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Angular-resolved above-threshold-dissociation dynamics by a Fourier-transform grid method
with divergent coupling
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Angular-resolved fragment kinetic-energy spectra resulting from the photo-dissociation of odd-charged
homonuclear ions induced by short, intense laser pulses are calculated using an efficient three-dimensional
Fourier-transform method in spherical coordinates. The peculiarity of these ions is their linearly increasing
transition dipole moment with the internuclear separation, leading to asymptotically divergent radiative cou-
plings. The method deals with such couplings by splitting the wave function into two regions, an internal and
an asymptotic one. The latter is analyzed analytically by a three-dimensional generalization of the Volkov-type
solutions of Keller[Phys. Rev. A52, 1450(1995], while the numerical propagation on the former is per-
formed by combining a contact transformation with the radial and angular grid method of Dateo andMetiu
Chem. Phys95, 7392(1991)]. The procedure basically offers the advantage of a reduced grid extension by
avoiding some numerical instabilities and inaccuracies related to the cosine transform of previous algorithms.
Unitarity and energy conservation are successfully tested and an application is providgtl phétodisso-
ciation using the Nd:YAG lasefwhere YAG denotes yttrium aluminum garpetcond harmonicN=532
nm) at an intensity of 10 TWi/ct for which angular-resolved spectra are experimentally available.
[S1050-294@8)00204-2

PACS numbds): 33.80.Wz, 33.80.Gj

[. INTRODUCTION provide a proper description of short pulsed lasers, which

turn out to be the only way to achieve the high-intensity

The technological possibility to reach large radiation in-regime, but also avoid, at least in principle, the previously

tensities with short pulsed lasers has introduced a completelyientioned asymptotic divergence by the finite duration of

different situation in the description of the atomic and mo-the radiative coupling. In practical simulations of kinetic-
lecular response to an electromagnetic fidl]. Their ad- energy spectra, however, even for short pulse durations,

ditional interatomic degrees of freedom and vectorial prop-cOmputation times are prohibitive due to very large grids
erties make the study of molecules even more challengind’:r("&ee‘jed to represent the wave-packet motion and spreading.

Very complicated behaviors may be observed even wit ecently,'a propagation met_hod aIIowing for the d_escrip'tion
simple diatomic molecules, such as multiphoton aboveof the entire wave packet using a restricted one-dimensional

threshold dissociatiofATD), which can be evidenced by the grid has been proposdd9]. After splitting the wave func-

observation of peaks in the kinetic-energy spectrum of théion into two parts, one corre;ponding to the internal region
atomic photofrrfgments separated by ognye (;)uantum of thand the other to the asymptotic péuliowing Ref.[20)), the

photon energy(3.4]. Angular distribution of the fragments grlgmallty of the method consists in an analytic propagation

in the asymptotic region even during the laser pulse. The

provide an even more detailed understanding of the Iaserrhain advantage is that the grid extension is fixed defini-

molecule interaction, leading, in most cases, to alignmenﬁvew whatever the duration of the pulse is.

dynamics[5-8]. . . _ _ The aim of this paper is to present a Fourier-transform
From the theoretical point of view, nonperturbative ap-gpectral method to solve the time-dependent Stinger
proaches such as the construction of the so-called Flogqu@quation in spherical coordinates by combining a contact
states[1,9], the time propagation of an initial wave packet transformation with Dateo and Metiu[21] grid approach
[10-13, or a combination of these methofi$4] are the for angular degrees of freedom in the inner region. The
most popular ones. Often, complications arising from themethod of Ref[19] is generalized for a three-dimensional
strong radiative coupling are much enhanced by the preseneanalytical propagation followed by Fourier analysis in the
of pairs of so-called charge resonant electronic states, as wuter region. The basic ingredients of the theory, with the
the case of odd-charged homonuclear i 16, which are  specific merits of the contact transformation, are presented in
considered as good candidates for the study of nonlinear ethe following section together with some numerical conver-
fects [17]. More precisely, their transition dipole moment gence, unitarity and energy conservation tests. The method is
diverges linearly with their internuclear separation, leadingapplied to the photodissociation of,H by an intense pulse
to channels that remain asymptotically coupled and do nogl =10 TW/cnf) of A=532 nm wavelength delivered by a
represent properly the outcome of the half collision with theNd:YAG laser sourcgwhere YAG denotes yttrium alumi-
particles decoupled from the field. This problem has beemum garnet To the best of our knowledge, this is the first
addressed recently in the time-independent Floquet scatteangular-resolved photofragment kinetic-energy spectrum cal-
ing approach, considered within the space-translé&edc-  culation aiming at a detailed interpretation of the experimen-
celeration frame[18]. Time-dependent approaches not onlytal observations of Ref5].
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Il. THEORY N=1, My=0 (statistical weight of 1/8andN=1, My=

) . N X .

