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Bethe stopping-power formula for structured projectiles

E. J. McGuire
Sandia National Laboratories, Division 9571, Albuquerque, New Mexico 87185-1187

~Received 26 February 1997!

It is known that the energy loss in ion-atom collisions is dominated by elastic scattering of one collision
partner and excitation or ionization of the second. This is true for both structured and structureless projectiles.
Here, I show that this fact leads to a relatively simple extension of the Bethe stopping-power formula for
structureless projectiles to structured projectiles. The formula replaces the Bethe mean excitation energy with
two other mean energies which reflect the elastic scattering factor of the otherwise structureless projectile. The
expression is symmetrical in the center-of-mass system. The formula is in excellent agreement with numerical
calculations, when the numerical calculations are asymptotic. To obtain the extended Bethe stopping formula,
it is necessary to evaluate integrals over energy and momentum transfer involving generalized oscillator
strengths, properly treating the energy-dependent lower limit in the momentum transfer integral. I do this by a
constructive procedure using two cutoffs~instead of the traditional one! in momentum transfer. Peek had
earlier developed a procedure to address the question of whether the Bethe mean excitation energy calculated
with optical oscillator strengths is the same as the Bethe mean excitation energy appearing in the stopping
power formula. I show that the result of the constructive procedure agrees with the result of Peek in the
asymptotic limit, and I develop a criterion to determine the asymptotic limit.@S1050-2947~98!05304-9#

PACS number~s!: 34.50.Bw, 34.10.1x
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I. INTRODUCTION

Stopping-power~SP! measurements on thin solids with a
accuracy of better than 1% have shown significant, and
yet unexplained, differences between the Bethe@1# mean ex-
citation energy (I ) calculated from atomic optical oscillato
strengths@2–4# ~OOS! or extracted from SP calculations u
ing the generalized oscillator strength~GOS! formulation of
the plane wave Born approximation~PWBA!, and that in-
ferred from measurements on solids@5–7#. For example,
with OOS one findsI'124 eV for Al @2–4#, with the GOS
one findsI'132 eV for Al @8#, while the value inferred from
thin foil measurements isI'163– 165 eV@5–7#. A possible
explanation for the discrepancy is that theI value calculated
with the OOS is not theI value of a SP experiment. In th
course of analyzing explicit PWBA subshell stopping-pow
calculations@4,8#, two features stood out. First, as illustrate
in Figs. ~9!–~11! of Ref. @9#, for 4f and 5d subshells, the
OOS is often not a good approximation to the GOS forq2

<Enl , whereEnl is the subshell ionization energy andq is
the momentum transfer, both in Rydberg units. Second, w
the leading term in the subshell SP of the for
Z(nl)ln(4meEp /Mp), it proved impossible to fit the calcula
tions with either the choiceZ(nl)5Znl(0), the subshell
OOS summed over excited states~unoccupied or partially
filled subshells!, or with Z(nl)5Nnl , the subshell occupa
tion number. The fittedZ(nl) was generally close to
1
2 @Znl(0)1Nnl#. Just such a factor had been found earlier
Bethe et al. @10#. The difficulty with using Z(nl)
5 1

2 @Znl(0)1Nnl# is thatZnl(0) is relevant to small momen
tum transfer collisions andNnl to large momentum transfe
collisions. Then if one applies a traditional analysis, such
that of Dalgarno@11#, to the subshell SP, the SP is propo
tional to

Nnl ln~2kme /Mqnl!1Znl~0!ln@~h/2p!2kqnl /MI nl#,
~1a!
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where M is the reduced mass; the Bethe mean excitat
energy for the subshell is defined by

Znl~0!ln~ I nl!5S ( 1E d« D d

d«
f ~«,0!ln~Enl1«!.

~1b!

(hk/2p)252meEp , with Ep the projectile energy, andqnl is
a momentum cutoff given by

~hqnl/2p!252meEnl . ~1c!

The definition of the cutoff used here differs from Dalga
no’s @11# Eq. ~13! by the use ofme in place of the reduced
mass M . At the cutoff the squared momentum transf
equals the subshell ionization energy, in Rydberg units. Ifqnl
were much larger than this, one could not approximate
GOS at smallq2 with the OOS in Eq.~1b! ~which, in any
case, is a dubious approximation if the OOS is a poor
proximation forq,qnl!. The one-electron GOS for ioniza
tion pernl electron per« l 8 continuum hole is defined by

d

d«
f nl~«,q2,l 8!5@~Enl1«!/q2# z^nluexp~ iqW •rW !u« l 8& z2

~1d!

with a similar definition for the excitation GOS. If one make
the further assumption thatNnl5Znl(0)5Znl , Eq. ~1a! sim-
plifies to

Znl ln@2~h/2p!2k2/M2I nl#5Znl ln~4Epme /M pI nl!,
~1e!

where the cutoffs drop out of the final result. Further, wit

Z ln~ I !5(
nl

Znl~0!ln~ I nl! ~1f!
2758 © 1998 The American Physical Society
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57 2759BETHE STOPPING-POWER FORMULA FOR STRUCTURED . . .
one defines the Bethe mean excitation energy based on O
However, not only is the OOS not a good approximati

to the GOS forq2<Enl , but, in general,Znl(0)ÞNnl , with
the difference particularly large ford and f subshells. Then
Eq. ~1a! becomes

1
2 @Nnl1Znl~0!# ln~4Epme /M pI nl!

1 1
2 @Nnl2Znl~0!# ln@2meI nl /~hqnl/2p!2#. ~2a!

On summing Eq.~2a! over subshells, one has in place
Eqs.~1d! and ~1e!

Z ln~4Epme /M pI !1 1
2 (

nl
@Nnl2Znl~0!# ln~4Epme /M pI nl!

1 1
2 (

nl
@Nnl2Znl~0!# ln@2meI nl /~hqnl/2p!2#

5Z ln~4Epme /M pI !1 1
2 (

nl
@Nnl2Znl~0!#

3 ln~4Epme /M pEnl!. ~2b!

Unless it can be shown that the second term in Eq.~2b!
vanishes, it will contribute an additional term to the Bet
mean excitation energy.

Betheet al. @10# did discuss but did not evaluate the a
ditional term in Eq.~2b!. Peek@12# continued the analysis o
Ref. @10#, and in a tour-de-force, used distribution theory
evaluate the finite part of divergent integrals, and avoid
momentum cutoffs, explicit asymptotic limits, or any discu
sion of the interchange of limits of energy and moment
integrals, concluded that the second term in Eq.~2b! does
vanish. Peek’s@12# analysis indicates that subshellI values,
I nl , may be changed significantly from those calculated w
the OOS, but that theI value in the Bethe formula is theI
value obtained by summing over subshell contributions c
culated with the OOS.

