
PHYSICAL REVIEW A APRIL 1998VOLUME 57, NUMBER 4
Theory of the p-periodic motion of two ions in a Paul trap

Marijan Koštrun, Winthrop W. Smith, and Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269

~Received 19 August 1997!

A theory of the ordered motion of two ions in a Paul trap is derived without using the standard pseudo-
potential approach. The method relies on the limit cycle theory and the van der Pol–Krylov–Bogoliubov
approximation. We evaluate approximate solutions to the equations of motion and discuss stability regions and
alignment transition regions for various types of motion. We compare analytical predictions with numerical
computations and find a good quantitative agreement.@S1050-2947~98!04204-8#

PACS number~s!: 32.80.Pj, 05.45.1b, 47.52.1j
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I. INTRODUCTION

A quadrupole Paul trap@1# confines a charged particl
dynamically by making use of a static electric~dc! field and
a quasistatic radio frequency~ac! field. The device has man
applications in single ion spectroscopy and as a possible
ion frequency standard@2#. In most practical applications
however, a Paul trap holds more than one ion, and its op
tion is affected by the strong Coulomb interactions betwe
the ions. Wuerker, Shelton, and Langmuir demonstrated
perimentally@3# that charged microscopic particles confin
to a Paul trap show a transition between an ordered ‘‘cr
talline’’ structure and a disordered cloud. Similar crysta
were later observed with laser cooled atomic ions@4,5#. It
was proposed in Refs.@6,7# that the melting of the simples
two-ion crystal might be a transition to classical chaos.

While many-ion liquids are well described by straightfo
ward kinetic theory@8#, the case of only a few ions calls fo
a more delicate approach. For two ions the most fruitful o
has been the pseudopotential method@9#. The idea is to sepa
rate the motion of the ions into two components, fast mic
motion and slow secular motion. The secular motion ta
place under a pseudopotential obtained by averaging ou
micromotion. In Refs.@7,10# it was shown that this approac
to some extent reproduces the stability regions in the par
eter space of the Paul trap. More recently, an alignment t
sition was qualitatively predicted@11#, i.e., it was shown tha
by varying the parameters of the trap, the alignment of
ion trajectory changes with respect to the trap axes.
pseudopotential was analyzed in Ref.@10# to see if it allows
for chaos in the secular coordinate. Numerically, what
deemed to be secular motion depends strongly on the de
of how the micromotion is averaged out, so the quest
remains unanswered.

In this paper we suggest a novel approach to the two
~and potentially few-ion! system. Based on the results
extensive numerical simulations, we conclude that the m
characteristic of the orbits of the two ions is theperiodicity.
Accordingly, we analyze in an approximate fashion perio
orbits of two ions, and in particular periodic orbits with th
same period as the ac field driving the trap, using the w
established technique of limit cycles@12,13#.

Under the assumption that the motion is along one of
axes of the trap~radial or along thez axis! the equations of
motion can be reduced to a single nonlinear ordinary diff
571050-2947/98/57~4!/2895~10!/$15.00
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ential equation to which the limit cycle theory can be a
plied. In Sec. II we use the van der Pol–Krylov–Bogoliub
approximation to find the limit cycle solutions of the equ
tions of motion. As the result we get trajectories with a rath
simple analytical form. We discuss the stability of these t
jectories in a manner familiar from the theory of Mathie
type equations. We demonstrate that for each coordinatr
andz) there exists a region in the parameter space of the
where a corresponding limit cycle is stable. We refer to tho
limit cycle solutions as axis aligned motion. In Sec. III w
analyze the stability of axis aligned motion by studying t
behavior of the coordinate which is supposed not to part
pate in the limit cycle. We show that there exists a region
which alignment of the trajectory continuously change
which we call the alignment transition region. We demo
strate that the solutions inside the alignment transition reg
are a result of mixing of the limit cycles corresponding to t
axis aligned motion, and define a mixing parameteru. When-
ever possible, we compare our theoretical results with dir
numerical simulations. Section IV gives a discussion and
Sec. V our conclusions are presented.

II. THE AXIS ALIGNED SIMPLE HARMONIC MOTION

In classical terms, the motion of two identical ions in
Paul radio frequency trap can be described with two set
differential equations. The first set describes the motion
the center of mass of the system. It consists of three Math
type equations, one for the axial (z) motion and two equa-
tions of the same form for the transverse coordinates (x and
y). The Paul trap is taken into account in these equations
two dimensionless parameters. In the literature@14,7# they
are often referred to as (a,q). These correspond to the dc an
ac amplitudes of the trap field, respectively. Effects of t
laser or other cooling on the motion of the ions are taken i
account via a damping parameterg. Using this notation, a
Mathieu equation for the motion of the center of mass can
written as

ẍ~K !52g ẋ~K !2K@a12q cos~2t!#x~K !. ~1!

The indexK51,22 pertains to the equation for ther , z
coordinate, respectively. The nature of the solutions to
Mathieu equation is well known and documented in the
erature @15,13,16,12#. For the purposes of this paper, th
2895 © 1998 The American Physical Society
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2896 57KOŠTRUN, SMITH, AND JAVANAINEN
most interesting aspect is the stability region in the (a,q)
parameter space. It represents the set of parameters (a,q) of
the trap for which the center of mass performs damped p
odic motion. Each coordinate has its own stability regio
The intersection of these regions is referred to as the Mat
single-ion stability region~MSISR! @7# and is depicted in
Fig. 1. An analytical approximation to the boundaries
MSISR in the smallg limit ( g!1) is given by

2
1

2
q2<a<12q,

~2!

