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Tuning the hydrogen atom in crossed fields between the Zeeman and Stark limits

D. A. Sadovskiı´ and B. I. Z&hilinskiı́
Universitédu Littoral, Quai Freycinet 1, 59379 Dunkerque, France

~Received 9 July 1997!

We consider the hydrogen atom in the orthogonal electric and magnetic fields whose strength is assumed to
be small enough for the Coulombn-shell perturbation theory to apply. Appropriate scaling of the two fields
leads to a uniform parametrization of the problem byS, the combined strength of the two fields, anda, the
ratio of the two field strengths. The initial six-dimensional phase spaceR6 is lifted to the standard
Kustaanheimo-Stiefel eight-dimensional space and then reduced explicitly to theS23S2 reduced space of the
n shell using the Lie transformation to the third order inS. At fixed S the system is uniformly tuned between
the Zeeman and the Stark limits using the analytic formulas of the perturbation theory. The approach requires
application of the invariant theory, group theory, and topology to the analysis of the dynamics on the reduced
spaceS23S2 and subsequent explicit transition to the originalR6. In particular we follow the evolution of the
four principal periodic orbits~nonlinear normal modes! and corresponding four relative equilibria onS23S2.
@S1050-2947~98!01404-8#

PACS number~s!: 32.60.1i, 03.20.1i, 03.65.Sq, 46.10.1z
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I. INTRODUCTION

The hydrogen atom in the presence of static exter
fields is a fundamental, relatively simple problem with ma
different kinds of dynamical behavior. It has become a t
ground for the dynamical system analysis, semiclass
theory, and a number of modern experimental techniq
that provide highly accurate data on the actual quantum
tem.

In the present paper we focus on the hydrogen atom
orthogonal~crossed! electric and magnetic fields@1#. ~See
Sec. I A for a precise definition and notation.! The dynamics
of this system with three degrees of freedom can be v
complex and it is natural to begin with the nearly integra
case at relatively small fields and to study changes in
dynamical structure caused by increasing perturbation.

Our main object is the four families of principal period
orbits, the nonlinear normal modes of the crossed-field pr
lem, and the corresponding relative equilibria@2#. In this
regard we should pay tribute to the two earlier papers
Flöthmannet al. @3# and by Uzer and co-workers@4,5#. In
Ref. @3# the authors initiated the study of the nonlinear n
mal modes, which they call principal Kepler ellipses,
terms of both periodic orbits and adiabatic invariants;
authors of Refs.@4,5# rely essentially on the second-ord
perturbation theory and the dynamical analysis of the
duced Hamilton function of the problem. We follow th
work using more extensively the methods of qualitative d
namics, topology, and group theory@6–8#.

The unperturbed hydrogen atom is an integrable sys
with continuous spatial symmetry O~3! and dynamical sym-
metry O~4!; its three integrals of motion are the orbital m
mentumL, its projectionLz , and the length of the Runge
Lentz-Laplace vectorK. The vectorsL andK are such that

K21L25n2, K•L50, ~1!

and the energy is a function ofn, E521/2n2. We consider
n, the principal Coulomb integral, as an approximate integ
571050-2947/98/57~4!/2867~18!/$15.00
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of motion of the atom-in-field problems. The quantum an
log of n is of course the principal quantum numbern. This
so-calledn-shell model is explained further in Sec. II C.

Instead of analyzing our problem directly on the initi
six-dimensional phase spaceR6, we first use approximate
integrability to reduceR6 to the spaceS4 of dimension 4,
analyze the dynamics there, and use the correspondenc
tween the reduced and the initial problems. This central
namical idea of our paper is explained in Sec. I B.

A. Hydrogen atom in crossed fields

We introduce the notation and the Hamilton function, fi
the symmetry group, and define the parametrization requ
for a uniform representation of all orthogonal field config
rations and convenient ‘‘tuning’’ between the Zeeman a
Stark limits @9#.

1. Hamilton function

The Hamilton function of the hydrogen atom in the pre
ence of constant magnetic and electric fields@10# is

H5
P2

2
2

1

r
1~F•r !1

1

2
~G•L !1

1

8
~G3r !2, ~2!

with G andF the magnetic and electric field vectors@11#. To
define the coordinate system for the orthogonal~crossed!
fields we use the three unit vectors (nb ,ne ,np), with np
5nb3ne , such thatF5Fne and G5Gnb . Any vector is
represented by three components with indices (b,e,p), for
instance,r5(Qb ,Qe ,Qp). The Hamilton function~2! be-
comes

H5
P2

2
2

1

r
1FQe1

1

2
GLb1

1

8
G2~Qe

21Qp
2!. ~3!
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2. Symmetry group

Our Hamilton function~3! is invariant with regard to
three nontrivial discrete spatial-temporal symmetry ope
tions R @6#: s (ep) is the reflection in the plane orthogonal
G, Ts (eb) is a combination of time reversal (q,p)→(q,
2p) and reflection in the plane spanned byG and F, and
TC2 is the combination of the time reversal and rotation
p around axisF. Together with identityI these operations
form an order-4 groupG4, the total symmetry group of the
crossed-field problem, with three order-2 subgroups.

G4 Cs Ts T2
$I ,s (ep),Ts (eb),TC2% $I ,s (ep)% $I ,Ts (eb)% $I ,TC2%

3. Parametrization

We want to study the dynamics of the problem forall
ratios of the two field strengths while the total effect of t
perturbation is kept more or less the same@9# and our pa-
rametrization differs from that used elsewhere@12#. To de-
fine this total effect we take into account that the first-ord
~linear! correctionDEn to then-shell energy of the hydroge
atom in the Zeeman and Stark limit is, respective
'6Gn3 and'63Fn4 with n'A21/2E. Then for givenn
it is natural to fix

S5A~Gn3!21~3Fn4!2 ~4a!

and to vary only the relative strengths of the two fields

Gs5Gn3/S, Fs53Fn4/S. ~4b!

In this paper we consider small values ofS andall possible
relative strengths of the two fields, such as

Fs5cosa, Gs5sina, 0<a<
p

2
. ~4c!

B. Correspondence between the reduced
and the initial phase spaces

Our use ofn in Eq. ~1! as anapproximateintegral is quite
typical: In a physical problem withN degrees of freedom
and the phase spaceR2N , we often can introduce an approx
mate integral of motionn with conjugate anglefn and re-
duce the problem to one withN21 degrees of freedom an
the phase spaceS2N22.

1. Reduction procedure

We can reduce the original Hamilton functionH with
regard ton if H is ~can be represented as! a formal power
series atQ5P50,

H~Q,P!5H0~Q,P!1 (
k51

ek

k!
Hk~Q,P!, ~5!

whose zeroth-orderH0 is linear inn and depends only onn.
We introduce the formal smallness parametere and classify
the ordersk of the perturbation theory by the total degree
-

r

,

(Q,P) of the corresponding termHk . We reduceH by av-
eraging the dynamics of our system with regard to the an
fn and eliminate all termsh in Hk with $h,H0%Þ0 by an
appropriate canonical transformation.

The resulting Hamilton function of the reduced problem
called thenormal form HNF . The normal-form transforma
tion is a canonical near identity change of variablesL that
maps the original phase spaceR2N onto a space of the sam
dimension~and topology! R2N ,

R2N→
L

R2N°S2N22 . ~6!

The normal formHNF defined onR2N is a function of only
2N22 dynamical variables since the quantityn plays the
role of a parameter and the anglefn is ignorable~theHNF no
longer depends onfn). For fixed n we considerHNF as a
Hamilton function defined on areducedphase spaceS of
dimension 2N22.

HNF is obtained as a formal power series and generic
is divergent. Physically it is clear that we cannot equivalen
replace the original nonintegrable system by an integra
one. Nevertheless, we can still understand many impor
global features of this original system usingHNF. To actu-
ally useS in the analysis wetruncate HNF and thus assume
that n is a strict integral of motion. The extent to which w
represent the original dynamics depends on how good
approximate integral of motionn is.

2. Reduced phase spaceS

Apart from dimension, the main difference betwe
S2N22 and the initial phase spaceR2N is in their global
properties: whileR2N is a simple Euclidean space~with a
symplectic structuredq`dp), the topology of and the sym
plectic structure onS2N22 depend on the nature of the ap
proximate integraln, i.e., on the approximate dynamica
symmetry we assume. They can be quite complex. In
case @10# N53 and the original phase space isR6, n is
defined by Eq.~1!, and the four-dimensional reduced pha
spaceS4 is the direct product of two spheresS23S2 ~Sec.
II C!. The global aspect of the dynamical structure onS2N22
is entirely defined by the topology ofS: Due to the nature of
the approximate integraln, the dynamics of a particular re
duced problem will have certain common features.

3. Dynamical structure onS and on R

Assuming integrability inn, the dynamical structure on
the reduced spaceS2N22 can be easily lifted to the trans
formed phase spaceR2N by adding a periodic motion with
anglefn . In other words, if we have a dynamically invaria
subspaceG of the reduced spaceS, the image ofG in R is a
product of G and a circular orbitS1 defined by fn , G
^ S1(fn). To obtain the image in the original phase spaceR
we useL21:R→R @cf. Eq. ~6!#. Thus stationary points@2#
on S correspond to periodic orbits onR with fn the natural
coordinate along these orbits. Periodic orbits onS corre-
spond to invariant two-dimensional toriT2 in R.

C. Symmetry analysis

The Hamilton functionH(Q,P) in Eq. ~3! is invariant
with respect to all operationsR of the groupG4 in Sec.
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I A 2. These operations act on the initial phase sp
R6(Q,P) and thus on any function defined on it. By co
struction, our normal form transformationL preserves the
G4 symmetry@13# and soHNF inherits this symmetry from
the initial Hamilton function~3!.

We study theaction of the operationsR of G4 on the
phase space and on other dynamical objects such as v
fields, flows, and periodic orbits@14#. The phase space i
subdivided intostrata, or sets of points with different sym
metry properties@15#. Strata of dimension zero, i.e., sets
isolated points, are of particular interest since they neces
ily correspond to the stationary points@2# of any smooth
G4-invariant Hamilton function. We also distinguish invar
ant subspaces that can be composed of several diffe
strata.