Peek’s@12# analysis did not examine changes in the sh
corrections. In attempting to verify inner-shell correctio
from explicit PWBA calculations to apply to experiment, on
wants accurate subshellI values from the asymptotic theory
and some indication when asymptotia is reached. This
done here. In addition, to determine analytic approximati
for the asymptotic energy loss when the projectile is str
tured, one begins with an extended version of the Born
proximation for unstructured projectiles. It is clear that t
proper approach in either case is that introduced by Be
et al. @10# and continued by Peek@12#: the use of a
q2-dependent subshell sum rule. However, one wants a
structive formalism in place of the analysis Peek@12# did
using distribution theory. In Sec. II I develop an asympto
analysis of SP using two~rather than one! momentum cutoffs
to accurately represent the physics of the GOS. I confi
Peek’s@12# conclusions, that even when one includes in
analysisZnl(0)ÞNnl , and rapid changes of the GOS wi
squared momentum transfer,q2, near q250, the atomicI
value calculated with OOS is the Bethe mean excitation
ergy. In Sec. II assertions are made that certain paramete
the analysis are large and small enough that an asymp
approximation applies. In Sec. III these assertions are ex
S.
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ined for the case of Al. In Sec. IV the analysis of Sec. II
extended to the case of a structured projectile, leading to
extended Bethe formula. In Sec. V the extended Bethe
mula is compared with PWBA calculations for Li ions inc
dent on neutral Zn and Au. A discussion of other efforts
generalize the Bethe formulas is given in Sec. VI. The c
clusions are in Sec. VII.

II. THE EFFECT OF A q2-DEPENDENT GOS SUM RULE

The contribution of electrons in thenl subshell to proton
stopping power can be written in terms of the GOS as

2~1/n!
dE

dxU
nl

5@4p~a0!2~M p /me!/Ep#Bnl , ~3a!

where

Bnl5(
n8 l 8

E
Kmin

2

Kmax
2

~dq2/q2! f nl,n8 l 8~q2!

1E
0

Ep2Enl
d«E

Kmin
2

Kmax
2

~dq2/q2!
d

d«
f nl~«,q2!, ~3b!

whereEP andM p are the proton energy and mass,Enl is the
subshell ionization energy,f nl,n8 l 8(q

2) is the calculated GOS
from occupied or partially occupied level,nl, to partially
occupied or unoccupied level,n8l 8, and

K2umax,min5~M p /me!$~Ep!1/26@Ep2DEnl#
1/2%2, ~3c!

FIG. 1. Sketch of the region of the«2K2 plane between the
curvesC1 andC2 where the GOS is significant. At large« the GOS
is peaked on the Bethe ridge, where«5K2. The cutoffs discussed
in Sec. II arePnl and Qnl . At Qnl(Pnl)5(K2)min , one has«P

5(4meEPQnl /M P)1/2, @«P5(4meEPPnl /M P)1/2#. At Eb , (K2)min

intersects the Bethe ridge andEb5(4meEP /M P)2Enl

12(meEP /M P)@(12M PEnl /meEP)1/221);4meEP /M P.
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2760 57E. J. McGUIRE
with DEnl5En8 l 82Enl for excitation andDEnl5uEnlu1«
for ionization. All energies and squared momentum trans
are in Rydbergs. If, for fixedq2, one sums the GOS ove
unoccupied or partially unoccupied subshells, one has
subshell GOS sum rule:

Znl~q2!5(
n8 l 8

f nl,n8 l 8~q2!1E
0

`

d«
d

d«
f nl~«,q2! ~4a!

5Nnl1 (
n8 l 8,nl

u f nl,n8 l 8
0

~q2!u2 (
n8 l 8.nl

u f nl,n8 l 8
0

~q2!u

~4b!

5Nnl2 (
n8 l 8,nl

f nl,n8 l 8
0

~q2!2 (
n8 l 8.nl

f nl,n8 l 8
0

~q2!

~4c!

where f nl,n8 l 8
0 (q2) is the GOS to fully or partially occupied

levels, and the sum in Eq.~4a! includes partially and fully
empty subshells, only. The transitions in Eqs.~4b! and ~4c!
are forbidden by the Pauli principle~the FOS!. Since the
GOS depends on the energy difference in the transition,
rs

e

e

forbidden transitions either add to the right-hand side~RHS!
of Eq. ~4a!, if En8 l 8<Enl , or subtract ifEn8 l 8>Enl .

The cutoffsQnl5anlEnl and Pnl5bnlEnl are introduced
as illustrated in Fig. 1. The upper cutoffPnl is chosen so
that, forq2>Pnl , Znl(q

2)5Nnl . In Fig. 1 the curvesC1 and
C2 define the region in («,q2) space where the GOS is sig
nificantly different from zero.Qnl is defined as that value o
q2 at whichKmin

2 5C2 and which simultaneously satisfies th
condition

@ f nl~«,q2!2 f nl~«,0!#/@ f nl~«,0!#<d, ~5a!

whered is a small parameter, such that a Taylor series
pansion can be made. The value ofq2 at whichKmin

2 5C2 is
determined approximately byKmin

2 evaluated at that« value
whereC2 crosses theq250 axis, sayMnlEnl . Then

Qnl5~M p /me!~Mnl11!2~Enl!
2/Ep . ~5b!

For any choice ofd one can choose sufficiently largeEP
such thatQnl simultaneously satisfies both conditions.

Where Kmin
2 («) crosses the Bethe ridge~see Fig. 1!, at

«→Eb54meEp /M p defines a newKmax
2 , Eq. ~3b! becomes
Bnl5E
Pnl

Eb
~dq2/q2!H (

n8 l 8
f nl,n8 l 8~q2!1E

0

Ep2Enl
d«

d

d«
f nl~«,q2!J 1E

Qnl

Pnl
~dq2/q2!H (

n8 l 8
f nl,n8 l 8~q2!

1E
0

Ep2Enl
d«

d

d«
f nl~«,q2!J 1(

n8 l 8
E

Kmin
2

Qnl
~dq2/q2!F f nl,n8 l 8~0!1q2

d

dq2 f nl,n8 l 8~q2!U
q250

G
1E

0

Ep2Enl
d«E

Kmin
2

Qnl
~dq2/q2!H d

d«
f nl~«,0!1q2

d

dq2 F d

d«
f nl~«,q2!GU

q250
J . ~6a!

For the first term in Eq.~6a! the sum and integral in curly brackets isNnl by the definition ofPnl , while the second term in
curly brackets in Eq.~6a! is Znl(q

2). The third term is

(
n8 l 8

F f nl,n8 l 8~0!ln~Qnl /Kmin
2 !1~Qnl2Kmin

2 !
d

dq2 f nl,n8 l 8~q2!U
q250

G . ~6b!

