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Tuning the hydrogen atom in crossed fields between the Zeeman and Stark limits
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We consider the hydrogen atom in the orthogonal electric and magnetic fields whose strength is assumed to
be small enough for the Coulombshell perturbation theory to apply. Appropriate scaling of the two fields
leads to a uniform parametrization of the problem3)ythe combined strength of the two fields, amdthe
ratio of the two field strengths. The initial six-dimensional phase sfRgeis lifted to the standard
Kustaanheimo-Stiefel eight-dimensional space and then reduced explicitly 8 ¥®, reduced space of the
n shell using the Lie transformation to the third orderSnAt fixed S the system is uniformly tuned between
the Zeeman and the Stark limits using the analytic formulas of the perturbation theory. The approach requires
application of the invariant theory, group theory, and topology to the analysis of the dynamics on the reduced
spaceS, X S, and subsequent explicit transition to the origiRgl In particular we follow the evolution of the
four principal periodic orbitgnonlinear normal mode¢snd corresponding four relative equilibria 83X S,.
[S1050-294{@8)01404-9

PACS numbe(s): 32.60:+i, 03.20:+i, 03.65.Sq, 46.16:z

I. INTRODUCTION of motion of the atom-in-field problems. The quantum ana-
log of n is of course the principal quantum numberThis
The hydrogen atom in the presence of static externaso-calledn-shell model is explained further in Sec. Il C.
fields is a fundamental, relatively simple problem with many Instead of analyzing our problem directly on the initial
different kinds of dynamical behavior. It has become a tessix-dimensional phase spaég;, we first use approximate
ground for the dynamical system analysis, semiclassicahtegrability to reduceRg to the spaces, of dimension 4,
theory, and a number of modern experimental techniqueanalyze the dynamics there, and use the correspondence be-
that provide highly accurate data on the actual quantum sysween the reduced and the initial problems. This central dy-
tem. namical idea of our paper is explained in Sec. | B.
In the present paper we focus on the hydrogen atom in
orthogonal(crossed electric and magnetic fieldgl]. (See
Sec. | A for a precise definition and notatipithe dynamics A. Hydrogen atom in crossed fields
of this system with three degrees of freedom can be very e introduce the notation and the Hamilton function, find
complex and it is natural to begin with the nearly integrablehe symmetry group, and define the parametrization required
case at relatively small fields and to study changes in it§or 5 uniform representation of all orthogonal field configu-

dynamical structure caused by increasing perturbation.  yations and convenient “tuning” between the Zeeman and
Our main object is the four families of principal periodic giark limits[9].

orbits, the nonlinear normal modes of the crossed-field prob-

lem, and the corresponding relative equilibfd]. In this 1. Hamilton function
regard we should pay tribute to the two earlier papers by
Flothmannet al. [3] and by Uzer and co-workeigt,5]. In
Ref.[3] the authors initiated the study of the nonlinear nor-
mal modes, which they call principal Kepler ellipses, in

The Hamilton function of the hydrogen atom in the pres-
ence of constant magnetic and electric figlti§] is

terms of both periodic orbits and adiabatic invariants; the p2 1 1 1
authors of Refs[4,5] rely essentially on the second-order H=—— = +(F-N+=(G-L)+ = (GXr)? )
perturbation theory and the dynamical analysis of the re- 2 2 8

duced Hamilton function of the problem. We follow this

work using more extensively the methods of qualitative dy-

namics, topology, and group thedi§—8). with G andF the magnetic and electric field vectdfsl]. To
The unperturbed hydrogen atom is an integrable systerflefine the coordinate system for the orthogofabssed

with continuous spatial symmetry(8) and dynamical sym- fields we use the three unit vectorsy(ne,np), with n,

metry Q(4); its three integrals of motion are the orbital mo- =NyXNe, such thatF=Fn, and G=Gn,. Any vector is

mentumL, its projectionL,, and the length of the Runge- represented by three components with indicese(p), for

Lentz-Laplace vectoK. The vectord. andK are such that instance,r=(Qy,Qe,Qp). The Hamilton function(2) be-

comes
K2+L?=n? K-L=0, )
and the energy is a function of E=—1/2n%. We consider _ Pz 1 +EO.+ 1GL n 162 2,02 3
n, the principal Coulomb integral, as an approximate integral 2 Qe 2-°"8 (et Q)
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2. Symmetry group
Our Hamilton function(3) is invariant with regard to
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(Q,P) of the corresponding terHl . We reduceH by av-
eraging the dynamics of our system with regard to the angle

three nontrivial discrete spatial-temporal symmetry opera$n @nd eliminate all terms in H, with {h,Ho}#0 by an

tionsR [6]: o(®P is the reflection in the plane orthogonal to

G, To®? is a combination of time reversak(p)—(q,
—p) and reflection in the plane spanned GyandF, and

TC, is the combination of the time reversal and rotation by

7r around axisF. Together with identityl these operations

form an order-4 groups,, the total symmetry group of the

crossed-field problem, with three order-2 subgroups.

Gy
{1,6P T TC,)

Cs Ts
{I 'O-(EP)} {I 'T(,(eb)}

T
{I.TC,}

3. Parametrization

We want to study the dynamics of the problem fif

ratios of the two field strengths while the total effect of the

perturbation is kept more or less the saf@é and our pa-
rametrization differs from that used elsewhéte]. To de-

appropriate canonical transformation.

The resulting Hamilton function of the reduced problem is
called thenormal form Hyz. The normal-form transforma-
tion is a canonical near identity change of variab{eshat
maps the original phase spaRgy onto a space of the same
dimension(and topology Ry ,

(6)

The normal formH e defined onR,y is a function of only
2N—2 dynamical variables since the quantityplays the
role of a parameter and the angbg is ignorable(the Hye no
longer depends owp,). For fixedn we considerHr as a
Hamilton function defined on seducedphase spacé of
dimension N—2.

Hye is obtained as a formal power series and generically
is divergent. Physically it is clear that we cannot equivalently
replace the original nonintegrable system by an integrable

¢
Ron—Ron—>2on-2-

fine this total effect we take into account that the first-orderone. Nevertheless, we can still understand many important
(linean correctionAE,, to then-shell energy of the hydrogen global features of this original system usikig,z. To actu-
atom in the Zeeman and Stark limit is, respectively,ally useX in the analysis wéruncate Hys and thus assume

~=+Gn® and~ *+3Fn* with n~ /- 1/2E. Then for givem
it is natural to fix

S=(Gn®?+(3Fn%)?2 (48

and to vary only the relative strengths of the two fields

G,=Gn’/S, F¢=3Fn?S. (4b)
In this paper we consider small values®fndall possible

relative strengths of the two fields, such as

a
Fs=cosx, Gg=sina, Osas? (40

B. Correspondence between the reduced
and the initial phase spaces

Our use ofn in Eq. (1) as anapproximatentegral is quite
typical: In a physical problem witiN degrees of freedom

and the phase spa&gy, we often can introduce an approxi-

mate integral of motiom with conjugate anglep,, and re-

duce the problem to one with—1 degrees of freedom and

the phase space,y_».

1. Reduction procedure

We can reduce the original Hamilton functidth with
regard ton if H is (can be represented)as formal power
series aQ=P=0,

Ek
H(QP)=Hy(Q.P)+ 2, (7HUQP), (5

whose zeroth-ordéfl is linear inn and depends only on.
We introduce the formal smallness parametend classify

thatn is a strict integral of motion. The extent to which we
represent the original dynamics depends on how good an
approximate integral of motion is.

2. Reduced phase spa®

Apart from dimension, the main difference between
3on_2 and the initial phase spade,y is in their global
properties: whileR,y is a simple Euclidean spad&ith a
symplectic structurelg/\dp), the topology of and the sym-
plectic structure or®,y_, depend on the nature of the ap-
proximate integraln, i.e., on the approximate dynamical
symmetry we assume. They can be quite complex. In our
case[10] N=3 and the original phase space R, n is
defined by Eq(1), and the four-dimensional reduced phase
spacey, , is the direct product of two spher& xS, (Sec.

I C). The global aspect of the dynamical structure>gm,_ »

is entirely defined by the topology &f: Due to the nature of
the approximate integrai, the dynamics of a particular re-
duced problem will have certain common features.

3. Dynamical structure on® and on R

Assuming integrability inn, the dynamical structure on
the reduced spacE,y_, can be easily lifted to the trans-
formed phase spacg,y by adding a periodic motion with
angle¢, . In other words, if we have a dynamically invariant
subspacé’ of the reduced space, the image of" in R is a
product of I' and a circular orbitS; defined by ¢,, T
®S;(¢y). To obtain the image in the original phase spBce
we usef L:R—R [cf. Eq. (6)]. Thus stationary pointf2]
on X correspond to periodic orbits dR with ¢, the natural
coordinate along these orbits. Periodic orbits Dncorre-
spond to invariant two-dimensional toFy, in R.

C. Symmetry analysis

The Hamilton functionH(Q,P) in Eq. (3) is invariant

the order of the perturbation theory by the total degree inwith respect to all operationR of the groupG, in Sec.
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| A2. These operations act on the initial phase spacef H in the same way as for any other symmetry operation.
Rs(Q,P) and thus on any function defined on it. By con- However, except for the stationary points, any structure that
struction, our normal form transformatiof preserves the exists on the phase space due to @tp is irrelevant to the

G, symmetry[13] and soH g inherits this symmetry from behavior of the flow of the dynamical systg@ec. Il B).

the initial Hamilton function(3).