Once the action of the symmetry groupG on the initial
phase spaceR is given, the relation~6! defines the action o
G on the reduced phase spaceS. The action ofG4 on the
reduced phase spaceS5S23S2 of our problem is analyzed
in the Appendix. This action is nontrivial, so that in additio
to the topological requirements on the generic Hamil
functions overS there are requirements due to symme
~Sec. III!.

1. Spatial symmetry

In the simplest case we havelinear symplecticoperations
R, which are easily applied to any of the above objects;
operation

s~ep!: ~Q,P!→~Qe ,2Qb ,Qp ,Pe ,2Pb ,Pp! ~7!

is an example. The main consequence of this spatial sym
try is the existence of a dynamically invariant subspace
the phase spaceR6. Indeed, the equationQb5Pb50 defines
a subspaceR4 of R6, that is both invariant with regard toCs ,
the group generated bys (ep), and dynamically invariant:
Any trajectory with initial conditionsQb5Pb50 remains in
this subspace, i.e., the electron will move in the plane (e,p)
orthogonal to the magnetic field vectorG. Two major peri-
odic orbits of the entire problem lie in this plane and c
therefore be studied more easily using theCs-restricted
Hamilton function.

2. Spatial-temporal symmetry

Operations ofG4 involving time reversalT require more
attention. These operations cannot be adequately repres
on the phase space. Formally, their action can still be
fined. This action is not symplectic, does not preserve
Hamiltonian flow ~does not commute with this flow!, and
can only be used for the analysis of stationary points@2#.

For example, the action of theTs (eb) operation

~Q,P;t !→~Qe ,Qb ,2Qp ,2Pe ,2Pb ,Pp ;2t ! ~8a!

can be formally given by a nonsymplectic operation

Ts~eb!:~Q,P!→~Qe ,Qb ,2Qp ,2Pe ,2Pb ,Pp! ~8b!

and as such can be applied to the time-independent Ham
function ~3!. The result can be used to find additional co
straints on the number, position, and type of stationary po
e

tor
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of H in the same way as for any other symmetry operati
However, except for the stationary points, any structure t
exists on the phase space due to Eq.~8b! is irrelevant to the
behavior of the flow of the dynamical system~Sec. III B!.

3. Nonlinear action and dynamical symmetry

Our situation is more complex because the total symme
group O~4!, exact for the unperturbed hydrogen atom a
approximate for the whole problem, hasnonlinearaction on
the initial phase spaceR6. This symmetry is dynamical and
its operations commute with the flow of the unperturb
problem. Welinearizethe action of this dynamical group b
changing to a space of higher dimension~Sec. II A! where
thefn flow of the whole problem is madeperfectlylinear by
the normal form transformation. Once linearized, all symm
try operations of the problem are easily combined and a
lyzed.

II. REDUCED PROBLEM FOR CROSSED FIELDS

A. Reduction or enlargement?

In the process of reduction the dynamical flow of the p
turbed problem corresponding to the approximate integran
is linearized and all points that differ only in phasefn ~orbits
of n) are mapped onto one point of the reduced spaceS.
Such a procedure is regarded traditionally as ‘‘simplific
tion’’ since the number of variables is reduced. At the sa
time, the flow onS naturally becomes more complicated.

The procedure of reduction and especially the corresp
dence of the points onS andR can be easily defined if the
action of the dynamical symmetry groupG on R is linear. If
this is not the case, we can linearize this group action
enlargementof the initial space@16,17#. From the physical
point of view this means that it is always possible to consi
the real initial physical system with a complicated Ham
tonian flow as a formal result of the reduction of a simp
Hamiltonian flow defined on a phase space of higher dim
sion.

Our initial phase space isR6. To linearize the action of
O~4! we enlarge the dimension by 2. The actual transit
R6→R8 is given by the Kustaanheimo-Stiefel~KS! transfor-
mation@18,19#. TheR6 is obtained from the KS spaceR8 as
a space reduced with regard to the auxiliary integral of m
tion z(q,p)50 by identifying all points that differ only in
the value of the conjugated anglefz .

Another important reason for the KS transformation is t
regularizationof the 1/r Coulomb potential@20#. Indeed, our
normal form reduction~Sec. I B 1! works only if the Hamil-
ton functionH is regular near the equilibriumQ5P50 @cf.
Eq. ~5!#. In the KS coordinates the function~3! is regularized
by taking H→Hr (t→t/r for time! and the problem trans
forms into a special four-dimensional oscillator.

B. KS transformation and regularization

The KS transformation@Ref. @18#, Chap. II.9 Eq.~27!# is
defined by the matrix

MKS5S q1 2q2 2q3 q4

q2 q1 2q4 2q3

q3 q4 q1 q2

q4 2q3 q2 2q1 ,

D ~9!
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with q the coordinates inR4. The coordinates (Q1 ,Q2 ,Q3)
in the physical spaceR3 are obtained as

~Q1 ,Q2 ,Q3 ,Q4!T5MKS~q1 ,q2 ,q3 ,q4!T, ~10a!

whereMKS is such thatQ4[0. The radius inR3 equals

r 5AQ1
21Q2

21Q3
25q1

21q2
21q3

21q4
2 ~10b!

and MKS
T MKS5MKSMKS

T 5rI 4. The momenta (P1 ,P2 ,P3)
of the initial phase spaceR6 are expressed in terms of coo
dinates (q1 ,q2 ,q3 ,q4) and conjugated moment
(p1 ,p2 ,p3 ,p4) in R8 as

~P1 ,P2 ,P3 ,P4!T5
1

2r
MKS~p1 ,p2 ,p3 ,p4!T, ~11a!

so that

P1
21P2

21P3
21P4

25
1

4r
~p1

21p2
21p3

21p4
2!, ~11b!

i.e., the kinetic energy in the KS spaceR8 acquires the factor
1/r , thesameas in the Coulomb potential. The KS transfo
mation defined by Eqs.~10! and~11! is canonical. However
for P4 in Eqs.~11! to become identically zero we impose th
restriction

z5
def

22rP45q1p42q4p11q3p22q2p350. ~12!

Thus the initial phase spaceR65$Q1 ,Q2 ,Q3 ,P1 ,P2 ,P3% of
the Kepler and Coulomb problems becomes a reduced s
for a problem inR85$q1 ,q2 ,q3 ,q4 ,p1 ,p2 ,p3 ,p4% with the
integralz50 @21#.

Using the KS formulas~10! and ~11! together with con-
dition ~12!, we find the three-dimensional space angular~or-
bital! momentum

~L1 ,L2 ,L3!5~Q1 ,Q2 ,Q3!3~P1 ,P2 ,P3! ~13!

in terms ofR8:

Lb5 1
2 ~q1p42q4p11q2p32q3p2!

5q2p32q3p2 , ~14a!

Le5 1
2 ~q2p41q3p12q1p32q4p2!, ~14b!

Lp5 1
2 ~q1p21q3p42q2p12q4p3!, ~14c!

where (1,2,3)5(e,b,p) @Eq. ~3! and Sec. I#.

1. Hamilton function in KS coordinates

We use Eqs.~10!, ~11b!, and~14a! to expressH(P,Q) in
Eq. ~3! in terms of (q,p) in R8,

H~P,Q!5H~p,q!5E, ~15a!

with E the energy. Equation~15a! multiplied by 4r becomes
regular,

4rH ~p,q!24rE50. ~15b!

The new Hamilton function is a polynomial in (q,p),
ce

1
2 p21~28E! 1

2 q21•••54, ~15c!

whose quadratic part represents an isotropic harmonic f
oscillator with frequency

v5A28E. ~16!

Scaled to the standard form by

~p,q!→~pAv,q/Av!, ~17!

our equation finally becomes

1
2 ~p21q2!1 1

3 f ~q2q12q4q3!q21 1
2 g~q2p32q3p2!q2

1 1
8 g2~q2

21q3
2!~q1

21q4
2!q25

4

v
, ~18!

with auxiliary field parameters

g54G/v2, f 524F/v3. ~19!

The harmonic part of the oscillator~18! is the total action
proportional to the principal integral of motionn of the un-
perturbed Coulomb problem@Eq. ~1!#. Since 4/v52n @cf.
Eq. ~16!#,

2n5 1
2 ~p1

21p2
21p3

21p4
21q1

21q2
21q3

21q4
2!. ~20!

2. Laplace-Runge-Lentz vector

To find the KS expression for the Laplace-Runge-Le
vector we begin with its definition in the initial physica
space@cf. Eq. ~21! and Eq.~22! of Ref. @22#, and Ref.@23##,

K5P3L2Q/r . ~21!

Substitution of the KS formulas into Eqs.~10!, ~11!, and~14!
yields complicated expressions that, however, can be r
cally simplified usingz50 @Eq. ~12!# and our assumption
n5const that restricts Eq.~21! on a sphereS7 in R8. The
radius of this sphere can be chosen arbitrarily and the va
of 4n58 results in the desired simplification. Since this im
pliesn52, we rescale the resultK→2K to obey the standard
relations~1! and obtain the KS expressions in their final for

Kb5 1
4 ~p2

21q2
21q3

21p3
22q1

22p1
22q4

22p4
2!, ~22a!

Ke5 1
2 ~p4p32q2q12p1p21q4q3!, ~22b!

Kp52 1
2 ~q3q11p1p31q4q21p4p2!. ~22c!

We can now verify the usual Poisson brackets

$Le ,Lb%5Lp , $Le ,Kb%5Kp , $Ke ,Kb%5Lp , ~23!

using Eqs.~14! and~22!. This concludes the hydrogen-ato
realization of the standard so~4! algebra.

3. Standard diagonal representation

We can greatly accelerate the procedure of the norm
form reduction of the Hamilton function~18! by changing to
coordinates (q8,p8)T5U21(q,p)T, with U the 838 sym-
plectic transformation matrix
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U51
0 0 0 21 21 0 0 0

0 1 0 0 0 0 21 0

0 0 1 0 0 21 0 0

1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 21

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 0 21 1 0 0 0

2 1

A2
,

~24!

such that the quadratic formz(q8,p8) @Eq. ~12!# is diagonal
@24#. In these new coordinates, four quantities

n5 1
2 ~n11n21n31n4!, ~25a!

z52n12n21n31n4 , ~25b!

Kb5 1
2 ~2n11n21n32n4!, ~25c!

Lb5 1
2 ~2n11n22n31n4!5n22n3 ~25d!

have diagonal representation in terms of actions of four o
dimensional oscillatorsni5

1
2 (qi8

21pi8
2), i 51, . . . ,4.