2
1

2
1q<a<q2.

Details may be found in Refs.@17,16,13,15#.
A second set describes the relative motion of the two io

Using the cylindrical symmetry of the trap, the followin
system of differential equations is obtained:

d2r

dt2
52g

dr

dt
2@a12q cos~2t!#r 1

r

~r 21z2!3/2
, ~3!

d2z

dt2
52g

dz

dt
12@a12q cos~2t!#z1

z

~r 21z2!3/2
.

These equations have been made dimensionless by dis
and time scaling.1 A detailed derivation along with the sca
ing procedure can be found in Ref.@14#. In this paper, the

1The scaling distance used in the present paper
d358e2/4pe0mv2. It is independent of the parametersa and q.
This differs from the scaling of the distance used in Refs.@14,7,10#,
which includes botha andq. The time is in units of 2/v. Frequency
v corresponds to the ac driving field of the trap.

FIG. 1. Mathieu single-ion stability region~MSISR! in the
(a,q) parameter space. The boundaries are calculated numeri
by using Floquet’s theorem. For any choice of dimensionless
rameters (a,q) within the MSISR the motion of the center of ma
of two ions is stable.
ri-
.
u

f

s.

nce

axis aligned motion will be understood to mean the solutio
to Eq. ~3! obtained when one of the coordinates is zero. T
system~3! then reduces to

d2x~K !

dt2
52g

dx~K !

dt
2K@a12q cos~2t!#x~K !1

sgn~x~K !!

~x~K !!2
,

~4!

where the function sgn(x) is 11 if x.0 and21 if x,0.
The choiceK51 or K522 yields equations for ther or the
z coordinate, respectively. Due to the singularity of the Co
lomb interaction atx(K)50, x(K) cannot change sign
Without loss of generality, we may thus assume th
x(K)~t!.0 at all times.

We now proceed to calculate limit cycles of Eq.~4! using
the van der Pol–Krylov–Bogoliubov approximation. We e
timate the stability regions of these solutions within t
boundaries of the MSISR and develop analytical approxim
tions to the boundaries of different regions. We compare
analytical expressions for the boundaries to the ones
tained numerically.

A. p-periodic limit cycle

We begin by examining the limit cycle solution to Eq.~4!
that has the period ofp, the same as the period of the ac fie
of the trap. We start, in the spirit of the van der Pol–Krylov
Bogoliubov approximation, from the ansatz that t
asymptotic solution to Eq.~4! in phase space approximates
closed circular orbit. We express this orbit by the form

x~K !5x0
~K !1dx~K ! cos~2t1f~K !!, ~5!

ẋ~K !522dx~K !sin~2t1f~K !!, ~6!

wherex0
(K) is a positive constant yet to be determined, t

result of opposite actions of friction~that tends to shrink the
orbit to the origin! and Coulomb repulsion~that has singu-
larity at the origin!. The amplitudedx(K), which is positive
by choice, and the phasef (K), which is constrained to the
interval @0,2p#, are allowed to vary slowly over a time sca
much longer than the periodp. Calculating the time deriva-
tive from Eq.~5! and comparing to Eq.~6! we obtain a con-
straint, our first equation

d ẋ~K ! cos~2t1f~K !!2dx~K !ḟ~K ! sin~2t1f~K !!50.
~7!

The second equation is obtained by taking the derivative
Eq. ~6!:

ẍ~K !524dx~K !cos~2t1f~K !!22d ẋ~K !sin~2t1f~K !!

22dx~K !ḟ~K !cos~2t1f~K !!. ~8!

We now insert Eq.~8! into Eq. ~4! and expand the Coulomb
term as a power series indx(K)/x0

(K) to second order using
Eq. ~5!. The resulting equation, together with Eq.~7!, con-
stitutes a system ford ẋ anddxḟ. Averaging this system with
the weights 1, cos(2t1f), and sin(2t1f), respectively,
over the periodp gives

is

lly
a-
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57 2897THEORY OF THEp-PERIODIC MOTION OF TWO IONS . . .
d ẋ~K !52
1

2
gdx~K !1

1

2
Kqx0

~K !sin~f~K !!, ~9!

dx~K !ḟ~K !5S 211
Ka

4
1

1

2~x0
~K !!3D dx~K !

1
1

2
Kqx0cos~f~K !!, ~10!

052Kax0
~K !1

1

~x0
~K !!2

2Kqdx~K !cos~f~K !!. ~11!

The limit cycle is a solution to the system~9!–~11! with the
time derivatives on the left hand sides equated to zero.
system of equations then becomes

2
1

2
gdx~K !1

1

2
Kqx0

~K !sin~f~K !!50, ~12!

S 211
Ka

4
1

1

2~x0
~K !!3D dx~K !1

1

2
Kqx0

~K !cos~f~K !!50,

~13!

2Kax0
~K !1

1

~x0
~K !!2

2Kqdx~K !cos~f~K !!50. ~14!