Since bothQnl and Kmin
2 are proportional to 1/EP , the integral over« of terms proportional to (Qnl2Kmin

2 )df/dq2 can be
neglected to order (1/EP). Thus we drop the second term in Eq.~6b!. A similar argument applies to the fourth term in Eq.~6a!,
and with the limitEP2Enl in the fourth term replaced by«P5(4meEPQnl /M P)1/2 ~whereKmin

2 5Qnl!, Eq. ~6a! becomes

Bnl5NnlE
Pnl

Eb
dq2/q21E

Qnl

Pnl
~dq2/q2!Znl~q2!1(

n8 l 8
f nl,n8 l 8~0!ln~Qnl /Kmin

2 !1E
0

«p
d«

d

d«
f nl~«,0!ln~Qnl /Kmin

2 ! ~6c!

or

Bnl5Nnl ln@4meEp /M pPnl#1E
Qnl

Pnl
~dq2/q2!Znl~q2!1Znl~0!ln$4meEpQnl /@M p~ I nl

op!2#%, ~6d!

where theI value based on optical oscillator strength is defined by

Znl~0!ln~ I nl
op!5(

n8 l 8
f nl,n8 l 8~0!ln~En8 l 82Enl!1E

0

«p
d«

d

d«
f nl~«,0!~Enl1«!. ~6e!

Using Eq.~4b! one has for Eq.~6d! @replacingZnl(q
2) with Nnl plus a correction#
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Bnl5Nnl@ ln~4meEp /M pPnl!1 ln~Pnl /Qnl!#1Znl~0!ln$4meEpQnl /@M p~ I nl
op!2#%

1E
Qnl

Pnl
dq2/q2H (

n8 l 8,nl
U f nl,n8 l 8

0
~q2!U2 (

n8 l 8.nl
U f nl,n8 l 8

0
~q2!UJ

5@Znl~0!1Nnl# ln~4meEp /M pI nl
op!1@Nnl2Znl~0!# ln~ I nl

op/Qnl!

1E
Qnl

Pnl
~dq2/q2!H (

n8 l 8,nl
U f nl,n8 l 8

0
~q2!U2 (

n8 l 8.nl
U f nl,n8 l 8

0
~q2!UJ . ~6f!

The first term in Eq.~6f! is that which was obtained by Betheet al. @10#, the second term is the effect of the difference betwe
the summed OOS and the occupation number; it also depends on the choice of low momentum transfer cutoff. The t
is a consequence of the forbidden GOS created by the Pauli exclusion principle; its contribution would be zeroPnl
5Qnl . These additional terms contribute to an effective subshell Bethe mean excitation energy,I nl :

2@Znl~0!1Nnl# ln~ I nl!52@Znl~0!1Nnl# ln~ I nl
op!1@Nnl2Znl~0!# ln~ I nl

op/Qnl!

1E
Qnl

Pnl
~dq2/q2!H (

n8 l 8,nl
U f nl,n8 l 8

0
~q2!U2 (

n8 l 8.nl
U f nl,n8 l 8

0
~q2!UJ , ~6g!
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whereI nl
op is determined by the OOS in Eq.~6d!.

If one averages over initial states and sums over fi
states then

f nl,n8 l 8
0

~q2!52 f n8 l 8, nl
0

~q2!, ~7a!

which is not immediately obvious, since there is no involv
ment of statistical weights in Eq.~7a!. To demonstrate its
validity, consider thatR is the GOS from a filled subshe
~1!, with n10 electrons to an empty subshell~2!, with n20
holes. For the transition from a filled~2! subshell to an
empty ~1! subshell the GOS is2R, since in both cases th
initial term is a 1S. For a transition from a partially filled~1!
l

-

subshell withn1 of n10 electrons to a partially filled~2! sub-
shell with n2 of n20 electrons, the GOS isR(n1 /n10)(n20

2n2)/n20. But the part of the GOS lost due to the Pau
principle is that due to the partial occupancy of the fin
level. If ~2! were unoccupied the GOS would beR(n1 /n10),
so the forbidden GOS isR(n1 /n10)(n2 /n20). The result is
symmetrical in~1! and ~2!; for the reverse transition on
finds the same result with a minus sign. This justifies E
~7a!, and Eq.~7a! ensures that the GOS sum rule is preserv
in Eq. ~4b! since if n0 is the outermost partially occupie
level, and we sum overnl for occupied and partially occu
pied shells,
(
n51,l 50

n0 F (
n8 l 8,nl

U f nl,n8 l 8
0

~q2!U2 (
n8 l 8.nl

U f nl,n8 l 8
0

~q2!UG5 (
n51,l 50

n0

(
n8 l 8,nl

u f nl,n8 l 8
0

~q2!u2 (
n51,l 50

n0

(
n8 l 8.nl

u f nl,n8 l 8
0

~q2!u

5 (
n52,l 50

n0

(
n8 l 8,nl

u f nl,n8 l 8
0

~q2!u2 (
n51,l 50

n021

(
n8 l 8.nl

u f nl,n8 l 8
0

~q2!u.

~7b!

But by Eq.~7a!

(
n52,l 50

n0

(
n8 l 8,nl

u f nl,n8 l 8
0

~q2!u5 (
n52,l 50

n0

(
n8 l 8,nl

u f n8 l 8,nl
0

~q2!u5 (
n851,l 850

n021

(
nl.n8 l 8

u f n8 l 8,nl
0

~q2!u, ~7c!

which by an interchange of summation variables is

(
n52,l 50

n0

(
n8 l 8,nl

u f nl,n8 l 8
0

~q2!u5 (
n51,l 50

n021

(
n8 l 8.nl

u f nl,n8 l 8
0

~q2!u ~7d!

so that Eq.~7b! reduces to zero.
We can rewrite Eq.~6g! as
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2@Znl~0!1Nnl# ln~ I nl!52@Znl~0!1Nnl# ln~ I nl
op!1@Nnl2Znl~0!# ln~ I nl

op/Qnl!

1F2 (
n8 l 8,nl

f n8 l 8,nl
0

~0!1 (
n8 l 8.nl

f nl,n8 l 8
0

~0!G ln~ I nl
op/Qnl!

1E
Qnl

Pnl
~dq2/q2!H (

n8 l 8,nl

f n8 l 8,nl
0

~q2!2 (
n8 l 8.nl

f nl,n8 l 8
0

~q2!J , ~8a!

where all the FOS are now positive. First, I examine dipole allowed FOS, wheref nl,n8 l 8
0 (0)Þ0, where there is a scal

parameter determined by the more negative energy in the transition, i.e.,

f n8 l 8,nl
0

~q2!5 f n8 l 8,nl
0

~q2/En8 l 8! ~8b!

so that for dipole allowed transitions

f n8 l 8,nl
0

~q2!5 f n8 l 8,nl
0

~0!@ f n8 l 8,nl
0

~q2/En8 l !/~ f n8 l 8,nl
0

~0!!#. ~8c!