Because of the invariance of Eq.~18! with respect to the
SO~2! rotations generated byz, the Hamilton function
H(q8,p8)5H(q,p) as a whole necessarily commutes withz,
$H,z%50. In other words,z is an integral of motion. In the
zi5qi86 ipi8 coordinates, the operation$,z% maps each indi-

vidual monomialh5z1
a1

•••z4
a4z̄1

b1
••• z̄4

b4 onto itself. It fol-
lows that all monomialsh of H are in the null space of$,z%
and everyh commutes withz. The representation ofH in
terms of such ‘‘z-invariant’’ monomialsh requires the mini-
mal number of terms~equal to the dimension of the nu
space for each degreea11•••1a41b11•••1b4). This in
turn minimizes the number of terms in the generator ofL and
hence the memory load and computation time of the red
tion procedure@13#.

Another important application of the coordinates~24! is
the standard algebraic and geometric representation of
problem. These coordinates give an explicit geometric c
struction of the embedding of the reduced phase spaceS of
the problem into the initialR8 and transformedR8 KS
spaces in terms of anglesf i and conjugated actionsni of
four oscillators. See Secs. II C and IV D and Ref.@4# for
further details.

4. Restriction on the Cs-invariant subspace

As already pointed out in Sec. I C 1, the spatial symme
group of our problem isCs . To studyCs-invariant dynamics
we find the image ofs (ep) in the KS spaceR8 and the de-
fining equations of theCs-invariant subspace~s!. In fact, it
suffices to find one realization ofs (ep),

s~ep!:~q1 ,q2 ,q3 ,q4!→~q2 ,q1 ,q4 ,q3!, ~26a!

and one corresponding invariant subspace inR8 with

q15q2 , q35q4 , p15p2 , p35p4 ~26b!
e-

c-

he
-

y

@cf. coordinatesQa(q1 ,q2 ,q3 ,q4) in Eq. ~10! and use Eq.
~12! when verifying the invariance of Eq.~18!#. All other
Cs-invariant subspaces are equivalent and are mapped
the same (Qe ,Qp ,Pe ,Pp) plane of the originalR6.

Restriction of Eq.~18! by relations~26b! results in a two-
degrees-of-freedom problem with the Hamilton function

H̃5p2
21q2

21p4
21q4

21
2

3
~q2

42q4
4! f 1~q21q4!

3~q2p42q4p2!g1
1

4
~q2

21q4
2!3g25

4

v
. ~27!

Like the motion in the (e,p) plane of the initial physical
space, theCs-restricted problem in the KS coordinates h
two degrees of freedom.

We use Eqs.~26b! to restrict the principal Coulomb inte
gral n @Eq. ~20!#, z @Eq. ~12!#, as well as vectorsL @Eq. ~14!#
and K @Eq. ~22!#. Four quantities are not invariant with re
gard tos (ep) in Eq. ~26a! and hence vanish,

L̃ e5 L̃ p5K̃b5 z̃ [0 ~28!

~cf. Table I!; four others remain quadratic polynomials o
R4PR8,

ñ5 1
2 ~q2

21p2
21q4

21p4
2!, ~29a!

L̃ b5q2p42q4p2 , ~29b!

K̃e5 1
2 ~q4

21p4
22q2

22p2
2!, ~29c!

K̃p52q2q42p2p4 . ~29d!

C. Reduced phase spaceS23S2

Reduction with regard ton is realized in the KS spaceR8
as a standard Lie transformation@Eq. ~6!#; reduced spaceS4
is obtained from the transformed spaceR8 using both n
5const andz50. Since ourHNF is truncated andn is as-
sumed to be strictly conserved, the phase spaceS4 is the
same as for the unperturbed hydrogen atom. We use
components ofL andK with two restrictions~1! as dynami-
cal coordinates onS4 and take advantage of then5const
condition to introduce universally scaled vectors,

K→K /n, L→L /n, K21L2→1. ~30a!

TABLE I. Transformation properties of the dynamic variabl
of the n-shell reduced problem under the action ofG4.

Variable E Ts (eb) s (ep) TC2
(e)

Ke 1 1 1 1

Kb 1 1 2 2

Kp 1 2 1 2

Le 1 1 2 2

Lb 1 1 1 1

Lp 1 2 2 1
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In other words, we project alln shells on the shelln51 and
scale all KS coordinates inR8 by the hyperradiusAn,

q→q/An, p→p/An. ~30b!

Alternatively, the six components of the two vectors

J15 1
2 ~L1K !, J25 1

2 ~L2K !, ~31!

with two (n-scaled! restrictions

J1
25J2

25 1
4 5const, ~32!

are often used. Since$J1a ,J2b%50 @cf. Eqs.~23!# we con-
clude thatS4 is a direct product of two two-dimensiona
spaces. Furthermore, since eachJi has the properties of a
angular momentum$Jie ,Jib%5Jip and the magnitude of eac
Ji is fixed, S4 is a direct product of two spheresS45S2
3S2. The important implications of this topology are e
plained in Sec. III C.

1. Reduced phase space of the Cs-restricted problem

Reduction of theCs-restricted problem~27! is similar to
that of many other two-oscillator problems. It is made ne
q50 with regard to the combined actionñ in Eq. ~29!. The
reduced phase space, a two-sphereS2 ~isomorphic to the
complex projective spaceCP1), is theCs-invariant subspace
of the reduced spaceS4 ~Sec. III A!.

The coordinates (L̃ b ,K̃e ,K̃p) on this sphere are alread
defined in Eq.~29!. Indeed, after normalization~30a!

L̃ b
21K̃e

21K̃p
251. ~33!

In fact, expressions for (L̃ b ,K̃e ,K̃p) in Eq. ~29! give the
standard construction of the angular momentum vectoJ
52J1 ~with K̃e usually regarded asJz) in terms of the coor-
dinates of an isotropic two-oscillator@25#.

D. Symmetry properties and integrity basis

We consider the action of the symmetry groupG4 on the
reduced phase spaceS23S2, i.e., on the vectorsK
5(Ke ,Kb ,Kp) andL5(Le ,Lb ,Lp). Transformation proper-
ties of these variables are summarized in Table I. They
be verified directly from the definition of the action of theG4
group on the initial spaceS6, such as in Eq.~7!, by inducing
their action onS8 and applying it to the KS definitions~14!
and ~22!.

Using symmetry properties and the basic theory of inva
ants, we construct the set ofG4-invariant polynomials, or the
integrity basis~IB!. These polynomials have two importa
properties:~i! They are necessary and sufficient to repres
a polynomial~power series! expansion of anyG4-invariant
function onS5S23S2, such asHNF and ~ii ! the values of
these polynomials label uniquely the orbits of the action
the G4 group onS.

1. Construction of the integrity basis

The spaceS45S23S2 has dimension four and the IB
includes four main invariants. ForG4 acting onS4 it also
includes three auxiliary invariants. The theory specifies th
r

n

i-

t

f

ir

construction as follows.

Power in dynamical variables Number of invariants
(Ke ,Kb ,Kp) and (Le ,Lb ,Lp) Main Auxiliary

1 2
2 2 2
4 1

Further choice of the IB is ambiguous. We take

Ke , Lb , Kb
2 , Le

2 ~34a!

as basic invariant polynomials and

Lp
22Kp

2 , KbLe , ~Lp
22Kp

2!KbLe ~34b!

as auxiliary.

2. IB for the Cs-restricted problem

The Cs-restricted problem has a very simple IB: Its r
duced phase spaceS2 ~Sec. II C 1! is of dimension 2 and the
two main invariants are naturallyK̃e and L̃ b in Eq. ~29!.
Except for these andLp

22Kp
2 , all other invariants of the full

problem in Eqs.~34! become identically zero@cf. Eq. ~28!#.
The remainingL̃ p

22K̃p
2 is not needed because it depends l

early onK̃e
2 and L̃ b

2 @cf. Eq. ~33!#. The absence of auxiliary
invariants is due to the fact thatG4 acts on the (Lb ,Ke ,Kp)
space as an order-2 reflection group~cf. Table II! and the IB
for groups generated entirely by reflections contains no a
iliary invariants@26#.

3. Application of IB polynomials

We can now represent anyG4-invariant polynomial onS
using the IB polynomials~34! as a sum of terms

C$ i 1 ,i 2 ,i 3 ,i 4%~K,L !Ke
i 1Lb

i 2~Kb
2! i 3~Le

2! i 4, ~35a!

with functions

C$ i %~K,L !5ci1c2a
i ~Lp

22Kp
2!1c2b

i ~KbLe!

1c4
i ~Lp

22Kp
2!~KbLe! ~35b!

andci ,c2a
i ,c2b

i ,c4
i numerical coefficients. On the other han

IB polynomials~34a! serve as correctly defined coordinat
on the space of group orbits ofG4, the orbifold@26#.

E. Parametrization of formal series

All analytical results for the reduced problem, such as
reduced Hamilton functionHNF, the explicit construction of
the reduced phase space, and later the position of the sta
ary points ofHNF are formal power series obtained from th
explicit normal-form transformationL, itself a formal power
series.

To construct these series we choose the formal unive
order-of-magnitude parametert in such a way that powers o
t correspond to the orders of the transformationL and in
particular to the orders of the initial and resulting Tayl
expansion of the Hamilton function in the phase-space co
dinates x5(q1 , . . . ,q4 ;p1 , . . . ,p4). Generally, factorsg
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TABLE II. Position of the stationary points onS23S2 and the actionn of the corresponding trajectories.

g
a b Low order High oder

G4 Ke 7Fs2tFsGs
2(4Gs

223)/12 7t2FsGs
2(2103Gs

2260Gs
4140Gs

6121)/144
2t3FsGs

2(29Gs
1021152Gs

821500Gs
615261Gs

426823Gs
2

12010)226323

Lb 6Gs2tGsFs
2(4Gs

223)/12 7t2GsFs
2(80Gs

62104Gs
42230Gs

2151)/288
2t3GsFs

2(210Gs
102211Gs

823512Gs
619806Gs

4212725Gs
2

13867)227323

1
2 nv 17S/2 1S2(Gs

4/425Gs
2/3135/12)/3

6S3(Gs
8/32Gs

6/2235Gs
4/4135Gs

22385/12)/12
1S4(4Gs

12/92Gs
10270Gs

6/9241Gs
8/811771Gs

4/12
21001Gs

2/315005/24)/24
Ts Ke 2tFsGs

2(4Gs
211)/12 2t3FsGs

2(126Gs
211025Gs

421500Gs
6264Gs

8129Gs
10

2108)226323

Lb 2tGsFs
2(4Gs

211)/12 2t3GsFs
2(210Gs

10127Gs
822680Gs

611526Gs
41157Gs

2

2203)227323

Kb 6Gs 7t2GsFs
2(80Gs

6172Gs
42146Gs

2113)/288
Le 7Fs 7t2FsGs

2(6277Gs
2128Gs

4140Gs
6)/144

1
2 nv 1 2S2Fs

2(3Gs
222)/36

aLocal symmetry~stabilizer! of the stationary point.
bOnly nonzero components ofK andL are given.
ed
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or
and f in Eq. ~18! suit this purpose: If they are both assum
to be of ordert, i.e., g;t and f ;t, then H(x);x2(1
1tx21t2x41•••).