We study theaction of the operation®R of G, on the
phase space and on other dynamical objects such as vector OUr situation is more complex because the total symmetry
fields, flows, and periodic orbitEl4]. The phase space is 9roup Q4), exact for the unperturbed hydrogen atom and
subdivided intostrata, or sets of points with different sym- approximate for the whole problem, haenlinearaction on
metry propertie§15]. Strata of dimension zero, i.e., sets of the initial phase spacBs. This symmetry is dynamical and
isolated points, are of particular interest since they necessallS Operations commute with the flow of the unperturbed
ily correspond to the stationary poinf€] of any smooth Problem. Welinearizethe action of this dynamical group by
G,-invariant Hamilton function. We also distinguish invari- changing to a space of higher d_lmens@ec. Il A where
ant subspaces that can be composed of several differe € ¢n flow of the whole proplem IS maqmerfe_ctlylmear by
strata, e normal form transformation. Once linearized, all symme-

. r rations of the problem ar il mbin nd ana-
Once the action of the symmetry grodp on the initial try operations of the problem are easily combined and ana

phase spacR is given, the relatior{6) defines the action of lyzed.
® on the reduced phase spake The action ofG, on the Il. REDUCED PROBLEM FOR CROSSED FIELDS
reduced phase spage=S,X S, of our problem is analyzed
in the Appendix. This action is nontrivial, so that in addition
to the topological requirements on the generic Hamilton In the process of reduction the dynamical flow of the per-
functions overy there are requirements due to symmetryturbed problem corresponding to the approximate integral
(Sec. 1. is linearized and all points that differ only in phagg (orbits
of n) are mapped onto one point of the reduced space
1. Spatial symmetry Such a procedure is regarded traditionally as “simplifica-
In the simplest case we hatisear symplectioperations t@on” since the number of variables is reduced. At_the same
R, which are easily applied to any of the above objects; thé['me’ the flow on% naturally_ becomes more complicated.
or,Jeration ' The procedur_e of reduction and espeu_ally th_e correspon-
dence of the points oB andR can be easily defined if the

P (Q,P)—(Qq,~Qp,Qy,Pe,—Py,Py) 7 action of the dynamical symmetry gro@onR is linear. If
. i) e il p1 e H p

this is not the case, we can linearize this group action by
is an example. The main consequence of this spatial Symmg_nlargemenbf the initial space(16,17. From the physical
try is the existence of a dynamically invariant subspace o

oint of view this means that it is always possible to consider
the phase spadRs. Indeed, the equatioy, =P, =0 defines he real initial physical system with a complicated Hamil-
a subspac®, of R, that is both invariant with regard 0,

tonian flow as a formal result of the reduction of a simpler
the group generated by®®, and dynamically invariant: Hamiltonian flow defined on a phase space of higher dimen-
Any trajectory with initial condition®,=P,=0 remains in

sion.
this subspace, i.e., the electron will move in the plamg)

Our initial phase space Rg. To linearize the action of
orthogonal to the magnetic field vecter. Two major peri- O(4) we enlarge the dimension by 2. The actual transition
odic orbits of the entire problem lie in this plane and can

Re¢— Rg is given by the Kustaanheimo-Stief@S) transfor-
therefore be studied more easily using tfg-restricted mation[18,19. TheR is obtained from the KS spad®; as
Hamilton function.

3. Nonlinear action and dynamical symmetry

A. Reduction or enlargement?

a space reduced with regard to the auxiliary integral of mo-
tion £(qg,p) =0 by identifying all points that differ only in
the value of the conjugated angfe .
Another important reason for the KS transformation is the
Operations 0fG, involving time reversall require more  regularizationof the 1f Coulomb potential20]. Indeed, our
attention. These operations cannot be adequately representggrmal form reductiorSec. | B 3 works only if the Hamil-
on the phase space. Formally, their action can still be deton functionH is regular near the equilibriu®=P=0 [cf.
fined. This action is not symplectic, does not preserve thgq. (5)]. In the KS coordinates the functidB) is regularized
Hamiltonian flow (does not commute with this flowand  py takingH—Hr (t—t/r for time) and the problem trans-

can only be used for the analysis of stationary poj@is forms into a special four-dimensional oscillator.
For example, the action of tHEo(® operation

(Q,Pit)—=(Qe,Qb,~Qp,—Pe,—Pp,Pp;—t) (83

2. Spatial-temporal symmetry

B. KS transformation and regularization
The KS transformatiofiRef.[18], Chap. 1.9 Eq.(27)] is

can be formally given by a nonsymplectic operation defined by the matrix
TU'(eb):(Qap)_)(Q91Qb1_Qp1_Pev_Pbipp) (8b) Q1 _qZ _q3 q4
q q —04s —q
and as such can be applied to the time-independent Hamilton Mks= ? ' * s 9
function (3). The result can be used to find additional con- Oz Q4 RE! a2

straints on the number, position, and type of stationary points s —Q93 O —01,
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with g the coordinates ifR,. The coordinates@,,Q,,Q3)
in the physical spacB; are obtained as

(Q1,Q2,Q3,Q4)"=Ms(01,02,03.04) 7, (103

whereM g is such thaQ,=0. The radius irR; equals

r=yQi+Q3+Q5=qi+05+a5+a;

and MjsMys=MysMfs=rl,. The momenta R,,P,,P5)

(10b)

of the initial phase spadgg are expressed in terms of coor-
momenta oyr equation finally becomes

dinates  §1,92,93,94) and conjugated

(P1,P2,P3,P4) IN Rg as

1
(PliPZ1P31P4)T:EMKS(p17p21p3!p4)T’ (113

so that

1
Pi+P3+P3+Pi= (pi+p3+p3+py), (11

i.e., the kinetic energy in the KS spaRg acquires the factor
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1p2+(—8E)ig2+ .- =4, (150

whose quadratic part represents an isotropic harmonic four-

oscillator with frequency

w=+—8E. (16)
Scaled to the standard form by
(P, @)= (pVw,q/ Vo), (17

3(p?+0%) + 5201~ 0493) 9%+ 39(02P3— G3P2) G°

4
+39%(a3+a3)(ai+ada’= —, (18)

with auxiliary field parameters
g=4G/w?, f=24F/w°. (19

The harmonic part of the oscillatdi8) is the total action

1/r, the sameas in the Coulomb potential. The KS transfor- Proportional to the principal integral of motiam of the un-

mation defined by Eqg10) and(11) is canonical. However,

perturbed Coulomb problefEg. (1)]. Since 4db=2n [cf.

for P, in Egs.(11) to become identically zero we impose the Ed. (16)],

restriction

def
{=—2rP4=0q1Ps—04P1+03p2—092p3=0.

Thus the initial phase spa&={Q;,Q,,Q3,P;,P,,P3} of

12

the Kepler and Coulomb problems becomes a reduced spa

for a problem inRg={031,d2,93,d4,P1,P2,P3,P4} With the
integral {=0 [21].

Using the KS formulag10) and (11) together with con-
dition (12), we find the three-dimensional space angudar
bital) momentum

(L1,L2,L3)=(Q1,Q2,Q3) X (Py,P2,P3) (13
in terms ofRg:
Lp=3(01P4—0aP1+02P3—3P2)
=02P3~d3P2, (149
Le=32(02P4+AsP1— 01P3— daP2), (14b)
Lp=3(01P2+A3Ps—d2P1—0aP3), (140

where (1,2,3¥%(e,b,p) [Eq. (3) and Sec. .

1. Hamilton function in KS coordinates

We use Eqgs(10), (11b), and(143a to expressH(P,Q) in
Eqg. (3) in terms of @,p) in Rg,

H(P,Q)=H(p,q)=E, (15a

with E the energy. Equatio(il5a multiplied by 4 becomes

regular,
4rH(p,q)—4rE=0. (15b)

The new Hamilton function is a polynomial i(p),

2n=3(pi+p5+p3+piTai+as+ai+a). (20

2. Laplace-Runge-Lentz vector

To find the KS expression for the Laplace-Runge-Lentz
ygctor we begin with its definition in the initial physical
spacdcf. Eq.(21) and Eq.(22) of Ref.[22], and Ref[23]],

K=PxL—-QIr. (21)
Substitution of the KS formulas into Eq4.0), (11), and(14)
yields complicated expressions that, however, can be radi-
cally simplified usingZ=0 [Eq. (12)] and our assumption
n=const that restricts Eq21) on a spheres; in Rg. The
radius of this sphere can be chosen arbitrarily and the value
of 4n=8 results in the desired simplification. Since this im-
pliesn=2, we rescale the reslit— 2K to obey the standard
relations(1) and obtain the KS expressions in their final form

Kp=3(p5+0a3+0a5+p5—ai—pi—a;—p3). (229
Ke=3(PaP3— 0201~ P1P2+ da03), (22b)
Kp=—3(0301+ P1P3+0al2+ PaP2)- (229

We can now verify the usual Poisson brackets

{LeyLb}:Lp-

using Eqgs(14) and(22). This concludes the hydrogen-atom
realization of the standard &) algebra.

{Le!Kb}:pr {Ke’Kb}:Lpa (23

3. Standard diagonal representation

We can greatly accelerate the procedure of the normal-
form reduction of the Hamilton functio(i8) by changing to
coordinates ¢’,p’)"'=U"%(q,p)", with U the 8x8 sym-
plectic transformation matrix
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000 -1 -1 O 0 0 TABLE |. Transformation properties of the dynamic variables
of the n-shell reduced problem under the action®f.
01 0 O 0 0 -1 O
001 O 0 -1 0 0 Variable E ToleD atep TC®
U 1 00 O 0 0 0 1)1 Ke + + + +
|1 00 0 0o o o0 -1|f Kp + + - -
Kp + - + -
0 01 O 0 1 0 0
010 0 0 0 1 0O Le * * - -
Lp + + + +
000 -1 1 0 0 0 Ly + — — +
(24)

such that the quadratic forg(q’,p’) [Eg. (12)] is diagonal [cf. coordinatesQ,(dy,0p.0s.,04) in Eq. (10) and use Eq.