Our purpose is to solve the nuclear time-dependent Schro_1 (statistical weight of 2/g each of the_m haw_ng to b_e
. . . - __Ppropagated separately and further combined using their re-
dinger equation on a Born-Oppenheimer level of approxima? . :
I : . spective weight$22].
tion involving two electronic states labelgd(ground andu

(excited following, for convenience, the standard symmetry

notations of H*:
. d (W Yy
'“ﬁ(\vu)‘H(%

A. Propagator

Fourier-transform methodolodyl0,25 using, for the an-

) gular variables, either spherical harmonics basis-set expan-
' sions[26] or grid technique$21,27] is one of the most popu-
lar approaches for solving Eql). In particular, Dateo and

where the total molecule-plus-field Hamiltonian is Metiu have significantly improved the grid approach with an
_ ] implementation of a unitary Cayley scheme gy combined
H=1Tr+Ty+T,) +W(R,61). 2 with a Feit-Fleck split operator technique using a cosine Fou-

1 is the identity matrix andR, #,¢ are the spherical coordi- rier transfo_rm, resulting _in a recur_siqn formlﬂ?l]- Apgrt

. > from avoiding the numerical instabilities associated with the
nates 9f the mternucleay vectst in the laboratory frame division by sird[Eq. (4)], the major advantage is the absence
[22]. Kinetic terms are given by of matrix element evaluations and multiplications, the com-
putational task being basically fast Fourier transforms. The

2 2
Tr=-— ﬁ_ d_ (3) actions of potential and kinetic operators on the wave func-
2m gR? tion are evaluated by referring to a combination of coordi-
nate and momentum representations, related through an ex-
#2 1 d/ d ponential Fourier transform fdR and a cosine transform for
T~ " 2m R2?sind d_a( |n0@), @ e _— ,
A careful examination of this method leads to the follow-

ing considerations. In the spherical coordinate representation
the polar angled is defined within the intervalO,7]. The
72 1 d2 even parity and 2 periodicity of the cosine transform im-

T,=— = —, 5 ply, for the angular part of the wave function,
¢ 2m R%5i2g d? ®

and

f(o)=f(—0)=f(27—0), 9)
wherem represents the reduced mass. The radiative coupling
written in the length gauge involves the scalar product of thdrom which results a zero-derivative condition at both ends
dipole momentx (parallel toR for a3 —3 transition, as is  Of the interval:

the case of H") and the electric field vectof, which is d
taken along the laboratowy axis ﬁf(a)b:om:o. (10
p- &= — p(R)cobe(t) coswt. ®  In other words, as long as E@10) holds, the symmetry
requirements are fulfilled and the cosine Fourier representa-
tion can be worked out in an accurate way. The actual angu-
lar dependence of the wave function is written in terms of
spherical harmonicS’N,MN(a,cp) satisfying the following re-
lation with respect to theip derivatives[28]:
of half-width 7. The potential part contains the field-free mo-
lecular potentials/ as diagonal elements and the matter-field

The laser pulse carrier-wave frequencyignd its envelope
e(t) has a Gaussian shape

e(t)=eoe™ (170 W)

d : .
Ym0 @) o= cnm=(—1)" (S 187"~ Sy 1€'¢)

couplings as nondiagonal terms: de
V4(R — n(R)cosfe(t) coamt N(N+1)(2N+1
We o(R) u(R)coste(t) X\/ ( )( ), 11
— pn(R)cohe(t)coswt V,(R) 167

® wheren=0 or =1. From Eq.(11) it results that thef de-

As is clear from Eq(8), the motion associated with the rivatives of the wave function at=0 andw are zero except
azimuthal anglep remains separated under the action of thefor M= + 1, which may be at the origin of numerical insta-
¢-independent potential term arMy, the z projection of  bilities. We have to point out, however, that the cosine trans-
the total rotation angular momentul, is a good quantum form, such as that used in R¢21], not only has been tested
number describing the invariance through rotation about theuccessfully on model problen(is Ref.[21], for the particu-
field polarization vector. The potential-energy curves ardar case ofMy=0), but also served as the basic technique
taken from Bunkin and Tugov’s fit23] and the electronic for the accurate calculation of angular-resolved dissociation
transition moment is taken from R¢R4]. The initial state of  probabilities of H*, with an initial state represented by a
Hf(zig) with an isotropic ensemble of parahydrogen andlinear combination of spherical harmonics  with
orthohydrogen in equilibrium involves two components with M=0,=1 [22]. However, it turns out that the inaccuracies
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increase when the calculation of angular-resolved kinetichowever, that foMy=0, where the contact transformation
energy spectra in the ATD regime is attempted. The sofails in producing zero derivatives and the ends of the

called contact transformation, defined by

Wy (R0, 0:t)=

12

1 iMye .
0e N (I)MN(R,G,t),

is a way out of the difficulty[bold characters denote the

column matrices of Eq(l)]. Actually, the # derivative of
(I)MN given by

d 1 cosd

d .
. _ = + H . —lMN(p
do (I)MN > sinB‘pMN \/smedalIfMN e

13

has to be evaluated @&=0 and= with an angular behavior

interval, the original procedure of Ré21] provides accurate
results. The conclusion that can be drawn is that the contact
transformation may advantageously be combined with the
cosine Fourier transform for aMy, exceptMy=0, for
which the cosine transform has to be used alone.