Our concrete choice oft is based on the dimensionles
field parametersGs andFs already discussed in Sec. I A 2

F5
1

3
FsSS v

2 D 4

, G5GsSS v

2 D 3

, ~36!

and the field magnitude

S5S 2

v D 3AG21S 3F
2

v D 2

, ~37!

such that

t5n
v

2
S'S. ~38!

As a result, the field parametersg and f in Eqs.~18! and~19!
become

g5G~v/2!225GsS~v/2!5Gst/n, ~39a!

f 53F~v/2!2353FsS~v/2!53Fst/n. ~39b!

It is well known that perturbation series for nonintegrab
systems do not converge and so there is no point in
rigorous discussion of the convergence and we simply tr
cate our series. It is important, however, to find a realis
physical estimate for the largest possible value of the sm
ness parametersS and t for which our analysis remain
meaningful in the whole range of the relative field streng
Fs andGs . This estimate can be readily obtained by cons
ering the height of the Stark ionization barrier. Clearly, t
normal-form formulas should apply only below such a b
rier.
y
-

c
ll-

s
-

-

In the initial coordinatesQ of Eq. ~3! the saddle point of
the crossed-field potential lies on the electric field axis, w
the profile

2
1

Qe
1FQe1

1

8
G2Qe

252
v2

8
. ~40a!

The same direction in the KS space is defined by

q15q250, q35q45Ar /2, ~40b!

with the profile

r

2
2

f r 2

6
1

g2r 3

32
5

4

v
, ~40c!

wherer is defined in Eq.~10b!. Note that, due to the scalin
in Eq. ~17! and the sign of the Stark term in Eq.~3!,

Qe52r /v. ~40d!

In the Stark limit both Eqs.~40a! and ~40c! have one
single maximum at some nonzeror ; the Zeeman term is o
higher power and it results in a minimum at largerr ~and,
correspondingly, at lowerQe). With increasingG the two
stationary points become closer, collide, and disappear
that there is no Stark ionization at largeG. We are primarily
interested in the maximum. Its position is easily found f
the left-hand side of Eq.~40c!,

r max54
4 f 2A16f 2227g2

9g2
58

4Fs2AD

9Sv~12Fs
2!

, ~41!

with D543Fs
2227. We substituter max into Eq. ~40c! and

find the critical value ofS,
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Scrit5
~AD24Fs!~70Fs

224FsAD254!

36~Fs21!2~Fs11!2

'
3

16F1125d1
3193

4
d21

124195

4
d31••• G ,

~42a!

with d5(12Fs)/16 a parameter of the deviation from th
Stark limit (Gs50, Fs51). Note that the above expressio
does not explicitly depend on energy~on v): All energy
dependence is absorbed intoS due to the definition~37!.

We conclude that the upper limit for the physically mea
ingful values of our smallness parameter isS,3/16. We can
see from Eq.~37! that these values ofS can be achieved
either at high energiesv and low unscaled field strength
(F,G) or at low energies and high field strengths.~This is
generally known as the possibility to scale our classical pr
lem.! We also note that Eq.~42a! is a static estimate ofScrit
and no similar dynamical limitation can be suggested u
we define quantitatively which features of the dynamics
want to be reproduced by our normal form and how prec
this reproduction should be~see Sec. V A 3!.

F. Reduced Hamilton function

To construct the normal form of the Hamilton functio
~18! we treat its terms of degree 4 and 6 in (q,p) as pertur-
-

-

il
e
e

bations of ordere ande2, i.e., f ;g;e. Reduction proceeds
with regard to orders ine as a standard Lie transformatio

@27# R8(x)→
L

R8(y). The nonlinear near-identity transforma
tion L and the inverseL21 are obtained explicitly as forma
Taylor series. The procedure is substantially simplified a
sped up in the coordinates of Sec. II B 3, and the calcula
up to orderse4 ande5 becomes quite routine@28#.

To represent the resulting normal formHNF we use the
n-scaledK ,L coordinates~30a! of Sec. II C, such that

HNF54/v, ~43a!

HNF52nS 11
t

2
H11

t2

4
H21

t3

25
H31••• D , ~43b!

where, except for the overall unperturbed energy factorn,
all explicit n dependence is absorbed in the formal parame
t @Eq. ~38!# and in the scaled normalized field strengthsFs
andGs @Eq. ~39!#. SinceHNF is G4 invariant ~Sec. I C!, all
resonance termsHk can be expressed in terms of th
G4-invariant polynomials in Sec. II D,
he
n

H15GsLb2FsKe , ~44a!

H252@3Lb
222Ke

213Kb
212Le

212~Lp
22Kp

2!23#Gs
2/41~7KeLb2LeKb!FsGs/32~51Ke

229Le
2117!Fs

2/36, ~44b!

H35Lb„6Le
226Ke

219Kb
215Lb

216~Lp
22Kp

2!29…Gs
32Ke~125243Le

21125Ke
2!Fs

3/9

1@245KeLe
2145Ke

3265KeKb
21117Ke2147Lb

2Ke245Ke~Lp
22Kp

2!148Lb~LeKb!#FsGs
2/6

2@3Kb
2Lb187Le

2Lb2615Ke
2Lb23Lb

32232Lb23Lb~Lp
22Kp

2!1108Ke~LeKb!#Fs
2Gs /18. ~44c!

Note that in order to obtain the above formulas we first express the result of the Lie transformation in terms ofS23S2 IB
polynomials in Eqs.~34! extendedby the extra main invariantz in Eq. ~12! and two auxiliary invariantszKb andzLe . Only
then can we setz50.

The procedure to obtain theCs-restricted normal form of Eq.~27! is the same, but the calculation is much simpler. T
resultingH̃NF depends only onñ , K̃e , andL̃ b in Eqs.~29!, andz is not involved sincez[0. The lower orders equal those i
Eqs.~44! restricted using Eqs.~28! and ~33!. The fourth-order contribution ist4227H̃4 with

H̃452
17 815

216
Fs

4K̃e
41

2468

9
GsL̃bFs

3K̃e
32

39 685

108
Gs

2L̃ b
2Fs

2K̃e
21

2047Gs
2149

9
GsL̃b

3FsK̃e2
36813853Gs

2

72
Gs

2L̃ b
4

1
48 218Gs

2217 815

108
Fs

2K̃e
22

17 297Gs
227886

27
GsL̃bFsK̃e1

27 152Gs
2213 787

108
Gs

2L̃ b
22

2095

18
Gs

41
4523

54
Gs

22
3563

216
.

~45!



e
c

ho

th
is
lit

-
-

ith

-

s

u

ip

t

a-
e

e

i-

t
h
th

ll

th
e
ic
e

h

the

ll

sta-

re-
in-

se
if

i-
ti-

s on
re
ions

ter-

nts,

or

ar-
nly

in-

eir
f

57 2875TUNING THE HYDROGEN ATOM IN CROSSED FIELDS . . .
III. GENERAL PROPERTIES OF THE REDUCED PHASE
SPACE RELATED TO SYMMETRY

Two factors, the geometry of the reduced phase spacS
and the symmetryG4, result in certain important generi
features of any Hamilton functionHNF on S @6#. These gen-
eral properties are universal; they can be established wit
any particular~analytic! form of the functionHNF @such as in
Eqs.~43a! and ~44!#.

A. Invariant subspaces ofS23S2 in the presence
of the G4 symmetry

The main consequence of the additional symmetry is
the phase spaceS is not homogeneous, the points of th
space can have different local symmetry, or the stabi
group~stabilizer! g5G4, Cs , Ts , T2, andC1 ~generic points
with no symmetry!. These points lie on the invariant sub
manifolds ofS23S2 described in more detail in the Appen
dix.

TheS23S2 itself consists of ‘‘mostly’’ generic points and
thus can be considered as aC1-invariant manifold that con-
tains four submanifolds. Three submanifolds, invariant w
regard tog5Cs , Ts , and T2, include all points with their
respective local symmetryg and all points with higher sym
metryG4. TheG4-invariant~the fourth! submanifold is nec-
essarily the intersection of the three.

Table III summarizes the algebraic description of the
invariant submanifolds. We list the components ofK andL
that must vanish to satisfy the particular local symmetry~cf.
Table I! and then simplify general equations~30! defining
the wholeS23S2 in R6(K ,L ) ~last column in Table III!.
These simplified equations demonstrate the topology of s
manifolds: the set ofG4 invariant points is a circleS1; theCs
and T2 invariant manifolds are spheresS2; the Ts invariant
subspace is a two-dimensional torus whose two princ
circles can be represented by thee andb components ofJ1
andJ2 @cf. Eq. ~31!#. We can easily see from Table III tha
theG4 circle is indeed the intersection of theCs , Ts , andT2
submanifolds.

B. Special role of time reversal

We must distinguish invariant manifolds with purely sp
tial stabilizers g from those whose stabilizers includ
reversing-symmetry operationsTs and TC2 in Sec. I A 2.
All invariant submanifolds are equally important for th
analysis of relative equilibria@2#. To simplify the search for
the stationary points we can restrictHNF on any of the in-
variant submanifolds. If a point is found, it will automat
cally be stationary for theHNF on the whole ofS. ~The
gradient ofHNF in the direction orthogonal to the invarian
submanifold vanishes.! Special symmetry properties of suc
a stationary point mean special symmetry properties of
corresponding periodic orbit~cf. Sec. I B 3 and see Sec. IV!.

