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Theory of the zr-periodic motion of two ions in a Paul trap
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A theory of the ordered motion of two ions in a Paul trap is derived without using the standard pseudo-
potential approach. The method relies on the limit cycle theory and the van der Pol-Krylov—Bogoliubov
approximation. We evaluate approximate solutions to the equations of motion and discuss stability regions and
alignment transition regions for various types of motion. We compare analytical predictions with numerical
computations and find a good quantitative agreenj&i050-294{©8)04204-9

PACS numbeis): 32.80.Pj, 05.45tb, 47.52+

I. INTRODUCTION ential equation to which the limit cycle theory can be ap-
plied. In Sec. Il we use the van der Pol-Krylov—Bogoliubov
A quadrupole Paul trapl] confines a charged particle approximation to find the limit cycle solutions of the equa-
dynamically by making use of a static electti) field and  tions of motion. As the result we get trajectories with a rather
a quasistatic radio frequen¢go field. The device has many Simple analytical form. We discuss the stability of these tra-
applications in single ion spectroscopy and as a possible orjectories in a manner familiar from the theory of Mathieu-
ion frequency standarf2]. In most practical applications, type equations. We demonstrate that for each coordimate (
however, a Paul trap holds more than one ion, and its oper&@ndz) there exists a region in the parameter space of the trap
tion is affected by the strong Coulomb interactions betweenvhere a corresponding limit cycle is stable. We refer to those
the ions. Wuerker, Shelton, and Langmuir demonstrated eximit cycle solutions as axis aligned motion. In Sec. Ill we
perimentally[3] that charged microscopic particles confinedanalyze the stability of axis aligned motion by studying the
to a Paul trap show a transition between an ordered “CrysbehaViOf of the coordinate which is supposed not to partici-
talline” structure and a disordered cloud. Similar crystalspate in the limit cycle. We show that there exists a region in
were later observed with laser cooled atomic ipa$]. It ~ which alignment of the trajectory continuously changes,
was proposed in Ref$6,7] that the melting of the simplest which we call the alignment transition region. We demon-
two-ion crystal might be a transition to classical chaos. strate that the solutions inside the alignment transition region
While many-ion liquids are well described by straightfor- are a result of mixing of the limit cycles corresponding to the
ward kinetic theory8], the case of only a few ions calls for axis aligned motion, and define a mixing parameteWhen-
a more delicate approach. For two ions the most fruitful oneever possible, we compare our theoretical results with direct
has been the pseudopotential metf@d The idea is to sepa- numerical simulations. Section IV gives a discussion and in
rate the motion of the ions into two components, fast microSec. V our conclusions are presented.
motion and slow secular motion. The secular motion takes
place under a pseudopotential obtained by averaging out thq|. THE AXIS ALIGNED SIMPLE HARMONIC MOTION
micromotion. In Refs[7,10] it was shown that this approach ) ) ) S )
to some extent reproduces the stability regions in the param- In classical terms, the motion of two identical ions in a
eter space of the Paul trap. More recently, an alignment trarf?@ul radio frequency trap can be described with two sets of
sition was qualitatively predicted 1], i.e., it was shown that differential equations. The first set desc_:nbes the motion of
by varying the parameters of the trap, the alignment of thdhe center Qf mass of the system. It consists of three Mathieu-
ion trajectory changes with respect to the trap axes. Th&/P€ equations, one for the axiat)(motion and two equa-
pseudopotential was analyzed in REf0] to see if it allows ~ tions of the same form for the transverse coordinakear(d
for chaos in the secular coordinate. Numerically, what isy)- The Paul trap is taken into account in these equations via
deemed to be secular motion depends strongly on the deta¢© dimensionless parameters. In the literat{trd, 7] they
of how the micromotion is averaged out, so the questiorfre often referred to ag(q). These correspond to the dc and
remains unanswered. ac amplitudes of the trap field, respectively. Effects of the
In this paper we suggest a novel approach to the two-iofaser or other cooling on the motion of the ions are taken into
(and potentially few-ion system. Based on the results of account via a damping parameter Using this notation, a
extensive numerical simulations, we conclude that the maifathieu equation for the motion of the center of mass can be
characteristic of the orbits of the two ions is theriodicity. ~ Wwritten as
Accordingly, we analyze in an approximate fashion periodic

orbits of two ions, and in particular periodic orbits with the X = — yxK) —K[a+2q cog27)]x . )
same period as the ac field driving the trap, using the well
established technique of limit cycl¢$2,13. The indexK=1,—2 pertains to the equation for the 2z

Under the assumption that the motion is along one of theoordinate, respectively. The nature of the solutions to the
axes of the tragradial or along thez axis) the equations of Mathieu equation is well known and documented in the lit-
motion can be reduced to a single nonlinear ordinary differerature[15,13,16,12 For the purposes of this paper, the
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0.4 — ; : : T : ; axis aligned motion will be understood to mean the solutions
; ' ' ' ' ' to Eqg. (3) obtained when one of the coordinates is zero. The
system(3) then reduces to

-—

0.3 f-dml b d oo p o d e A X

] SRR RN SR d2x( dx(® sgn(x(K))
l I 3 3 : I / =_ — Ky =2 7
Y 4r K[a+2q coq27)]x'"™ + XKz "

4

0.2 fommdlioids LNV AN dr?

