs+z*c)/2], (B9)
from which the Wigner function is found as
1 * *
W(a)=—; f ev? ~ @2y (z)d?z. (B10)
ar

to find the effects of the non-Gaussian part of the Hamil-

tonianFyg. We show working only for the first-order cor- Expanding the exponential in the expectation value of Eq.

rection. The second-order calculation proceeds identicallygg) and using Rodrigues’ formula for the Hermite polyno-
but is much longer. We begin with the expression for themjais H, (x) = (— 1)"exp&ddVdx'exp(—x?) [29], one finds

first-order perturbation to the Gaussian ground state:

|(D(1)>a:|’6>a+ 2 a<k|FNG|O>a

2 K, Bl
o Eg))_E{(o) | >a ( )

It is easier to work in thd representation with the state

k[Fn
@0)y=l0+ 3, ST )

EQ - EQ (B2

that the Wigner function has a closed-form expression as a
sum of two-dimensional harmonic-oscillator functions. This
makes for rapid numerical calculation, but the expression is
too lengthy to warrant inclusion.

APPENDIX C: INVERSE ROTATION OF DISTRIBUTIONS
ON THE SPHERE

Suppose a contouf of the Wigner function in the plane
is parametrized as
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CB(t) = (Xo(1),Yo(1)), (CY 0=(x(1),jy(1),jAt))=J(sin Bocos ¢g,Sin Gosin ¢o,
wherex=a+a* andy=—i(a—«a*) are quadrature vari- —Cos 6p), (CH
ables. Projecting onto the sphere using the inverse of Eq.

(26) we obtain and is transformed by the rotation to
Bo(t) =c\Xx5(t) +y5(t), (C2) C3=(jxCOS 60— ,Sin 8,j,,jxsin 6+],cos6), (CH)
[ Yo() which may then be reexpressed in terms of new spherical

@o(t)=tan %o(D) ) (C3  coordinate®; ande;. Finally, if 6 is small so that the num-

ber of atoms in trap 2 greatly exceeds that in trap 1, we can
where care must be taken in determining the correct quadra@btain a Wigner contour for the state of a “single” conden-
of ¢o. In Cartesian coordinates, the contour on the sphere isate by projecting the contodi( 6, ,¢,) directly back to the
expressed plane using Eq(26).

[1] S. M. Barnett, K. Burnett, and J. A. Vaccarro, J. Res. Natl.[17] J. I. Cirac, M. Lewenstein, K. Mmer, and P. Zoller,

Inst. Stand. Technoll01, 593(1996. quant-ph/9706034.
[2] A. J. Leggett and F. Sols, Found. Phgd, 353(1991). [18] J. Ruostekoski, M. J. Collett, R. Graham, and D. F. Walls,
[3] A. J. Leggett, inBose-Einstein Condensatioedited by A. Phys. Rev. A57, 511(1988. _
Griffin, D. W. Snoke, and S. StringafCambridge University [19] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.
Press, Cambridge, 1995Chap. 19, pp. 452—462. Rev. A55, 4318(1997.

[20] D. S. Jinet al, Phys. Rev. Lett77, 420(1996.

[21] J. J. SakuraiModern Quantum Mechanid@\ddison-Wesley,
Reading, MA, 1994

[22] N. Korolkova and J. Péra, Opt. Commun136, 135(1997.

[23] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.
Rev. A6, 2211(1972.

[24] D. F. Walls and G. J. MilburnQuantum OpticySpringer-
Verlag, Berlin, 1994

[25] For example, the more complicated commutation relations of
angular momentum mean that the Bloch states are not the
eigenstates of a simple “annihilation” operator, and e
function defined in Eqs(19) and(20) does not generate anti-

[4] H. Wiseman, Phys. Rev. A6, 2068(1997).

[5] M. H. Andersonet al., Science269, 198 (1995.

[6] K. B. Daviset al, Phys. Rev. Lett75, 3969(1995.

[7] J. R. Enshekt al, Phys. Rev. Lett77, 4984(1996.

[8] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett.
78, 985(1997.

[9] M. R. Andrewset al, Science275, 637 (1997.

[10] M. Lewenstein and L. You, Phys. Rev. Left7, 3489(1996.

[11] J. A. Dunningham, Master’s thesis, University of Auckland,
1997 (unpublishegl

[12] J. A. Dunningham, M. J. Collett, and D. F. Walls, Phys. Rev.

A 55, 1398(1997). normally ordered moments of the operatdrs,J,, andJ. , as
[13] E. M. Wright, D. F. Walls, and J. C. Garrison, Phys. Rev. Lett. might be hoped.
77, 2158(1996. [26] K. Mdlmer, Phys. Rev. A5, 3195(1997.
[14] T. Wong, M. J. Collett, and D. F. Walls, Phys. Rev.54,  [27] R. W. Spekkens and J. E. Sigerivate communication
R3718(1996. [28] M. K. Olsen(personal communication
[15] E. M. Wright et al,, Phys. Rev. A56, 591 (1997). [29] M. A. Abramowitz and I. A. StegurtHandbook of Mathemati-

[16] M. J. Steel and D. F. Walls, Phys. Rev.58, 3282(1997). cal Functions(Dover, New York, 1972