If we assume thatdx(K).0, x0
(K).0, anddx(K)/x0

(K)!1,
and thatg and q are small positive numbers of the ord
dx(K)/x0

(K) or smaller, then Eq.~12! yields usin(f(K))u!1.
Since the twoK ’s are of opposite sign, forK51 we obtain
0,sin(f)!1, or sin(f)'f. For K52 analogously
0,2sin(f)!1, or f5p1w. This allows us to replace th
trigonometric functions off (K) in Eqs.~12!–~14! with

sin~f~K !!'sgn~K !f~K !,
~15!

cos~f~K !!'sgn~K !.

After this simplification, Eqs.~12!–~14! can be solved. The
solutions for the limit cycle of ther coordinate are

r 0
35

822a22q22
3

2
aq2

2~4a2a21q2!
, ~16!

dr

r 0
52

a

q
1

1

qr0
3

5
~414a13a2!q

1624a24q223aq2
, ~17!

f5
g

q

dr

r 0
. ~18!

The respective solutions for the limit cycle of thez coordi-
nate are

z0
35

412a24q216aq2

2~24a22a214q2!
, ~19!
e

dz

z0
5

a

q
1

1

2qz0
3

5
~222a13a2!q

21a22q213aq2
, ~20!

w5
g

2q

dz

z0
. ~21!

We require that the solutions~16! and~19! are positive. This
yields, keeping in mind that (a,q) is inside MSISR andg is
less than 1, the conditions

4a2a212q2.0,
~22!

22a2a212q2.0.

These conditions are to be compared with the boundarie
the MSISR@15#, Eq. ~2!, that we started with. We see tha
close to the origin the stability boundaries of the axis align
motion of two ions in a Paul trap, solutions of Eq.~4!, are the
same up to the order ofa2 as the boundaries of the MSISR
Eq. ~2!. This similarity is due to the nature of the Coulom
interaction. As can be seen from Eqs.~16! and~19!, close to
the boundaryr 0→` ~or z0→`), hence the contribution o
the Coulomb term of Eq.~4! is rather small so that Eq.~4! is
reduced to the Mathieu equation~1!.

We have compared the results thus obtained to nume
simulations. For the latter, the fourth order Runge-Ku
method was used. The time step ofp/100 proved to be smal
enough to satisfy the precision requirements. The value
the parameterg was fixed at 0.01. Before taking data, th
system was allowed to settle for 1000210 000 periods of the
driving field. The computations were performed using init
conditions (r , ṙ ,z,ż)05(1,0,0,0.1). We then calculated th
autocorrelation function@18# and performed other checks t
assure that the period of the solution wasp. The parameters
(a,q) were chosen so that the axis aligned motion of a p
ticular coordinate was obtained as well. For eachp-periodic
and axis aligned orbit, average and peak-to-peak amplit
variation were calculated over one period of the driving fie
The average was identified asr 0 ,z0 and the oscillation am-
plitude as twicedr ,dz, respectively. The results are show
in Tables I and II. An example of ap-periodic orbit obtained

TABLE I. Comparison of the theoretical results (r theor,dr theor)
for the limit cycles, Eqs.~16!, ~17! with the results (r expt,dr expt) of
numerical computations. For each set of parameters the rela
error of the analytical approximation with respect to the numeri
value is also given.

a q rtheor r expt

Rel. error
~%! dr theor dr expt

Rel. error
~%!

0 0.05 9.3 9.4 1 0.23 0.23 1
0 0.1 5.8 5.9 1 0.29 0.29 1
0.01 0.15 3.6 3.7 3 0.27 0.27 1
0.015 0.2 3 3.1 2 0.31 0.31 1
0.02 0.25 2.7 2.7 1 0.34 0.35 1
0.03 0.3 2.3 2.4 2 0.37 0.37 1
0.04 0.35 2.1 2.2 4 0.39 0.4 1
0.056 0.4 1.9 2 4 0.42 0.43 2
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2898 57KOŠTRUN, SMITH, AND JAVANAINEN
numerically, together with a limit cycle defined by Eqs.~19!,
~20!, is given in Fig. 2.

We conclude that our analytical approximations for t
limit cycles generally agree to within a few percent with t
numerical solutions to Eq.~4!, and accordingly the axis
aligned motion of Eq.~3! is also adequately approximate
This is valid in the regions of the MSISR wherep-periodic
orbits may exist.

B. Stability of the p-periodic limit cycle of Eq. „4…

We analyze stability of the limit cycles for each of th
coordinates using the methods derived for Mathieu-type
ferential equations, described in Refs.@12,15,13,16,19#. We
start by stating the basic properties of the solutions to
Mathieu equation~1!. We then show how these propertie

TABLE II. Comparison of the theoretical results (ztheor,dztheor)
for the limit cycles, Eqs. ~19! and ~20!, with the results
(zexpt,dzexpt) of numerical computations. For each set of parame
the relative error of the analytical approximation with respect to
numerical value is also given.

a q ztheor zexpt

Rel. error
~%! dztheor dzexpt

Rel. error
~%!