__________________________________

parameter a

__5__ where the function sgr{ is +1 if x>0 and—1 if x<0.
The choiceK =1 or K= —2 yields equations for the or the
z coordinate, respectively. Due to the singularity of the Cou-

0.0 fmmtt o p bt lomb interaction atx®=0, x® cannot change sign.
i

Without loss of generality, we may thus assume that
x®)(H>0 at all times.
We now proceed to calculate limit cycles of Ed) using
the van der Pol-Krylov—Bogoliubov approximation. We es-
parameter g timate the stability regions of these solutions within the
FIG. 1. Mathieu single-ion stability regiofMSISR) in the boundaries of the M_SISR ar.ld develop.analytical approxima-
(a,q) parameter space. The boundaries are calculated numericalﬂpns t_o the boundf_;lrles of different regions. We compare the
by using Floquet's theorem. For any choice of dimensionless pa2nalytical expressions for the boundaries to the ones ob-
rameters &,q) within the MSISR the motion of the center of mass tained numerically.
of two ions is stable.

_____

0.0 041 02 03 04 05 06 07

A. 7r-periodic limit cycle
most interesting aspect is the stability region in tleeq) We begin by examining the limit cycle solution to Ee)

parameter space. It represents the set of parametay} ¢f that has the period af, the same as the period of the ac field
the trap for which the center of mass performs damped peri-

odic motion. Each coordinate has its own stability region.Of the trap. We start, in the spirit of the van der Pol—Krylov—-

. . : ) ."Bogoliubov approximation, from the ansatz that the
The intersection of these regions is referred to as the Math'egsymptotic solution to Eq(4) in phase space approximates a
single-ion stability regionMSISR) [7] and is depicted in closed circular orbit. We éxpress this orbit by the form
Fig. 1. An analytical approximation to the boundaries of '

MSISR in the smally limit (y<1) is given by XK =xI0+ 5xK) cog 27+ ™), (5)

—%qzsasl—q, XK =—25xFsin(2 7+ ¢K)), (6)
@ Whereng) is a positive constant yet to be determined, the
result of opposite actions of frictiofthat tends to shrink the
orbit to the origin and Coulomb repulsiofthat has singu-
larity at the origin. The amplitudesx), which is positive
Details may be found in Ref§17,16,13,1% by choice, and the phasg®), which is constrained to the
A second set describes the relative motion of the two ionSi.nterva”:O,zﬂ-]’ are allowed to vary 5|0w|y over a time scale
Using the cylindrical symmetry of the trap, the following muych longer than the periog. Calculating the time deriva-
system of differential equations is obtained: tive from Eq.(5) and comparing to Eq6) we obtain a con-
straint, our first equation

L ,
- -~ +qg=<asqg>
5> ta=as<q

d’r dr r
a2 Ydp larzacetznlrt oo () XK cog 27+ ¢)) — 5x K ¢ sin(27+ ¢¥)) =0,
()
d’z dz z The second equation is obtained by taking the derivative of
@——yd—7+2[a+2q coq27)]z+ —(r2+22)3’2' Eq. (6):
These equations have been made dimensionless by distance X)= —45x cog27+ ¢) —25xsin(27+ ¢*))
and time scalind.A detailed derivation along with the scal- (K) 2 (K) ()
ing procedure can be found in R¢fL4]. In this paper, the —26x ¢ eog27+ ). ®)

We now insert Eq(8) into Eq.(4) and expand the Coulomb
The scaling distance used in the present paper id€M as a power series W(IK)/XgK) to second order using
d3=8e?/4me,mw?. It is independent of the parameteasandq. ~ Ed- (5). The resulting equation, together with Eg), con-
This differs from the scaling of the distance used in Rgfd,7,10,  stitutes a system fafx and 6x¢. Averaging this system with
which includes botta andg. The time is in units of 2b. Frequency the weights 1, cos@-¢), and sin(2+¢), respectively,
w corresponds to the ac driving field of the trap. over the periodr gives
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_ (K) _ (K) (K)
0 Kaxy +(ng))2 Kgox'™™ecog '), (11

The limit cycle is a solution to the systef®)—(11) with the

time derivatives on the left hand sides equated to zero. Thg04

system of equations then becomes

1 1 _
= 570"+ SKaxgsin(¢) =0,

(12
Ka 1
-1+ T + W Sx(K) 4 EKQXBK)COS( ¢(K))=0,
0
(13
—Kaxy"+ 0 —Kgox®cog ¢p¥)=0. (14
0

If we assume thavx(®¥>0, x{¥>0, and sx®/x{V<1,
and thaty and g are small positive numbers of the order
oxM/xI) or smaller, then Eq(12) vyields |sin(¢®)|<1.
Since the twoK’s are of opposite sign, fokK =1 we obtain
0<sin(¢)<l, or sing)~¢. For K=2 analogously
0<—sin(¢)<<1, or ¢=m+ ¢. This allows us to replace the
trigonometric functions of) in Egs.(12)—(14) with

sin(¢') ~sgn(K) ¢,

cog ¢)~sgn(K).