[24]. In these new coordinates, four quantities (12) when verifying the invariance of Eq18)]. All other
_ Cs-invariant subspaces are equivalent and are mapped onto
n=3(ny+n,+nz+ny), 25 s -
2(N1F Nyt Nyt Ng) (259 the same Q.,Q,,P¢,P,) plane of the originaRg.
(25b) Restriction of Eq(18) by relations(26b) results in a two-

= —n;—ny+na+ny, | , :
¢ Loer e degrees-of-freedom problem with the Hamilton function

Kp=3(—Ny+Ny+n3—ny), (250 )
H=p3+q5+ps+0s+ 5 (as—qs)f+(q+qs)
Ly=21(—ny+n,—Ng+ng)=n,—ns (250) P2 0T P31 04 3 q,—0q4 q>+Qq4
. . , 1 4
have diagonal representation in terms of actions of four one- % — )g+ = (g2+q2)3g2= —. (27)
dimensional oscillators; = (q/2+p/?), i=1, ... 4. (02Pa~0aP2) 9+ 7 (A2 08)°9"= 7

Because of the invariance of E(L8) with respect to the S o )
SO(2) rotations generated by, the Hamilton function Like the motion in the ¢,p) plane of the initial physical
H(q',p’)=H(q,p) as a whole necessarily commutes wjth ~ SPace, theC-restricted problem in the KS coordinates has
{H,Z}=0. In other words{ is an integral of motion. In the WO degrees of freedom. o _
z=q/*+ip! coordinates, the operatidnZ} maps each indi- We use Eqgs(26b) to restrict the principal Coulomb inte-
vidual monomialh=2%. - .z%4z". .. 2> onto itself. It fol- grain [Eq.(20], £ [Eq. (12)] as well as vectors _[Eq. (]-'4)]

1 471 T4 ' andK [Eg. (22)]. Four quantities are not invariant with re-
lows that all monomial$ of H are in the null space df,{} gard too®” in Eq. (268 and hence vanish,
and everyh commutes with. The representation dfl in
terms of such ‘¢-invariant” monomialsh requires the mini- T
mal number of termgequal to the dimension of the null
flfricr?ﬂ:?:n?;;shtgs%rﬁ;er ofte?rﬂ sbiﬂhe g:r?éiz.it-(l;glzfrllg (cf. Table ); four others remain quadratic polynomials on
hence the memory load and computation time of the reducl—q46 Ra,
tion procedurdg13].

e=L,=K,=7=0 (28)

= 1/m20 20 420 2
Another important application of the coordinatés)) is N=z(q2+pz+dstpa), (293

the standard algebraic and geometric representation of the _

problem. These coordinates give an explicit geometric con- Ly=02Pps—q4P>, (29b

struction of the embedding of the reduced phase spaoé

the problem into the initialRg and transformedRg KS Re=%(qi+ pi-qg-p%), (290

spaces in terms of angles; and conjugated actions; of

four oscillators. See Secs. |11 C and IV D and Rgf] for =
further details. Kp=—0204—P2P4- (299

4. Restriction on the G-invariant subspace C. Reduced phase spac8,x S,

As already pointed out in Sec. | C 1, the spatial symmetry Reduction with regard ta is realized in the KS spadgg
group of our problem i€ . To studyCg-invariant dynamics  as a standard Lie transformatifg. (6)]; reduced spac®,
we find the image ob®? in the KS spaceRg and the de- s obtained from the transformed spaf& using both n

fining equations of the&Cg-invariant subspadsg). In fact, it =const and,=0. Since ourHyg is truncated and is as-
suffices to find one realization @f(?, sumed to be strictly conserved, the phase spgigés the
en same as for the unperturbed hydrogen atom. We use the
0'°P1(d1,092,93,04)—(d2,01,04,03), (268 components of. andK with two restrictions(1) as dynami-
o ) o cal coordinates ork, and take advantage of the=const
and one corresponding invariant subspac&gnwith condition to introduce universally scaled vectors,

d:=02, 03=0s, P1=P2, P3=ps (26D K—K/n, L—L/n, K2+L?-1. (303
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In other words, we project afi shells on the shelh=1 and
scale all KS coordinates iRg by the hyperradius/n,

q—a/\n, p—p/in.

Alternatively, the six components of the two vectors

(30b)

J;=3(L+K), J,=3(L—-K), (31
with two (n-scaled restrictions
J2=J2=1%=const, (32)

are often used. Sincfl;, ,J,5} =0 [cf. Egs.(23)] we con-
clude thatX, is a direct product of two two-dimensional
spaces. Furthermore, since eakhhas the properties of an
angular momenturfiJe ,Jip} = Ji, and the magnitude of each
J; is fixed, 3, is a direct product of two spheres,=S,

X S,. The important implications of this topology are ex-
plained in Sec. Il C.

1. Reduced phase space of the-&stricted problem
Reduction of theCq-restricted problen{27) is similar to

D. A. SADOVSKII AND B. I. ZHILINSKII

construction as follows.

Power in dynamical variables Number of invariants

(Ke Ky, Kp) and (Le,Ly,Lp) Main Auxiliary
1 2
2 2 2
4 1

Further choice of the IB is ambiguous. We take

Ke, Ly, K2, L2 (343

as basic invariant polynomials and

L2-K5, Kple, (L3—KHKpLe (34b)

as auxiliary.

2. IB for the Cq-restricted problem

The Cg-restricted problem has a very simple IB: Its re-
duced phase spa& (Sec. Il C 1 is of dimension 2 and the

two main invariants are naturalli{, and Ly, in Eq. (29).

that of many other two-oscillator problems. It is made nearExcept for these anti;—K?, all other invariants of the full

q=0 with regard to the combined actianin Eq. (29). The
reduced phase space, a two-sph&se(isomorphic to the
complex projective spadcgP,), is theCg-invariant subspace
of the reduced spac®, (Sec. Il A).
The coordinatesl(, K, ,K,) on this sphere are already
defined in Eq(29). Indeed, after normalizatio(803
Lh+KE+Ke=1. (33
In fact, expressions forl(,,K.,K,) in Eq. (29) give the
standard construction of the angular momentum vedtor

=2J; (with K, usually regarded a3,) in terms of the coor-
dinates of an isotropic two-oscillat25].

D. Symmetry properties and integrity basis

We consider the action of the symmetry gra@p on the
reduced phase spac&,XS,, i.e., on the vectorsK
=(Ke,Kp,Kp) andL =(Le,Lp,Lp). Transformation proper-

ties of these variables are summarized in Table I. They can

be verified directly from the definition of the action of t@g
group on the initial spacEg, such as in Eq(7), by inducing
their action onX g and applying it to the KS definitiond 4)
and(22).

Using symmetry properties and the basic theory of invari-

ants, we construct the set @f;-invariant polynomials, or the
integrity basis(IB). These polynomials have two important

problem in Egs(34) become identically zerfcf. Eq. (28)].
The remaining-3—K? is not needed because it depends lin-
early onK2 andL? [cf. Eq. (33)]. The absence of auxiliary
invariants is due to the fact th&, acts on the I(, ,K¢,K )
space as an order-2 reflection gragh Table 1)) and the 1B

for groups generated entirely by reflections contains no aux-
iliary invariants[26].

3. Application of IB polynomials

We can now represent ai§y,-invariant polynomial or®,
using the IB polynomial$34) as a sum of terms

Clivizis ld(K,L)KILZ(KD)3(L2)'s, (359
with functions
CU(K,L)=c'+Chu(L5—K2) + Chy(KplLe)
+Cy(L3—K2)(KpLe) (35b)

andc',c,, ¢, ,ch numerical coefficients. On the other hand,
IB polynomials(343 serve as correctly defined coordinates
on the space of group orbits &,, the orbifold[26].

E. Parametrization of formal series

All analytical results for the reduced problem, such as the
reduced Hamilton functiokl\g, the explicit construction of

propertiesi(i) They are necessary and sufficient to represenfne reduced phase space, and later the position of the station-

a polynomial(power seriesexpansion of anyG,-invariant
function on3=S5,XS,, such asH s and (ii) the values of

ary points ofH g are formal power series obtained from the
explicit normal-form transformatiog, itself a formal power

these polynomials label uniquely the orbits of the action ofggyies.

the G, group onX.

1. Construction of the integrity basis

The spaces ,=S,XS, has dimension four and the IB
includes four main invariants. FdB, acting on2, it also

includes three auxiliary invariants. The theory specifies theidinates x=(qq, . . .

To construct these series we choose the formal universal
order-of-magnitude parametein such a way that powers of
7 correspond to the orders of the transformatiorand in
particular to the orders of the initial and resulting Taylor
expansion of the Hamilton function in the phase-space coor-
da4;P1, - - - ,Pa). Generally, factorsg
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TABLE Il. Position of the stationary points 08,X S, and the actiom of the corresponding trajectories.

g? b Low order High oder

G, Ke TF— 1FG2(4G2-3)/12 T 7PFG2(— 103G2— 60G2+40GS+21)/144
— PPFG2(2°GL°- 115268 - 150068 + 5261G 2 — 682352
+2010)2 6373
Ly +Gg— 7GF2(4G2-3)/12 T ?G4F2(80GS— 104G — 23062+ 51)/288
— 7°G4F2(219G 10— 211GE - 351255+ 980652 — 1272552
+3867)2 7373
Fnw 1792 +SX(GE/4—5G213+35/12)/3
+S3(G8/3— G5/2— 35G2/4+ 35G2— 385/12) /12
+S4(4G19- G- 70G%/9— 41G8/8+ 1771G2/12

—1001G2/3+5005/24)/24
T, Ke —7FG2(4G2+1)/12 — 7°FG2(126G2+ 102554 — 150068 — 64GE+ 2°G1°
—108)2°6373
Lp —7GF2(4G2+1)/12 — 7°GgF2(219G 0+ 27G8 - 2680GS + 152652 + 157G2
—203)27 7378
Kp +Gs T PGF2(80GS+ 72GE— 146G2+13)/288
Le FFs T PFG2(6— 77G2+28G2+40GS) /144

inw 1 —SPF2(3G2-2)/36

8 ocal symmetry(stabilize) of the stationary point.
®Only nonzero components &f andL are given.

andf in Eq. (18) suit this purpose: If they are both assumed In the initial coordinate®) of Eq. (3) the saddle point of
to be of orderr, i.e., g~7 and f~r, then H(x)~x?(1  the crossed-field potential lies on the electric field axis, with
+ X2+ the profile