0.008 0.1 6.3 6.4 1 0.63 0.63 1
0.035 0.2 4.8 4.9 2 0.95 0.97 2
0.07 0.3 3 3.1 3 0.89 0.92 4
0.12 0.4 2.6 2.7 5 0.99 1.07 7
0.15 0.45 2.2 2.4 7 0.97 1.07 10
0.2 0.5 2.5 2.7 9 1.15 1.3 11
0.25 0.55 2.8 2.9 5 1.37 1.49 8
0.3 0.6 3.1 3.2 4 1.63 1.72 5

FIG. 2. Numerical solution~solid line! with the periodp to the
system ~3! is shown here in phase space, along with
limit cycle ~dashed line! that follows from the van der Pol–
Krylov–Bogoliubov approach, Eqs.~16!–~18! and ~19!–~21!.
In this particular case the choice of the parameters wasg50.01,

(a,q)5~0.3, 0.6!, and the initial conditions were (r , ṙ ,z,ż)
5~1,0,0,0.1!. All times, distances, and velocities are rendered
mensionless with a scaling discussed in the text.
f-

e

can be used to obtain the stability boundaries of Eq.~4!,
provided the nonlinear term in Eq.~4! is linearized using our
analytical approximation for the limit cycles. In the end, w
give comparisons with numerical results.

The Mathieu differential equation~1! is a second order
linear differential equation with periodic coefficients. It
convenient to write the solutions as Fourier sums. Owing
the cos(2t) coupling in Eq. ~1!, two linearly independent
solutions may be chosen in such a way that one only cont
even frequencies (0,2,4, . . . ) and theother only odd fre-
quencies (1,3,5, . . . ). At a boundary of the stability region
one of these becomes unstable. A boundary in the (a,q)
parameter space thus represents the set of values for w
the Mathieu equation~1! has one bounded solution with th
period p or 2p, and the other solution is about to turn u
bounded.

The nonlinear Coulomb repulsion in Eq.~4! causes mix-
ing of the odd and even frequency solutions. However, to
lowest order in the parametersa andq, the solutions to Eq.
~4! display the same decoupling of even and odd time e
lution as the Mathieu equation. This allows us to extra
information about the boundaries by observing separately
behavior of the limit cycles with periodsp and 2p. Solu-
tions to Eq.~4! with the periodsp and 2p do not have the
same importance. A solution with the periodp is self-
sustaining and has an asymptotic nonzero behavior in
form of a limit cycle, as shown earlier. A solution with th
period 2p has a different property. As will be shown b
analyzing its limit cycle, a 2p-periodic limit cycle can be
sustained only by perturbation, i.e., in the stable region
Eq. ~4! this component dies out exponentially due to t
damping. However, if by the choice of the parameters (a,q)
the 2p-periodic component becomes unstable, even if
p-periodic solution is in the stable region, the system will
unstable.

Following @13#, we examine how the system behaves
the limit cycle with a period of 2p is imposed as a solution
to Eq. ~4!. Using the van der Pol–Krylov–Bogoliubov ap
proximation, we chose instead of Eqs.~5! and~6! the follow-
ing form for the limit cycle:

y~K !5y0
~K !1dy~K !cos~t1q~K !!, ~23!

ẏ~K !52dy~K !cos~t1q~K !!. ~24!

We then proceed, in analogy with Eqs.~12!–~14!, to obtain

d ẏ~K !5
1

2
qKdy~K !sin~2q~K !!, ~25!

q̇~K !52
1

2
1

1

2
Ka1

1

2
Kq cos~2q~K !!1

1

~y0
~K !!3

, ~26!

05Kay0
~K !2

1

~y0
~K !!3

. ~27!

In Eq. ~25! we have confirmed that the amplitude
2p-periodic componentdy(K) is independent ofy0

(K) ~in the
limit when a→0, y0

(K)→x0
(K)). From Eq.~25!, the general

behavior of the 2p-periodic limit cycle can be inferred, a

s
e

-
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57 2899THEORY OF THEp-PERIODIC MOTION OF TWO IONS . . .
indicated earlier. If 2p-periodic motion is in the stable re
gion, thendy decays exponentially and the 2p-periodic limit
cycle eventually becomes unimportant. In the contrary c
dy grows exponentially, thus destroying the presumed fo
of the solution~7! for p-periodic orbits just as well.

We find that forK51, the fixed point is atq5p/4, and

for a< 1
3 2 1

3 q, system~4! is stable under small perturbation
Similarly, for K522, the fixed point is atq52p/4, and

for a>2 1
6 1 1

3 q , the system is again stable under small p
turbations. The analytical approximation of the stabil
boundaries of Eq.~4! is given by

2
q2

2
<a<

1

3
2

q

3
, ~28!

2
1

6
1

q

3
<a<q2. ~29!

The condition~28! is for K51(r coordinate! and Eq.~29!
for K522 (z coordinate!. Other methods can be employe
for the studies of these boundaries@20,21#. To the lowest
order in q they all yield the same result, but require mo
tedious calculations.

We have also performed a numerical analysis of the
bility boundaries of Eq.~4! for each coordinate. In the com
putations we used the initial condition (x,ẋ)05(x0,0), where
x0 was calculated from Eqs.~16! and~19!. We found that the
stability regions can be closely approximated by

20.5q2<a<0.3320.14q20.55q2, ~30!