After this simplification, Eqs(12)—(14) can be solved. The
solutions for the limit cycle of the coordinate are

(19

3
8-2a-29°- ;aq’

ri= 16
O 2(4a-a+q?) (18
sr a1  (4+4a+3a’)q an
o d qr} 16-4a—4qg>-3aq®’
y or
== 18
dro (18

The respective solutions for the limit cycle of thecoordi-
nate are

4+2a—49°+6aq?
2(—4a—2a%+4g?)’

3
Z

19
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TABLE I. Comparison of the theoretical resultsfor, ST theod
for the limit cycles, Egs(16), (17) with the results (e, Of expd OF
numerical computations. For each set of parameters the relative
error of the analytical approximation with respect to the numerical
value is also given.

Rel. error Rel. error
a q ltheor T expt (%) or theor or expt (%)
0.05 93 94 1 0.23 0.23 1
0 0.1 58 5.9 1 0.29 0.29 1
0.01 0.15 36 37 3 0.27 0.27 1
0.015 0.2 3 3.1 2 0.31 031 1
002 025 27 27 1 0.34 0.35 1
0.03 0.3 23 24 2 0.37 0.37 1
035 21 22 4 039 04 1
0.056 0.4 19 2 4 0.42 043 2
sz a 1 (2—2a+3a?)q
—=—+ = , (20)
Zy 9 2qZ 2+a—29°+3aq’
vy 6z
*= 24 25" (21)

We require that the solutior86) and(19) are positive. This
yields, keeping in mind thataq) is inside MSISR andy is
less than 1, the conditions

4a—a%+2g°%>0,
a (22)

—2a—a’+2g>>0.

These conditions are to be compared with the boundaries of
the MSISR[15], Eqg. (2), that we started with. We see that
close to the origin the stability boundaries of the axis aligned
motion of two ions in a Paul trap, solutions of £4), are the
same up to the order @ as the boundaries of the MSISR,
Eq. (2). This similarity is due to the nature of the Coulomb
interaction. As can be seen from E@§6) and(19), close to

the boundaryry—oo (or z;— ), hence the contribution of
the Coulomb term of Eq4) is rather small so that E¢4) is
reduced to the Mathieu equatioh).

We have compared the results thus obtained to numerical
simulations. For the latter, the fourth order Runge-Kutta
method was used. The time stepmfL0O0 proved to be small
enough to satisfy the precision requirements. The value of
the parametery was fixed at 0.01. Before taking data, the
system was allowed to settle for 20000 000 periods of the
driving field. The computations were performed using initial

conditions ¢,r,z,2),=(1,0,0,0.1). We then calculated the
autocorrelation functiof18] and performed other checks to
assure that the period of the solution wasThe parameters
(a,q) were chosen so that the axis aligned motion of a par-
ticular coordinate was obtained as well. For eacperiodic

and axis aligned orbit, average and peak-to-peak amplitude
variation were calculated over one period of the driving field.
The average was identified ag,z, and the oscillation am-
plitude as twicedr, 6z, respectively. The results are shown
in Tables | and Il. An example of a-periodic orbit obtained
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TABLE Il. Comparison of the theoretical result®foor, 6Zineo) can be used to obtain the stability boundaries of &),
for the limit cycles, Egs.(19) and (20), with the results provided the nonlinear term in E¢d) is linearized using our
(Zexpt: 9Zexpd Of NUMerical computations. For each set of parametergynalytical approximation for the limit cycles. In the end, we
the relative error of the analytical approximation with respect to thegive comparisons with numerical results.

numerical value is also given. The Mathieu differential equatiofil) is a second order
linear differential equation with periodic coefficients. It is

Rel. error Rel. eror  ¢onvenient to write the solutions as Fourier sums. Owing to
a O  Zeor Zept (%) OZpeor ey (%) the cos(2) coupling in Eq.(1), two linearly independent

solutions may be chosen in such a way that one only contains

0.008 0.1 6.3 64 1 0.63 0.63 1

0035 02 48 49 2 095 0.97 2 even frequencies (0,2,4..) and theother only odd fre-
007 03 3 31 3 089 092 4 guencies (1,3,5..). At aboundary of the stability region,
012 04 26 27 5 099 1.07 7 one of these becomes unstable. A boundary in thea)(

015 045 2.2 24 7 097 1.07 10 parameter space thus represents the set of values for which
0.2 05 25 27 9 115 13 11 the Mathieu equatioil) has one bounded solution with the
025 055 28 29 5 137  1.49 8 period 7 or 27, and the other solution is about to turn un-
03 06 31 32 4 163 172 5  bounded.