When \IIMN given by Eq.(12) is introduced into the

Schralinger equatior(1) one gets

. d =
% g P (RO =[UTr+Ty)

+ Wy (R, 6;1) 1Py (R, 61),

of Wy, taken as a linear combination of spherical harmon-yhere the rotational kinetic operator is merely

ics. The two limiting cases of the derivative atd=0 andwx
for the spherical harmonics are given by

lim YN,iMN(‘g:‘P)

6—0
Mne [(2N+1) (N+My)!]H2
(i S ENED) (NFMW R g
oMuM Il 47 (N=My)!
IimYN,iMN(GIQD)
0—
LN+ )M VN [(2N+1) (N+My)! |2
=(=D7(=1) oMMl AT (N=My)!
X (r— )N, (15)
The resulting derivatives fol)MN behave like
[ d(I) (6,¢)
m-— + @
goodl  MN
. 1 [(2N+1) (N+My)! 12
=1 2MNM Il 4T (N=My)!
1
X| My+ 5 gMN—12), (16)

o d
Ilmd—0¢tMN(0,¢)

0—m

1 [(2N+1) (N+My)! 12
MMyt 4T (N=My)!

=(—DN(=DMn

X (My—1)(mr— §)Mn=112), (17)

leading to a cancellation at both ends of the intef\atr]
for all positive values oM (exceptMy=0). Thus numeri-

(18)
—~ h%  d?
To=— — 19
T 2mRR de? 19
and the effective potential
Wy (R6;)=W(R, 6;t) AT B My
Mt T 2mRT 2mR sirde
(20)

The propagator technique itself has been described within
great detail in previous workE21,22 and is based on the

repeated use of the short time propagaigit):

Dy (R, 6;t+ o) =U(ot) Dy (R,6;t)

:exp[ - %[1(TR+T9)+VT/MN(t)]6t

X®y (R,6;t). (21

Since the three operatof&s, T,, and Wy do not com-

mute, the exponential on the right-hand side of Ex{) is
split into five terms using the Moyal formu[&9] in a third-
order approximatiorO(5t3). More sophisticated splittings,
such as that described by Bandrauk and J13&hand lead-

ing to higher-order approximations, may be used at this level
with the advantage of a larger time step. The propagation of
the wave function results from the evaluation of five expo-
nential operators in a way that maintains unitarity and does

not involve matrix multiplications. The simple form &f,
allows a treatment similar to that @%; . In practical compu-
tations, the procedure starts with the action of the potential

operator\/~vMN on the coordinate representation wave func-
tion; the result is cosine transformed éhsuch that the an-
gular kinetic operatof 4 is applied. The resulting wave func-

cal instabilities related to the cosine Fourier transform pertion is Fourier transformed irR, i.e., in a momentum

formed on the wave functiorlf,\,IN (with My==1) can eas-

ily be removed by applying the procedure(lmN, obtained

representation suitable for a local actionTgf. The cycle is
completed by an inverse Fourier transformRn action of

from Wy, , through the contact transformation. It remains, T4, inverse cosine transform i, and action oi\TVMN.
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B. Asymptotic analysis The further evolution is performed, on the one hand, by start-

Until very recently the calculation of kinetic-energy spec-Ng again the previous numerical procedure with the inner
tra involved the propagation of the full wave packet on veryPart of the wave packé25a as an initial wave function and,
large grids, during the total pulse duration, such that then the other hand, by the analysis of the asymptotic part of
postpulse analysis leads to free fragment properties. Thé&e wave packet25hb) in a way that will be discussed now.
asymptotic analysis consists either in Fourier transforms ofhe full time propagation consists in the iteration of this
the wave-packetg31], in projecting the wavepackets on the basic scheme until convergence is achieved when coherently
continuum eigenfunctions of the field-free Hamilton{&2], resumming asymptotic components.
or even in energy-resolved flux¢83]. The overall proce- The linearity of the Schidinger equation allows the sepa-
dures are very time consuming because of large grid exterrate propagations o{fj' and \IIJA, the latter being described
sions required to describe the wavepackets during the fielgy
interaction, especially when considering asymptotically di-
verging couplings. The basic idea to describe the wave-
packet motion on a restricted grid is the splitting of the wave 1
function into an internal and an asymptotic part, the propa- A Tr - Eeé’(t)R cosd
gation in the latter being done analytically even during the ; 12 1) _
field interaction19,22. The model has been worked out in a dt \If’z'\
one-dimensional cadd 9]; its three-dimensional generaliza-
tion constitutes the purpose of this section, and will be fol-
lowed by an application to 4t photodissociation.

