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Angular-resolved above-threshold-dissociation dynamics by a Fourier-transform grid method
with divergent coupling

R. Numico, A. Keller, and O. Atabek
Laboratoire de Photophysique Mole´culaire du CNRS, Universite´ Paris–Sud, Campus d’Orsay, Baˆtiment 213, 91405 Orsay, France

~Received 13 June 1997!

Angular-resolved fragment kinetic-energy spectra resulting from the photo-dissociation of odd-charged
homonuclear ions induced by short, intense laser pulses are calculated using an efficient three-dimensional
Fourier-transform method in spherical coordinates. The peculiarity of these ions is their linearly increasing
transition dipole moment with the internuclear separation, leading to asymptotically divergent radiative cou-
plings. The method deals with such couplings by splitting the wave function into two regions, an internal and
an asymptotic one. The latter is analyzed analytically by a three-dimensional generalization of the Volkov-type
solutions of Keller@Phys. Rev. A52, 1450 ~1995!#, while the numerical propagation on the former is per-
formed by combining a contact transformation with the radial and angular grid method of Dateo and Metiu@J.
Chem. Phys.95, 7392 ~1991!#. The procedure basically offers the advantage of a reduced grid extension by
avoiding some numerical instabilities and inaccuracies related to the cosine transform of previous algorithms.
Unitarity and energy conservation are successfully tested and an application is provided to H2

1 photodisso-
ciation using the Nd:YAG laser~where YAG denotes yttrium aluminum garnet! second harmonic (l5532
nm) at an intensity of 10 TW/cm2 for which angular-resolved spectra are experimentally available.
@S1050-2947~98!00204-2#

PACS number~s!: 33.80.Wz, 33.80.Gj
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I. INTRODUCTION

The technological possibility to reach large radiation
tensities with short pulsed lasers has introduced a comple
different situation in the description of the atomic and m
lecular response to an electromagnetic field@1,2#. Their ad-
ditional interatomic degrees of freedom and vectorial pr
erties make the study of molecules even more challeng
Very complicated behaviors may be observed even w
simple diatomic molecules, such as multiphoton abo
threshold dissociation~ATD!, which can be evidenced by th
observation of peaks in the kinetic-energy spectrum of
atomic photofragments, separated by one quantum of
photon energy@3,4#. Angular distribution of the fragment
provide an even more detailed understanding of the la
molecule interaction, leading, in most cases, to alignm
dynamics@5–8#.

From the theoretical point of view, nonperturbative a
proaches such as the construction of the so-called Flo
states@1,9#, the time propagation of an initial wave pack
@10–13#, or a combination of these methods@14# are the
most popular ones. Often, complications arising from
strong radiative coupling are much enhanced by the pres
of pairs of so-called charge resonant electronic states, a
the case of odd-charged homonuclear ions@15,16#, which are
considered as good candidates for the study of nonlinea
fects @17#. More precisely, their transition dipole mome
diverges linearly with their internuclear separation, lead
to channels that remain asymptotically coupled and do
represent properly the outcome of the half collision with t
particles decoupled from the field. This problem has be
addressed recently in the time-independent Floquet sca
ing approach, considered within the space-translated~or ac-
celeration! frame @18#. Time-dependent approaches not on
571050-2947/98/57~4!/2841~10!/$15.00
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provide a proper description of short pulsed lasers, wh
turn out to be the only way to achieve the high-intens
regime, but also avoid, at least in principle, the previou
mentioned asymptotic divergence by the finite duration
the radiative coupling. In practical simulations of kineti
energy spectra, however, even for short pulse duratio
computation times are prohibitive due to very large gr
needed to represent the wave-packet motion and sprea
Recently, a propagation method allowing for the descript
of the entire wave packet using a restricted one-dimensio
grid has been proposed@19#. After splitting the wave func-
tion into two parts, one corresponding to the internal reg
and the other to the asymptotic part~following Ref. @20#!, the
originality of the method consists in an analytic propagat
in the asymptotic region even during the laser pulse. T
main advantage is that the grid extension is fixed defi
tively, whatever the duration of the pulse is.