At the same time, classical trajectories or, more genera
the flux ofHNF on the reduced phase spaceS, respect only a
purely spatial invariance and we can restrict the flux of
HNF to a submanifold ofS if g is purely spatial because th
vector field is tangential to such submanifold and all class
trajectories remain on it. It follows that we can study ind
pendently the set ofCs-invariant trajectories together wit
ut

at

y

e

b-

al

e

y,

e

al
-

G4-invariant trajectories as their subset.~The flux is tangent
to the Cs invariant sphereS2,S and to its ‘‘equator,’’ the
G4-invariant circleS1,S2.!

C. Stationary points of H NF on S

Relations between the topology of the manifold and
system of stationary points of a smooth functionHNF defined
on it is the subject of Morse theory@29#. In particular, any
smooth Morse-type functionHNF must have at leastfour
stationary points on the wholeS23S2, two stable~global
maximum and minimum! and two unstable~Morse index 2!.

SinceG4 is a finite group, it is natural to suppose that a
stationary points of a genericG4-invariant functionHNF de-
fined onS5S23S2 are isolated and nondegenerate@30#. We
consider and combine the topological restrictions on the
tionary points ofHNF for all manifolds listed in Table III.
The minimum number and the type of stationary points
quired by the Morse theory for each of these manifolds
dividually is as follows.

Topology Number and type of stationary points

S1 1(1), 1(2)
S2 1(11), 1(22)
T2 1(11), 1(22), 2(12)
S23S2 1(1111), 1(2222), 2(1122)

In the presence of theG4 symmetry, the minimum num-
ber of stationary points is 4: All requirements of the Mor
theory for each of the four submanifolds can be satisfied
the two stable points lie on theG4-invariant circle and the
two unstable points lie on theTs-invariant torus. ~The
G4-invariant circle is common to all other invariant subman
folds and the two stable stationary points on it will automa
cally satisfy the requirements for bothCs- andT2-invariant
spheres and exhaust the minimum number of stable point
theTs-invariant torus.! Note that the two unstable points a
equivalent: They are mapped onto each other by operat
TC2 or s (ep) that belong toG4 but do not belong toTs .
~These points form a two-point orbit of the action ofG4 on
S; see the Appendix.!

The described location of the stationary points charac
izes thesimplestMorse-type function, i.e., the function with
minimal possible number of nondegenerate stationary poi
defined on the reduced phase spaceS23S2 in the presence of
the symmetryG4. Since Ke and Lb are the only linear
G4-invariant polynomials, the first order term in the Tayl
series of any genericG4-invariant analytic function onS2
3S2 is nKe1mLb ~with nonzerom and n) and is of the
simplest Morse type. This suggests that in the limit of line
ization the normal form of the crossed-field problem has o
four stationary points~see Sec. IV A 1!. The situation might
be more complicated in the limitm50 or n50 and might
depend on the quadratic terms.

The position of stationary points on their respective
variant submanifolds is not defined by symmetry.~The group
orbits formed by these points are not isolated within th
strata; see Sec. 2 of the Appendix!. When the parameters o
theHNF, such as the field strengthsG andF, are varied, the
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stationary points can move within their invariant subma
folds, but they cannot leave these submanifolds.

A qualitative change of this system of four stationa
points can occur as a result of a bifurcation at some part
lar value of the parameters. The number of stationary po
cannot become less than 4 and the four ‘‘principal’’ statio
ary points described above cannot disappear. They can, h
ever, change their stability if the Morse theory requireme
remain satisfied due to the appearance or disappearan
additional stationary points. Note that since the tw
Ts-invariant points are equivalent~they form one group or-
bit!, their bifurcations should be identical, i.e., should occ
at the same values of parameters, produce the same
qualitative change, etc. We should further note that due
the special location of the principal stationary points~espe-
cially of the two G4-invariant points!, many additional re-
strictions on possible bifurcations can be deduced from
Morse theory requirements. The bifurcation study of the n
linear normal modes of the actual crossed-field problem
quires the stability analysis in Sec. IV E and involves hi
orders ofHNF @31#.

IV. NONLINEAR NORMAL MODES DERIVED
FROM THE REDUCED PROBLEM

The four principal relative equilibria@2# of the generic
G4-invariant functionHNF over the reduced phase spaceS2
3S2 ~Sec. III C! correspond to four principal families o
periodic orbits of the original problem~cf. Sec. I B! so that
the symmetry properties and stability of the orbits can
deduced from the characteristics of the stationary poi
Furthermore, the action along the orbits and the period
be derived from the normal form in Eqs.~43b! and~44! and
even the initial physical phase-space image of the orbits
be reconstructed from the position of stationary points onS
and the explicit transformation formula~6!. The four relative
equilibria exist at all possible values of field parameters a
only they exist at infinitesimally small~but nonzero! param-
eters. The corresponding four families of periodic orbits p
sess, of course, the same property and we call them nonli
normal modes.

A. Evolution between the Zeeman and Stark limits

To have a general idea of what happens to the four n
linear normal modes when the field configuration chan
from the Zeeman to the Stark limit, we analyze the behav
of the corresponding four stationary points in the lowe
order approximation~cf. Ref. @3#!.

1. Linear approximation

Consider the linear-in-field part of the reduced Hamilt
function ~43a!,

HNF52nF11
t

2
~GsLb2FsKe!1••• G5

4

v
, ~46!

find its four stationary points onS23S2 using Eqs.~1! and
~30a!, and characterize the points in terms of IB polynomi
~34!.
-

u-
ts
-
w-
s
of

r
cal
to

e
-
-

e
s.
n

n

d

-
ar

n-
s
r
-

s

g Ke Kb2 Le2 Lb Kp
22Lp

2 HNF

G4 2Fs 0 0 1Gs 0 2(n1t)
G4 1Fs 0 0 2Gs 0 2(n2t)
Ts 0 (6Gs)

2 (7Fs)
2 0 0 2n

Since the twoTs-invariant points are equivalent~they form
one orbit of theG4 group action! the values of invariant
polynomials and therefore allG4-invariant characteristics o
these two points including the value ofHNF will be thesame
~to any order int). On the contrary, the twoG4-invariant
points are not equivalent.

As expected in Sec. III C, the stationary points ofHNF
change their position without leaving theirg-invariant (g
5G4 or Ts) subspaces. All the way from the Zeeman
Stark limit theG4-symmetric stationary points withLb'Gs
andLb'2Gs remain the global maximum and minimum o
the HNF ~for the same n shell, n5const). The two
Ts-symmetric stationary points remain unstable. Such mo
tone evolution of the stationary points between the two lim
is very different from the case of the two parallel fields@6,7#.

2. Properties of nonlinear normal modes

We first consider the situation when both fields are no
zero (FÞ0, GÞ0) and the symmetry of the problem is pr
ciselyG4. Since each stationary point has one nonzero co
ponent of the orbital momentumL , all corresponding
periodic orbits are loops in the initial physical configuratio
spaceR3 ~as opposed to lines that run in both direction!.
From the linear solution~Sec. IV A 1! we can see that the
G4-type orbits loop around axisb (LbÞ0), while theTs-type
orbits loop mainly around axise (LeÞ0). SinceG4 contains
no time reversal, all these loops inR3 have one distinct di-
rection.

The G4-invariant trajectories must lie in the (e,p) plane
(Qb5Pb50) in order to be invariant with regard tos (ep)

and hence they necessarily haveLe5Lp50 ~cf. Table III!.
On the contrary, theTs-symmetric trajectories have no in
variant configuration subspace inR3 because their stability
group is not purely spatial~cf. Sec. III B!; in particular, they
are not parallel to the (b,p) plane. The twoTs trajectories are
equivalent: The operationss (ep) and TC2 map them onto
each other.

3. Symmetry of the Zeeman and Stark limits

The symmetry of the two limits is much higher thanG4

@6#; it includes theC` element:C`
(e) for the Stark andC`

(b)

for the Zeeman limit. The typical orbit of theC` group ac-
tion is a circleS1 and in addition to simple stationary point
generic functions onS23S2 in the presence of such symme
try can possess stationary~critical! manifoldsS1 @30#. Our
four principal relative equilibria remain simple nondegen
ate stationary points in both limits.

In the Zeeman limit, the twoG4-symmetric stationary
points become two critical one-point group orbits withC`h
`Ts symmetry. These orbits correspond to the maxim
and minimumLb . ~The linear Zeeman effect and theC`

symmetry are not reduced.! In the initial physical coordinate
spaceR3, the corresponding periodic trajectories lie in th
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(ep) plane~orthogonal to the field axis! and run in two dif-
ferent directions along two circles with different radii~see
Fig. 2 later in Sec. IV D!.

In the Stark limit, the same twoG4 points become two
critical one-point orbits withC`v`T symmetry. They now
are invariant with respect to time reversal and their coo
nate space image~in R3) is a line. There are two lines with
C`v symmetry: ‘‘up’’ and ‘‘down’’ the electric fieldF on
thee axis. The ‘‘downhill’’ trajectory is longer than the ‘‘up-
hill’’ one, has higher~maximum! energy at the samen, and
ionizes at sufficiently high field.

The two Ts-symmetric stationary points form one two
point orbit of the action of theG4 symmetry group. They
remain equivalent in both the Zeeman and the Stark limit
the Zeeman limit these two points form one two-point cr
cal orbit of theC`h`Ts group action with stabilizerg5C`

`Ts . In this limit they haveL50 and hence their images i
R3 are two lines lying on theb axis up and down the mag
netic field ~see Fig. 3 in Sec. IV D!. The two lines are
equivalent; thesh5s (ep) operation maps them onto eac
other.

In the Stark limit the same pair of equivale
Ts-symmetric points becomes one two-point orbit with t
g5C``Ts symmetry. InR3, these are circles around thee
axis lying in the plane orthogonal to thee axis (Qe5const
Þ0; see Fig. 3!. The appearance and breaking of theC`

group orbits, in particular the stationaryS1 manifolds, and of
the foliation ofS23S2 corresponding to the additional inte
gral of motion (Lb or Le) in the Zeeman and Stark limi
require a separate detailed analysis.