The nonlinear Coulomb repulsion in E@) causes mix-
ing of the odd and even frequency solutions. However, to the

numerically, together with a limit cycle defined by Egs9),  lowest order in the parameteasandq, the solutions to Eq.
(20), is given in Fig. 2. (4) display the same decoupling of even and odd time evo-

We conclude that our analytical approximations for thelution as the Mathieu equation. This allows us to extract
limit cycles generally agree to within a few percent with theinformation about the boundaries by observing separately the
numerical solutions to Eq(4), and accordingly the axis behavior of the limit cycles with periods and 2. Solu-
aligned motion of Eq(3) is also adequately approximated. tions to Eq.(4) with the periodsm and 27 do not have the

This is valid in the regions of the MSISR whereperiodic ~ Same importance. A solution with the periad is self-
orbits may exist. sustaining and has an asymptotic nonzero behavior in the

form of a limit cycle, as shown earlier. A solution with the
period 27 has a different property. As will be shown by
analyzing its limit cycle, a #-periodic limit cycle can be
We analyze stability of the limit cycles for each of the systained only by perturbation, i.e., in the stable region of
coordinates using the methods derived for Mathieu-type difEq, (4) this component dies out exponentially due to the
ferential equations, described in Relf$2,15,13,16,1}9 We damp|ng However, if by the choice of the parametas]l
start by stating the basic properties of the solutions to thghe 27-periodic component becomes unstable, even if the
Mathieu equation(1). We then show how these properties ;_periodic solution is in the stable region, the system will be
unstable.
* ' ' ' ' Following [13], we examine how the system behaves if
the limit cycle with a period of zr is imposed as a solution
to Eqg. (4). Using the van der Pol-Krylov—Bogoliubov ap-
proximation, we chose instead of E¢S) and(6) the follow-
ing form for the limit cycle:

B. Stability of the #r-periodic limit cycle of Eq. (4)

y =y + sy®cog 7+ 91)), (23

y®=—syKcog r+ 91, (24)

momentum
=}
T

We then proceed, in analogy with Eq42)—(14), to obtain

. 1
Yy ==qKay"sin291), (25)
—4 | 1 | [ . 1 1 1
! 2 3 4 5 6 90 =— =4 —Ka+ =Kq cog29")+ , (26)
N 2 2792 (yo)?
position 0
FIG. 2. Numerical solutiorgsolid line) with the periodw to the

system (3) is shown here in phase space, along with a 0=Kay§)K)— K3 (27

limit cycle (dashed ling that follows from the van der Pol- (Yo )

Krylov—Bogoliubov approach, Eqs(16)—(18) and (19)—(21). ) )
In Eq. (25 we have confirmed that the amplitude of

In this particular case the choice of the parameters wa®.01, e o )
(a,0)=(0.3, 0.6, and the initial conditions were r(r,z,z)  27-periodic Compon(%ﬁ)y( ) is independent oy (in the

=(1,0,0,0.2. All times, distances, and velocities are rendered di-limit whena—0, y{9—x{). From Eq.(25), the general
mensionless with a scaling discussed in the text. behavior of the Zr-periodic limit cycle can be inferred, as
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3.5

307

25 ¢}

parameter a

z coordinate
- N
o o

parameter g

r coordinate

FIG. 3. Stability regions of the limit cycle solutions of E@), FIG. 4. Behavior of ther-periodic orbits in ¢,z) space when

for ther andz coordinates. The boundaries of different regions arey,o parametersa(q) are inside the transition region. The values of
obtained theoretically and numerically in Sec. Il. Here only thethe parameters are=0.01, gq=0.35, anda=0.048 ¢ align-

numerical values given by Eq$30) and (31) are shown. In the ment, 0.055, 0.060, 0.065, 0.070, 0.075, and 0.080 &align-
aR (aZz) region amr-periodic motion for coordinate g) is stable. meny.

In thea(R+Z) a w-periodic limit cycle motion of both coordinates
is stable, while in theU region the limit cycle of neither coordi-

nate is stable. stability regions of Eq(4) inside MSISR. We see four re-

gions. In regionaaR (aZz) a limit cycle of ther (z) coor-
dinate is stable. In regioa(R+Z) bothr andz coordinate
limit cycles are stable, and in the regiat Eq. (4) does not
Qave a stabler-periodic limit cycle.