The aim of this paper is to present a Fourier-transfo
spectral method to solve the time-dependent Schro¨dinger
equation in spherical coordinates by combining a cont
transformation with Dateo and Metiu’s@21# grid approach
for angular degrees of freedom in the inner region. T
method of Ref.@19# is generalized for a three-dimension
analytical propagation followed by Fourier analysis in t
outer region. The basic ingredients of the theory, with
specific merits of the contact transformation, are presente
the following section together with some numerical conv
gence, unitarity and energy conservation tests. The metho
applied to the photodissociation of H2

1 by an intense pulse
(I 510 TW/cm2) of l5532 nm wavelength delivered by
Nd:YAG laser source~where YAG denotes yttrium alumi
num garnet!. To the best of our knowledge, this is the fir
angular-resolved photofragment kinetic-energy spectrum
culation aiming at a detailed interpretation of the experim
tal observations of Ref.@5#.
2841 © 1998 The American Physical Society



hr
a

try

-

lin
th

o-
ld

e
th

th
ar

nd
ith

re-

an-
-

an

ou-

he
ce
m-
he

nc-
di-

ex-
r

-
tion

-

ds

nta-
gu-
of

-
ns-
d

ue
tion
a
th
s
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II. THEORY

Our purpose is to solve the nuclear time-dependent Sc¨-
dinger equation on a Born-Oppenheimer level of approxim
tion involving two electronic states labeledg ~ground! andu
~excited! following, for convenience, the standard symme
notations of H2

1:

i\1
d

dtS Cg

Cu
D 5HS Cg

Cu
D , ~1!

where the total molecule-plus-field Hamiltonian is

H51~TR1Tu1Tw!1W~R,u;t !. ~2!

1 is the identity matrix andR,u,w are the spherical coordi
nates of the internuclear vectorRW in the laboratory frame
@22#. Kinetic terms are given by

TR52
\2

2m

d2

dR2
, ~3!

Tu52
\2

2m

1

R2sinu

d

duS sinu
d

du D , ~4!

and

Tw52
\2

2m

1

R2sin2u

d2

dw2
, ~5!

wherem represents the reduced mass. The radiative coup
written in the length gauge involves the scalar product of
dipole momentmW ~parallel toRW for a S→S transition, as is
the case of H2

1) and the electric field vectorEW, which is
taken along the laboratoryz axis

mW •EW52m~R!cosue~ t !cosvt. ~6!

The laser pulse carrier-wave frequency isv and its envelope
e(t) has a Gaussian shape

e~ t !5e0e2~ t2t0!2/t2
~7!

of half-width t. The potential part contains the field-free m
lecular potentialsV as diagonal elements and the matter-fie
couplings as nondiagonal terms:

W5S Vg~R! 2m~R!cosue~ t !cosvt

2m~R!cosue~ t !cosvt Vu~R!
D .

~8!

As is clear from Eq.~8!, the motion associated with th
azimuthal anglew remains separated under the action of
w-independent potential term andMN , the z projection of
the total rotation angular momentumN, is a good quantum
number describing the invariance through rotation about
field polarization vector. The potential-energy curves
taken from Bunkin and Tugov’s fit@23# and the electronic
transition moment is taken from Ref.@24#. The initial state of
H2

1(2Sg
1) with an isotropic ensemble of parahydrogen a

orthohydrogen in equilibrium involves two components w
o
-

g
e

e

e
e

N51, MN50 ~statistical weight of 1/3! and N51, MN5
61 ~statistical weight of 2/3!, each of them having to be
propagated separately and further combined using their
spective weights@22#.

A. Propagator

Fourier-transform methodology@10,25# using, for the an-
gular variables, either spherical harmonics basis-set exp
sions@26# or grid techniques@21,27# is one of the most popu
lar approaches for solving Eq.~1!. In particular, Dateo and
Metiu have significantly improved the grid approach with
implementation of a unitary Cayley scheme forTu combined
with a Feit-Fleck split operator technique using a cosine F
rier transform, resulting in a recursion formula@21#. Apart
from avoiding the numerical instabilities associated with t
division by sinu @Eq. ~4!#, the major advantage is the absen
of matrix element evaluations and multiplications, the co
putational task being basically fast Fourier transforms. T
actions of potential and kinetic operators on the wave fu
tion are evaluated by referring to a combination of coor
nate and momentum representations, related through an
ponential Fourier transform forR and a cosine transform fo
u.

A careful examination of this method leads to the follow
ing considerations. In the spherical coordinate representa
the polar angleu is defined within the interval@0,p#. The
even parity and 2p periodicity of the cosine transform im
ply, for the angular part of the wave function,

f ~u!5 f ~2u!5 f ~2p2u!, ~9!

from which results a zero-derivative condition at both en
of the interval:

d

du
f ~u!uu50,p50. ~10!