B. Position of stationary points

We know from the linear solution in Sec. IV A 1 that th
position of the four relative equilibria onS depends on the
parametersF andG and we can express it as a formal pow
series. The order of the series is limited by the order 3
which the normal form in Eqs.~43a!, ~43b!, and~44! is de-
veloped.

1. Choice of formal parameter

Periodic orbits of nonintegrable systems are studied
given fixed energyE5const. In the presence of the approx
mate integraln the energy remains a preferred parame
when an exact~numerical! orbit is sought or when the
n-shell approximation is expected to break in the transiti
to-chaos region. Consequently, we takeE as an independen
parameter when we compute the characteristics of peri
trajectories, such as action and period.

Furthermore, we take scaled strengthsFs andGs and the
field magnitudeS defined in Eqs.~37! and ~36! as our field
parameters. These parameters are scaled byv(E) and thus
are fixed at givenF, G, andE. The formal series paramete
t of the normal form~43b! is expressed in terms ofS, v, and
n @Eq. ~38!#.

On the other hand, the whole concept of the redu
phase spaceS and of relative equilibria is valid only ifn can
be regarded as an integral of motion and therefore it ma
more sense to rely directly onn ~or t) as an independen
parameter when we compute the characteristics of th
equilibria. Indeed, the coordinates onS5S23S2, and hence
i-

n

r
o

at

r

-

ic

d

es

se

the coordinates of the stationary points, are then-scaled
components of vectorsK andL defined in Eqs.~30! and~1!.
Another advantage of havingn as an independent paramet
in the reduced problem is the possibility of applying direc
the semiclassical Einstein-Brillouin-Keller~EBK! quantiza-
tion. When we use eithern ~or t) or E ~or S) as an indepen-
dent parameter~in addition to the field strengthsG andF),
we should be able to change between the two param
schemes and in particular to find the value ofn at given
v(E) and$S,Fs ,Gs%.

2. Value of n as a function of energy and field strengths

The principal integral of motionn as a function of energy
E @or v(E)#, S23S2 coordinates (K,L ), and field parameters
(S,Fs ,Gs) is defined implicitly by the constant level se
equation

HNF~K,L ;n,t,Fs ,Gs!5
4

v~E!
5const. ~47!

Remember that we use normalized vectorsK and L @Eq.
~30a!# and all dependence of theHNF in Eq. ~47! @in Eqs.
~43a! and ~44!# on n is concentrated in the parametert. To
solve ~reverse! Eq. ~47! as a formal power series inS, we
multiply Eq. ~43b! by 1

4 Sv so that

S5t1
t2

2
H11

t3

4
H21

t4

32
H31•••, ~48a!

and consequently

t5S2
S2

2
H11

S3

4
~2H1

22H2!

2
S4

32
@20H1~H1

22H2!1H3#1•••, ~48b!

with functionsHk given by Eqs.~44! above. From Eq.~38!
we see immediately that

n5
2

vF12
S

2
H11

S2

4
~2H1

22H2!1••• G . ~48c!

We analyze the dynamical meaning of this expression in S
IV C below.

3. Formal series for the position of stationary points

To compute the position of the four relative equilibria
Sec. III C we look for the extrema of either the normal for
HNF(K,L ;t,n,Gs ,Fs) in Eqs.~43b! and~44!, i.e., the energy
E, or the value ofn(L,K ;E,G,F) in Eq. ~48c!. In either case
the coordinates (Le ,Lb ,Lp ,Ke ,Kb ,Kp) of the stationary
points obey the system of conditional extremum equation

¹K,L F50, K21L251, K•L50. ~49!

with F5HNF or n, and restrictions~30! imposed on the six
components of the gradient by theS23S2 topology. The
formal series solutions to Eqs.~49! are obtained by Newton’s
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TABLE III. Invariant manifolds for the action of the symmetry groupG4 on the reduced phase spaceS.

Stabilizer Dimension Topology Defining equations RestrictionR6(K ,L )→S

G4 1 S1 Le5Kb5Lp5Kp50 Lb
21Ke

251
Cs5$E,s (ep)% 2 S2 Le5Kb5Lp50 Lb

21Ke
21Kp

251
T25$E,TC2% 2 S2 Le5Kb5Kp50 Lb

21Ke
21Lp

251
Ts5$E,Ts (eb)% 2 T25S13S1 Lp5Kp50 (Le6Ke)

21(Lb6Kb)251
C1 4 S5S23S2 L21K251, L•K50
as

ta
o

n

i
e-
n

e
o

ion-

se

Eq.

-
n
c.
method with four linear solutions in Sec. IV A 1 used
germs to start nonlinear series int if F5HNF or S if F
5n.

We determine the positions$K,L %SP of the four stationary
points usingHNF asF in Eqs.~49!. This yields formal series
with t, i.e., n, as a parameter. Then, at each particular s
tionary point$K,L %SP, we use the method in Sec. IV B 2 t
find the value ofn at given energyE as a solution to Eq.
~47!. Thus we obtainn„S(E)…SP as a formal power series i
S. Results are shown in Table II.

C. Action and period

Each point ofS5S23S2 defines an orbit ofn in R ~or
R) with anglefn the natural coordinate along the orbit. (n
defines a dynamical symmetry operation with linear action
R8; see Sec. I B.! The dynamics of the system on the r
duced phase spaceS is described by the Hamilton functio
HNF in Eqs.~43a!, ~44!, and~47!. To find the trajectory in the
initial phase spaceR we combine the trajectory onS with
then orbit motion~cf. Sec. I B 3!. For a relative equilibrium
@2# we obtain a periodic trajectory inR with fn the coordi-
nate along it.~In this case then orbit corresponds to an
actual periodic orbit of the system.!

The coordinates$K,L %SP of the stationary point and th
value of n at this point can be expressed as functions
-

e
cu

th
l-

e
a

.

-

n

f

v(E) andGs ,Fs ,S. The Hamilton functionHNF at this point
defines a one-dimensional dynamical system with the act
angle variables (n,fn). Then it follows immediately~see, for
instance, Chap. 10, Sec. 50B of Ref.@32#! that

nSP5
1

2p R
PO

pdq, ~50!

with the action integral defined in terms of the KS pha
spaceR85$q1 ,q2 ,q3 ,q4 ,p1 ,p2 ,p3 ,p4% @cf. Eqs. ~10! and
~11!#. Since the normal form transformationL @Eq. ~6!# is
canonical, this integral is the same forR8 andR8, but the
action integral on the initial physical spaceR6
5$Qe ,Qb ,Qp ,Pe ,Pb ,Pp% is different.

We can now understand the dynamical meaning of
~48c!, the solutionn(E) of Eq. ~47!. This equation gives the
value of the action integral along ann orbit in theR8 ~or the
R8) space at given energyE, field strengthsF,G, and given
~fixed! vectors (L,K ). Periodic orbits correspond to the ex
trema of n(E). In fact, the extremal values of the actio
integral~50! are already given as functions of energy in Se
IV B 3 and Table II.

To calculate the KS space periodD, we begin with its
definition and use Eqs.~38! and ~43a!,
D

2p
5FdHNF

dn G21

5FdHNF

dt
S

v

2 G21

5
1

2F d

dtS HNF S
v

4 D G21

5
1

2FdS

dt G21

5
1

2

dt

dS
5

1

2

d

dSS n
v

2
SD , ~51!
e
i-
rea-
the
t in

ge

er

tter
e
t

with functionsHNF, S(t), andt(S) evaluated at the station
ary point. In other words, we find the periodD/p by taking
the derivative of1

2 nv times S. For the same order of th
normal-form, the period is approximated with lesser ac
racy than the action.

In Fig. 1 we compare our normal-form predictions wi
the numerically refined ‘‘exact’’ values. We consider all va
ues of the field strengthS that cause no ionization in th
Stark limit (Gs50) and tune the system towards the Zeem
limit ( Fs50). The last set of data is taken atS50.18 with
energies about 95% of the ionization threshold (S53/16) of
the regularized Hamilton function~18!.

The actionn and the periodD/p of the Ts orbits is well
reproduced in the whole range ofS already in the third order
-

n

The approximation for theG4 orbits is less accurate. At larg
values ofS the series for the ionizing orbit is about to d
verge and high-order corrections are needed to achieve
sonable reproduction of the numerical data. We show
result of successive approximations obtained for this orbi
orders 4–8 from theCs-restricted normal form.~The fourth
order is given in Table II; higher-order formulas are too lar
to be reproduced.! The series for the nonionizingG4 orbit is
alternating~cf. Table II!. WhenS is large, this series wildly
oscillates in low orders and settles only for orders high
than 4.

To see whether the perturbation series could reach be
accuracy atS50.18, we calculated the normal form for th
ionizing G4 orbit in the pure Stark limit where this orbi
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turns into a straight line and the problem has one degree
freedom. Figure 1 demonstrates that even at order 20 t
discrepancy is still significant.

D. Periodic orbits in the initial space R

In this section we make the correspondence between
stationary points of the normal formHNF and the nonlinear
normal modes explicit and conclude by finding the trajecto
ries of these modes in the initial phase spaceR6. The proce-
dure has three main steps: we first find the corresponden
between the reduced spaceS23S2 and the transformed space
R8, i.e., the embedding ofS23S2 intoR8; then we return to
the initial phase spaceR8 using explicit formulas of the Lie
transformationL21 obtained in Sec. II F@cf. Eq.~6!#; and
finally we use KS expressions in Sec. II B to map fromR8 to
R6, the phase space of the initial three-dimensional~3D!
Hamilton function~3!.

Our first step gives an opportunity to review the geometr
of the problem once again. We lifted the initial physica
phase spaceR6 @or C3 with complex coordinatesq6 ip
5A2Iexp(6f)# to the KS spaceR8, transformed the latter
intoR8, and then reduced toS45S23S2. We also defined in
Sec. II B 3 the standard coordinatesR8→R88 in which the
two group actions defined byn andz are diagonal. To define
the embedding ofS4 into R8 we need local charts ofS in
terms of (q18 ,q28 ,q38 ,q48 ,p18 ,p28 ,p38 ,p48), the coordinates on
R88 . Each chart is a Euclidean spaceR48 . To cover the whole
of S23S2 we use a four-chart atlas whose explicit construc
tion is explained below.