20.1810.32q10.71q2<a<q2, ~31!

for the r andz coordinate, respectively. Figure 3 shows t

FIG. 3. Stability regions of the limit cycle solutions of Eq.~4!,
for the r andz coordinates. The boundaries of different regions
obtained theoretically and numerically in Sec. II. Here only t
numerical values given by Eqs.~30! and ~31! are shown. In the
aR (aZ) region ap-periodic motion forr coordinate (z) is stable.
In thea(R1Z) a p-periodic limit cycle motion of both coordinate
is stable, while in theaU region the limit cycle of neither coordi
nate is stable.
e

-

a-

stability regions of Eq.~4! inside MSISR. We see four re
gions. In regionsaR (aZ) a limit cycle of ther (z) coor-
dinate is stable. In regiona(R1Z) both r andz coordinate
limit cycles are stable, and in the regionaU Eq. ~4! does not
have a stablep-periodic limit cycle.

A comparison between Eq.~28! and Eq.~30! shows that
for the r coordinate we have reached only a fair degree
agreement between the numerical and approximate analy
results. For thez coordinate, the agreement is better. T
analytical results are, of course, limited in that the analysi
based on linearization of the Coulomb repulsion aroun
limit cycle orbit.

III. OFF-AXIS SIMPLE HARMONIC MOTION

It was observed in numerical simulations that the syst
~3! supports off-axisp-periodic orbits for certain choices o
the parameters (a,q) inside the MSISR. We call the part o
the (a,q) parameter space that supports such orbits
‘‘transition region.’’ The spatial shape of the off-axi
p-periodic orbits is illustrated in Fig. 4, where the parame
values wereg50.01, q50.35, anda50.04 (r axis align-
ment!, 0.048, 0.050, 0.055, 0.060, 0.065, 0.070, and 0.080z
axis alignment!. Figure 5 shows that the behavior of th
alignment of thep-periodic orbits is parameter dependen
We plot the averages of ther andz coordinates, calculated in
the same manner that was used for the numerical assess
of the limit cycles. The parameterq was held fixed at the
value of 0.3, we choseg50.01, and the parametera was
changed in the interval@0.037, 0.048#. From these com-
puted results it follows that ap-periodic orbit in the transi-
tion region is still one dimensional but off axis. The resu
of Sec. II, which were derived for the axis aligned motio
cannot be directly used.

We suggest two approaches to analyze the behavior o
system~3! inside the transition region: the Mathieu equati
approach, and the action functional approach. Together w

e
FIG. 4. Behavior of thep-periodic orbits in (r ,z) space when

the parameters (a,q) are inside the transition region. The values
the parameters areg50.01, q50.35, and a50.048 (r align-
ment!, 0.055, 0.060, 0.065, 0.070, 0.075, and 0.080 (z align-
ment!.
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2900 57KOŠTRUN, SMITH, AND JAVANAINEN
the results of Sec. II they allow us to evaluate the bounda
of the transition region and study the nature of the sim
harmonic (p-periodic! orbits that occur within that region
We compare the results of these two theoretical approa
with numerical simulations.

A. Mathieu equation approach

Figure 5 demonstrates a very important property of
p-periodic orbits close to the boundary between the a
aligned and transition region: one of the coordinates is stil
its limit cycle, while the other starts to emerge slowly wi
the change of one of the parameters. This is the basis for
analysis of the transition boundary, as it allows the appli
tion of the results from the theory of Mathieu-type differe
tial equations.

We assume that one of the coordinates is in its limit cyc
Therefore it is described by the limit cycle equations, E
~16!–~18! or Eqs.~19!–~21!. The other~suppressed! coordi-
nate will perform the motion that will be described by
modified Mathieu equation that follows when the contrib
tion of the suppressedcoordinate is neglected in the Cou
lomb repulsion term. The axis aligned motion will be stab
as long as the modified Mathieu equation2 that describes the
suppressed coordinate is in the stable region.

For simplicity, let us suppose that ther coordinate is sup-
pressed and thez coordinate is the limit cycle coordinate, th
parameters of the limit cycle being given in Eqs.~19!–~21!.
The equation that governs the behavior ofr can be closely
approximated by

r̈ 52g ṙ 2@a12q cos~2t!#r 1
r

z3
. ~32!

2We use the property of the solution of the Mathieu equation w
nonzero friction that in the stable region the solution is damp
See, for example, Ref.@4#.

FIG. 5. Behavior of thep-periodic solution to the system~3!
inside the transition region. The position represents particular c
dinate averaged over one period. Withg50.01 andq50.3 con-
stant, a smooth transition of alignment with respect to the param
a can be seen.
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We expand the 1/z3 term in powers ofdz/z0, keeping track
of the phase shift of thez coordinate up to the second orde
Using the trigonometric relationship cos2~2t!51/2
1~1/2!cos(4t) and neglecting the second harmonic te
cos(4t), we obtain

1

z3
.

1

z0
3

13
dz2

z0
5

13
dz

z0
4
cos~2 t!. ~33!

This allows us to deduce how the limit cycle of thez coor-
dinate modifies the parameters (a,q) to (a* ,q* ) in the cor-
responding Mathieu equation~1! for ther coordinate. We get
after simple manipulations

a* 5a2
1

z0
3

23
dz2

z0
5

,

~34!

q* 5q2
3

2

dz

z0
4

.

Using the values of thez coordinate limit cycle from Eqs.
~19!–~21! and the condition~22! for the r coordinate with
these modified parameters, we obtain the following condit
of stability:

a>
1

2
q21

5

3
q4. ~35!