A general and comprehensive overview of the method can X
be provided by considering two distances: nam&y,,,,
which fixes, definitively, the total extension of the grid, and
Rg which delineates the boundary between the inner and the, . . :
asymptotic regions. More precisely, the asymptotic regionjFhIS equation results froin the asymptotic form of Ef)
boundaryRs is defined by almost constant or negligible po- Where, forR=Rs, T, andW), are neglected due to th2
tential energieq Vg or (R=Rg)=0] as compared to the factor and negligible potential termé(R) as compared to
kinetic energy of the fragment®,x has to be taken larger the kinetic energylz, particularly important in multiphoton
thanRs. The initial wave function;(R, #;t=0) (the index  processes leading to high-energy fragments. The amplitude
My is dropped for simplicity angl=1,2 designateg andu,  of the neglectedk~? terms basically depends upon the rota-
respectively is sampled on th®, 6 grids (Re[0Rmad and  tional excitation of the molecule, which may increase with
0e[0,7]) and propagated using the method described ifhe aser intensity. This is whig is in principle intensity
Sec. Il A for solving numerically the coupled wave-packetgependent. We incidentally note that although der0 or 7
motion [Eq. (1)]. This procedure is stopped at a tiMe  the potential operator may diverge when using a contact
when the probability amplitude &, reaches a given small ransformation[cf. Eq. (20)], it is rather its action on the
value e accordingly decreasing wave function that has to be consid-

|‘1’j(Rmax,9:ti)|>€a- (22) ered, the overall result being zero. The transitipn dipole mo-
ment between the two charge-resonant states is merely given
Starting at that time, the asymptotic analysis proceeds bpy #(R>Rs)—3zeR e being the electron charge. The
splitting wave functions into two parts: coupled systeni26) can be decoupled by introducing a set of
wave functionsy, which are linear combinations of the
Wi(R,0;t)=V|(R,6;t) + YRR, 6;t) (j=1,2 (23 V¥is:

1
- EeE(t)R coy Tr

\If’f)

26
wh (26)

(I for inner andA for asymptoti¢. Practically, this is done
by using a smooth window functiog(R) of spatial exten-

1

sion o, equal to 1 or O in the inner or asymptotic regions, X12)(R,0;t)= —[\If’f(R,H;t)i\If’;(R, o;t)]  (27)
respectively{ 34]: V2

1 for R<Rg

m(R—R) and solutions of
g(R)= 1—sin2(TS for Re<R<Rgto
0 for R>Rgto . d 1
(24) 'ﬁaXl@(R, 0;1) =[Tr+ 7€E(1)R coF]x1(2)(R, 6;1).

and @8

PR, 6;t) =g(R) ¥;(R,6t;), (253

We point out the formal analogy between these equations
A and the ones describing the motion of a free electron in an
Yi(R,60:t)=[1-9(R)]¥;(R,6;t)). (25D electric field.R being formally interpreted as the electron



57

coordinate, Volkov-type solutiong35,36 can be obtained
with the functional change

X12(R,0;1)= ex;{ i;i—RcoseA(t, - 00)} {12)(R, 6:1),
(29

where

A(7y,1)= £(t )dt’. (30)

2h ),

Introducing Eq(29) into Eq.(28) leads, after straightforward

algebra, to the time-dependent evolution equationfor

'ﬁd R,6;t)= A% d2+2' A
i b (RO == 5 5 = 21COBA(t, =) 4
—CoSOA3(t,— ) | £12(R, 6;1),
(31

which is solved, in a standard way, by Fourier transforming

the two sides of the equality
N in [t , -
Zua ki) =exp o | Thezcoma(t’, =) ot

X L102)(K, 01, (32

with

(k 0't)=if dR £15(R,6;t)e R (33
(2)A ™V 2a 1(2)A ™Yy :
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This factor is precisely the difference between equation Eq.
(36) and the corresponding equati¢iB) of Ref.[19] of the
one-dimensional case. The asymptotic wave functions in the
momentum space result from E@7):

TAKk 0't)=exp[ - i—ﬁft[k—cosaA(t t')]zdt’}
gt % 2m),, ’

X{x1[k—CcosA(t,t)),0:t;]}

if [t
— INT2H 4!
+exp{ 2mJti[kJrcosﬂA(t,t )]“dt }

X{Xz[k+cosﬂA (t,t)

Ay (373

. i%
‘I’ﬁ(k,e;t)=exp[ - zl—mf:[k—cosﬁA(t,t’)]zdt’}

X{x1[k—cosAA(t,t;),0;t;]}

Iﬁ ! N2+
—ex —ﬁfti[knLcosﬂA(t,t )]dt

X xo[k+Cos9A(t,1)),0;t;]}. (37b
Equations(37) are the analytical evolution oﬁfg(k,a;t)
from t; to t. The angular-resolved fragments probability dis-
tribution (kinetic-energy spectrujris given by

Pk, 0)dk= im[[¥5(k,0;0)[2+] ¥5(k, 6:1)[2]dK,

t—oo

(38

wheret— o~ means not only that the laser pulse is switched
off but also that there are no outgoing continuum compo-