Our concrete choice of is based on the dimensionless

field parameterssg andF already discussed in Sec. | A 2, 1 1, 2
— —+FQct G Q.=——. (409
1 w\? w\® € 8 8
F=—FSS(—) , G=GSS(—) , (39 S ) _
3 2 2 The same direction in the KS space is defined by
and the field magnitude 1=0p=0, Ga=Qs= Ji2, (40b)
2\% | 2\?
s:(_) G2+ 3|:_) , (37 with the profile
w w
rofr2 g% 4
such that 5”6 + TR (400
w
T=n5S5~S. (38)  wherer is defined in Eq(10b). Note that, due to the scaling
in Eqg. (17) and the sign of the Stark term in E@),
As a result, the field parametegsandf in Egs.(18) and(19)
become Qe=—Tw. (400
9=G(w/2) =G S(w/2)=G/n, (393 In the Stark limit both Egs(409 and (40¢ have one
single maximum at some nonzerpthe Zeeman term is of
f=3F(w/2) 3=3FS(w/2)=3F¢7/n. (39b) higher power and it results in a minimum at largefand,

correspondingly, at lowe®.). With increasingG the two
It is well known that perturbation series for nonintegrablestationary points become closer, collide, and disappear, so
systems do not converge and so there is no point in anshat there is no Stark ionization at larGe We are primarily
rigorous discussion of the convergence and we simply truninterested in the maximum. Its position is easily found for
cate our series. It is important, however, to find a realistiche left-hand side of Eq400),
physical estimate for the largest possible value of the small-

ness parameterS and = for which our analysis remains 4F— J16f2— 2702 4F.— /D
meaningful in the whole range of the relative field strengths I max=4 5 J =8 2 \/_2 , (4D
FsandG,. This estimate can be readily obtained by consid- 99 9Sw(1-F3)

ering the height of the Stark ionization barrier. Clearly, the
normal-form formulas should apply only below such a bar-with D=43F2—27. We substitute ., into Eq. (400 and
rier. find the critical value ofS,
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(VD —4F ) (70F2—4F /D -54) bations of ordek and€?, i.e., f~g~ e. Reduction proceeds
with regard to orders ire as a standard Lie transformation

" 30(Fy—1)%(Fs+1)? o
[27] Rg(x)— Rg(y). The nonlinear near-identity transforma-
319352+ 12419563+ . tion £ and the inverse2 ! are obtained explicitly as formal

4 4 ' Taylor series. The procedure is substantially simplified and

(423 sped up in the coordinates of Sec. Il B 3, and the calculation
up to orderse* and € becomes quite routing28].

with 6=(1—-F4)/16 a parameter of the deviation from the  To represent the resulting normal foriy: we use the
Stark limit (Gs=0, Fs=1). Note that the above expression n-scaledK,L coordinateg303g of Sec. Il C, such that
does not explicitly depend on enerdgn w): All energy
dependence is absorbed irBadue to the definition(37).

We conclude that the upper limit for the physically mean- Hue=4/o (433
ingful values of our smallness parametefSis 3/16. We can NF '
see from Eq.(37) that these values of can be achieved
either at high energie® and low unscaled field strengths
(F,G) or at low energies and high field strengtli$his is
generally known as the possibility to scale our classical prob-
lem. We also note that Eq423 is a static estimate db;;
and no similar dynamical limitation can be suggested until
we define quantitatively which features of the dynamics we
want to be reproduced by our normal form and how precis
this reproduction should besee Sec. VA B

3
Ql— 1+ 256+

2 7_3

,
Hue=2n| 1+ 5Hi+ o Hot oHat - |, (43D

fvhere, except for the overall unperturbed energy factor 2
all explicit n dependence is absorbed in the formal parameter
_ _ 7 [EQ. (38)] and in the scaled normalized field strengkhs
F. Reduced Hamilton function and G, [Eq. (39)]. SinceHyr is G, invariant(Sec. 1 Q, all
To construct the normal form of the Hamilton function resonance termdd, can be expressed in terms of the
(18) we treat its terms of degree 4 and 6 i, |¢) as pertur- G,-invariant polynomials in Sec. Il D,

H,=GsLp—FsKe, (443

Ho=—[3L5—2KZ+3KE+2L2+2(L5—K2) —3]GZ/4+ (7KL~ LeKp)FsGy/3— (51K —9L5+17)FZ/36, (44D

Ha=Lp(BLE—6KE+9KE+5L5+6(L3—K5)—9)GI—K(125-43L5+ 125K2)F /9
+[ — 45K L3+ 45K 3— 65K K+ 117K o — 14T fK o — 45K o( L5 — K5) + 48L (L K ) [F GZ/6
—[3KpLy+87L5Ly— 615K 2L, — 3L — 232, — 3Lp(L5— K2) + 108K (LK) IF2G/18. (440

Note that in order to obtain the above formulas we first express the result of the Lie transformation in tSyRSefiB
polynomials in Egs(34) extendedy the extra main invarianf in Eq. (12) and two auxiliary invariant§K, and{L.. Only
then can we sef=0.

The procedure to obtain thes-restricted normal form of Eq27) is the same, but the calculation is much simpler. The
resultingH e depends only om, K., andL, in Egs.(29), and{ is not involved since&=0. The lower orders equal those in
Eqs. (44) restricted using Eqg28) and (33). The fourth-order contribution is*2~"H, with

~ 17815, , 2468 _ .. 39685 ,_, ., 204G +49 _  _ _ 368+385%GI ,_,
Hy=— 515 Fie'+ =5 G LR~ — g GiLy*FiK+ ——5——GL,’F K~ ————GIL,
48 2185317 815 o o 17 29KB§—78866 g 15265-13 787 or o 2095, 4523, 3563
+ - + — + - .
108 ste 27 sThTsTe 108 stb 18 TS’ B4 TS 216

(45)
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lll. GENERAL PROPERTIES OF THE REDUCED PHASE G,-invariant trajectories as their subs€fhe flux is tangent
SPACE RELATED TO SYMMETRY to the C invariant spheres,C 2 and to its “equator,” the

Two factors, the geometry of the reduced phase space G-invariant circleS, C S;.)

and the symmetrnyG,, result in certain important generic

features of any Hamilton functiod \z onS. [6]. These gen- C. Stationary points of Hyr on X

eral properties are universal; they can be established without Relations between the topology of the manifold and the
any particularanalytio form of the functionHye [such asin  system of stationary points of a smooth functidp: defined

Egs.(43a and(44)]. on it is the subject of Morse theof29]. In particular, any
smooth Morse-type functiotdye must have at leasfour

A. Invariant subspaces ofS,X S, in the presence stationary points on the whol8,XS,, two stable(global

of the G, symmetry maximum and minimurnand two unstabléMorse index 2.

The main consequence of the additional symmetry is that SinceG, is a finite group, it is natural to suppose that all

the phase spack is not homogeneous, the points of this s_tationary points of a gener@4-invariant functionH e de-
space can have different local symmetry, or the stabilityfined On==S,XS; are isolated and nondegenergge]. We

group(stabilize) g=G,, Cs, T, T, andC, (generic points consider and combine the topological restrictions on the sta-

with no symmetry. These points lie on the invariant sub- tionary points ofHye for all manifolds listed in Table IlI.

manifolds ofS,x S, described in more detail in the Appen- The minimum number and the type of stationary points re-

dix. quired by the Morse theory for each of these manifolds in-
TheS, X S, itself consists of “mostly” generic points and dividually is as follows.

thus can be considered agCa-invariant manifold that con-

tains four submanifolds. Three submanifolds, invariant withTopology Number and type of stationary points

regard tog=Cg, 75, and 75, include all points with their

respective local symmetry and all points with higher sym- 1 1(+), 1(=)

metry G,. The G,-invariant(the fourth submanifold is nec- 1(++), 1(=-)

essarily the intersection of the three. T2 1(++), 1(—=-), 2(+-)
Table Il summarizes the algebraic description of theseS; xS, 1(++++), 1(———-), 2(++—-)

invariant submanifolds. We list the componentskofand L

that must vanish to satisfy the particular local symmetfy In the presence of th&, symmetry, the minimum num-

Table ) and then simplify general equatiori80) defining ey of stationary points is 4: All requirements of the Morse
the whole S, XS, in Re(K,L) (last column in Table I). 651y for each of the four submanifolds can be satisfied if
The§e simplified equat.|0n3 .demon.stra.te thg topology of S‘Ut{he two stable points lie on th&,-invariant circle and the
mann‘olds: the setonl Invariant points 1s aC|rcI$1; theps two unstable points lie on thé&g-invariant torus.(The
and 7, invariant manifolds are sphere; the 7 invariant s-invariant circle is common to all other invariant submani-

subspace is a two-dimensional torus whose two princip . . o .
. olds and the two stable stationary points on it will automati-
circles can be represented by thandb components of, : ; : .