Then

2@Znl~0!1Nnl# ln~ I nl!52@Znl~0!1Nnl# ln~ I nl
op!1Bnl

D , ~9a!

where

Bnl
D 52 (

n8 l 8,nl

f n8 l 8,nl
0

~0!ln$I nl
op/@En8 l 8T~n8l 8,nl,Pnl /En8 l 8 ,Qnl /En8 l 8!#%

1 (
n8 l 8.nl

f nl,n8 l 8
0

~0!ln$I nl
op/@EnlT~nl,n8l 8,Pnl /Enl ,Qnl /Enl!#% ~9b!
u-
ow
his

one
with

T~n8l 8,nl,y,x!5 ln~x!1E
x

y

~dz/z!$ f n8 l 8,nl
0

~z!/@ f n8 l 8,nl
0

~0!#%

5T1~x!1T2~y!, ~9c!

where

T1~x!5E
x

1

~dz/z!@ f n8 l 8,nl
0

~z!/~ f n8 l 8,nl
0

~0!!21# ~9d!

and
T2~y!5E
1

y

~dz/z!$ f n8 l 8,nl
0

~z!/@ f n8 l 8,nl
0

~0!#21%1 ln~y!.

~9e!

Because f n8 l 8,nl
0 (z) decreases rapidly as z→`,

ln@T(n8l8,nl,y,x)# will be independent ofy, if y5Pnl /En8 l 8 is
sufficiently large, i.e.,T2(y) approaches a constant asy in-
creases. Similarly, one expects ln@T(n8l8,nl,y,x)# to be inde-
pendent ofx, if x5Qnl /Enl5(M P/4me)(Mnl11)2Enl /EP
is sufficiently small, i.e.,T1(x) approaches a constant asx
goes to zero. Clearly such choices~sufficiently small, suffi-
ciently large! can be asserted in an analytic theory; in n
merical calculations and experiment one needs to kn
when these asymptotic limits are reached. I return to t
point in the next section.

Assuming the asymptotic criteria have been satisfied
can write Eq.~9b! as
Bnl
D 52 (

n8 l 8,nl

f n8 l 8,nl
0

~0!ln$I nl
op/@En8 l 8T~n8l 8,nl !#%1 (

n8 l 8.nl

f nl,n8 l 8
0

~0!ln$I nl
op/@EnlT~nl,n8l 8!#%

2 (
n8 l 8.nl

f nl,n8 l 8
0

~0!ln$I n8 l 8
op /@EnlT~nl,n8l 8!#%1 (

n8 l 8.nl

f nl,n8 l 8
0

~0!ln$I nl
op/@EnlT~nl,n8l 8!#%

5 (
n8 l 8.nl

f nl,n8 l 8
0

~0!ln~ I nl
op/I n8 l 8

op
!. ~10!

Then in the asymptotic limit
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2@Znl~0!1Nnl# ln~ I nl!52@Znl~0!1Nnl# ln~ I nl
op!1 (

n8 l 8.nl

f nl,n8 l 8
0

~0!ln~ I nl
op/I n8 l 8

op
! ~11a!

and if we sum overnl, we have

2Z ln~ I !5(
nl

@Znl~0!1Nnl# ln~ I nl!5(
nl

@Znl~0!1Nnl# ln~ I nl
op!2(

nl
(

n8 l 8.nl

f nl,n8 l 8
0

~0!ln~ I nl
op/I n8 l 8

op
!. ~11b!

ExpressingZnl(0) in terms of the FOS one finds

2Z ln~ I !52(
nl

Nnl ln~ I nl
op!1(

nl F (
n8 l 8,nl

f n8 l 8,nl
0

~0!2 (
n8 l 8.nl

f nl,n8 l 8
0

~0!G ln~ I nl
op!2(

nl
(

n8 l 8.nl

f nl,n8 l 8
0

~0!ln~ I nl
op/I n8 l 8

op
!,

~11c!

which with an obvious interchange of variables becomes

2Z ln~ I !52(
nl

ln~ I nl
op!FNnl1 (

n8 l 8,nl

f n8 l 8,nl
0

~0!2 (
n8 l 8.nl

f nl,n8 l 8
0

~0!G52(
nl

Znl~0!ln~ I nl
op!. ~11d!
th
ci

on

e
S

t

med
of

in
,

n,

r

fit.
Thus the Bethe mean excitation energy is identical to
Bethe mean excitation energy calculated with optical os
lator strengths as first demonstrated by Peek@12#.

The nondipole terms in the FOS contribute a correcti
Bnl

Q , to the RHS of Eq.~8a!, given by

Bnl
Q 5E

Kmin
2

Pnl
~dq2/q2!H (

n8 l 8,nl

f n8 l 8,nl
ond

~q2!

2 (
n8 l 8.nl

f nl,n8 l 8
ond

~q2!J , ~12a!

where scaling is assumed

f n8 l 8,nl
ond

~q2!5 f n8 l 8,nl
ond

~q2/En8 l 8!. ~12b!

Since

f n8 l 8,nl
ond

~0!50, ~12c!

I continue the analysis withf nl,n8 l 8
ond (q2)umax5fnl,n8l8

ond umax,
rather than withf n8 l 8,nl

ond (0). Then

Bnl
Q 5 (

n8 l 8,nl

f n8 l 8,nl
ond

~q2!umaxQ~n8l 8,nl,Pnl /En8 l 8!

2 (
n8 l 8.nl

f nl,n8 l 8
ond umaxQ~nl,n8l 8,Pnl /Enl!, ~13a!

where

Q~n8l 8,nl,x!5E
0

x

~dy/y!@ f n8 l 8,nl
ond

~y!/ f n8 l 8,nl
ond

~y!umax#.

~13b!

In Eq. ~13b! I have set the lower limit to zero since th
nondipole FOS is zero in this limit. Since the nondipole FO
drops off rapidly with largey, there is somex(Pnl) above
e
l-

,

which Q(n8l 8,nl,x) is unchanging. In this asymptotic limi
whereQ(n8l 8,nl,x)5Q(n8l 8,nl,`),

Bnl
Q 5 (

n8 l 8,nl

f n8 l 8,nl
ond

~q2!umaxQ~n8l 8,nl,`!

2 (
n8 l 8.nl

f nl,n8 l 8
ond umaxQ~nl,n8l 8,`!, ~14!

which vanishes when one interchanges primed and unpri
indices in one of the above sums, completing the proof
Eq. ~11d!.