Equation(32) is the basic result of the model; it opens the nents of the inner-part wave packet.

possibility to reach‘lfl(z) through Eqgs.(27) and (29), by

referring to appropriate Fourier transforms. It can easily be

shown by Eq.(29) that the Fourier transform of,(,) is
related to that of;(,) by a simple shift of the momentum

;(1(2)“(,0;0: 21(2)
so that[Eq. (32) is used

[KT cosfA(t,—»),6;t],  (34)

~ in [t
Xl(z)(k,ﬂ;t)=exp| — ﬁfti[ki COSOA(t,t’)]Zdt']

X {102 [KF COSA(t,— ), 6;1;]. (35)

By recasting? in terms of y Eq. (34), one finally gets the
evolution equation fory,

~ ih [t
X1(2>(k,0;t)=exp| - ﬁfti[k+coseA(t,t’)]Zolt'}

X x1(2)[KF COSA(L, 1), 6;t;]. (36)

It is to be noted that in addition to a phase factptk, 6;t),
at timet, is obtained from)}(k,e;ti) by merely shifting the
momentum by the laser pulse ar&ét,t;) weighted by co8.

IIl. RESULTS

In this section we test the accuracy of the previously pre-
sented procedure by applying it to simple model calculations
before proceeding to an evaluation of the angular-resolved
spectra of H* irradiated by a linearly polarized laser. We
have to point out that the asymptotic matching to Volkov
states depends crucially on the accuracy of the phases of the
numerically propagated inner region wave packet. This can
be controlled by the value af, [as defined by Eq22)] that
starts the splitting and matching procedures. Converged
results g/vithin less than 1% accuracy are obtained for
€,=107°.

A. Numerical tests

We take as an initial wave functio#f (t=0), the ground
vibrational state of b* written as the product of a radial and
an angular part, i.e.,

W, (t=0)= xgo—on=1(R)Ynm (6, 0). (39
This wave function is propagated under the effect of the

(field-free ground-state Hamiltonian over 40 fs, our purpose
being to check the accuracy of the propagator with respect to
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FIG. 1. Norm and energy conservations using Dateo and Me- FIG. 2. Norm(upper pangland energylower pane) conserva-
tiu’s cosine transforni21] for M=0. Panel(a) is the deviation of  tions using Dateo and Metiu’s cosine transfdwwvith 64 (curved)
the norm from 1 and panéb) the deviation of the energyn cm™1) or 128(curvec) grid points oné] or the contact transforifwith 32
from Eq=—21 234.742 cm? as a function of propagation time in (curvea) or 64(curveb) grid points ond] for My=1. Energies are
femtoseconds. indicated in cm?® and time in femtoseconds. Note that a scaling

factor (X 10) has been introduced for the contact transform.

norm and energy conservations. Figure 1 displays the results
of the calculation forM =0, using Dateo and Metiu’s co- number of grid points. In particular, calculations with the
sine transform method. For 64-grid points, one obtains a contact transform and using,= 64 grid points(same as for
deviation of the normAN(t) =W (t)||2— ¥ (0)||>, which re-  Fig. 1) lead to accuracies comparable to thoseMy{=0,
mains of the order of magnitude of 18. Excellent accu- obtained with the cosine transform.
racy is reached for the energy conservation. The deviation of

the ground-state energy B. Angular-resolved spectra(H,", A=532 nm)

(W(t)[H|WP (1)) We are now in a situation to examine the multiphoton
- W (40) alignment dynamics of kf, irradiated by short and intense
laser pulses. This study is basically motivated by a detailed
from its initial valueEy= — 21 234.742 cm?, follows a qua-  intense field ATD experiment onH at\ =532 nm[5]. The
siperiodic behaviofFig. 1(b)] with an oscillation amplitude ultimate goal is a thorough understanding of angular-
not exceeding X102 cm L. The results forMy=1 are resolved dissociation spectra that reveals some unexpected
gathered in Fig. 2, where the two propagation metipdse  proton distributions, namely, at some energies, increasing the
cosine Fourier transform or contact transform combined witHaser intensity produces less aligned photofragments.
the cosine transforjnare compared for different number of  The ground and first excited states that, within the Born-
grid pointsN,. The conclusions are twofold. Oppenheimer approximation, describe the photodissociation
(i) Norm and energy conservations are substantially deteprocess
riorated during the early dynamics when the cosine trans- . N .
form is used withN ,= 64 grid points(deviations of the order Hy" (1s0g) + nfio—H, " (2poy)—H™ + H(1s) (41)
of 10 * for the norm and not less than 15 ctinfor the
energy. The calculations can however be improved by dou-correspond to (o) *S, and (2a) %, symmetries, re-
bling the number of grid pointdN,=128). This is especially spectively. The potential-energy curves are taken from
true for the energy; a better convergence of the cosine FolBunkin and Tugov’s fit[23] and the electronic transition
rier expansion leads to energy deviations within one wavenoment is taken from Bate§24]. The field-dressed
number. The improvement for the norm conservation is lespotential-energy curves involved in the two main Floquet
significant. blocks (shifted by the photon energy corresponding Ao
(ii) Very high accuracies are reached when using the con=532 nm) are displayed in their diabatic and adiabatic rep-
tact transform even for & grid not exceedingN,=32  resentations in Fig. 3. The adiabatic representation leading to
points. The deviation of the norm from its unit value is lessavoided curve crossing situations results from the diagonal-
than 0.5<10"° and that of the energy less than 0.1 ¢in ization of the radiative interaction for one of the experimen-
These values can even further be improved by doubling théal intensities, i.e., 1§ W/cn?. By defining the boundary of
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______ ‘ 290 fs
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FIG. 3. H,* field-dressed potential-energy curves foe532
nm andl =10 W/cn?, in the diabatic(solid line) and adiabatic
(broken ling representations. The position of the initial vibrational
level v=4 is indicated by a thin horizontal line. The rectangle
boxesX1,X2,X3 point out the avoided curve crossing regions.