In other words, as long as Eq.~10! holds, the symmetry
requirements are fulfilled and the cosine Fourier represe
tion can be worked out in an accurate way. The actual an
lar dependence of the wave function is written in terms
spherical harmonicsYN,MN

(u,w) satisfying the following re-

lation with respect to theiru derivatives@28#:

d

du
YN,MN

~u,w!uu56np5~21!nN~dMN21e2 iw2dMN1eiw!

3AN~N11!~2N11!

16p
, ~11!

wheren50 or 51. From Eq.~11! it results that theu de-
rivatives of the wave function atu50 andp are zero except
for MN561, which may be at the origin of numerical insta
bilities. We have to point out, however, that the cosine tra
form, such as that used in Ref.@21#, not only has been teste
successfully on model problems~in Ref. @21#, for the particu-
lar case ofMN50), but also served as the basic techniq
for the accurate calculation of angular-resolved dissocia
probabilities of H2

1, with an initial state represented by
linear combination of spherical harmonics wi
MN50,61 @22#. However, it turns out that the inaccuracie
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57 2843ANGULAR-RESOLVED ABOVE-THRESHOLD- . . .
increase when the calculation of angular-resolved kine
energy spectra in the ATD regime is attempted. The
called contact transformation, defined by

CMN
~R,u,w;t !5

1

Asinu
eiM NwFMN

~R,u;t !, ~12!

is a way out of the difficulty@bold characters denote th
column matrices of Eq.~1!#. Actually, the u derivative of
FMN

given by

d

du
FMN

5S 1

2

cosu

Asinu
CMN

1Asinu
d

du
CMND e2 iM Nw

~13!

has to be evaluated atu50 andp with an angular behavio
of CMN

taken as a linear combination of spherical harmo

ics. The two limiting cases of theu derivative atu50 andp
for the spherical harmonics are given by

lim
u→0

YN,6MN
~u,w!

.~71!MN
eiM Nw

2MNMN!
F ~2N11!

4p

~N1MN!!

~N2MN!! G
1/2

uMN, ~14!

lim
u→p

YN,6MN
~u,w!

.~21!N~61!MN
eiM Nw

2MNMN!
F ~2N11!

4p

~N1MN!!

~N2MN!! G
1/2

3~p2u!MN. ~15!

The resulting derivatives forFMN
behave like

lim
u→0

d

du
F6MN

~u,w!

.~71!MN
1

2MNMN!
F ~2N11!

4p

~N1MN!!

~N2MN!! G
1/2

3S MN1
1

2D u~MN21/2!, ~16!

lim
u→p

d

du
F6MN

~u,w!

.~21!N~61!MN
1

2MNMN!
F ~2N11!

4p

~N1MN!!

~N2MN!! G
1/2

3~MN21!~p2u!~MN21/2!, ~17!

leading to a cancellation at both ends of the interval@0,p#
for all positive values ofMN ~exceptMN50). Thus numeri-
cal instabilities related to the cosine Fourier transform p
formed on the wave functionCMN

~with MN561) can eas-

ily be removed by applying the procedure toFMN
, obtained

from CMN
, through the contact transformation. It remain
-
-

-

r-

,

however, that forMN50, where the contact transformatio
fails in producing zero derivatives and the ends of theu
interval, the original procedure of Ref.@21# provides accurate
results. The conclusion that can be drawn is that the con
transformation may advantageously be combined with
cosine Fourier transform for allMN , except MN50, for
which the cosine transform has to be used alone.

When CMN
given by Eq. ~12! is introduced into the

Schrödinger equation~1! one gets

i\
d

dt
FMN

~R,u;t !5@1~TR1 T̃u!

1W̃MN
~R,u;t !#FMN

~R,u;t !,

~18!

where the rotational kinetic operator is merely

T̃u52
\2

2mR2

d2

du2
~19!

and the effective potential

W̃MN
~R,u;t !5W~R,u;t !2

\2

2mR2
11

\2

2mR2

MN
221/4

sin2u
1.

~20!

The propagator technique itself has been described wi
great detail in previous works@21,22# and is based on the
repeated use of the short time propagatorŨ(dt):

FMN
~R,u;t1dt !5Ũ~dt !FMN

~R,u;t !

5expF2
i

\
@1~TR1 T̃u!1W̃MN

~ t !#dt G
3FMN

~R,u;t !. ~21!