We conclude that if the conditions~35! and~31! are satisfied,
the system~3! will oscillate in thez direction and will be
stable against perturbations in ther direction. For the other
coordinate, the stability condition becomes

a<
1

2
q22

41

48
q4. ~36!

One is again led to conclude that if Eqs.~36! and ~30! are
satisfied, the system~3! may oscillate along ther axis, for it
is stable against perturbations in thez direction.

Even though our analytical arguments so far do not
count for the alignment transition region, they nonethel
turn out to give a good qualitative picture about the stabi
regions of the axis aligned motion. We now proceed to
analytical treatment of the alignment transition itself.

B. Action functional in the limit cycle approximation

We examine theoretically the nature of thep-periodic
solutions inside the transition region. Figures 5 and 6 sugg
two approaches.

By the first one, one performs a rotation of the (r ,z) co-
ordinate system by some angleu in the hope that in the new
coordinates the system~3! may have a simple form to which
the results of Sec. II can be applied. Unfortunately, that w
not work. In any new coordinates the system~3! has a close
to intractable form, and even in the lowest order of appro
mation, it seems that nothing can be inferred about the an
u.

The second approach is based on the assumption tha
off-axis p-periodic orbit can be represented as a mixture

h
.
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the limit cycles of the axis aligned motion. We introduce
mixing parameteru and calculate the action functional fo
the system~3!. Alignment of the system is obtained as th
value of the angleu at which the action functional has a
extremum.

Following the latter approach, we introduce the mixi
angleu in the following fashion. We assume that ther andz
coordinates of the off-axis orbit can be written as

r 5cos~u!r lim5cos~u!@r 01dr cos~2t!#,
~37!

ṙ 52cos~u! ṙ lim52cos~u!2dr sin~2t!,

z5sin~u!zlim5sin~u!@z02dz cos~2t!#,
~38!

ż5sin~u!żlim5sin~u!2dz sin~2t!.

We haver 0 ,dr from Eqs.~16! and~17!, andz0 ,dz from Eqs.
~19! and~20! as functions of the parameters (a,q). The angle
u50 corresponds to the axis aligned motion of ther coor-
dinate, while the angleu5p/2 corresponds to the axi
aligned motion of thez coordinate.

The LagrangianL of the system~3! can be written

L~a,q,u,t!5
1

2
@cos2~u! ṙ lim

2 1sin2~u!żlim
2 #

2
1

2
@a12q cos~2t!#

3@cos2~u!r lim
2 22 sin2~u!zlim

2 #

2
1

@cos2~u!r lim
2 1sin2~u!zlim

2 #1/2
. ~39!

The actionS of the corresponding LagrangianL is given by

FIG. 6. The MSISR is shown together with the three alignm
regions of Eq.~3!. For boundaries, the numerically obtained valu
from Eqs.~42! and~43! are given. In theR(Z) region ap-periodic
limit cycle of ther (z) axis aligned motion is stable. In theT region
the p-periodic limit cycles are not axis aligned and/or the perio
orbits with multi-p period may occur.
S~a,q,u!5E
0

p

dtL~a,q,u,t!. ~40!

We find the extrema of the actionS with respect to the mix-
ing angleu. Partial differentiation with respect tou gives

]S
]u

5sin~u!cos~u!

3E
0

p

dtS 2 ṙ lim
2 1 żlim

2 1@a12q cos~2t!#~r lim
2 12z2!

2
r lim

2 2zlim
2

@cos2~u!r lim
2 1sin2~u!zlim

2 #3/2D . ~41!

By solving Eq.~41! for ]S/]u50 we obtain three solutions
Two of them are trivial, 0 andp/2. A third solution u3,
inside the transition region, is in the interval@0,p/2#. When
the boundary of a stability region is approached, the angleu3
approaches either 0 orp/2. We conclude that on the bound
ary u50 or u5p/2 is a double root of Eq.~41!. This yields

E
0

p

dtF2 ṙ lim
2 1 żlim

2 1@a12q cos~2t!#~r lim
2 12zlim

2 !

2
1

r lim
1

zlim
2

r lim
3 G50, ~42!

E
0

p

dtF2 ṙ lim
2 1 żlim

2 1@a12q cos~2t!#~r lim
2 12zlim

2 !

2
r lim

2

zlim
3

1
1

zlim
G50. ~43!

Equation~42! is satisfied at the boundary between ther axis
alignment region and transition region, and similarly E
~43! will be satisfied at the boundary between thez axis
aligned region and the transition region. Within the lim
cycle approximation these integrals can be calculated exa
using contour integral techniques~see the Appendix!. We
have used them to obtain the boundary numerically, but
dependently of direct numerical computations.

C. Direct numerical computations

We have computed the boundaries of the transition reg
numerically in a manner similar to that underlying Fig.
We choose a few values of the parameterq for which we
obtainp-periodic orbits. For each value of the parameterq
the corresponding value of the parametera is located inside
the transition region, but close to the boundary. The criti
value of the parametera is chosen so that the amplitude o
the suppressed coordinate is small but does not decrease
the increase of the number of thermalization steps~number
of periods during which the system was allowed to se
down!. This is in contrast to the behavior of the suppress
coordinate inside the axis aligned region, where it wou

t
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decrease typically from 1024 after the thermalization of 1000
trap periods to 1029 after the thermalization of 3000 tra
periods.