III. THE ASYMPTOTIC LIMITS IN Al

To illustrate the asymptotic limits assumed in Sec. II,
Fig. 2~a! I show the calculated dipole FOS ratio
f n8 l 8,nl

0 (x)/@ f n8 l 8,nl
0 (0)# for transitions in neutral Al, where

x5q2/Enl . The shapes vary from transition to transitio
with zeros occurring as a function ofx5q2/Enl for the
2s-3p and 2p-3s transitions. In Fig. 2~b! I showT1(x) ver-
susx for the six Al dipole transitions; it is clear thatT1(x)
saturates forx<0.01. In Fig. 2~c! I show T2(x) versusx,
which saturates forx>10. These are sufficient conditions fo
the validity of the asymptotic approximation. From Eq.~5b!
the conditionQnl /Enl<0.01 requires

Qnl /Enl5~M p /me!~Mnl11!2Enl /Ep<0.01 ~15a!

or

Ep>100~M p /me!~Mnl11!2Enl . ~15b!

For Al with M1s53 andE1s5112 Ry, the sufficiency con-
dition in Eq. ~15b! is EP.109 eV.

In Fig. 3 I show f n8 l 8,nl
ond (y)/ f n8 l 8,nl

ond (y)umax for the mono-
pole FOS in Al, wherex5q2/Enl . The points are explicit
calculations while the solid curve is a rough universal
The integral is discussed in the Appendix. ForPnl
.4En8 l 8 , W(n8l 8,nl,x)53.15 ~but notp!.
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IV. THE ASYMPTOTIC ENERGY LOSS IN STRUCTURED
ION COLLISIONS

When the projectile in a collision carries electrons an
ditional energy loss can occur due to excitation and ioni
tion of the projectile. In the center-of-mass system~CM! the
energy loss expression is symmetrical in the two collis
partners. At high energy the dominant contributions to
ergy loss arise from elastic scattering of one partner
ionization ~and, to a lesser extent, excitation! of the other
projectile@13#. In the CM system the contribution to energ

FIG. 2. ~a! Calculated Al dipole GOS shapes for transitio
forbidden by the Pauli exclusion principle~FOS!. The normalizing
values~at q250! are tabulated. The 1s-3p and 3s-3p shapes are
almost identical.~b! The integralT1(x) of Eq. ~9d! for the dipole
FOS of Fig.~2a! showing the saturation asx→0. ~c! The integral
T2(x) of Eq. ~9e! for the dipole FOS of Fig.~2a! showing the
saturation asy→`.
-
-

n
-
d

loss from elastic scattering of particle~a! and excitation and
ionization of thenl subshell of ion~b! is

2~1/n!
dE

dxU
es,nl

5@4p~a0!2~Mr /me!/Er #Bes,nl ,

~16a!

where

Bes,nl5(
n8 l 8

E
Kmin

2

Kmax
2

~dq2/q2! f nl,n8 l 8~q2!uFES~q2!u21E
0

Er2Enl

3d«E
Kmin

2

Kmax
2

~dq2/q2!
d

d«
f nl~«,q2!uFES~q2!u2,

~16b!

whereMr andEr are the reduced mass and energy, and
elastic scattering factorFES for particle ~a! is

FES~q2!5Za2Fa~q2!, ~17a!

where

Fa~q2!5(
i

nai^ iauexp@ iqW •rW#u ia& ~17b!

and nai is the occupation number of thei th subshell of ion
~a!. For uqu→0, Fa(q2)→Za2za , andFES→za the number
of electrons on the ion, while foruqu→`, Fa(k2)→0, and
FES→Za , the nuclear charge. Proceeding as with Eq.~6! one
finds

FIG. 3. Calculated Al monopole GOS forbidden by the Pa
exclusion principle. The points are the calculations; the unlabe
figure is the fitting functionf (x)/ f (x)max, while Q is the integral of
Eq. ~13b!.
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Bes,nl5NnlE
Pnl

EB
~dq2/q2!uFES~q2!u21E

Qnl

Pnl
~dq2/q2!Znl~q2!uFES~q2!u21~za!2

3F (
n8 l 8

f nl,n8 l 8~0!ln~Qnl /Kmin
2 !1E

0

«P
d«

d

d«
f nl~«,0!ln~Qnl /Kmin

2 !G ~18a!

or

Bes,nl5NnlE
Pnl

EB
~dq2/q2!uFES~q2!u21E

Qnl

Pnl
~dq2/q2!Znl~q2!uFES~q2!u21~za!2Znl~0!ln$4meErQnl /@Mr~ I nl

op!2#%, ~18b!

whereI nl
op is Bethe mean excitation energy calculated with optical oscillator strengths in Eq.~6e!, andEB54meEr /Mr . Using

Eq. ~4b! one has for Eq.~18b! @replacingZnl(q
2) with Nnl plus a correction#

Bes,nl5NnlE
Qnl

EB
~dq2/q2!uFES~q2!u21~za!2Znl~0!ln$4meErQnl /@Mr~ I nl

op!2#%

1E
Qnl

Pnl
~dq2/q2!uFES~q2!u2H (

n8 l 8,nl
U f nl,n8 l 8

0
~q2!U2 (

n8 l 8.nl
U f nl,n8 l 8

0
~q2!UJ . ~18c!

The last term in Eq.~18c! will vanish in the asymptotic limit by the arguments given in Sec. II. Then we have

Bes,nl5NnlE
Qnl

EB
~dq2/q2!uFES~q2!u21~za!2Znl~0!ln@EBQnl /~ I nl

op!2#

5Nnl~Za!2 ln~EB /Qnl!2NnlE
Qnl

EB
~dq2/q2!@~Za!22uFES~q2!u2#

1~za!2Znl~0!ln@~EB!2/~ I nl
op!2#2~za!2Znl~0!ln@EB /Qnl#

5@Nnl~Za!22~za!2Znl~0!# ln~EB /Qnl!12~za!2Znl~0!ln@EB /I nl
op#2NnlE

Qnl

EB
~dq2/q2!@~Za!22uFES~q2!u2#. ~19!

The last term in Eq.~19! is of the formdq/q2 at largeq and therefore the integral will go to a constant asEB→`. Then

Bes,nl5@Nnl~Za!22~za!2Znl~0!# ln~EB /I nl
es!12~za!2Znl~0!ln@EB /I nl

op#

1@Nnl~Za!22~za!2Znl~0!# ln~ I nl
es/Qnl!2NnlE

Qnl

EB
~dq2/q2!@~Za!22uFES~q2!u2# ~20a!

and if we defineI nl
es by

@Nnl~Za!22~za!2Znl~0!# ln~ I nl
es!5@Nnl~Za!22~za!2Znl~0!# ln~Qnl!1NnlE

Qnl

EB
~dq2/q2!@~Za!22uFES~q2!u2# ~20b!
the second line in Eq.~20a! will vanish. Then

Bes,nl5@Nnl~Za!22~za!2Znl~0!# ln~EB /I nl
es!