the asymptotic region aRs=10 A [37] the potential-energy
differenceVy(R) —V,(R), which is exponentially decreasing
for R>Rg, does not exceed 150 crhand remains an order
of magnitude less than the fragments kinetic energies result-
ing from the absorption of 532-nm wavelength photons. This
criterion validates the use of E(26) and the channel decou-
pling associated with Eq$27) and (28). We also note that
throughout this region the line& dependence of the transi-
tion dipole moment, which is also required for the use of
Volkov states, follows within an accuracy better than %
the more complete dipole length formula given by Mulliken 15
in a linear combination of atomic orbitals approximation 3.0
[15,24). Energy (19

The laser pulse is taken as a Gausgiein Eq. (7)] with
rise and falloff timesr= 30 fs, a maximum intensity of 10 o -
W/cn? being reached aiy=75 fs. We note, from the con- . FIG. 4. R8|at'.ve q|ssouat_|on pmkf?b'"t'es fMN:.O as af“F‘C'
sultation of Table 1 of Ref[38], that for a wavelength of tion of protons kinetic energien cm ) and detection anglesn
=532 nm and an intensity ofB10M W/en? the ionization rgdlans, for_dlfferent detection timegin femtosecpnds, on the

. o 1 . right-hand side of each 3D graphNote that the scaling factors on

rate is 1.3 10?571, Whlch means that we can safely neglect o eft are with respect to the bottom gragi-@90 fS.
it (as long as for an intensity of ¥dW/cm? we are discuss-
ing excitation and dissociation processes occurring on a fem-
tosecond time scale (i) At t=100 fs, dissociation rates are still negligible, with

An overall dynamical view is displayed in Figs. 4 and 5 in angular distributions roughly reflecting those of the spherical
terms of three-dimensional graphs representing, at differerfarmonicsY; g cosd (for My=0, Fig. 4 or Y ;sind (for
detection times ranging fror=100 fs (just after the pulse My=1, Fig. 5.
maximumn) up to t=290 fs (time for converged spectrum (i) At t=130 fs, high-velocity photofragments are the
calculationg, relative dissociation probabilities as a function first to be collected at energies corresponding to the absorp-
of the fragments kinetic energies and angular distributionstion of three photons.
The scaling factors indicate the relative contributions of the (i) Betweent=150 and 210 fs, less energefislowe)
spectrum at a given time to the final one. As an example, théragments corresponding to the net absorption of two pho-
spectrum recorded at timte= 230 fs roughly contributes one- tons are detected, in amounts that even exceed the ones col-
tenth to the final result. The calculations are presented folected in the so-called three-photon peak. Moreover, a stabi-
two cases wherdl=1, My=0 (Fig. 4, using the method of lization is observed for the two- and three-photon peak
Ref. [21]) and N=1, My=1 (Fig. 5, using contact trans- populations, their relative branching ratios already being
form) and for an initial vibrational state=4, located near time independent.
the top of the field-lowered potential barrier leading to the (iv) Low-velocity fragments reach detection distances at

one-photon dissociation channéhs depicted in Fig. )3  even later timest=230 f9 and contribute to the one-photon
Some general observations are in order. peak.

Relative Dissociation Probabilities

0.0

1.0 &
4.5 R4
%&

Cm‘l)
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0 0

Normalized Probabilities

10.0 - 210fs © |
150 fs
130 fs
5.0 & 2
0.0 - ‘
0. 1. 2.0 3.0

0 (rad)

Relative Dissociation Probabilities

FIG. 6. Normalized angular distributions, fivty=0 and for the
different detection times of Figs. 4 and 5. Results are displayed for
(a) the one-photon peakb) the two-photon peak, an@) the three-
photon peak.

100 fs

3.0 The temporal evolution of the alignment patterns is fur-
ther detailed in Fig. 6 foMy=0 and in Fig. 7 foMy=1 in
%@& terms of f-dependent normalized probabilities defined by

0
510

Ene
Y ( 10%cpy1 )
E+

dE[W(6;0)2

Ei—¢

FIG. 5. Same as for Fig. 4, but fod=1.