FIG. 1. Action and period of the nonlinear normal modes in th
whole range between the Stark (a50) and Zeeman (a5

1
2 ) limit

with Fs5cos(ap), v52 (n;1), and S
50.03, 0.06, 0.09, 0.12, 0.15, 0.18. Lines, bold for downhill~big!
G4 orbit, thin for uphill ~small! G4 orbit, and dashed forTs orbit,
show order 3 approximation of Table II. Empty circles show exac
numerical results. Data forTs orbits are blown up by factor of 70.
Approximations of orders 4, . . . ,8 for theG4 orbits with S50.18
are shown in the whole range ofa by thin lines. Filled circles on
the a50 axis show successive 1D normal form approximations o
orders 4, . . . ,20 forthis orbit in the pure Stark limit withS50.18
~96% of the ionization threshold!.
of
he

he

-

ce

y
l

-

The normal-form reductionR8→R8;C4 of the KS
Hamilton function~18! with regard ton leads to a standard
construction of a complex projective spaceC4→CP3. The
image of each point onCP3 is an orbit inC4 and the phase
fn , the ignorable angle variable, is the coordinate along
orbit @33#. In addition ton the problem~18! has one exact
integral z that defines the action of the SO~2! symmetry
group of Eq.~18! on R8. Generic points on the reduced spa
S23S2 correspond to a torus with phase coordinatesfn and
fz .

To find the KS space image of a point onS23S2 with
coordinates (K ,L ) we should define the values of two-pha
variablesfn andfz . The phasefn is the coordinate along
the periodic trajectory we want to construct~cf. Sec. I B 3!; it
changes on the interval@0,2p#. The phasefz has no impor-
tance to us: All points on the samez orbit inR8, a circleS1,
will eventually be mapped onto one point of the physic
spaceR6. So we can fixfz to some value, for instance, 0.

In the standard diagonal representation of Sec. II B
phasesfn and fz are simply expressed in terms of ang
variablesf i of the four oscillatorspi8

21qi8
2, i 51, . . . ,4,

fn5 1
2 ~f11f21f31f4!, ~52a!

fz52f12f21f31f4 . ~52b!

To lift S toR88 we can fix any two phases in Eqs.~52!. Thus
we can fixfa and fb and obtain the chartM (ab) with pb
5pa50. Such a chart covers all points except for tho
wherena and/ornb vanish and phasesfa and/orfb become
undefined. In particular, it is the only chart that covers t
subspace where two other actionsnc and nd vanish andna
1nb5n. Equation~25b! shows that four such pairs (c,d)
exist if z50 and nÞ0 (n51 in the scaled coordinates!.
Therefore, four charts with

~a,b!5~1,3!,~2,3!,~1,4!,~2,4! ~53!

are required. It can also be shown that these four charts
sufficient to cover the wholeS23S2.

To find the image of the stationary points in Table II , w
first obtain the values ofn1, n2, n3, andn4 using Eqs.~25!
with z50 and n51. Thus, in the linear approximation o
Sec. IV A 1 we obtain the following:

g 2n1 2n2 2n3 2n4

G4 17Gs 16Gs 17Gs 16Gs

Ts 17Gs 16Gs 16Gs 17Gs

We choose a pair in Eq.~53! with largest values of (na ,nb)
and define the corresponding chart ofS23S2. In principle,
we can follow the whole periodic orbit in this chart by var
ing fn . On the other hand, to demonstrate the validity a
accuracy of the normal-form prediction, we can simply
two phasesfa5fb50, generate one point on this orbit a
the initial condition inR8, and then propagate the orbit nu
merically using the exact Hamilton function~18!.

The results of such calculation are shown in Figs. 2
Figures 2 and 3 show the projections of the orbits on
planes in the initial 3D configuration space. The orbits a
tuned between the Zeeman and Stark limits at moderate
turbationS50.1 (;50% of the Stark ionization threshold!.
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Their images exhibit all symmetry properties expected
Sec. IV A 2. In particular, theG4 orbits lie in the (e,p)
plane, while theTs orbits are slightly curved. The global
view of all four orbits in the 3D configuration space is give
in Fig. 4.

E. Stability

To conclude our study of the nonlinear normal modes
the crossed-field problem we analyze their stability. The ge
metric characteristics of stability are given by the eigenva
ues of the Hessian matrix; for qualitative purposes we on
need to know the signs of these eigenvalues, i.e., the sig
ture of the Hessian matrix. The dynamical characteristics a
given by the linear Hamilton equations describing the motio
near the orbit, in particular, by the frequency of oscillation
near a stable orbit.

Using the Morse theory, we have already shown in Se
III C that G4-symmetric stationary points onS are stable:
One is a global minimum with the signature (1111) and
the other is a global maximum (2222). Of course, the
two corresponding periodic orbits are also stable. Furth
more, by the simple argument of the length of the orbit it

FIG. 2. Projections of the twoG4 orbits at differentFs andGs

for S50.1 andv52 (n;1).

FIG. 3. Projections of the two equivalentTs orbits at different
Fs andGs for S50.1 andv52 (n;1).
n

f
-

l-
y
a-
re
n

c.

r-

the larger or downhillG4 orbit that has the maximum action.
When this orbit escapes, the action becomes infinite. The tw
equivalentTs-symmetric points and corresponding periodic
orbits are unstable.

The position of the stationary point onS23S2 in the J
representation~31! is defined by four spherical angle coordi-
nates (w i ,u i), i 512, such that, for instance,

cosu i52Jip , sinu i52AJie
2 1Jib

2 , ~54!

and similarly for sinwi and coswi @cf. Eq. ~32!#. The Hessian
matrix is the 434 matrix of second derivatives ofHNF in Eq.
~43a! with regard to the coordinates on the hyperplane tan
gent toS23S2 at this point. We construct the tangent coor-
dinates (Jix ,Jiy) by appropriately rotating the standard frame

~Jie ,Jib ,Jip!→~Jix ,Jiy ,Jiz!, i 51,2. ~55!

The normal componentJiz is expressed in terms of
(J1x ,J1y ,J2x ,J2y) using Eq.~32! and the derivatives are cal-
culated.

Two Euler rotations, first by anglew i and then by angle
u i , are required. It turns out that the third Euler rotation, a
rotation of the tangent plane around axisJiz , is not required
because the Hessian matrix comes out already factorized.
the lowest~linear-in-t) order this matrix is diagonal~see
Table IV!; in higher orders it requires an additional transfor-
mation of each of the (J1x ,J2x) and (J1y ,J2y) blocks. For
the G4 points this latter factorization simply results in the
coordinates (Kx ,Lx) and (Ky ,Ly).

TABLE IV. Stability characteristics of the nonlinear normal
modes.

g
a Hessianb Frequenciesc v8,v9

G4 @1t,1t,1t,1t# 1t1t2(Gs
427Gs

2/3117/6)/2
G4 @2t,2t,2t,2t# 2t1t2(Gs

427Gs
2/3117/6)/2

Ts @2t,1t,2t,1t# 6t1t2(Gs
41Gs

221/2)/2
Ts @1t,2t,1t,2t# 7t1t2(Gs

41Gs
221/2)/2

aLocal symmetry group of the stationary point.
bThe eigenvalues of the Heissian matrix in the coordinate
(J1x ,J2x ,J1y ,J2y) in the linear approximation.
cFor eachG4 modev85v9.

FIG. 4. Nonlinear normal modes of the crossed fields problem a
S50.2, Fs5cos(p/3), andv52 (n;1). Rectangles on the left-
and right-hand plots correspond to those in the center. A circl
shown by broken line gives the value of the unperturbed~Coulomb!
potential, the solid line circle gives the actual potential. The arrow
on the orbits show their ‘‘direction’’ required to analyze their time-
reversal symmetry.
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Furthermore, the canonical structuredJ1x`dJ1y1dJ2x
`dJ2y is preserved by the above factorization and defi
the normal modes of the oscillations near each station
point ~periodic orbit! and their frequenciesv8,v9. The val-
ues ofv8,v9 calculated up toO(t3) are shown in Table IV.
For moderate values oft;S,3/16 the stability of the orbits
does not change qualitatively. We should, however, bea
mind that, as given by Eq.~38!, t depends onn. The re-
quired value ofn is the action for the corresponding orb
listed in Table II, so that up toO(S2) t/S equals 16S/2 for
the G4 orbits and 1 for theTs orbits.

V. DISCUSSION

Our work presents a unified approach to the analysis
the nonlinear normal modes~NNM’s!; it combines explicitly
the periodic-orbit study with the normal-form reduction a
the methods of qualitative dynamical theory. This approa
leads to the idea of tuning the crossed-field problem in
whole range between the two limit configurations while
maining at the same level of the combined perturbation
the two fields and to the appropriate scaling and param
zation. The realization of this idea is an important contrib
tion to the crossed-field problem.

NNM’s are the most basic elements of the dynami
structure on the phase space associated with the parti
dynamical nonlinear system. Their existence, number,
stability are defined by such fundamental properties of
system as itsa priori spatial-temporal symmetry as well a
the nature of its approximate integral~s! of motion ~its dy-
namical symmetry! and the topology of the correspondin
reduced phase space. The qualitative orbifold approac
Ref. @6# can be regarded as a guide to the present study
to the whole Rydberg atoms-in-field family of problems. T
theory of invariants and the polynomial integrity basis~IB!
construction are our major tools, indispensable both for
analysis of the normal form~the reduced Hamilton function!
and for the orbifold construction. The use of the IB polyn
mials unifies the two approaches, algebraic and geometr

The NNM’s form the framework and the initial point fo
further study and the two complementary ways of the ana
sis of the NNM’s define the two major directions. Expecti
chaotic dynamics we can turn to the purely periodic-or
analysis. If, however, a certain approximate integrability
present in the system it would be very unwise to ignore
completely. Instead, we should carefully analyze to what
tent and at what perturbation levels our integrable appro
mation, the normal form, can be trusted and at what point
structures on the phase space associated with integra
disappear. Finally, since our real systems are quantum
should transfer our results to the quantum analog of our c
sical problem. A few subjects of such research are clos
related to the present paper and are discussed below.

A. Dynamical structure

If the NNM periodic orbit is stable, the flow of the dy
namical system in its vicinity has a special structure and
be reduced with regard to the total action of the small os
lations about the orbit using the method of normalization
Ref. @34#. The orbit itself lies at the center of the structur
both literally and figuratively: The structure is largely dete
s
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mined by such characteristics of the central orbit as stab
and symmetry. Because of the latter fact such an orbi
often called an organizer@35#.