. cally satisfy the requirements for bo®- and 7,-invariant
andJ, [cf. Eq. (31)]. We can easily see from Table Il that L ;
the G, circle is indeed the intersection of i, 7, and7; sphergs an_d exhaust the minimum number of stable_ points on

4~ ros 2 the Z.-invariant torus. Note that the two unstable points are
submanifolds. ! ) .
equivalent; They are mapped onto each other by operations
TC, or ¢®P that belong toG, but do not belong tdZ.
(These points form a two-point orbit of the action®f, on
We must distinguish invariant manifolds with purely spa-3; see the Appendix.
tial stabilizers g from those whose stabilizers include  The described location of the stationary points character-
reversing-symmetry operationge and TC, in Sec. |A2. izes thesimplestMorse-type function, i.e., the function with
All invariant submanifolds are equally important for the minimal possible number of nondegenerate stationary points,
analysis of relative equilibrig2]. To simplify the search for defined on the reduced phase sp&g& S, in the presence of
the stationary points we can restridiz on any of the in- the symmetryG,. Since K, and L, are the only linear
variant submanifolds. If a point is found, it will automati- G,-invariant polynomials, the first order term in the Taylor
cally be stationary for thedyr on the whole ofX. (The series of any generiG -invariant analytic function ors,
gradient ofHye in the direction orthogonal to the invariant XS, is vKy+ ul, (with nonzerox and v) and is of the
submanifold vanishesSpecial symmetry properties of such simplest Morse type. This suggests that in the limit of linear-
a stationary point mean special symmetry properties of thézation the normal form of the crossed-field problem has only
corresponding periodic orbftf. Sec. | B 3 and see Sec.)V four stationary pointgsee Sec. IV A L The situation might
At the same time, classical trajectories or, more generallybe more complicated in the limjg=0 or v=0 and might
the flux of Hye on the reduced phase spakerespect only a depend on the quadratic terms.
purely spatial invariance and we can restrict the flux of the The position of stationary points on their respective in-
Hur to a submanifold of, if g is purely spatial because the variant submanifolds is not defined by symmeffhe group
vector field is tangential to such submanifold and all classicabrbits formed by these points are not isolated within their
trajectories remain on it. It follows that we can study inde-strata; see Sec. 2 of the Appendi¥Vhen the parameters of
pendently the set o€.-invariant trajectories together with theHyg, such as the field strengti® andF, are varied, the

B. Special role of time reversal



2876 D. A. SADOVSKII AND B. I. ZHILINSKII 57

stationary points can move within their invariant submani-g Ke Kb? Le? Ly Kﬁ—Ls Hne
folds, but they cannot leave these submanifolds.

A qualitative change of this system of four stationaryGa —Fs 0 0 +Gs 0 2(n+7)
points can occur as a result of a bifurcation at some particuGs +Fs 0 0 -Gs O 2(n—1)
lar value of the parameters. The number of stationary point§g 0 (£Gy? (FFy)? 0 0 2n

cannot become less than 4 and the four “principal” station-

ary points described above cannot disappear. They can, howince the twoTZs-invariant points are equivaletithey form
ever,.change.thelr stability if the Morse theory requirementsne orbit of theG, group action the values of invariant
remain satisfied due to the appearance or disappearance Qfjynomials and therefore a ,-invariant characteristics of

additional stationary points. Note that since the tWOihese two points including the value K, will be the same
Ts-invariant points are equivalerithey form one group or- (15 any order in7). On the contrary, the twe,-invariant
bit), their bifurcations should be identical, i.e., should OCCUoints are not equivalent.

at the same values of parameters, produce the same local pq expected in Sec. Il C, the stationary points Hfi-
qualltatlv_e change, etc. We ghquld further note t_hat due t%hange their position without leaving thegrinvariant (g
the special location of the principal stationary poitgspe- =G, or T.) subspaces. All the way from the Zeeman to

ciqlly_ of the two G4-inv§1riant _point$, many additional re- Stark limit the G,-symmetric stationary points with,~ Gq
strictions on possible bifurcations can be deduced from th ndL,~ — G, remain the global maximum and minimum of
S

Morse theory requirements. The bifurcation study of the nonspq Hye (for the samen shell, n=const). The two

Iin_ear normal ”?‘?des of th_e actual crossed-fie!d problem re’Ts—symmetric stationary points remain unstable. Such mono-
quires thfe stability analysis in Sec. IV E and involves highe eyolution of the stationary points between the two limits
orders ofHyr [31] is very different from the case of the two parallel fie[@s7].

IV. NONLINEAR NORMAL MODES DERIVED

2. Properties of nonlinear normal modes
FROM THE REDUCED PROBLEM

We first consider the situation when both fields are non-

The four principal relative equilibria2] of the generic  zero F+0, G#0) and the symmetry of the problem is pre-
G,-invariant functionHyr over the reduced phase spe8e  ciselyG,. Since each stationary point has one nonzero com-
XS, (Sec. G correspond to four principal families of ponent of the orbital momentunt, all corresponding
periodic orbits of the original probler(cf. Sec. 1B so that  periodic orbits are loops in the initial physical configuration
the symmetry properties and stability of the orbits can bespaceRr; (as opposed to lines that run in both directipns
deduced from the characteristics of the stationary pointserom the linear solutioriSec. IV A1) we can see that the
Furthe'rmore, the action along thg orbits and the period cag,-type orbits loop around axis (L, #0), while theZ.-type
be derived from the normal form in Eqgt3b) and(44) and  orhits loop mainly around axis (L#0). SinceG, contains
even the initial physical phase-space image of the orbits cagg time reversal, all these loops Ry have one distinct di-
be reconstructed from the position of stationary point$on ection.

and the explicit transformation formu(&). The four relative The G,-invariant trajectories must lie in thee(p) plane
equilibria exist at all possible values of field parameters an »=P,=0) in order to be invariant with regard (P
only they exist at infinitesimally smalbut nonzerp param- 504 hence they necessarily havg=L,=0 (cf. Table Il).
eters. The corresponding four families of periodic orbits pos, the contrary, theZ.-symmetric tra})ectories have no in-

sess, of course, the same property and we call them nonlinegg iant configuration subspace Ry because their stability

normal modes. group is not purely spatigtf. Sec. 11l B); in particular, they
are not parallel to thely, p) plane. The twd/, trajectories are
A. Evolution between the Zeeman and Stark limits equivalent: The operations(ep) and TC, map them onto

To have a general idea of what happens to the four nor@ach other.
linear normal modes when the field configuration changes
from the Zeeman to the Stark limit, we analyze the behavior 3. Symmetry of the Zeeman and Stark limits
of the corresponding four stationary points in the lowest-

order approximatioricf. Ref. [3]). The symmetry of the two limits is much higher th&y

[6]; it includes theC.. element:C!® for the Stark andC®
1. Linear approximation for the Zeeman limit. The typical orbit of th€.. group ac-
) ) o . tionis a circleS; and in addition to simple stationary points,
an3|der the linear-in-field part of the reduced Ham”tongeneric functions o018, X S, in the presence of such symme-
function (433, try can possess stationafgritical) manifoldsS; [30]. Our
four principal relative equilibria remain simple nondegener-
i (46) ate stationary points in both limits.
' In the Zeeman limit, the twdG,-symmetric stationary
points become two critical one-point group orbits with,
find its four stationary points 08,X S, using Egs.(1) and  /\7g symmetry. These orbits correspond to the maximum
(303, and characterize the points in terms of IB polynomialsand minimumL,. (The linear Zeeman effect and tl@,
(34). symmetry are not reducedn the initial physical coordinate
spaceR;, the corresponding periodic trajectories lie in the

.,
Hye=2n| 1+ 5 (Gl FoKo) -+ | =
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(ep) plane(orthogonal to the field axisand run in two dif- the coordinates of the stationary points, are thecaled
ferent directions along two circles with different radéee = components of vecto§ andL defined in Eqs(30) and(1).
Fig. 2 later in Sec. IV D Another advantage of havingas an independent parameter
In the Stark limit, the same tw&, points become two in the reduced problem is the possibility of applying directly
critical one-point orbits withC.,,/\7 symmetry. They now the semiclassical Einstein-Brillouin-KelldEBK) quantiza-
are invariant with respect to time reversal and their coordition. When we use either (or 7) or E (or S) as an indepen-
nate space imagén R;) is a line. There are two lines with dent paramete(in addition to the field strengthG andF),
C., symmetry: “up” and “down” the electric fieldF on  we should be able to change between the two parameter
thee axis. The “downhill” trajectory is longer than the “up- schemes and in particular to find the valuerofat given
hill” one, has higherfmaximum) energy at the same, and  w(E) and{S,F4,G}.
ionizes at sufficiently high field.
The two 7,-symmetric stationary points form one two- 2. Value of n as a function of energy and field strengths

point orbit of the action of théS, symmetry group. They The principal integral of motiom as a function of energy

remain equivalent in both the Zeeman and the Stark limit. Ine [or w(E)], S,X S, coordinatesk,L ), and field parameters
the Zeeman limit these two points form one two-point criti- (SF..GJ) i,s defined implicitly b’y t’he constant level set
cal orbit of theC..;,/\7; group action with stabilizeg=C., o S

AT In this limit they haveL =0 and hence their images in equation

Rj are two lines lying on thé axis up and down the mag- 4

netic field (see Fig. 3 in Sec. IVD The two lines are Hye(K,L;n,7,Fg,Gg)= ———=const. (47
equivalent; theo,=o(®P operation maps them onto each w(E)

other. i
In the Stark limit the same pair of equivalent Remember that we use normalized vectirsand L [Eg.

7.-symmetric points becomes one two-point orbit with the(308] and all dependence of théye in Eq. (47) [in Egs.
g=C../\T, symmetry. InRs, these are circles around tee (439 and(44)] on n is concentrated in the parameterTo
axis lying in the plane orthogonal to theeaxis (Q,=const ~ SOIVe (reverse Eq. (471) as a formal power series i§, we
#0; see Fig.  The appearance and breaking of tie ~ Multiply Eq. (43b) by 3Sw so that

group orbits, in particular the stationaBy manifolds, and of

3 4
the foliation of S,X'S, corresponding to the additional inte- S= 1+ iHlJr T_HZJr T_H3Jr . (483
gral of motion (L, or L) in the Zeeman and Stark limit 2 4 32
require a separate detailed analysis.
and consequently
B. Position of stationary points < 8
We know from the linear solution in Sec. IV A 1 that the 7=S— —H;+—(2H2—H,)
position of the four relative equilibria oB depends on the 2 4
parameter§ andG and we can express it as a formal power ot
series. The order of the series is limited by the order 3 to - 3—2[20|—|1(H§—H2)+H3]+ . (48b
which the normal form in Eq94339), (43b), and(44) is de-
loped. . . .
velope with functionsH, given by Eqgs.(44) above. From Eq(38)
1. Choice of formal parameter we see immediately that
Periodic orbits of nonintegrable systems are studied at 2 S S2
given fixed energye = const. In the presence of the approxi- n= P 1- §H1+ Z(ZHf— Ho)+---]. (480

mate integraln the energy remains a preferred parameter
when an exactinumerical orbit is sought or when the We analyze the dynamical meaning of this expression in Sec
n-shell approximation is expected to break in the transition—lv C belgw y 9 P :
to-chaos region. Consequently, we tdkes an independent :

parameter when we compute the characteristics of periodic
trajectories, such as action and period.