A comparison between E@28) and Eq.(30) shows that
ther coordinate we have reached only a fair degree of

indicated earlier. If Zr-periodic motion is in the stable re-
gion, thendy decays exponentially and therZperiodic limit
cycle eventually becomes unimportant. In the contrary cas
8y grows exponentially, thus destroying the presumed forrr}Or

of the solution(7) for #r-periodic orbits just as well. . . .
We find that fork =1, the fixed point is a®= /4, and agreement between the_ numerical and approximate analytical
1 ) ) results. For thez coordinate, the agreement is better. The
fora<3—3q, system(4) is stable under small perturbations. 5naytical results are, of course, limited in that the analysis is
Similarly, for K= -2, the fixed point is aty=—=/4, and  pased on linearization of the Coulomb repulsion around a
fora=—%+31q, the system is again stable under small per-imit cycle orbit.
turbations. The analytical approximation of the stability

boundaries of Eq(4) is given by IIl. OFF-AXIS SIMPLE HARMONIC MOTION

_ Q_2< _ }_ q 29) It was observed in numerical simulations that the system
2 =as 3 3 (3) supports off-axisr-periodic orbits for certain choices of
the parametersaq) inside the MSISR. We call the part of

1 g 5 the (a,q) parameter space that supports such orbits the
—gtz=asa. (29 “transition region.” The spatial shape of the off-axis

sr-periodic orbits is illustrated in Fig. 4, where the parameter
The condition(28) is for K=1(r coordinat¢ and Eq.(29)  values werey=0.01, g=0.35, anda=0.04 ¢ axis align-
for K=—2 (z coordinatg. Other methods can be employed meny, 0.048, 0.050, 0.055, 0.060, 0.065, 0.070, and 0.@80 (
for the studies of these boundarif20,21. To the lowest axis alignment Figure 5 shows that the behavior of the

order inq they all yield the same result, but require more alignment of ther-periodic orbits is parameter dependent.
tedious calculations. We plot the averages of thieandz coordinates, calculated in

We have also performed a numerical analysis of the stathe same manner that was used for the numerical assessment
bility boundaries of Eq(4) for each coordinate. In the com- of the limit cycles. The parameter was held fixed at the
putations we used the initial condition, &)= (xo,0), where ~ value of 0.3, we chosg=0.01, and the parameter was
x, was calculated from Eq§16) and(19). We found that the changed in the intervgl0.037, 0.048. From these com-

stability regions can be closely approximated by puted results it follows that ar-periodic orbit in the transi-
tion region is still one dimensional but off axis. The results
—0.59°<a=<0.33-0.149— 0.55%, (30) of Sec. Il, which were derived for the axis aligned motion,
cannot be directly used.
—0.18+0.3+0.7lg°<a<0>? (31 We suggest two approaches to analyze the behavior of the

system(3) inside the transition region: the Mathieu equation
for ther andz coordinate, respectively. Figure 3 shows theapproach, and the action functional approach. Together with
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3.0 , I I We expand the P term in powers 0f6z/z,, keeping track
| | | of the phase shift of the coordinate up to the second order.
PN R B R R _ Using the trigonometric relationship  c62n=1/2
! ! +(1/2)cos(4) and neglecting the second harmonic term
! ' cos(4), we obtain
~ 20T Te-mm-s To----- —
N-o : Z lcoordinate 2
= | L 8% %020 (33
' F _| —=—+3—F—+3—cog2 7).
§ L N | 2 2 £
@ | I
S R N N~ _ This allows us to deduce how the limit cycle of theoor-
! ! dinate modifies the parameters,{) to (a*,q*) in the cor-
N YA I AN | responding Mathieu equatidf) for ther coordinate. We get
' . H H after simple manipulations
0.0 ’ ’ I 572
0.035 0.040 0.045 0.050 0.055 a*=a— — —3—
3 L
parameter a Z Zg (34)
FIG. 5. Behavior of ther-periodic solution to the systeitB) 3 5z
inside the transition region. The position represents particular coor- q*=q- = —-
dinate averaged over one period. With=0.01 andg=0.3 con- 2 Zy

stant, a smooth transition of alignment with respect to the parameter

a can be seen. Using the values of the coordinate limit cycle from Egs.
(199—(21) and the condition22) for the r coordinate with

the results of Sec. Il they allow us to evaluate the boundarieghese modified parameters, we obtain the following condition

of the transition region and study the nature of the simpleof stability:

harmonic @-periodig orbits that occur within that region.

We compare the results of these two theoretical approaches 1,5,
with numerical simulations. a=359°+ 39" (39
A. Mathieu equation approach We conclude that if the conditiori85) and(31) are satisfied,

Figure 5 demonstrates a very important property of thetheblsystem(3) wil osgillgte iq thﬁ é.dire_ction andhwill Ee
m-periodic orbits close to the boundary between the axiSt@Ple against perturbations in thedirection. For the other

aligned and transition region: one of the coordinates is still incoordlnate, the stability condition becomes

its limit cycle, while the other starts to emerge slowly with 1
the change of one of the parameters. This is the basis for our as<—-q2—
analysis of the transition boundary, as it allows the applica- 2

tion of the results from the theory of Mathieu-type differen- i i ,
tial equations. One is again led to conclude that if Eq86) and (30) are

We assume that one of the coordinates is in its limit cycle Satisfied, the systeit8) may oscillate along the axis, for it

Therefore it is described by the limit cycle equations, Eqgs!S Stable against perturbations in thelirection.