In the near-equilibrium normal form of our paper the m
tion along all central orbits is reduced simultaneously~as the
motion with coordinatefn). We can now consider eac
stable relative equilibrium and further normalize near it.
fact, this work begins in Sec. IV E; see also Ref.@5#.

1. Invariant tori: Foliation of the Cs-invariant subspace

A reduction near each stable relative equilibrium pr
duces invariant toriT2 on the reduced phase spaceS5S2
3S2. These tori are in turn constantfn sections of the tori
T3 in the initial phase spaceR6.

In the particular situation of theCs-invariant sphereS2 of
S4, we study invariant ‘‘circles’’S1 near theG4 points.
These circles are characterized by the position of theG4
points in Table II and the frequencyv in Table IV. The
corresponding tori inR6 are of dimension 2@T25S1
^ S1(fn)#. We can reconstruct these tori inR6 or take their
projection on the configuration plane (e,p) using the tech-
nique of Sec. IV D. In particular, propagating in phasefn or
moving only onS at constantfn we can reconstruct the
sections of these tori.

2. Families of periodic orbits and orbits of higher periods

When parametersG, F, and/or energyE change, stable
periodic orbits can bifurcate and form genealogic familie
Each family begins with the central stable orbit, a ‘‘parent
At fixed G, F, and E, other periodic orbits in the family
oscillate ~or coil! about the central orbit with periods com
mensurate to the period of the latter.

For the invariant tori in the preceding subsection, o
normal-form methods can predict actions and periods of
motion along their principal directions and thus select
resonanttori filled with periodic orbits. In reality, these tor
are destroyed due to resonances that are particular to
nonlinear normal mode and cannot be taken into accoun
the present reduction procedure. So individual orbits that
main as a skeleton of the resonance tori cannot be predi
by our methods.

3. Chaotic dynamics and the validity of the normal form

The onset of chaotic dynamics begins with the destruct
of resonant tori. If, however, the zones of irregular dynam
that emerge around the destroyed tori occupy a small ph
space volume and do not connect, we can continue to ga
important dynamical information from the normal form.

Approaching the ionization threshold~at S'3/16) is com-
monly associated with the complete breakdown of
normal-form approximation and the truly chaotic dynamic
We have seen in Sec. IV C that the situation is not unifor
While the normal form definitely fails for~and near! the
downhill G4 orbit at S50.18, the twoTs orbits are repro-
duced with amazing accuracy. The uphill~small! G4 orbit is
also reproduced satisfactorily on the global scale, but
alternating formal series for its action and period conve
very slowly in high orders.

This makes us believe that even at such high perturbat
~energies! certain regular dynamical behavior still persists
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least in some regions of the phase space and can sti
traced back to the structure predicted by the normal-fo
series. Moreover, we also conclude that for all nonlinear n
mal modes at the values ofS up to 80% of the threshold
value, the normal-form prediction holds and thus the regu
dynamics should exist. The verification of this propositi
requires further study of the dynamical structure and
manifestations by the normal-form methods, as well as
the techniques commonly applied in chaotic systems.

B. Quantum-classical correspondence

As mentioned in Sec. II E, the normal formHNF as a
function ofn can have immediate semiclassical~EBK! inter-
pretation. The quantization is simple in the KS space, p
ticularly in the diagonal representation of Sec. II B 3 whe
each oscillator is quantized asni2

1
2 50,1,2, . . . , sothat n

51,2,3, . . . @use Eq.~25b!#. However, to get the quantum
energyE as a function ofn we should find the solutionv(n)
to Eq. ~43a! as a formal power series inn, so that@36#

22n2E511S~KeFs2LbGs!1•••. ~56!

This requires then-scaled variables in Eq.~30a! and the
n-scaled parametrization in Eq.~4a! rather than the energ
scaling in Eq.~37! used in our Eqs.~39!, ~43b!, and~44!.

If the normal-form series works ‘‘reasonably well,’’ mu
tiplets of quantum states with the samen, or n shells, are
well separated and theHNF represents an effective Hamilto
operator describing the internal structure of the shells.
particular, the value ofE(n) defined at the stable stationa
(G4-type! points gives the splitting of then shell. Near each
G4 limit we observe regular sequences of quantum lev
corresponding to a degenerate two dimensional quantum
cillator with harmonic frequencyv8 given in Table IV. The
value of E(n) at the unstable (Ts-type! points defines the
transition region between the two systems of levels.
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APPENDIX: THE STUDY OF THE G4 GROUP ACTION
ON S23S2

We considerS45S23S2 embedded in the Euclidea
spaceR6 with coordinates

s5~Ke ,Kb ,Kp ;Le ,Lb ,Lp!PS23S2 ~A1!

restricted by Eqs.~1! and ~30! , which defineS4.

1. Orbits of the group action

The action of the symmetry operations of the groupG4 on
the points~A1! is given in Table I. It is the natural action o
G4 on the axial (L ) and polar (K ) vectors. Thus, for in-
stance,

TC2 :s→~Ke ,2Kb ,2Kp ;2Le ,Lb ,Lp!. ~A2!
be
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We first use Table I to find theorbits of theG4 group action:
We take one point onS23S2 and find all other points tha
can be obtained from it by applying symmetry operations
G4. The points in such an orbit are related by symme
transformationsRPG4 and are calledequivalent. For each
orbit we find itsstabilizer g, a subgroup ofG4, whose op-
erations map every point of the orbit onto itself@37#. We also
call g the stability, the invariance, or the local symmet
group of the orbit and of the corresponding points onS2
3S2. Generic points form four-point orbits and have th
trivial stabilizer C1. In the general case of the finite tota
symmetry groupG, the number of points in a generic orb
equals the number of operations@G#, in our case@G4#54.

If some of the components ofK andL equal zero we may
obtain nongeneric orbits with nontrivial stabilizersTs , Cs ,
T2 ~Sec. I A 2!, and even the wholeG4. Thus the points

s85~Ke,0,0;0,Lb ,Lp! ~A3!

are invariant with regard toTC2 in Eq. ~A2!; they form
two-point G4 orbits because for bothR5Ts (eb) ands (ep),

s8→
R

~Ke,0,0;0,Lb ,2Lp!→
R

s8. ~A4!

Required zero components for all possible stabilizers
given in Table III. In general for finite groups, the number
points in the orbit with stabilizerg,G is given by@G#/@g#.
In our example @G4#/@T2#52. Each G4-invariant point
(Ke,0,0;0,Lb,0) is itself an orbit of theG4 group action and
the Cs-, Ts-, andT2-invariant points form two-point orbits.

2. Invariant manifolds

Invariant manifolds are subspaces ofS mapped onto itself
by operations ofg,G4. To find ag-invariant manifold we
consider the set of all points whose stabilizer isg or greater
~i.e.,G4). Results are given in Table III. For instance, to fin
the Ts-invariant manifold we use Table I and consider t
action ofTs (eb),

Ts~eb!:s→~Ke ,Kb ,2Kp ;Le ,Lb ,2Lp!. ~A5!

It follows that theTs-invariant subspace is defined by fou
equations

Kp5Lp50, ~A6a!

Ke
21Kb

21Le
21Lb

251, ~A6b!

KeLe1KbLb50. ~A6c!

The geometry of this manifold is more clearly seen if w
rewrite Eqs.~A6! in terms of J1 and J2 introduced in Eq.
~31!,

~J1!e
21~J1!b

25~Le1Ke!
21~Lb1Kb!251,

~J2!e
21~J2!b

25~Le2Ke!
21~Lb2Kb!251. ~A7!

Equations~A7! define a circleS1, so that the whole manifold
is a two-dimensional torusT2. This torus includes the
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G4-invariant circle (Kb5Le50). All other points on the
torus ~with Kb

21Le
2Þ0) form two-point orbits (Kb ,Le ,

6Kb ,6Le).

3. Stratification

Contrary to invariant subspaces in the preceding sub
tion strata@15# only contain orbits with equivalent~the same!
stabilizers@37#. An invariant manifold can contain sever
strata. Strata of nonzero dimension constitute invariant m
folds only if they areclosed. Open strata, such as the gene
stratum that is always open and dense, form invariant m
pl
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folds together with their closure. Thus theG4 stratum is an
invariant manifoldS1, while theCs manifold S2 consists of
the G4 andCs strata.

The gradients of all invariant functions vanish on the o
bits that areisolatedin their strata and such orbits are calle
critical @15#. Orbits on zero-dimensional strata are alwa
critical. Critical orbits exist in the hydrogen-atom problem
the Zeeman and Stark limits or in the case of two para
fields @6,7#, but in the case of two orthogonal fields, no cri
cal orbits exist and the positions of stationary points are
fixed within the strata. Restrictions on the number of statio
ary points on different strata and invariant manifolds follo
from the Morse theory@29,30# ~Sec. III C!.
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andF.

@10# We consider an infinitely heavy nucleus and ignore relativis
effects such as caused by the spin of the electron; cf. Sec
of H. Friedrich and D. Wintgen, Phys. Rep.183, 37 ~1989! or
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electric-field parametersFs of the typeFG22 @41# or FG24/3

@3#, so that the Stark limit lies atFs→` and this clearly im-
pliessmallelectric fields. Thus, for instance, the collapse ph
nomenon@7# has long remained unnoticed due to such tra
tional parametrization.

@13# The terms in the generator ofL ‘‘replicate’’ the nonresonance
terms of the Hamilton function@27# and in most cases the
symmetry of the latter is preserved automatically; in particul
L commutes with operations inG4.

@14# The study of the group action on the phase space is an im
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tion to Mechanics and Symmetry~Springer, New York, 1994!,
and references therein.
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tion, and applications in physics see L. Michel, Rev. Mo
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@16# G. D. Mostow, Ann. Math.65, 432 ~1957!. The Mostow theo-
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G on a manifoldM exists an orthogonal representationGV of
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obtained as a restriction ofGV . The theorem gives no explici
construction of the enlargement; nor does it give the dimens
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@17# Enlargement has many applications in physics and mathem
ics. We mention two very different physical problems. T
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potential, a system with 2N-dimensional phase space, can
considered as the reduction of a very simple Hamiltonian fl
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@21# ReductionR8→R6 for zÞ0 yields a Coulomb problem in
three-dimensional space with the addition of the centrifu
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