Since the three operatorsTR , T̃u , and W̃MN
do not com-

mute, the exponential on the right-hand side of Eq.~21! is
split into five terms using the Moyal formula@29# in a third-
order approximationO(dt3). More sophisticated splittings
such as that described by Bandrauk and Shen@30# and lead-
ing to higher-order approximations, may be used at this le
with the advantage of a larger time step. The propagation
the wave function results from the evaluation of five exp
nential operators in a way that maintains unitarity and d
not involve matrix multiplications. The simple form ofT̃u
allows a treatment similar to that ofTR . In practical compu-
tations, the procedure starts with the action of the poten
operatorW̃MN

on the coordinate representation wave fun

tion; the result is cosine transformed inu such that the an-
gular kinetic operatorT̃u is applied. The resulting wave func
tion is Fourier transformed inR, i.e., in a momentum
representation suitable for a local action ofTR . The cycle is
completed by an inverse Fourier transform inR, action of
T̃u , inverse cosine transform inu, and action ofW̃MN

.
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B. Asymptotic analysis

Until very recently the calculation of kinetic-energy spe
tra involved the propagation of the full wave packet on ve
large grids, during the total pulse duration, such that
postpulse analysis leads to free fragment properties.
asymptotic analysis consists either in Fourier transforms
the wave-packets@31#, in projecting the wavepackets on th
continuum eigenfunctions of the field-free Hamiltonian@32#,
or even in energy-resolved fluxes@33#. The overall proce-
dures are very time consuming because of large grid ex
sions required to describe the wavepackets during the
interaction, especially when considering asymptotically
verging couplings. The basic idea to describe the wa
packet motion on a restricted grid is the splitting of the wa
function into an internal and an asymptotic part, the pro
gation in the latter being done analytically even during
field interaction@19,22#. The model has been worked out in
one-dimensional case@19#; its three-dimensional generaliza
tion constitutes the purpose of this section, and will be f
lowed by an application to H2

1 photodissociation.
A general and comprehensive overview of the method

be provided by considering two distances: namely,Rmax,
which fixes, definitively, the total extension of the grid, a
RS which delineates the boundary between the inner and
asymptotic regions. More precisely, the asymptotic reg
boundaryRS is defined by almost constant or negligible p
tential energies@Vg or u(R>RS).0# as compared to the
kinetic energy of the fragments.Rmax has to be taken large
thanRS. The initial wave functionC j (R,u;t50) ~the index
MN is dropped for simplicity andj 51,2 designatesg andu,
respectively! is sampled on theR,u grids (RP@0,Rmax# and
uP@0,p#) and propagated using the method described
Sec. II A for solving numerically the coupled wave-pack
motion @Eq. ~1!#. This procedure is stopped at a timet i ,
when the probability amplitude atRmax reaches a given sma
valueea :

uC j~Rmax,u;t i !u>ea . ~22!

Starting at that time, the asymptotic analysis proceeds
splitting wave functions into two parts:

C j~R,u;t i !5C j
I~R,u;t i !1C j

A~R,u;t i ! ~ j 51,2! ~23!

(I for inner andA for asymptotic!. Practically, this is done
by using a smooth window functiong(R) of spatial exten-
sion s, equal to 1 or 0 in the inner or asymptotic region
respectively@34#:

g~R!5H 1 for R,RS

12sin2S p~R2Rs!

2s D for RS<R<RS1s

0 for R.RS1s
~24!

and

C j
I~R,u;t i !5g~R!C j~R,u;t i !, ~25a!

C j
A~R,u;t i !5@12g~R!#C j~R,u;t i !. ~25b!
y
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The further evolution is performed, on the one hand, by st
ing again the previous numerical procedure with the in
part of the wave packet~25a! as an initial wave function and
on the other hand, by the analysis of the asymptotic par
the wave packet~25b! in a way that will be discussed now
The full time propagation consists in the iteration of th
basic scheme until convergence is achieved when cohere
resumming asymptotic components.

The linearity of the Schro¨dinger equation allows the sepa
rate propagations ofC j

I and C j
A , the latter being described

by

i\1
d

dtS C1
A

C2
AD 5S TR 2

1

2
eE~ t !R cosu

2
1

2
eE~ t !R cosu TR

D
3S C1

A

C2
AD . ~26!