Furthermore, we take scaled strengkhsand G and the To compute the position of the four relative equilibria in
field magnitudeS defined in Eqs(37) and(36) as our field  Sec. lll C we look for the extrema of either the normal form
parameters. These parameters are scaled(8) and thus Hne(K,L;7,n,Gg,Fy) in Egs.(43b) and(44), i.e., the energy
are fixed at giverF, G, andE. The formal series parameter E, or the value oh(L,K;E,G,F) in Eq. (480. In either case
7 of the normal form(43b) is expressed in terms & w, and  the coordinates L(¢,Lp,L,,Ke,Kp,K,) of the stationary

3. Formal series for the position of stationary points

n [Eq. (39)]. points obey the system of conditional extremum equations
On the other hand, the whole concept of the reduced
phase spack and of relative equilibria is valid only ifi can Vi ®=0, K?+L?=1, K-.L=0. (49

be regarded as an integral of motion and therefore it makes

more sense to rely directly on (or 7) as an independent with ®=Hr or n, and restrictiong30) imposed on the six
parameter when we compute the characteristics of theseomponents of the gradient by tf® XS, topology. The
equilibria. Indeed, the coordinates &r=S,X S,, and hence formal series solutions to Eqgl9) are obtained by Newton’s
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TABLE llI. Invariant manifolds for the action of the symmetry gro@y on the reduced phase spate
Stabilizer Dimension Topology Defining equations RestriciyiK,L) —2
G, 1 S, Le=Kp=L,=K,=0 L2+K2=1
Cs={E,o(®P} 2 S, Le=Kp=L,=0 La+KZ+K2=1
T,={E,TC,} 2 S, Le=Kp=K,=0 La+KZ+Lo=1
T,={E,To{®?} 2 T,=5,XS, L,=K,=0 (Lex Ko+ (LyxKp)2=1
C, 4 3=5,XS, L2+K?=1, L-K=0

method with four linear solutions in Sec. IVA1 used as (E) andGg,F,S. The Hamilton functiorH y at this point

germs to start nonlinear series inif ®=Hyg or S if ®
=n.

We determine the positiod¥,L }sp of the four stationary
points usingH e as® in Eqgs.(49). This yields formal series

with 7, i.e., n, as a parameter. Then, at each particular sta-

tionary point{K,L }sp, we use the method in Sec. IVB 2 to
find the value ofn at given energ)E as a solution to Eq.

(47). Thus we obtaim(S(E))sp as a formal power series in
S. Results are shown in Table II.

C. Action and period

Each point ofY =S,X S, defines an orbit oh in R (or
R) with angle ¢,, the natural coordinate along the orbin (

defines a one-dimensional dynamical system with the action-
angle variablesn, ¢,). Then it follows immediatelysee, for
instance, Chap. 10, Sec. 50B of REg32]) that

1
nSP:Z %Popdq' (50)

with the action integral defined in terms of the KS phase
spaceRg={d;,02,03,04.P1.P2.P3.P4} [cf. Egs.(10) and
(11)]. Since the normal form transformatioh [Eq. (6)] is
canonical, this integral is the same fBg and Rg, but the
action integral on the initial physical spaceRg

defines a dynamical symmetry operation with linear action in={Q.,Qy,,Qp,P¢,Py,P,} is different.

Rg; see Sec. | B.The dynamics of the system on the re-
duced phase space is described by the Hamilton function
Hne in EQs.(43a), (44), and(47). To find the trajectory in the
initial phase spac® we combine the trajectory oB with
the n orbit motion(cf. Sec. | B 3. For a relative equilibrium
[2] we obtain a periodic trajectory iR with ¢, the coordi-
nate along it.(In this case then orbit corresponds to an
actual periodic orbit of the system.

The coordinate§K,L }5p of the stationary point and the

We can now understand the dynamical meaning of Eg.
(480), the solutionn(E) of Eq. (47). This equation gives the
value of the action integral along anorbit in theRg (or the
Rg) space at given enerdy, field strengthg-,G, and given
(fixed) vectors (,K). Periodic orbits correspond to the ex-
trema of n(E). In fact, the extremal values of the action
integral(50) are already given as functions of energy in Sec.
IV B 3 and Table II.

To calculate the KS space periad, we begin with its

value of n at this point can be expressed as functions ofdefinition and use Eq$38) and (433,

A -

2

dHne
dn

dr 2

dHNF (l):|_1

4

with functionsHyg, S(7), and7(S) evaluated at the station-
ary point. In other words, we find the peridd 7= by taking
the derivative of3ne times S. For the same order of the

Hye s”
N

-1 ds -1

dr

1

B 1dr
=5 -

~2ds 2d

w

I’IES),

g (51

s

The approximation for th&, orbits is less accurate. At large
values ofS the series for the ionizing orbit is about to di-
verge and high-order corrections are needed to achieve rea-

normal-form, the period is approximated with lesser accusonable reproduction of the numerical data. We show the

racy than the action.

In Fig. 1 we compare our normal-form predictions with
the numerically refined “exact” values. We consider all val-
ues of the field strengtl$ that cause no ionization in the

result of successive approximations obtained for this orbit in
orders 4-8 from th&-restricted normal form(The fourth
order is given in Table Il; higher-order formulas are too large
to be reproducelThe series for the nonionizin@, orbit is

Stark limit (Gg=0) and tune the system towards the Zeemaralternating(cf. Table I). WhenS is large, this series wildly

limit (Fg=0). The last set of data is taken &+ 0.18 with
energies about 95% of the ionization threshdi#@3/16) of
the regularized Hamilton functio(i8).

The actionn and the period\/ 7 of the 7 orbits is well
reproduced in the whole range $falready in the third order.

oscillates in low orders and settles only for orders higher
than 4.

To see whether the perturbation series could reach better
accuracy asS=0.18, we calculated the normal form for the
ionizing G, orbit in the pure Stark limit where this orbit
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The normal-form reductionRg—Rg~C, of the KS
Hamilton function(18) with regard ton leads to a standard
construction of a complex projective spa€g—CP;. The
image of each point o€ P; is an orbit inC, and the phase
¢, , the ignorable angle variable, is the coordinate along this
orbit [33]. In addition ton the problem(18) has one exact
integral { that defines the action of the &) symmetry
group of Eq.(18) on Rg. Generic points on the reduced space
S, XS, correspond to a torus with phase coordinatgsand

§To find the KS space image of a point &X S, with
coordinates iK,L) we should define the values of two-phase
variables¢, and ¢,. The phasep, is the coordinate along
the periodic trajectory we want to constrict. Sec. I B 3; it
changes on the interv@0,27]. The phasep, has no impor-
tance to us: All points on the sanfeorbit in Rg, a circleS;,
will eventually be mapped onto one point of the physical
spaceRs. So we can fixg, to some value, for instance, 0.

In the standard diagonal representation of Sec. 11B 3

phases¢,, and ¢, are simply expressed in terms of angle
variables¢; of the four oscillatorg;?+4q/2,i=1,... 4,

bn=3(b1+ ot b3t by, (52a

show order 3 approximation of Table Il. Empty circles show exact

numerical results. Data fdF; orbits are blown up by factor of 70.
Approximations of orders 4 . . ,8 for theG, orbits with S=0.18
are shown in the whole range eof by thin lines. Filled circles on

the =0 axis show successive 1D normal form approximations ofV€ can fix $a

orders 4. . .,20 forthis orbit in the pure Stark limit witt6=0.18
(96% of the ionization threshold

turns into a straight line and the problem has one degree o
freedom. Figure 1 demonstrates that even at order 20 thg

discrepancy is still significant.

D. Periodic orbits in the initial space R

. . a
In this section we make the correspondence between th

stationary points of the normal forid and the nonlinear

normal modes explicit and conclude by finding the trajecto-]c

ries of these modes in the initial phase spRgeThe proce-

dure has three main steps: we first find the correspondenc§eC

between the reduced spaBex S, and the transformed space
Rsg, i.e., the embedding &, X S, into Rg; then we return to
the initial phase spaclg using explicit formulas of the Lie
transformationg ™! obtained in Sec. Il Hcf. Eq(6)]; and
finally we use KS expressions in Sec. Il B to map fregto
Rg, the phase space of the initial three-dimensiof&)
Hamilton function(3).

br=—h1— ot P3+ ¢y (52b)

To lift 3 to Rg we can fix any two phases in Eq§2). Thus
and ¢, and obtain the cham@® with p,
=p,=0. Such a chart covers all points except for those
wheren, and/orn,, vanish and phases, and/or¢, become
undefined. In particular, it is the only chart that covers the
ubspace where two other actioms and ny vanish andn,
n,=n. Equation(25b) shows that four such pairs(d)

xist if =0 andn#0 (n=1 in the scaled coordinates
Therefore, four charts with

(a,b)=(1,3),(2,3,(1,4,(2,9 (53

re required. It can also be shown that these four charts are
Sufficient to cover the whol&, X S,.