Pi(O;0)= — — . (@2
f de sinef dE|We(6;1)]?
(v) Final stabilized spectra at= 290 fs reflect the leading 0 i€
one-photon process with a peak height roughly ten times the )

one corresponding to the two- or three-photon maximal P€ing an index for the one-, two-, and three-photon peaks,
Small satellite peaks at roughly 2000 cinfrom the one- With @ maximum ai; and an energy range ofe2

photon maximum are also recorded. These energy differ- | WO Major points can be outlined. L

ences reflect the vibrational level separations ef HThe (i) The laser-induced alignment increases with tifas

satellite structures may thus correspond to the nonadiabat ompgred to t.he yv_eak-ﬂeld reft_arence distributior; 06S'6),
i . . ollowing the intuitive expectation that lately detected slow
excitation of resonances correlating with #he 5 or 6 levels

. o . fragments interacting over a longer period with the laser are
of a f!eld-frge S|tL_1at|or[39]. However, they are_absent N petter aligned. This alignment is rather progressive in time
one-dimensionalfixed angle spectrum calculations, sup-

) = for the three- and two-photon peaks and stabilized at
porting the argument that they are rather to be associat L 210 fs[panels(a) and (b) of Figs. 6 and T. A somewhat

with some Coriolis effect, coupling the rotational and vibra- giterent dynamics affects the fragments contributing to the
tional motions. one-photon peak: their angular distributiggsanel (a)] are
(vi) The total dissociation rate is five times larger for very much modified aftet=210 fs showing a rapid transi-

My=0 (0.29<10"°) than forMy=1 (0.59<10"%). Thisis  tion from nearly “stabilized” isotropic distributiongbe-
consistent with the fact that the leading one-photon mechaweent=150 and 210 fsto sharply aligned ones at later
nism proceeds through a barrier tunneling that favors thé&imes. This again is in relation to the barrier lowering. Only
dissociation of the initialy 1o 6, ¢) distribution peaked aé  negligible amounts of fragments are detected in the one-
=0 and s by the radiative interaction lowering efficiently photon channel at early times, presumably resulting from
the barrier precisely at these angles. more complicated multiphoton exchanges. The major and
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' ‘ ' curve crossing regions where these mechanisms take place

30 290 fs @ are indicated by the boxes of Fig. 81 delineates the adia-
;?8 2 batic potential barrier lowering region. The radiative interac-
2.0 1 ] tion w1 cos is stronger ford=0 and= and the dissociation
is enhanced in these directions. In a dynamical viewpoint,
1.0 - ] the torque that is exerted by the laser on the molecule allows
the wave packet to skirt around the potential barrier and find
0.0 : ‘ = the minimum-energy pathway towards the dissociative val-
8 30t ®) ley (that is, for directions close td=0 or 7). Fragments
£ 210 fs . ; .
a resulting from this one-photon process have low velocity and
g 150 fs ) - )
S 201t ] contribute to the one-photon peak in the spectrum; they are
o] . . . . . .
& highly aligned with the laser polarization axis. Insofar as the
?;,] 1.0 - ] pulse intensity is not strong enough for the barrier to be
= lowered (during its rise time, for instan¢ehe dissociation
g 0.0 ) ‘ : can only proceed through nonadiabatic transitions depicted
Z 3'0 | © | by the X2 andX3 boxes. As has been discussed previously
' f;glfs [22], such transitions between adiabatic stdtsstained by
20 | 130f: the diagonalization of radiative interactionsre monitored
) by the so-called nonadiabatic couplings reaching their maxi-
o mum amplitude ford= /2 (corresponding to the minimum

of the radiative interaction or diabatic coupling$he valid-
ity of an adiabatic representation f¥2 is probably not so
0-000 1'0 0 3'0 clear due to a rather weak third-order matter-field coupling.
' ' 0 (ra d)' ' Molecules already aligned with the laser are however ex-
pected to undergo a more efficient Franck-Condon diabatic
FIG. 7. Same as for Fig. 6, but foly=1. transition and proceed through the two-photon adiabatic
channel. However the resulting alignment of the two-photon
late (t>210 fs) contribution to the one-photon peak in the peak is not enhanced, as in the case of the one-photon peak,
spectrum comes from low-velocity fragments that have beeRY the dynamical effect due to the barrier loweringat the
aligned by the field through the dynamical bond softeningfagments contributing to the two-photon peak are less
mechanism very efficiently fo=0,7 and for the pulse aligned than those of the one-photon peak.X8r involving
peak intensity[22]. a strong first-order coupling, the adiabatic frame is appropri-
(i) From the comparison of the angular distributions ofate. A nonadiabatic transitigimaximum for¢= /2) allows
each photon peak, a general tendency seems to emerdg¥l€e to reach the three-photon channel, the outcome being a
namely, the fragments contributing to the one-photon peaknore isotropic distribution of high-velocity fragments con-
are noticeably more aligned than the others and, to a certaiffibuting to the three-photon peak.
extent, the ones of the two-photon peak are more aligned
than tr_\e three-p_hoton peak. _ ' _ ACKNOWLEDGMENT
An interpretation can be provided by comparing the align-
ment dynamics of the two laser-induced mechanisms respon- We acknowledge a grant of computing time on CRAY
sible for the dissociation, which are in competition: the bar-C-98 from the Institut du Developpement et des Ressources
rier lowering and the nonadiabatic transition. The avoideden Informatique Scientifique under Project No. 970425.