(16)—(18) or Egs.(19)—(21). The other(suppressedcoordi- Even though our analytical arguments so far do not ac-
nate will perform the motion that will be described by a count for the alignment transition region, they nonetheless

modified Mathieu equation that follows when the contribu-turn out to give a good qualitative picture about the stability
tion of the suppressecoordinate is neglected in the Cou- "€gions of the axis aligned motion. We now proceed to an
lomb repulsion term. The axis aligned motion will be stable@nalytical treatment of the alignment transition itself.

as long as the modified Mathieu equatidhat describes the

suppressed coordinate is in the stable region. B. Action functional in the limit cycle approximation

For simplicity, let us suppose that thecoordinate is sup- We examine theoretically the nature of theperiodic

pressed and thecoordinate is the limit cycle coordinate, the g4 tions inside the transition region. Figures 5 and 6 suggest
parameters of the limit cycle being given in E¢§9)—(21). approaches.

41

_ A4
48q . (36)

The equation that governs the behaviorrofan be closely By the first one, one performs a rotation of thez) co-
approximated by ordinate system by some anglén the hope that in the new
coordinates the syste(B) may have a simple form to which
r=—yr—[a+ 2q cog27)]r + L. (32) the results of Sec. Il can bg applied. Unfortunately, that will
z not work. In any new coordinates the systé®h has a close

to intractable form, and even in the lowest order of approxi-
mation, it seems that nothing can be inferred about the angle
2We use the property of the solution of the Mathieu equation with6.
nonzero friction that in the stable region the solution is damped. The second approach is based on the assumption that the
See, for example, Ref4]. off-axis w-periodic orbit can be represented as a mixture of
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S(a,q,0)=Jowdrﬁ(a,q,a,f). (40)

We find the extrema of the actiagfiwith respect to the mix-
ing angled. Partial differentiation with respect t@ gives

75 _sin(6)cog 6
%—Sm( )cog )
% f”dr( —r2 +2z5,+[a+2q cog27)](rg,+22%)
0

|

By solving Eq.(41) for S/96=0 we obtain three solutions.
Two of them are trivial, 0 andr/2. A third solution 65,

2 2
Flim = Ziim

 [co2(0)r2 +sir(6)22, 3?2

(41

FIG. 6. The MSISR is shown together with the three alignmentinside the transition region, is in the intenjdl,=/2]. When

regions of Eq(3). For boundaries, the numerically obtained values
from Eqgs.(42) and(43) are given. In theR(Z) region aw-periodic
limit cycle of ther (z) axis aligned motion is stable. In tHeregion
the ar-periodic limit cycles are not axis aligned and/or the periodic
orbits with multi-r period may occur.

the limit cycles of the axis aligned motion. We introduce a
mixing parameterd and calculate the action functional for
the system(3). Alignment of the system is obtained as the
value of the angle at which the action functional has an
extremum.

Following the latter approach, we introduce the mixing
angled in the following fashion. We assume that thendz
coordinates of the off-axis orbit can be written as

r=cog 0)r,=cog0)[rq+ or cog27)], (37

r=—cog 6)r,=—Ccog 6)25r sin(27),

z2=8in( 0) z;,=siN(§)[ zo— 6z cog27)], (39)

z=sin( 0) z;, = SiN( )28z sin(27).
We haver, 6r from Egs.(16) and(17), andz,, 6z from Eqgs.
(19 and(20) as functions of the parametem, ). The angle
0=0 corresponds to the axis aligned motion of theoor-
dinate, while the angled==/2 corresponds to the axis

aligned motion of the coordinate.
The LagrangianC of the system(3) can be written

L(a,q,0,7)= %[cosz( O)ra. +sirf(6)z2,]

- %[a+ 2g coq27)]

X[coS(H)rz —2 sirf(6)zi,]

1
" [co(0)r2, +sir(6)22, V2

(39

The actionS of the corresponding Lagrangiahis given by

the boundary of a stability region is approached, the afigle
approaches either 0 ar/2. We conclude that on the bound-
ary =0 or #==/2 is a double root of Eq41). This yields

de
0

—ra +2z2.+[a+2q cog27)](rz, +222)

1z
- —+31=0, (42)
i 2 2 2 2
fo dT _r|im+Z“m+[a+ 2q COE(ZT)](rlim+ZZ|im)
2
rii 1
-+ —| =0 (43)

Equation(42) is satisfied at the boundary between thaxis
alignment region and transition region, and similarly Eg.
(43) will be satisfied at the boundary between theaxis
aligned region and the transition region. Within the limit
cycle approximation these integrals can be calculated exactly
using contour integral techniqudsee the Appendjx We
have used them to obtain the boundary numerically, but in-
dependently of direct numerical computations.