To find the image of the stationary points in Table Il , we
irst obtain the values afi;, n,, ns, andn, using Eqs.(25)
with {=0 andn=1. Thus, in the linear approximation of
IV A 1 we obtain the following:

g 2n1 2n2 2n3 2n4
G, 1¥G, 1*G, 1%G, 1*G,
e 156G, 1=G, 1+G, 1%G,

We choose a pair in Eq53) with largest values ofr{, ,n;)

Our first step gives an opportunity to review the geometry, 4 define the corresponding chart®fx S,. In principle,

of the problem once again. We lifted the initial physical
phase spacd®g [or C; with complex coordinateg*ip
=\2lexp(* ¢)] to the KS spaceRg, transformed the latter
into Rg, and then reduced ,=S,X S,. We also defined in
Sec. 11 B 3 the standard coordinat®&— Rg in which the
two group actions defined bhyand{ are diagonal. To define
the embedding ok, into Rg we need local charts & in
terms of @1,95,95.94,P1,P5,P5.P4), the coordinates on
Rg. Each chart is a Euclidean spaRg . To cover the whole

we can follow the whole periodic orbit in this chart by vary-
ing ¢,. On the other hand, to demonstrate the validity and
accuracy of the normal-form prediction, we can simply fix
two phasesp,= ¢,=0, generate one point on this orbit as
the initial condition inRg, and then propagate the orbit nu-
merically using the exact Hamilton functiqi8).

The results of such calculation are shown in Figs. 2—4.
Figures 2 and 3 show the projections of the orbits on the
planes in the initial 3D configuration space. The orbits are

of S,X'S, we use a four-chart atlas whose explicit construc-tuned between the Zeeman and Stark limits at moderate per-

tion is explained below.

turbationS=0.1 (~50% of the Stark ionization threshgld
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TABLE IV. Stability characteristics of the nonlinear normal

S 1t G - §=0.1, =2 modes.

s 4

| ' ] g? HessiarP Frequencie§ o', "

Q (

g ol Gy [+7+7+r+1] +r+72(Gi-7G23+17/6)/2
8 G, [-7-7-7-7 —7+A(Gi—7G2/3+17/6)/2
£ f ] Ts [-nt+7—1+7] + 1+ (G G2-1/2)/2
e Ts [+7—7+7-17] Fr+ G+ G2-112)/2
8 -1 zeeman limit : Stark limit ] : :

3 X X ; ) i . . i 4 ocal symmetry group of the stationary point.

2 - 0 o1 2 PThe eigenvalues of the Heissian matrix in the coordinates
coordinate along the electric field F (JixI2x 1y 1 Ja) in the linear approximation.
‘For eachG, modew’=w".
FIG. 2. Projections of the twé, orbits at different-; and G4
for S=0.1 andw=2 (n~1). the larger or downhilG, orbit that has the maximum action.

o o ] ~ When this orbit escapes, the action becomes infinite. The two
Their images exhibit all symmetry properties expected ingqyivalent7;-symmetric points and corresponding periodic

Sec. IVA 2. In particular, theG, orbits lie in the €,p)  orbits are unstable.

p]ane, while theTS_ or_bits are slight.Iy curved. The _glo_bal The position of the stationary point d& xS, in the J
view of all four orbits in the 3D configuration space is given representatioii3d) is defined by four spherical angle coordi-
in Fig. 4. nates (; ,6,), i =12, such that, for instance,

E. Stability cost=2J;,, sing;=2+J5+J7, (54)

To conclude our study of the nonlinear normal modes of . i )
the crossed-field problem we analyze their stability. The geo@nd Similarly for sirg; and cos [cf. Eq. (32)]. The Hessian
metric characteristics of stability are given by the eigenvalMatrix is the 4<4 matrix of second derivatives éfy in Eq.
ues of the Hessian matrix; for qualitative purposes we only433 With regard to the coordinates on the hyperplane tan-
need to know the signs of these eigenvalues, i.e., the sign8€Nt 10X S; at this point. We construct the tangent coor-
ture of the Hessian matrix. The dynamical characteristics arinates ix,Jiy) by appropriately rotating the standard frame
given by the linear Hamilton equations describing the motion )
near the orbit, in particular, by the frequency of oscillations (Jie Jib +Jip) = (Jix Jiy Jiz), 1=1,2. (55
near a stable orbit.

Using the Morse theory, we have already shown in SecThe normal component];, is expressed in terms of
Il C that G,-symmetric stationary points oB are stable: (Jix,J1y,J2x,J2y) UsSing Eq.(32) and the derivatives are cal-
One is a global minimum with the signature ¢ ++) and  culated.
the other is a global maximum—(———). Of course, the Two Euler rotations, first by angle; and then by angle
two corresponding periodic orbits are also stable. Furtherd;, are required. It turns out that the third Euler rotation, a
more, by the simple argument of the length of the orbit it isrotation of the tangent plane around adjs, is not required

because the Hessian matrix comes out already factorized. In
the lowest(linear-in-r) order this matrix is diagonalsee

b ' ' ' ' ' ' ' S=ol.1,w=2l- Table IV); in higher orders it requires an additional transfor-
Ts ' mation of each of theJy,,J,,) and (,,,J,,) blocks. For
L ! ] the G, points this latter factorization simply results in the
coordinates K, ,L,) and K,,Ly).

a6 Zeeman limit Stark limit

) 1 1 L 1 L 1 1 1

ok ]
-1 F | h

-2  Zeeman limif 1 2 4o -
St % ; FIG. 4. Nonlinear normal modes of the crossed fields problem at
41 . , , , + ™ Stark limit , ] S=0.2, F,=cos@@/3), andw=2 (n~1). Rectangles on the left-
-2 L 0 o1 2 and right-hand plots correspond to those in the center. A circle
coordinate along the magnetic field G shown by broken line gives the value of the unperturt@oulomb
potential, the solid line circle gives the actual potential. The arrows
FIG. 3. Projections of the two equivalemt orbits at different  on the orbits show their “direction” required to analyze their time-

Fs andGg for S=0.1 andw=2 (n~1). reversal symmetry.

102 coord. along F  coord. orthogonal to F and G
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Furthermore, the canonical structuds);,/\dJ;,+dJ,, mined by such characteristics of the central orbit as stability
A\dJ,, is preserved by the above factorization and definegnd symmetry. Because of the latter fact such an orbit is
the normal modes of the oscillations near each stationargften called an organizéB5].
point (periodic orbi} and their frequencies®’,»"”. The val- In the near-equilibrium normal form of our paper the mo-
ues ofw’,»" calculated up t@(7°) are shown in Table IV. tion along all central orbits is reduced simultaneously the
For moderate values af~S<3/16 the stability of the orbits motion with coordinate¢,). We can now consider each
does not change qualitatively. We should, however, bear iistable relative equilibrium and further normalize near it. In
mind that, as given by Eq38), 7 depends om. The re- fact, this work begins in Sec. IV E; see also Réi].
quired value ofn is the action for the corresponding orbit

listed in Table Il, so that up t®(S?) 7/S equals 1+ S/2 for 1. Invariant tori: Foliation of the Cs-invariant subspace
the G, orbits and 1 for the/; orbits. A reduction near each stable relative equilibrium pro-
duces invariant toril, on the reduced phase spake=S,
V. DISCUSSION X S,. These tori are in turn constag, sections of the tori

o . 3 in the initial phase spacig.
Our work presents a unified approach to the analysis O}r In the particular situation of th€-invariant spheré, of

the nonlinear normal moddBINM’s); it combines explicitly S, we study invariant “circles” S near theG, Doints
the periodic-orbit study with the normal-form reduction andTﬁ’ ol y haracterized bl th 't'4 pf '
the methods of qualitative dynamical theory. This approach €se circles are characlerized by the position o e
leads to the idea of tuning the crossed-field problem in th oints in Tgble I _ar_1d the frequenqy; In _Table IV. The
whole range between the two limit configurations while re-corresponding tori inRs are of dimension 2[T,=3,
maining at the same level of the combined perturbation b S.l(%)]' We can recpnstrgct these tori iy or take their
the two fields and to the appropriate scaling and parametrip_roJeCtIon on the conﬁgur_aﬂon plane, ) using the tech-
nique of Sec. IV D. In particular, propagating in phagseor

zation. The realization of this idea is an important contribu- .
tion to the crossed-field problem. moving only onY at constant$, we can reconstruct the
isections of these tori.

NNM'’s are the most basic elements of the dynamica
structure on the phase space associated with the particular o o ) ) _ )
dynamical nonlinear system. Their existence, number, and 2. Families of periodic orbits and orbits of higher periods
stability are defined by such fundamental properties of the When parameter§, F, and/or energyE change, stable
system as its priori spatial-temporal symmetry as well as periodic orbits can bifurcate and form genealogic families.
the nature of its approximate integisil of motion (its dy-  Each family begins with the central stable orbit, a “parent.”
namical symmetry and the topology of the corresponding At fixed G, F, and E, other periodic orbits in the family
reduced phase space. The qualitative orbifold approach afscillate (or coil) about the central orbit with periods com-
Ref.[6] can be regarded as a guide to the present study anélensurate to the period of the latter.
to the whole Rydberg atoms-in-field family of problems. The For the invariant tori in the preceding subsection, our
theory of invariants and the polynomial integrity badiB) normal-form methods can predict actions and periods of the
construction are our major tools, indispensable both for thenotion along their principal directions and thus select the
analysis of the normal forrfthe reduced Hamilton function  resonanttori filled with periodic orbits. In reality, these tori
and for the orbifold construction. The use of the IB polyno-are destroyed due to resonances that are particular to each
mials unifies the two approaches, algebraic and geometric.nonlinear normal mode and cannot be taken into account by

The NNM's form the framework and the initial point for the present reduction procedure. So individual orbits that re-
further study and the two complementary ways of the analymain as a skeleton of the resonance tori cannot be predicted
sis of the NNM'’s define the two major directions. Expecting by our methods.
chaotic dynamics we can turn to the purely periodic-orbit
analysis. If, however, a certain approximate integrability is 3. Chaotic dynamics and the validity of the normal form
present in the system it would be very unwise to ignore it

completely. Instead, we should carefully analyze to what ex- The onset of chaotic dynamics begins with the destruction

tent and at what perturbation levels our integrable approxipf resonant tori. If, however, the zones of irregular dynamics

mation, the normal form, can be trusted and at what point th(Ehat emerge around the destroyed torl occupy a small phase-
structures on the phase space associated with integrabili? ace Vo'%me an_d d|9 ?Ot Cor!”ecft’ we ﬁan Com'we to gather
disappear. Finally, since our real systems are quantum Wi portant dynamical information from the normal form.
should transfer our results to the quantum analog of our clas- Approaching the ionization thresholelt S~3/16) is com-

sical problem. A few subjects of such research are closel oorrrjr:)gl-?osrﬁcéategx%?tiotrr:ean(c:jotmhgl?rta bgﬁ:'gggvénng;itcze
related to the present paper and are discussed below. PP Uy chac yna |
We have seen in Sec. IV C that the situation is not uniform:

While the normal form definitely fails fofand near the
downhill G, orbit at S=0.18, the two7Zg orbits are repro-

If the NNM periodic orbit is stable, the flow of the dy- duced with amazing accuracy. The upli#mall) G, orbit is
namical system in its vicinity has a special structure and camlso reproduced satisfactorily on the global scale, but the
be reduced with regard to the total action of the small oscil-alternating formal series for its action and period converge
lations about the orbit using the method of normalization ofvery slowly in high orders.