This equation results from the asymptotic form of Eq.~1!

where, forR>RS , Tu andW̃MN
are neglected due to theR22

factor and negligible potential termsV(R) as compared to
the kinetic energyTR , particularly important in multiphoton
processes leading to high-energy fragments. The amplit
of the neglectedR22 terms basically depends upon the rot
tional excitation of the molecule, which may increase w
the laser intensity. This is whyRS is in principle intensity
dependent. We incidentally note that although foru50 or p
the potential operator may diverge when using a con
transformation@cf. Eq. ~20!#, it is rather its action on the
accordingly decreasing wave function that has to be con
ered, the overall result being zero. The transition dipole m
ment between the two charge-resonant states is merely g
by m(R.RS)→ 1

2 eR, e being the electron charge. Th
coupled system~26! can be decoupled by introducing a set
wave functionsx, which are linear combinations of th
C j

A’s:

x1~2!~R,u;t !5
1

A2
@C1

A~R,u;t !6C2
A~R,u;t !# ~27!

and solutions of

i\
d

dt
x1~2!~R,u;t !5@TR7 1

2 eE~ t !R cosu#x1~2!~R,u;t !.

~28!

We point out the formal analogy between these equati
and the ones describing the motion of a free electron in
electric field.R being formally interpreted as the electron
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57 2845ANGULAR-RESOLVED ABOVE-THRESHOLD- . . .
coordinate, Volkov-type solutions@35,36# can be obtained
with the functional change

x1~2!~R,u;t !5expF6
i

\
RcosuD~ t,2`!Gz1~2!~R,u;t !,

~29!

where

D~t2 ,t1!5
e

2\Et1

t2
E~ t8!dt8. ~30!

Introducing Eq.~29! into Eq.~28! leads, after straightforward
algebra, to the time-dependent evolution equation forz,

i\
d

dt
z1~2!~R,u;t !52

\2

2mF d2

dR2
62icosuD~ t,2`!

d

dR

2cos2uD2~ t,2`!Gz1~2!~R,u;t !,

~31!

which is solved, in a standard way, by Fourier transform
the two sides of the equality

ẑ1~2!~k,u;t !5expH 2
i\

2mE
t i

t

@k6cosuD~ t8,2`!#2dt8J
3 ẑ1~2!~k,u;t i !, ~32!

with

ẑ1~2!~k,u;t !5
1

2pE dR z1~2!~R,u;t !e2 ikR. ~33!

Equation~32! is the basic result of the model; it opens t
possibility to reachC1(2)

A through Eqs.~27! and ~29!, by
referring to appropriate Fourier transforms. It can easily
shown by Eq.~29! that the Fourier transform ofx1(2) is
related to that ofz1(2) by a simple shift of the momentum

x̂1~2!~k,u;t !5 ẑ1~2!@k7cosuD~ t,2`!,u;t#, ~34!

so that@Eq. ~32! is used#

x̂1~2!~k,u;t !5expH 2
i\

2mE
t i

t

@k7cosuD~ t,t8!#2dt8J
3 ẑ1~2!@k7cosuD~ t,2`!,u;t i #. ~35!

By recastingẑ in terms of x̂ Eq. ~34!, one finally gets the
evolution equation forx̂,

x̂1~2!~k,u;t !5expH 2
i\

2mE
t i

t

@k7cosuD~ t,t8!#2dt8J
3x̂1~2!@k7cosuD~ t,t i !,u;t i #. ~36!

It is to be noted that in addition to a phase factor,x̂(k,u;t),
at time t, is obtained fromx̂(k,u;t i) by merely shifting the
momentum by the laser pulse areaD(t,t i) weighted by cosu.
g

e

This factor is precisely the difference between equation
~36! and the corresponding equation~13! of Ref. @19# of the
one-dimensional case. The asymptotic wave functions in
momentum space result from Eq.~27!:

Ĉg
A~k,u;t !5expH 2

i\

2mE
t i

t

@k2cosuD~ t,t8!#2dt8J
3$x̂1@k2cosuD~ t,t i !,u;t i #%

1expH 2
i\

2mE
t i

t

@k1cosuD~ t,t8!#2dt8J
3$x̂2@k1cosuD~ t,t i !,u;t i #%, ~37a!

Ĉu
A~k,u;t !5expH 2

i\

2mE
t i

t

@k2cosuD~ t,t8!#2dt8J
3$x̂1@k2cosuD~ t,t i !,u;t i #%

2expH 2
i\

2mE
t i

t

@k1cosuD~ t,t8!#2dt8J
3x̂2@k1cosuD~ t,t i !,u;t i #%. ~37b!

Equations~37! are the analytical evolution ofĈg
A(k,u;t)

from t i to t. The angular-resolved fragments probability d
tribution ~kinetic-energy spectrum! is given by

P~k,u!dk5 lim
t→`

@ uĈg
A~k,u;t !u21uĈg

A~k,u;t !u2#dk,

~38!

wheret→` means not only that the laser pulse is switch
off but also that there are no outgoing continuum comp
nents of the inner-part wave packet.