12~za!2Znl~0!ln@EB /I nl
op#. ~20c!

If we define
~Zb2zb!ln@ I ~a,b,1!#5(
nl

Nnl ln~ I nl
es! ~21a!

and

~Zb2zb!ln@ I ~a,b,2!#5(
nl

Znl~0!ln~ I nl
es! ~21b!
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TABLE I. Values of the subshell parametersZnl(0) andI nl(0) ~in eV! for Li ions, and neutral Zn and Au
calculated with optical oscillator strengths.

Level \ Ion or Atom Li12 Li11 Li10 Zn Au

1s 1.000/135. 2.003/100.9 2.004/107.9 1.373/15950.0 1.173/103 00
2s 1.000/3.287 1.321/2702.0 1.119/24800.0
2p 5.411/1402.0 3.018/17890.0
3s 0.879/552.9 1.137/7196.0
3p 3.780/361.9 4.273/5362.0
3d 15.08/112.9 9.586/3583.0
4s 2.173/5.695 1.055/1918.0
4p 3.947/1630.0
4d 8.290/1220.0
4 f 24.84/535.2
5s 0.643/434.7
5p 2.274/282.5
5d 16.63/45.93
6s 1.124/3.774

Total 1.000/135.0 2.003/100.9 3.004/33.74 30.03/250.5 79.11/660.6
m

nt
res-

o-

-
n
n
ies

rgy
ers
then summing overnl leads to

Ba,b
es 5(

nl
Bes,nl5~Zb2zb!$2~za!2 ln~4meEr /MrI b!

1~Za!2 ln@4meEr /MrI ~a,b,1!#

2~z!2 ln@4meEr /MrI ~a,b,2!#%, ~22!

where I b is the Bethe mean excitation energy for ion/ato
~b! given by Eq.~1e!. Combining terms leads to

Ba,b
es 5~Zb2zb!$~za!2 ln~4meEr /MrI b

es!

1~Za!2 ln@4meEr /MrI ~a,b,1!#%, ~23a!

where
e
u,
I b
es5~ I b!2/I ~a,b,2!. ~23b!

Thus, the simple Bethe logarithm for the SP of incide
structureless projectiles has been generalized to an exp
sion involving two logarithms. Both logarithm terms are pr
portional to Zb2zb , the number of electrons on ion~b!,
while one logarithm is proportional to (za)2 while the other
term is proportional to (Za)2, the limits of the elastic scat
tering factor for ion~a!. The single Bethe mean excitatio
energy for ion~b! is replaced by a different mean excitatio
energy in each logarithm, both new mean excitation energ
reflecting properties of both ions~a! and ~b!.

Of course the generalized Bethe logarithm in the ene
loss expression is symmetrical in the two collision partn
in the CM system and is
2~1/n!
dE

dxU
es

5@4p~a0!2~Mr /me!/Er #~Ba,b
es 1Bb,a

es !5@4p~a0!2~Mr /me!/Er #„~Zb2zb!$~za!2 ln~4meEr /MrI b
es!

1~Za!2 ln@4meEr /MrI ~a,b,1!#%1~Za2za!$~zb!2 ln~4meEr /MrI a
es!1~Zb!2 ln@4meEr /MrI ~b,a,1!#%….

~24!
In

in

5

This formula is similar to a simpler one given in Eq.~23b! of
Ref. @13#. They differ in the choice ofI values in the de-
nominators.

V. COMPARISON OF EXPLICIT CALCULATIONS AND
THE EXTENDED BETHE FORMULA

For the cases of Li ions on Zn and Au treated in Ref.@13#,
the Bethe mean excitation energies, extracted from the
plicit SP calculations for protons on Li ions, Zn, and A
x-

were 33.66, 103.6, and 141.2 eV, for Li10, Li11, and Li12,
respectively, and 271.2 eV for Zn and 860 eV for Au.
Table I are listedZnl(0) and I nl

op values for the ions and
atoms calculated with optical oscillator strengths~OOS!. For
all the atoms or ions the summedZnl(0) from the raw OOS
is close to the number of electrons. For Li10 and Li11, the
total I value, extracted from the proton calculations, is
excellent agreement with theI value calculated with the
OOS. For Li12 I use nine times the hydrogenic value of 1
eV, quoted by Dalgarno@11#, for the OOS value. This is
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TABLE II. Values of the subshell parametersI nl
es calculated with the ionization energy of one ion and t

modified elastic scattering factor of the other for Li ions on Zn. The generalized mean excitation en
I (a,b, j ) and I (b,a, j ,) are also listed.

Level \ Ion or atom Li12 Zn Li11 Zn Li10 Zn

1s 511.96 221.68 511.91 260.89 511.91 253.77
2s 115.33 191.31 511.87 164.37
2p 169.95 206.20 159.78
3s 43.43 150.27 148.73
3p 58.81 163.87 148.20
3d 27308.0 338.62 147.96
4s 372.75 227.50 147.95

I (...1)/I (...2) 511.96/
511.96

713.13/
1936.2

511.90/
514.71

231.45/
258.81

511.90/
514.38

156.96/
154.75
ex

ed
e

e

er
re
n-
s

en

th
ti

t a

k

s

ns

n-
ss
e
ined
ng
es-

the
be

eV

en-
for
for

.
or

ss
the

nd
slightly smaller than the value 141.2 extracted from the
plicit calculations. For Zn and Au theI values calculated
with the OOS are significantly lower than theI values ex-
tracted from the explicit calculations. In Sec. III we obtain
the criterion Qnl /Enl<0.01 to assure that we are in th
asymptotic region; I use that condition, and theEnl values
used in the explicit calculations@13#, along with theZnl(0)
values in Table I, to determineI nl

es in Eq. ~20b!. The calcu-
lations require elastic scattering factors and those of the
plicit calculations were used@13#. The Zn elastic scattering
factor is shown in Ref.@14#. In Table II I list the values of
I nl

esfor each pair in the Li ion-neutral Zn collisions. Consid
first the case of neutral Zn, which is elastically scatte
from neutral Li, which is excited or ionized. For the eige
values of the 1s and 2s subshells of Li the binding energie
are much less than 10 Ry, soQnl50.01Enl!1.0; since the
argument of the integral in Eq.~20b! is '(Za)2/q2 for small
q2 we have

@Nnl~Za!22~za!2Znl~0!# ln~ I nl
es!

5@Nnl~Za!22~za!2Znl~0!# ln~Qnl!

1Nnl~Za!2E
Qnl

1

~dq2/q2!

1NnlE
1

EB
~dq2/q2!@~Za!22uFES~q2!u2#. ~25!