Ref. [34]. The orbit itself lies at the center of the structure, This makes us believe that even at such high perturbations
both literally and figuratively: The structure is largely deter- (energie$ certain regular dynamical behavior still persists at

A. Dynamical structure
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least in some regions of the phase space and can still B&e first use Table | to find therbits of the G, group action:
traced back to the structure predicted by the normal-formiWe take one point o%,X S, and find all other points that
series. Moreover, we also conclude that for all nonlinear norean be obtained from it by applying symmetry operations of
mal modes at the values & up to 80% of the threshold G,. The points in such an orbit are related by symmetry
value, the normal-form prediction holds and thus the regulatransformationsRe G, and are callecequivalent For each
dynamics should exist. The verification of this propositionorbit we find itsstabilizer g, a subgroup ofG,, whose op-
requires further study of the dynamical structure and itserations map every point of the orbit onto itsgd#]. We also
manifestations by the normal-form methods, as well as byall g the stability, the invariance, or the local symmetry

the techniques commonly applied in chaotic systems. group of the orbit and of the corresponding points $n
X S,. Generic points form four-point orbits and have the
B. Quantum-classical correspondence trivial stabilizer C,. In the general case of the finite total

symmetry groupd, the number of points in a generic orbit

function of n can have immediate semiclassi¢@BK) inter- eq?faslzmsor}li?ebggg gﬂg:ﬁgc’g@a]r’]éi Zurug?igreo“v]v; Ar;{a
pretation. The quantization is simple in the KS space, par- btai : E't ith nontrivi Iqt bilizels C y
ticularly in the diagonal representation of Sec. 1B 3 whereg2Ptaln NONGENErIC orbits with no a sta AN
each oscillator is quantized as—3=0,1,2 ..., sothatn T, (Sec. 1 A2, and even the whol@,. Thus the points
=1,2,3... [use Eq.(25b]. However, to get the quantum ' .

energyE as a function ofi we should find the solutiom(n) $'=(Ke0.0;0Lp,Lp) (A3)
to Eq. (439 as a formal power series im, so that[36]

As mentioned in Sec. Il E, the normal forky: as a

are invariant with regard ta@ C, in Eq. (A2); they form

COME=1+ S(KFo LG+ - - -. (56)  two-pointG, orbits because for botR=To(®? and o(®P),
This requires then-scaled variables in Eq30a and the s’—R>(Ke,O,O;OLb,—Lp)—R>s’. (A4)
n-scaled parametrization in E¢4a) rather than the energy
scaling in Eq.(37) used in our Eqs(39), (43b), and (44). Required zero components for all possible stabilizers are

If the normal-form series works “reasonably well,” mul- given in Table IlI. In general for finite groups, the number of
tiplets of quantum states with the sameor n shells, are  points in the orbit with stabilizegC & is given by[ &]/[ g].
well separated and the e represents an effective Hamilton |n our example[G,]/[7;]=2. Each G,-invariant point
operator describing the internal structure of the shells. InNK,,0,0;0L,,0) is itself an orbit of theG, group action and
particular, the value oE(n) defined at the stable stationary the C-, 75-, and Z,-invariant points form two-point orbits.
(G4-type points gives the splitting of the shell. Near each
G, limit we observe regular sequences of quantum levels
corresponding to a degenerate two dimensional quantum os-

2. Invariant manifolds

cillator with harmonic frequencw’ given in Table IV. The Invariant manifolds are subspacestomapped onto itself
value of E(n) at the unstable Z;-type) points defines the by operations oCG,. To find ag-invariant manifold we
transition region between the two systems of levels. consider the set of all points whose stabilizegisr greater

(i.e.,G,). Results are given in Table lll. For instance, to find

ACKNOWLEDGMENTS the Zs-invariant manifold we use Table | and consider the

action of To(¢P,
Stimulating discussions with John Delos are gratefully ac-
knowledged by D.S., who also thanks Michael Haggerty for To'®P:5—(Ke,Kp, —KpiLe,Lp, —Lp). (AS5)
his initial numerical calculations of the actions and periods ) _ ) _
of the nonlinear normal modes. It follows that theZg-invariant subspace is defined by four
equations
APPENDIX: THE STUDY OF THE G, GROUP ACTION .
ON S,%S, Kp=Lp=0, (A6a)
We consider3,=S,XS, embedded in the Euclidean K2+ K2+ L2+L2=1, (ABb)
spaceRg with coordinates
KeLet+KyLp=0. (A6C)
S:(KeiKbpr;LeavaLp)ESZXSZ (Al)
. ) i The geometry of this manifold is more clearly seen if we
restricted by Eqs(1) and(30) , which defineX,. rewrite Egs.(A6) in terms ofJ; and J, introduced in Eq.

(31),
1. Orbits of the group action

2 2__ 2 2_
The action of the symmetry operations of the gr@pon (J)et (Ju)p=(Le+Ke)™+ (Lo +Kp)"=1,

the points(Al) is given in Table I. It is the natural action of
G, on the axial L) and polar K) vectors. Thus, for in-
stance,

(32)24(3)2=(Le— Ko)?+ (Lp—Kp)2=1. (A7)

EquationgA7) define a circleS,, so that the whole manifold
TCyis—(Ke, =Ky, =Ky —Le,Lp,Lp). (A2) is a two-dimensional torusl,. This torus includes the
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G,-invariant circle K,=L.=0). All other points on the folds together with their closure. Thus ti&, stratum is an
torus (with KZ+L2#0) form two-point orbits K,Le, invariant manifoldS;, while the C4 manifold S, consists of
+Kp,*+L). the G, andC, strata.

The gradients of all invariant functions vanish on the or-
bits that ardsolatedin their strata and such orbits are called
critical [15]. Orbits on zero-dimensional strata are always
critical. Critical orbits exist in the hydrogen-atom problem in

Contrary to invariant subspaces in the preceding subse¢he Zeeman and Stark limits or in the case of two parallel
tion stratg 15] only contain orbits with equivalerithe samg  fields[6,7], but in the case of two orthogonal fields, no criti-
stabilizers[37]. An invariant manifold can contain several cal orbits exist and the positions of stationary points are not
strata. Strata of nonzero dimension constitute invariant manifixed within the strata. Restrictions on the number of station-
folds only if they areclosed Open strata, such as the genericary points on different strata and invariant manifolds follow
stratum that is always open and dense, form invariant manirom the Morse theory29,30Q (Sec. Il O.

3. Stratification

[1] Our interest in the crossed-field problem as a particular appli- man effect as the initial point of their study. They use scaled
cation was to some extent due to the recent experimedsal electric-field parameters, of the typeFG ™2 [41] or FG ™47
and theoretical39,3-5,40 studies. [3], so that the Stark limit lies @ —o and this clearly im-

[2] Relative equilibria are otherwise known as stationary points of plies smallelectric fields. Thus, for instance, the collapse phe-
the reduced Hamilton functiobl e, they correspond to the nomenon[7] has long remained unnoticed due to such tradi-
families of periodic orbits of the initial problem called nonlin- tional parametrization.
ear normal modes. [13] The terms in the generator & “replicate” the nonresonance

[3] E. Flahmann and K. W. Welge, Phys. Rev. B4, 1884 terms of the Hamilton functiorf27] and in most cases the
(1996; E. Flahmann, J. Main, and K. W. Welge, J. Phys. B symmetry of the latter is preserved automatically; in particular,
27, 2821(1994. These authors denofg orbits byS, (they do £ commutes with operations iG,.
not distinguish two symmetry equivale8f orbits), the down-  [14] The study of the group action on the phase space is an impor-
hill (big, Stark ionizing G, orbit asS_, and the uphil(small tant initial step of the symmetry analysis. In this work we use
G, orbit asS, . the results of this step to take into account the finite symmetry

[4] M. J. Gourlay, T. Uzer, and D. Farrelly, Phys. Rev4A 3113 G,. For an introduction to the treatment of dynamical systems
(1993; J. von Milczewski, G. H. F. Diercksen, and T. Uzer, with symmetries see J. E. Marsden and T. S. Ratitrpduc-
Phys. Rev. Lett73, 2428(1994); Int. J. Bifurcation Chaog tion to Mechanics and Symmet{pringer, New York, 199%
905 (1994). and references therein.

[5] J. von Milczewski, D. Farrelly, and T. Uzer, Phys. Rev. Lett. [15] For basic discussion of group actions, group orbits, stratifica-
78, 2349(1997). tion, and applications in physics see L. Michel, Rev. Mod.

[6] B. I. Zhilinskii and L. Michel(unpublished Phys.52, 617 (1980.

[7] D. A. SadovsKij B. I. Zhilinskii, and L. Michel, Phys. Rev. A [16] G. D. Mostow, Ann. Math65, 432(1957. The Mostow theo-

53, 4064(1996. ) rem proves that for any smooth nonlinear action of the group

[8] D. A. Sadovskiland B. I. zilinskil, Phys. Rev. A47, 2653 G on a manifoldM exists an orthogonal representatiby of
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