[1] R. M. Potvliege and R. Shakeshaft,Nton Perturbative Treat- Bucksbaum, Phys. Rev. A4, R1458(1991).
ment of Multiphoton lonization within the Floquet Framework [7] D. Normand, L. A. Lomprgand C. Cornaggia, J. Phys. 75,
edited by M. Gavrila(Academic, New York, 1992 L497 (1992.

[2] Coherence Phenomena in Atoms and Molecules in Laser[8] K. Codling and L. J. Frasinski, J. Phys. 2, 783 (1993.
Fields Vol. 287 of NATO Advanced Study Institute, Series B: [9] S. J. Chu, J. Chem. Phyg5, 2215(1981).
Physics edited by A. D. Bandrauk and S. C. Wallagdenum, [10] H. D. Feit, J. A. Fleck, and A. Steiger, J. Comput. Ph4&.

New York, 19932. 412(1982.

[3] P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schu- [11] H. D. Feit and J. A. Fleck, Jr., J. Chem. Phy8, 301(1983;
macher, Phys. Rev. Letb4, 1883(1990. 80, 2578(1984.

[4] A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, Phys. Rev.[12] R. W. Heather and F. H. Mies, Phys. Rev4A, 7560(1991J).
Lett. 64, 515(1990. [13] G. Jolicard and O. Atabek, Phys. Rev.48, 5845(1992.

[5] A. Zavriyev, P. H. Bucksbaum, H. G. Muller, and D. W. Schu- [14] T. T. Nguyen Dang, F. Chateauneuf, O. Atabek, and X. He,
macher, Phys. Rev. A2, 5500(1990. Phys. Rev. A51, 1387(1993.

[6] B. Yang, M. Saeed, L. F. Di Mauro, A. Zavriyev, and P. H. [15] R. S. Mulliken, J. Chem. Phy§, 20 (1939.



2850 R. NUMICO, A. KELLER, AND O. ATABEK 57

[16] D. E. Ramaker and J. M. Peck, At. Da&ia167 (1973. [29] J. E. Moyal, Proc. Cambridge Philos. Sd&, 99 (1949.
[17] M. Y. Ivanov and P. B. Corkum, Phys. Rev.48, 580(1993. [30] A. D. Bandrauk and H. Shen, J. Chem. Ph§8.1185(1993.
[18] R. Lefebvre and O. Atabek, Int. J. Quantum Che88, 403  [31] E. E Aubanel, J. M. Gauthier, and A. D. Bandrauk, Phys. Rev.

(1997. A 48, 2145(1993.
[19] A. Keller, Phys. Rev. A52, 1450(1995. [32] E. Charron, A. Giusti-Suzor, and F. H. Mies, Phys. Rev. Lett.
[20] R. Heather and H. Metiu, J. Chem. Phg§, 5009(1987. 71, 692 (1993.
[21] C. E. Dateo and H. Metiu, J. Chem. Phg&, 7392(199J. [33] J. Perie and G. Jolicard, J. Phys2B, 4491(1993.
[22] R. Numico, A. Keller, and O. Atabek, Phys. Rev.58, 1298  [34] Note that this shape for a continuous and derivable window
(1995. function is an improvement over the functional forms previ-
[23] F. V. Bunkin and I. I. Tugov, Phys. Rev. 8, 601 (1973. ously considered in the sense that it optimizes the undesired
[24] D. R. Bates, J. Chem. Phy%9, 1122(1951). wave-packet reflections.
[25] R. Kosloff, J. Phys. ChenB2, 2087(1988. [35] L. V. Keldysh, Zh. Esp. Teor. Fiz.47, 1945 (1964 [Sov.
[26] R. C. Mowrey and D. J. Kouri, J. Chem. Phy&4, 6466 Phys. JETR20, 1307(1965].
(1986); 86, 2087(1987. [36] H. R. Reiss, Phys. Rev. &2, 1786(1980.
[27] R. Almeida, C. E. Dateo, V. Engel, and H. Metiu, Comput. [37] T. Zuo, S. Chelkowski, and A. D. Bandrauk, Phys. Rev43\
Phys. Commun63, 435(1991)). 3943(1999.

[28] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, [38] H. Yu and A. D. Bandrauk, J. Chem. Phyi2, 1257(1995.
Quantum Theory of Angular MomentuiVorld Scientific, [39] R. Numico, A. Keller, and O. Atabek, Phys. Rev.58, 772
Singapore, 1988 (1997.