III. RESULTS

In this section we test the accuracy of the previously p
sented procedure by applying it to simple model calculatio
before proceeding to an evaluation of the angular-resol
spectra of H2

1 irradiated by a linearly polarized laser. W
have to point out that the asymptotic matching to Volk
states depends crucially on the accuracy of the phases o
numerically propagated inner region wave packet. This
be controlled by the value ofea @as defined by Eq.~22!# that
starts the splitting and matching procedures. Conver
results within less than 1% accuracy are obtained
ea51028.

A. Numerical tests

We take as an initial wave functionC(t50), the ground
vibrational state of H2

1 written as the product of a radial an
an angular part, i.e.,

CMN
~ t50!5xgv50N51~R!YN,MN

~u,w!. ~39!

This wave function is propagated under the effect of
~field-free! ground-state Hamiltonian over 40 fs, our purpo
being to check the accuracy of the propagator with respec
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2846 57R. NUMICO, A. KELLER, AND O. ATABEK
norm and energy conservations. Figure 1 displays the res
of the calculation forMN50, using Dateo and Metiu’s co
sine transform method. For 64u-grid points, one obtains a
deviation of the normDN(t)5iC(t)i22iC(0)i2, which re-
mains of the order of magnitude of 10211. Excellent accu-
racy is reached for the energy conservation. The deviatio
the ground-state energy

E5
^C~ t !uHuC~ t !&

^C~ t !uC~ t !&
~40!

from its initial valueE05221 234.742 cm21, follows a qua-
siperiodic behavior@Fig. 1~b!# with an oscillation amplitude
not exceeding 231023 cm21. The results forMN51 are
gathered in Fig. 2, where the two propagation methods~pure
cosine Fourier transform or contact transform combined w
the cosine transform! are compared for different number o
grid pointsNu . The conclusions are twofold.

~i! Norm and energy conservations are substantially d
riorated during the early dynamics when the cosine tra
form is used withNu564 grid points~deviations of the order
of 1024 for the norm and not less than 15 cm21 for the
energy!. The calculations can however be improved by do
bling the number of grid points (Nu5128). This is especially
true for the energy; a better convergence of the cosine F
rier expansion leads to energy deviations within one w
number. The improvement for the norm conservation is l
significant.

~ii ! Very high accuracies are reached when using the c
tact transform even for au grid not exceedingNu532
points. The deviation of the norm from its unit value is le
than 0.531025 and that of the energy less than 0.1 cm21.
These values can even further be improved by doubling

FIG. 1. Norm and energy conservations using Dateo and
tiu’s cosine transform@21# for MN50. Panel~a! is the deviation of
the norm from 1 and panel~b! the deviation of the energy~in cm21)
from E05221 234.742 cm21 as a function of propagation time i
femtoseconds.
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number of grid points. In particular, calculations with th
contact transform and usingNu564 grid points~same as for
Fig. 1! lead to accuracies comparable to those ofMN50,
obtained with the cosine transform.

B. Angular-resolved spectra„H2
1, l5532 nm…

We are now in a situation to examine the multiphot
alignment dynamics of H2

1, irradiated by short and intens
laser pulses. This study is basically motivated by a deta
intense field ATD experiment on H2

1 at l5532 nm@5#. The
ultimate goal is a thorough understanding of angul
resolved dissociation spectra that reveals some unexpe
proton distributions, namely, at some energies, increasing
laser intensity produces less aligned photofragments.

The ground and first excited states that, within the Bo
Oppenheimer approximation, describe the photodissocia
process

H2
1~1ssg!1n\v→H2

1~2psu!→H1 1 H~1s! ~41!

correspond to (1ssg) 2Sg
1 and (2psu) 2Su

1 symmetries, re-
spectively. The potential-energy curves are taken fr
Bunkin and Tugov’s fit@23# and the electronic transition
moment is taken from Bates@24#. The field-dressed
potential-energy curves involved in the two main Floqu
blocks ~shifted by the photon energy corresponding tol
5532 nm) are displayed in their diabatic and adiabatic r
resentations in Fig. 3. The adiabatic representation leadin
avoided curve crossing situations results from the diago
ization of the radiative interaction for one of the experime
tal intensities, i.e., 1013 W/cm2. By defining the boundary of