D. Results and discussion

In Table III, we present the results for the boundar
between alignment regions obtained from the Mathieu eq
tion approach; from the action functional; and from dire
numerical computations on the system~3!.

The good agreement between direct numerical comp
tions and the action functional approach serves as a proo
validity of the starting assumption: in the transition regi
p-periodic orbits can be represented as mixing between
axis aligned limit cycles of ther andz coordinates. Figure 6
shows the stability regions of thep-periodic motion within
the limit cycle approximation. In the regionR(Z) the axis
aligned motion inr (z) coordinate of the system~3! is ob-
served, i.e., the axis aligned motion described by limit cyc
from Eqs.~16!–~18! and ~19!–~21! is stable. The transition
regionT consists of the region of the MSISR where the lim
cycles of both coordinates may exist and are stable@region
a(R1Z) in Fig. 3, but excluding the parts where the ax
aligned motion may exist and is stable, regionsR and Z in
Fig. 6#. In the regionT, transition of the alignment betwee
r andz coordinates is observed, as well as the appearanc
periodic orbits with periods that are some integer multip
of p. Though the appearance of orbits with a higher per
than p was observed within theR and Z regions as well,
these higher periodic orbits become dominant as the sys
approaches theaU region, Fig. 3.

TABLE III. Values of the parameters (a,q) that correspond to
the boundaries between alignment regions. These are obtaine
three means; numerically~Num!, by use of the theory of the
Mathieu-type differential equations~Mathieu!, and by extremizing
the action functional~Action!, as described in Sec. III.

R/T Z/T
q a a

Num Mathieu Action Num Mathieu Action

0.05 0.00124 0.00124 0.00126 0.0012
0.10 0.00491 0.00489 0.00517 0.0051
0.15 0.01082 0.01071 0.01210 0.0118
0.20 0.01839 0.01863 0.01829 0.02182 0.02267 0.02
0.25 0.02791 0.02704 0.03776 0.0357
0.30 0.03708 0.03808 0.03619 0.05338 0.05850 0.05
0.35 0.04843 0.04471 0.08626 0.0774
0.40 0.0501a 0.05813 0.05122 0.1071a 0.12267 0.10621
0.45 0.06622 0.05380 0.16960 0.1403
0.50 0.07161 0.04950 0.18a 0.22920 0.17964
0.60 0.3a 0.39600 0.27176

aThese numerical values do not represent the boundary betw
axis alignment region and transition region but rather axis ali
ment region and two-dimensional multi-p-periodic motion. These
figures are rough estimates of the boundary beyond which the
tem supports orbits with more than one period, depending on in
conditions.
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E. Beyond thep-periodic orbit approximation

At the outset, it is obvious that the system~3! supports,
within its stability region, periodic orbits with periods tha
are integer multiples of the driving field period. This b
comes a problem in particular when approaching the reg
inside the MSISR that we call theaU region, Fig. 3. Previ-
ous research has put a possible onset of chaotic beha
inside theaU region.

Our results with respect to higher period orbits are rat
qualitative and rely solely on numerical computations. W
can state them as follows.~i! Multiple period orbits have
similar shape. In support of this we present Fig. 7. It sho
the orbit with the period 2p obtained for two choices of the
parameters (a,q), (0.15, 0.5) and (0.2, 0.55).~ii ! The
system~3! allows some points (a,q) in the MSISR to have
more than one periodic solution depending on the initial c
ditions. An example is given in Fig. 8, where for the para
eters (a,q)5(0.2, 0.5) andg50.01 at least two stable orbit
may exist. One has the periodp ~in this case it is az aligned
orbit!, and the other has the period of 8p.

IV. DISCUSSION

The problem of ordered motion of two ions was fir
brought up in Ref.@7# where it was suggested, after thoroug
numerical simulations, that the equations of motion allow
‘‘crystal’’ to be formed, and observed disorder was inte
preted as a quasiperiodic solution of the equations of mot
As the theoretical approach for analyzing the underlying
dynamics, a pseudopotential method was suggested@6,11#.
Until now it has been the only analytical approach to t
problem of a few trapped ions.

Comparison between the pseudopotential method and
limit cycle method is not simple because of the differences
the approaches and the problems they are trying to so
The pseudopotential method concentrates on the dynamic
the secular coordinate after averaging out the micromot

by

7

1

en
-

s-
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FIG. 7. Two 2p-periodic orbits are shown.~A! is obtained for
(a,q)5(0.15, 0.5) and~B! is obtained for (a,q)5(0.2, 0.55). In
both casesg50.01. Similarity between these two periodic orbit
obtained for two different points in the (a,q) parameter space, is
demonstrated.
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The limit cycle method, on the other hand, concentrates
the micromotion and establishes how important it is for
dynamics of the ordered (p-periodic! motion. The limit
cycle method gives a detailed description of the ion trajec
ries, their regions of stability, and the alignment of the t
jectory with respect to the trap axes. Most importantly,
results predicted by the limit cycle approach are all in go
agreement with the results of direct numerical computatio
which is not always the case with pseudopotential result

The limit cycles method combined with numerical sim
lations suggests that the disordered motion is either peri
motion with the period that is some higher integer multip
of p, or bounded aperiodic motion~chaos!. This may explain
the observed disordered motion found in the numerical
periments in Refs.@11,22#. Our theory suggests that diso
dered motion is the only possible motion if the trap para
eters are inside the regionaU, Fig. 3, because in that part o
the parameter space no limit cycle corresponding to the
dered motion is stable.