For za50, the first integral in Eq.~25! will cancel the ln(Qnl)
term leaving only the second integral, which is independ
of Enl , and independent ofEB for EB large. TheI nl

es value
does depend on the elastic scattering factor. Thus for all
Li ions theI nl

es value is 512 eV because the neutral Zn elas
scattering factor is used throughout. The same argumen
plies to the 3s-4s levels of Zn. For the 2s and 2p levels of
Zn Qnl'O(1), and theabove argument begins to brea
down. The same arguments apply to ions except thatzaÞ0.
But for Qnl<1, the (za)2Znl(0)ln(Qnl) term is negative, and
extremely large whenZnl(0).Nnl . This is the origin of the
large I nl

es value for the 3d subshell in Table II, and account
for the large increase inI (b,a,1) andI (b,a,2) for Zn as the
degree of ionization of Li is increased. Explicit calculatio
-

x-

d

t

e
c
p-

of the contribution of elastic scattering of one ion and io
ization and excitation of the other ion to the total energy lo
@13# are shown as solid lines in Fig. 4 for Li ions on Zn. Th
open and solid circles, triangles, and squares are obta
with Eqs.~23!. For the 3 upper curves, for elastic scatteri
of Zn, the results with the approximate energy loss expr
sion of Eq.~23a! ~solid circles, triangles, and squares! are in
excellent agreement with the numerical results above
peak in the approximate expression at 4 MeV. This should
compared with differences of as much as 50% at 100 M
with the approximation shown in Fig. 7 of Ref.@13#. This
improvement is due entirely to the new mean excitation
ergies. On the other hand for the lower three curves,
elastic scattering of Li ions, there is excellent agreement
Li12, while the approximate formula of Eq.~23a! overesti-
mates the energy loss for elastic scattering of Li10 and Li11.
This is a consequence ofI (b,a,1) being lower thanI b for
Zn.

In Table III I show similar calculations for Li ions on Au
The detailed results for Au are similar in origin to those f

FIG. 4. A comparison of the explicit calculation of energy lo
for elastic scattering of one ion plus ionization and excitation of
other ion with the analytic results~circles, triangles, and squares!
from Eq.~23a!. The solid points are for elastic scattering of Zn, a
the open points for elastic scattering of Li ions.
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TABLE III. Values of the subshell parametersI nl
es calculated with the ionization energy of the ion and t

modified elastic scaterring factor of the other for Li ions on Au. The generalized mean excitation ene
I (a,b, j ) and I (b,a, j ) are also listed.

Level \ Ion or Atom Li12 Au Li11 Au Li10 Au

1s 1027.8 808.75 1027.6 827.80 1027.6 824.53
2s 233.90 280.11 1027.6 274.98
2p 222.20 273.57 269.32
3s 133.59 203.91 188.40
3p 150.97 208.76 185.37
3d 208.40 220.17 180.74
4s 80.95 174.67 155.61
4p 96.17 182.25 153.88
4d 129.24 194.23 151.63
4 f 83 0674.0 361.67 148.73
5s 31.14 137.19 148.78
5p 30.30 137.57 148.17
5d 71 7099.0 400.84 147.96
6s 506.70 237.14 147.95

I (...1)/I (...2) 1027.8/
1027.8

1843.4/
13 426.0

1027.6/
1033.5

251.01/
288.82

1027.6/
1033.5

173.94/
164.73
lt
io
re
es

ul

-
ap
re
ith

by a

ing
ler
t

re-
Li
les,

ef.
d

e in

ss
th
s
nd

d
rom
om
Zn. The 4f and 5d levels show an enormous increase inI nl
es

with increasing degree of ionization. The numerical resu
on energy loss due to elastic scattering of one ion and
ization and excitation of the other for Li ions on Au a
shown as solid lines in Fig. 5. The open and solid circl
triangles, and squares are obtained with Eq.~23a!. For the
three upper curves, for elastic scattering of Au, the res
with the approximate energy loss expression of Eq.~23a!
~solid circles, triangles, and squares! are in excellent agree
ment with the numerical results above the peak in the
proximate expression at 10 MeV. This should be compa
with differences of as much as a factor of 2 at 100 MeV w
the approximation shown in Fig. 10 of Ref.@13#. For the

FIG. 5. A comparison of the explicit calculation of energy lo
for elastic scattering of one ion plus ionization and excitation of
other ion with the analytic results~circles, triangles, and square!
from Eq.~23a!. The solid points are for elastic scattering of Au, a
the open points for elastic scattering of Li ions.
s
n-

,

ts

-
d

lower three curves, for elastic scattering of Li10 and Li11 the
approximate expression overestimates the energy loss
factor of 2 at 10 MeV and by 20% at 100 MeV. For Li12 the
agreement is better than 25% above 4 MeV. In compar
the lower curves in Fig. 5 with the curves using a simp
model shown in Fig. 10 of Ref.@13#, one might conclude tha
the simpler model is a better approximation. In Fig. 6 I show
a continuation of the calculations to the 100–1000-MeV
gime. The curves are the explicit calculations with the
ions being elastically scattered, the open circles, triang
and squares are obtained using Eq.~23a!, and the solid
circles, triangles, and squares are obtained from Ref.@13#. It
is seen that the results with the simple expression of R
@13# drift below the explicit results, while there is improve
agreement between the results of Eq.~23a! and the explicit
calculations at high energy. The explanation appears to b

e FIG. 6. Results of Fig.~5! for elastic scattering of Au, extende
to 1000 MeV. The open circles, triangles, and squares are f
Eq. ~23a!, while the solid circles, triangles, and squares are fr
Ref. @13#.
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the explicit calculations; for Li ions theL-shell ionization
cross section peaks at 15 MeV, and theK-shell ionization
cross section peaks at 150 MeV, indicating than 100 M
may not be in the asymptotic regime.

VI. DISCUSSION

Results similar to these have been obtained by Kim
Cheng@15#, and by Crawford@16#. However, in both papers
there is an error that trivializes the SP calculation. For
ample, in their Eq.~17! Kim and Cheng@15# have an integral

E
a

b

f ~q!
dq

q
, ~26a!

where f (0) is not zero. Writing this as

E
a

b

@ f ~q!2 f ~0!#
dq

q
1E

a

b

@ f ~0!#
dq

q

5E
a

b

f ~q!
dq

q
1 f ~0!ln~b/a! ~26b!

and assuming that

E
0

a

@ f ~q!2 f ~0!#
dq

q
5O~a!5O~1/Ep!, ~26c!

then adding Eq.~26c! to Eq. ~26b! one has

E
a

b

f ~q!
dq

q
5E

0

b

@ f ~q!2 f ~0!#
dq

q
1 f ~0!ln~b/a!