- FIG. 2. Norm~upper panel! and energy~lower panel! conserva-
tions using Dateo and Metiu’s cosine transform@with 64 ~curved)
or 128~curvec) grid points onu# or the contact transform@with 32
~curvea) or 64~curveb) grid points onu# for MN51. Energies are
indicated in cm21 and time in femtoseconds. Note that a scali
factor (310) has been introduced for the contact transform.
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the asymptotic region asRS.10 Å @37# the potential-energy
differenceVg(R)2Vu(R), which is exponentially decreasing
for R.RS , does not exceed 150 cm21 and remains an order
of magnitude less than the fragments kinetic energies res
ing from the absorption of 532-nm wavelength photons. T
criterion validates the use of Eq.~26! and the channel decou
pling associated with Eqs.~27! and ~28!. We also note that
throughout this region the linearR dependence of the transi
tion dipole moment, which is also required for the use
Volkov states, follows within an accuracy better than 1023%
the more complete dipole length formula given by Mullike
in a linear combination of atomic orbitals approximatio
@15,24#.

The laser pulse is taken as a Gaussian@cf. Eq. ~7!# with
rise and falloff timest530 fs, a maximum intensity of 1013

W/cm2 being reached att0575 fs. We note, from the con-
sultation of Table 1 of Ref.@38#, that for a wavelength of
l5532 nm and an intensity of 531014 W/cm2 the ionization
rate is 1.331012 s21, which means that we can safely negle
it ~as long as for an intensity of 1013 W/cm2 we are discuss-
ing excitation and dissociation processes occurring on a fe
tosecond time scale!.

An overall dynamical view is displayed in Figs. 4 and 5
terms of three-dimensional graphs representing, at differ
detection times ranging fromt5100 fs ~just after the pulse
maximum! up to t5290 fs ~time for converged spectrum
calculations!, relative dissociation probabilities as a functio
of the fragments kinetic energies and angular distributio
The scaling factors indicate the relative contributions of t
spectrum at a given time to the final one. As an example,
spectrum recorded at timet5230 fs roughly contributes one
tenth to the final result. The calculations are presented
two cases whereN51, MN50 ~Fig. 4, using the method of
Ref. @21#! and N51, MN51 ~Fig. 5, using contact trans-
form! and for an initial vibrational statev54, located near
the top of the field-lowered potential barrier leading to th
one-photon dissociation channel~as depicted in Fig. 3!.
Some general observations are in order.

FIG. 3. H2
1 field-dressed potential-energy curves forl5532

nm andI 51013 W/cm2, in the diabatic~solid line! and adiabatic
~broken line! representations. The position of the initial vibration
level v54 is indicated by a thin horizontal line. The rectang
boxesX1,X2,X3 point out the avoided curve crossing regions.
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~i! At t5100 fs, dissociation rates are still negligible, wi
angular distributions roughly reflecting those of the spheri
harmonicsY1,0}cosu ~for MN50, Fig. 4! or Y1,1}sinu ~for
MN51, Fig. 5!.

~ii ! At t5130 fs, high-velocity photofragments are th
first to be collected at energies corresponding to the abs
tion of three photons.

~iii ! Betweent5150 and 210 fs, less energetic~slower!
fragments corresponding to the net absorption of two p
tons are detected, in amounts that even exceed the ones
lected in the so-called three-photon peak. Moreover, a st
lization is observed for the two- and three-photon pe
populations, their relative branching ratios already be
time independent.

~iv! Low-velocity fragments reach detection distances
even later times (t5230 fs! and contribute to the one-photo
peak.

FIG. 4. Relative dissociation probabilities forMN50 as a func-
tion of protons kinetic energies~in cm21) and detection angles~in
radians!, for different detection times~in femtoseconds, on the
right-hand side of each 3D graph!. Note that the scaling factors o
the left are with respect to the bottom graph (t5290 fs!.
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~v! Final stabilized spectra att5290 fs reflect the leading
one-photon process with a peak height roughly ten times
one corresponding to the two- or three-photon maxim
Small satellite peaks at roughly 2000 cm21 from the one-
photon maximum are also recorded. These energy dif
ences reflect the vibrational level separations of H2

1. The
satellite structures may thus correspond to the nonadiab
excitation of resonances correlating with thev55 or 6 levels
of a field-free situation@39#. However, they are absent i
one-dimensional~fixed angle! spectrum calculations, sup
porting the argument that they are rather to be associ
with some Coriolis effect, coupling the rotational and vibr
tional motions.