C. Direct numerical computations

We have computed the boundaries of the transition region
numerically in a manner similar to that underlying Fig. 5.
We choose a few values of the paramegefor which we
obtain m-periodic orbits. For each value of the parameter
the corresponding value of the paramedeis located inside
the transition region, but close to the boundary. The critical
value of the parametex is chosen so that the amplitude of
the suppressed coordinate is small but does not decrease with
the increase of the number of thermalization stépsmber
of periods during which the system was allowed to settle
down). This is in contrast to the behavior of the suppressed
coordinate inside the axis aligned region, where it would
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TABLE lll. Values of the parametersa(q) that correspond to 15 |
the boundaries between alignment regions. These are obtained by I
three means; numericallyNum), by use of the theory of the 121 (A)
Mathieu-type differential equation®lathiey, and by extremizing 9l ,'_\ :
the action functionalAction), as described in Sec. lll. VAN

6| RTINS
RIT 2T s s SRR
q a a £ [ ! ‘
Num  Mathieu Action Num  Mathieu Action S OfF-----%-- T ”””””” LBy T

0.05 0.00124 0.00124 0.00126 0.00126 N 3T . \\ K \\E
0.10 0.00491 0.00489 0.00517 0.00512 sl X ’/ ‘:“\ S
0.15 0.01082 0.01071 0.01210 0.01185 D /.
0.20 0.01839 0.01863 0.01829 0.02182 0.02267 0.02187 7 U
0.25 0.02791 0.02704 0.03776 0.03576 12l ‘
0.30 0.03708 0.03808 0.03619 0.05338 0.05850 0.05411 .
0.35 0.04843 0.04471 0.08626 0.07748 B —— 5 ; 5 3
0.40 0.0501 0.05813 0.05122 0.10%1 0.12267 0.10621 r coordinate
0.45 0.06622 0.05380 0.16960 0.14034
0.50 0.07161 0.04950 0.38 0.22920 0.17964 FIG. 7. Two 2m-periodic orbits are showr{A) is obtained for
0.60 0.3 0.39600 0.27176 (a.9)=(0.15, 0.5) andB) is obtained for &,q)=(0.2, 0.55). In

both casesy=0.01. Similarity between these two periodic orbits,
#These numerical values do not represent the boundary betweesbtained for two different points in thea(q) parameter space, is
axis alignment region and transition region but rather axis align-demonstrated.

ment region and two-dimensional muiti-periodic motion. These
figures are rough estimates of the boundary beyond which the sys-
tem supports orbits with more than one period, depending on initial
conditions.

E. Beyond the ar-periodic orbit approximation

At the outset, it is obvious that the systdB) supports,
within its stability region, periodic orbits with periods that
are integer multiples of the driving field period. This be-

decrease typically from 10 after the thermalization of 1000 COmMes a problem in particular when approaching the region

trap periods to 10° after the thermalization of 3000 trap INSide the MSISR that we call theU region, Fig. 3. Previ-
periods. ous research has put a possible onset of chaotic behavior

inside theaU region.

Our results with respect to higher period orbits are rather
qualitative and rely solely on numerical computations. We
can state them as followsi) Multiple period orbits have

In Table Ill, we present the results for the boundariessimilar shape. In support of this we present Fig. 7. It shows
between alignment regions obtained from the Mathieu equathe orbit with the period - obtained for two choices of the
tion approach; from the action functional; and from directparameters &,g), (0.15, 0.5) and (0.2, 0.55)(i) The
numerical computations on the systéa). system(3) allows some pointsg,q) in the MSISR to have

The good agreement between direct numerical computadhore than one periodic solution depending on the initial con-
tions and the action functional approach serves as a proof éfitions. An example is given in Fig. 8, where for the param-
validity of the starting assumption: in the transition regioneters @,d)=(0.2, 0.5) andy=0.01 at least two stable orbits
m-periodic orbits can be represented as mixing between thB12y exist. One has the periatl(in this case it is @ aligned
axis aligned limit cycles of the andz coordinates. Figure 6 ©'Pit), and the other has the period ofr8
shows the stability regions of the-periodic motion within
the limit cycle approximation. In the regioR(Z) the axis

aligned motion inr(z) coordinate of the syster(8) is ob- The problem of ordered motion of two ions was first
served, i.e., the axis aligned motion described by limit cyclesbrought up in Ref[ 7] where it was suggested, after thorough
from Egs.(16)—(18) and (19)—(21) is stable. The transition numerical simulations, that the equations of motion allow a
regionT consists of the region of the MSISR where the limit “crystal” to be formed, and observed disorder was inter-
cycles of both coordinates may exist and are stat#gion preted as a quasiperiodic solution of the equations of motion.
a(R+2) in Fig. 3, but excluding the parts where the axis As the theoretical approach for analyzing the underlying ion
aligned motion may exist and is stable, regidhandZ in dynamics, a pseudopotential method was suggd€idd].

Fig. 6]. In the regionT, transition of the alignment between Until now it has been the only analytical approach to the
r andz coordinates is observed, as well as the appearance gtoblem of a few trapped ions.

periodic orbits with periods that are some integer multiples Comparison between the pseudopotential method and the
of «r. Though the appearance of orbits with a higher periodimit cycle method is not simple because of the differences in
than = was observed within th&® and Z regions as well, the approaches and the problems they are trying to solve.
these higher periodic orbits become dominant as the systeifhe pseudopotential method concentrates on the dynamics of
approaches thaU region, Fig. 3. the secular coordinate after averaging out the micromotion.