2O~1/Ep!, ~26d!

wherea appears only in the log term. With Eq.~26d! @their
Eq. ~19!# Kim and Cheng@15# are able to immediately do th
sum rule and the rest is trivial. There is no involvement
shell structure except througha in the log term. However,
V

d

-

f

both qualities in Eq.~26c!, obtained by assuming thata is
small, are incorrect.a is not small.a is K2umin in Eq. ~3c!,
and at«max5Ep2Enl, amax5M pEpMe. This is also the mini-
mum value ofb5K2umax at the same«max, i.e., the upper and
lower limits on the momentum transfer integral define
smooth curve. But, in fact, one can use some knowledge
f (q) to find a lower maximum fora. For a sharply peaked
Bethe ridge one can argue that the maximuma is determined
as the value at whichK2umin intersects the Bethe ridge. Bu
this cannot be samll since the Bethe ridge extends to infin
An estimate is found by settingamax5« which leads to

amax5S 4me

M p
DEp,

which is also large, sinceEp can be large. Thus Eq.~26c! is
never valid for calculating SP, certainly not in the limitEp
→`.

Because of the effect of the sum rules in the SP form
one can get the leading term with a poor calculation, i.e.,
leading term in the first part of Eq.~24! is

~Zb2zb!@~za!21~Za!2# ln~4meEr /Mr ! ~27a!

and is also the leading term in Eq.~24! of Kim and Cheng
@15#. However, it is also the leading term in the SP appro
mation in Ref.@13# that merely assumes the dominance
elastic scattering plus ionization and the requirement that
result reproduce the proton results, i.e., the leading term
obtained with a poor calculation. The second term in the fi
part of Eq.~24! is

~Zb2zb!$2~za!2ln@~ I b!2/I ~a,b,2!#2~Za!2 ln@ I ~a,b,1!#%

52~Zb2zb!$2~za!2 ln~ I b!1~Za!2 ln@ I ~a,b,1!#

2~za!2 ln@ I ~a,b,2!#%. ~27b!

The first term in Eq.~27b! agrees with Kim and Cheng@15#,
but the second term,
2~Zb2zb!$~Za!2 ln@ I ~a,b,1!#2~za!2 ln@ I ~a,b,2!#%52~Za!2(
nl

Nnl ln~ I nl
es!1~za!2(

nl
Znl~0!ln~ I nl

es!

52(
nl

H @Nnl~Za!22~za!2Znl~0!# ln~Qnl!

1NnlE
Qnl

EB
~dq2/q2!@~Za!22uZa2Fa~q2!u2#J , ~27c!

should be compared with the second term in Kim and Cheng@15#

2~Zb2zb!@~za!21~Za!2# ln~GF!52~Zb2zb!H E
1

`

~dq2/q2!@~Za!22uZa2Fa~q2!u2#

2E
0

1

~dq2/q2!@ uZa2Fa~q2!u22~za!2#J . ~27d!
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For the case of unstructured projectiles, whereZa5za and
F(q2)50, both Eq.~27d! and Eq.~27c! are zero, immedi-
ately in Eq.~27d!, and in Eq.~27c! by the argument given in
Sec. II, but so is the poor approximation given in Ref.@13#,
since it is designed to reproduce the proton results. Howe
in general, Eqs.~27c! and~27d! are unlikely to be related, a
Eq. ~27d! depends on the target only through theZb2zb
multiplier, while in Eq.~27c! there is both theZb2zb mul-
tiplier and the dependence on the limit on the integral,Qnl ,
which depends on the subshells of the target~b!.

VII. CONCLUSIONS

In Sec. II I gave a direct proof of the assertion that t
Bethe mean excitation energy calculated with optical os
lator strengths is the same Bethe mean excitation energy
appears in stopping power formula. Peek@12# had earlier
given a proof using distribution theory to extract the fin
part of infinite integrals. The advantage of the direct proo
twofold. First, one has an explicit criterion as to when a
ymptotia is reached. In Sec. III I applied the asymptotic c
terion to Al, finding a proton energy of 1 GeV. Clearly th
asymptotic criterion is conservative. Second, the direct te
nique can be applied with confidence to more complica
asymptotic calculations. In particular, it allowed us to gen
alize the Bethe formula for structureless projectiles intera
ing with targets, to structured projectiles interacting with t
gets. In Sec. V I compared the generalized Bethe formu
with explicit calculations for Li ions interacting with neutra
Zn and Au. In the plane wave Born approximation, the e
ergy loss in these collisions is dominated by collisions wh
one of the ions is elastically scattered and the other exc
or ionized. The generalized Bethe formula for the ene
loss was found to be in excellent agreement with the do
nant of the two processes, where the heavier ion is elastic
scattered. For the second process, where the lighter io
elastically scattered, the generalized Bethe formula tende
overestimate the energy loss. It was hypothesized that
cause of this is that the PWBA calculations are n
asymptotic. To all this one must add the caveat that beca
of the large cross sections for elastically scattering
heavier ion and ionizing the lighter projectile, the light
projectile is rapidly stripped of electrons, and a scaled pro
treatment may suffice. However, this is true only when
lighter ion is the projectile, suffering multiple collisions. Th
results here are valid for Zn and Au incident on a Li targ
Application of these techniques to heavy ion projectiles
planned for the future.
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APPENDIX

The normalized quadrupole calculations of Fig. 3 can
fitted roughly by the curve

F~x!56x/~6x1u122xu3! ~A1!

and the integral in Eq.~13b! can be written as

Q~n8l 8,nl,y!5E
0

y

~dx/x!F~x!

5E
0

y

~dx/x!$6x/@6x1~122x!3#%

~A2a!

if y<1/2, and

Q~n8l 8,nl,y!5E
0

1/2

~dx/x!$6x/@6x1~122x!3#%

1E
1/2

y

~dx/x!$6x/@6x1~2x21!3#%

~A2b!

if y>1/2. With the change of variables 122x5Z in the first
integral and 2x215Z in the second, the denominator in th
integrals areZ323Z13, andZ313Z13, which can be fac-
tored into (Z1Z0)(Z22ZZ01S) with Z052.1038 andS
5(Z0)223 in the first integral, andZ050.817 73 andS
531(Z0)2 in the second integral. Then with the substitutio
w5Z1Z0 , one can rewrite the integrals in Eqs.~A2a! and
~A2b! as the integral

I 53E
L

U

~dw/w!1/$w223Z0w13@~Z0!261#% ~A3!

where the plus sign is for the second integral and the mi
sign for the first. This is a tabulated integral so

I 5„1/$2@~Z0!261#%…ln$w2/uw223Z0w13@~Z0!261#u%

16$Z0 /@3~Z0!2612#1/2%

a tan$~2W23Z0!/@3~Z0!2612#1/2%uL
U . ~A4!
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