~vi! The total dissociation rate is five times larger f
MN50 (0.2931023) than forMN51 (0.5931024). This is
consistent with the fact that the leading one-photon mec
nism proceeds through a barrier tunneling that favors
dissociation of the initialY10(u,w) distribution peaked atu
50 andp by the radiative interaction lowering efficientl
the barrier precisely at these angles.

FIG. 5. Same as for Fig. 4, but forMN51.
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The temporal evolution of the alignment patterns is fu
ther detailed in Fig. 6 forMN50 and in Fig. 7 forMN51 in
terms ofu-dependent normalized probabilities defined by

Pi~u;t !5

E
Ei2e i

Ei1e i
dEuCE~u;t !u2

E
0

p

du sinuE
Ei2e i

Ei1e i
dEuCE~u;t !u2

, ~42!

i being an index for the one-, two-, and three-photon pea
with a maximum atEi and an energy range of 2e i .

Two major points can be outlined.
~i! The laser-induced alignment increases with time~as

compared to the weak-field reference distribution of3
2 cos2u),

following the intuitive expectation that lately detected slo
fragments interacting over a longer period with the laser
better aligned. This alignment is rather progressive in ti
for the three- and two-photon peaks and stabilized
t5210 fs@panels~a! and~b! of Figs. 6 and 7#. A somewhat
different dynamics affects the fragments contributing to
one-photon peak: their angular distributions@panel ~a!# are
very much modified aftert5210 fs showing a rapid transi
tion from nearly ‘‘stabilized’’ isotropic distributions~be-
tween t5150 and 210 fs! to sharply aligned ones at late
times. This again is in relation to the barrier lowering. On
negligible amounts of fragments are detected in the o
photon channel at early times, presumably resulting fr
more complicated multiphoton exchanges. The major a

FIG. 6. Normalized angular distributions, forMN50 and for the
different detection times of Figs. 4 and 5. Results are displayed
~a! the one-photon peak,~b! the two-photon peak, and~c! the three-
photon peak.
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late (t.210 fs) contribution to the one-photon peak in t
spectrum comes from low-velocity fragments that have b
aligned by the field through the dynamical bond soften
mechanism very efficiently foru50,p and for the pulse
peak intensity@22#.

~ii ! From the comparison of the angular distributions
each photon peak, a general tendency seems to em
namely, the fragments contributing to the one-photon p
are noticeably more aligned than the others and, to a ce
extent, the ones of the two-photon peak are more alig
than the three-photon peak.

An interpretation can be provided by comparing the alig
ment dynamics of the two laser-induced mechanisms res
sible for the dissociation, which are in competition: the b
rier lowering and the nonadiabatic transition. The avoid

FIG. 7. Same as for Fig. 6, but forMN51.
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curve crossing regions where these mechanisms take p
are indicated by the boxes of Fig. 3.X1 delineates the adia
batic potential barrier lowering region. The radiative intera
tion mAIcosu is stronger foru50 andp and the dissociation
is enhanced in these directions. In a dynamical viewpo
the torque that is exerted by the laser on the molecule all
the wave packet to skirt around the potential barrier and fi
the minimum-energy pathway towards the dissociative v
ley ~that is, for directions close tou50 or p). Fragments
resulting from this one-photon process have low velocity a
contribute to the one-photon peak in the spectrum; they
highly aligned with the laser polarization axis. Insofar as t
pulse intensity is not strong enough for the barrier to
lowered ~during its rise time, for instance! the dissociation
can only proceed through nonadiabatic transitions depic
by theX2 andX3 boxes. As has been discussed previou
@22#, such transitions between adiabatic states~obtained by
the diagonalization of radiative interactions! are monitored
by the so-called nonadiabatic couplings reaching their ma
mum amplitude foru.p/2 ~corresponding to the minimum
of the radiative interaction or diabatic couplings!. The valid-
ity of an adiabatic representation forX2 is probably not so
clear due to a rather weak third-order matter-field coupli
Molecules already aligned with the laser are however
pected to undergo a more efficient Franck-Condon diab
transition and proceed through the two-photon adiab
channel. However the resulting alignment of the two-pho
peak is not enhanced, as in the case of the one-photon p
by the dynamical effect due to the barrier lowering atX1: the
fragments contributing to the two-photon peak are le
aligned than those of the one-photon peak. ForX3, involving
a strong first-order coupling, the adiabatic frame is appro
ate. A nonadiabatic transition~maximum foru.p/2) allows
one to reach the three-photon channel, the outcome bei
more isotropic distribution of high-velocity fragments co
tributing to the three-photon peak.
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