D. Results and discussion

IV. DISCUSSION
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theoretically and numerically and thus found where an or-
dered motiona “crystal”) may exist. For theoretical calcu-
lations of the alignment stability boundaries we have used
two approaches. In the first one we utilize the known stabil-
ity regions of the solutions to Mathieu-type differential equa-
tions. We have demonstrated the existence of the transition
region and calculated the boundaries between the transition
region and the regions of the axis aligned motion. In the
second one, we resort to an action functional approach. We
have calculatedwithin the limit cycle approximationthe
action functional in which the mixing parametérbetween
ther andz coordinate limit cycles was introduced. Finding
the extrema of the action functional with respect to the angle
0 yields the desired behavior in the transition region and
gives an independent estimate for the boundaries between
the transition region and the regions for the axis aligned
motion. We have found good agreement between the values
r coordinate obtained by these three means.

We have found that there exist periodic orbits with a pe-
riod that is some integer multiple ef. We have also found
that for a given point in the MSISR parameter space more
than one periodic orbit is possible, depending on the initial
conditions. For orbits with the same period obtained for dif-
ferent values of thed,q) parameters of the trap, we have
found that they are similar in shape.

We have observed that the periods of periodic orbits tend
increase when approaching thé& region, where disor-
ered motion had been reported in R¢fkl,22. The exact

z coordinate

FIG. 8. Example of a periodic solution to E), where the
same point in thed,q) parameter space yields at least two solu-
tions with different period(A) is a mr-periodic orbit obtained for
initial conditions ,r,z,z),=(5, 0.6, 8.5, —0.35) and(B) is an
8-periodic orbit obtained for initial conditions
(r.r,2,2)o=(10, 0, 0, —5).

The limit cycle method, on the other hand, concentrates oy,
the micromotion and establishes how important it is for thed

dynlamlcs;ho; the OrdzridT('ge(jr'Od'Q trnotlc;nt.h T_he !{'m.'t ¢ nature and the parameters that characterize these periodic
cycle method gives a detared description of the 10n WaJeclo, g are beyond the scope of this paper, and are under

res, thelr_ regions of stability, and the a"gn'fne”t of the tra'further investigation. The nature of chaos in this system still
jectory with respect to the trap axes. Most importantly, the

. = . main larified.
results predicted by the limit cycle approach are all in goodre ains to be clarified
agreement with the results of direct numerical computations,
which is not always the case with pseudopotential results. ACKNOWLEDGMENTS
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APPENDIX: EVALUATION OF CONTOUR INTEGRALS
V. CONCLUSIONS

. . ... We first evaluate the integral of the form
Two ions in a Paul trap can undergo an ordered periodic

motion that in mathematical terms can be described as a limit = [C+D cog2m)]? 1 (2= [C+D cogy)]?
cycle with a period of the driving field of the trap. We have I1=J = f ) ———
developed a theory of such periodic motion based on van der o " [A+Bcogy)]
Pol—-Krylov—Bogoliubov approximation to the limit cycle i ,
solutions of the equations of the motion and on the familiatVhere A>|B|>0 and C>[D[>0, using the itechnlq_ue of
results for Mathieu-type differential equations. We haveContour integration. By the transformatiar=e”, the inte-
shown thatr-periodic motion may occur either as the axis 9ral becomes
aligned (along r or z axig), or off axis. The axis aligned 1
motion can be described by a simple limit cycle, while off- l,== fﬁ d
axis motion can be described as mixing of the limit cycles I Jr
that correspond to the axis aligned motion of each of the
coordinates. where the contouF is given with|z|=1, counterclockwise.
We have calculated boundaries of the alignment region3he only pole of the denominator inside the contbuis

dr =
o [A+Bcog2n]® 2

[D+2Cz+Dz?)?
A )
[B+2Az+BZ]?
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Zp

Using the Cauchy theorem, we get

[D+2Cz+Dz%)?
[B+2Az+BZ]®

I,=27Res

Z~>Zp
o 2A2C2+B2C2—-6ABCD+A2D2+2B2D?
N E (AZ_BZ)S/Z :

In the computation®\,B,C,D are replaced with the values
appropriate for the limit cycles. We recall that the limit cycle

of the r coordinate is given by, =rq+ ér cos(2) with
ro,or>0 andz;,=zy— 6z cos(Z) with zy,5z>0.

Under these circumstances, the second integral is even

simpler. We have

AND JAVANAINEN

1

| —f”d L 1f2Wd S
2= |, “"A¥B o YAarB cogy) "

cod27) 2

Using the same substitution=e, it becomes a contour
integral along the same contoliras the integral ;,

§ d

Contour integration then gives

1
I—— .
B+2Az+BZ

|2:.

I,=2mRes
Z~>Zp

1 T
B+2Az+BZ JAZ-B2.
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