V. CONCLUSIONS

Two ions in a Paul trap can undergo an ordered perio
motion that in mathematical terms can be described as a
cycle with a period of the driving field of the trap. We hav
developed a theory of such periodic motion based on van
Pol–Krylov–Bogoliubov approximation to the limit cycl
solutions of the equations of the motion and on the fami
results for Mathieu-type differential equations. We ha
shown thatp-periodic motion may occur either as the ax
aligned ~along r or z axis!, or off axis. The axis aligned
motion can be described by a simple limit cycle, while o
axis motion can be described as mixing of the limit cyc
that correspond to the axis aligned motion of each of
coordinates.

We have calculated boundaries of the alignment regi

FIG. 8. Example of a periodic solution to Eq.~3!, where the
same point in the (a,q) parameter space yields at least two so
tions with different period.~A! is a p-periodic orbit obtained for

initial conditions (r , ṙ ,z,ż)05(5, 0.6, 8.5, 20.35) and~B! is an
8p-periodic orbit obtained for initial conditions

(r , ṙ ,z,ż)05(10, 0, 0, 25).
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theoretically and numerically and thus found where an
dered motion~a ‘‘crystal’’ ! may exist. For theoretical calcu
lations of the alignment stability boundaries we have us
two approaches. In the first one we utilize the known sta
ity regions of the solutions to Mathieu-type differential equ
tions. We have demonstrated the existence of the trans
region and calculated the boundaries between the trans
region and the regions of the axis aligned motion. In t
second one, we resort to an action functional approach.
have calculated~within the limit cycle approximation! the
action functional in which the mixing parameteru between
the r andz coordinate limit cycles was introduced. Findin
the extrema of the action functional with respect to the an
u yields the desired behavior in the transition region a
gives an independent estimate for the boundaries betw
the transition region and the regions for the axis align
motion. We have found good agreement between the va
obtained by these three means.

We have found that there exist periodic orbits with a p
riod that is some integer multiple ofp. We have also found
that for a given point in the MSISR parameter space m
than one periodic orbit is possible, depending on the ini
conditions. For orbits with the same period obtained for d
ferent values of the (a,q) parameters of the trap, we hav
found that they are similar in shape.

We have observed that the periods of periodic orbits te
to increase when approaching theaU region, where disor-
dered motion had been reported in Refs.@11,22#. The exact
nature and the parameters that characterize these per
orbits are beyond the scope of this paper, and are un
further investigation. The nature of chaos in this system s
remains to be clarified.
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APPENDIX: EVALUATION OF CONTOUR INTEGRALS

We first evaluate the integral of the form

I 15E
0

p

dt
@C1D cos~2t!#2

@A1B cos~2t!#3
5

1

2E0

2p

dy
@C1D cos~y!#2

@A1B cos~y!#3
,

where A.uBu.0 and C.uDu.0, using the technique o
contour integration. By the transformationz5eiy, the inte-
gral becomes

I 15
1

i R
G
dz

@D12Cz1Dz2#2

@B12Az1Bz2#3
,

where the contourG is given with uzu51, counterclockwise.
The only pole of the denominator inside the contourG is

-
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zp5
2A1AA22B2

B
.

Using the Cauchy theorem, we get

I 152p Res
z→zp

@D12Cz1Dz2#2

@B12Az1Bz2#3

5
p

2

2A2C21B2C226ABCD1A2D212B2D2

~A22B2!5/2
.

In the computationsA,B,C,D are replaced with the value
appropriate for the limit cycles. We recall that the limit cyc
of the r coordinate is given byr lim5r 01dr cos(2t) with
r 0 ,dr .0 andzlim5z02dz cos(2t) with z0 ,dz.0.

Under these circumstances, the second integral is e
simpler. We have
ys

r,

r,

ys

,

-

en

I 25E
0

p

dt
1

A1B cos~2t!
5

1

2E0

2p

dy
1

A1B cos~y!
.

Using the same substitutionz5eiy, it becomes a contou
integral along the same contourG as the integralI 1,

I 25
1

i R
G
dz

1

B12Az1Bz2
.

Contour integration then gives

I 252p Res
z→zp

1

B12Az1Bz2
5

p

AA22B2.
y-
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@7# R. Blümel et al., Phys. Rev. A40, 808 ~1989!.
@8# S. A. Prasad and T. M. O’Neil, Phys. Fluids22, 278 ~1979!.
@9# L. D. Landau, E. M. Lifschitz, and A. I. Akhezier,General

Physics; Mechanics and Molecular Physics~Pergamon Press
Oxford, 1967!.

@10# J. W. Emmertet al., Phys. Rev. A48, R1757~1993!.
@11# M. G. Moore and R. Blu¨mel, Phys. Rev. A50, R4453~1994!.
@12# M. Humi and W. Miller,Second Course in Ordinary Differen
.

.

tial Equations for Scientists and Engineers~Springer-Verlag,
New York, 1988!, Chap. 7.

@13# S. Lefschetz,Differential Equations: Geometric Theory~Do-
ver, New York, 1977!, pp. 312–345.
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