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Bethe stopping-power formula for structured projectiles
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It is known that the energy loss in ion-atom collisions is dominated by elastic scattering of one collision
partner and excitation or ionization of the second. This is true for both structured and structureless projectiles.
Here, | show that this fact leads to a relatively simple extension of the Bethe stopping-power formula for
structureless projectiles to structured projectiles. The formula replaces the Bethe mean excitation energy with
two other mean energies which reflect the elastic scattering factor of the otherwise structureless projectile. The
expression is symmetrical in the center-of-mass system. The formula is in excellent agreement with numerical
calculations, when the numerical calculations are asymptotic. To obtain the extended Bethe stopping formula,
it is necessary to evaluate integrals over energy and momentum transfer involving generalized oscillator
strengths, properly treating the energy-dependent lower limit in the momentum transfer integral. | do this by a
constructive procedure using two cutoffsstead of the traditional opeén momentum transfer. Peek had
earlier developed a procedure to address the question of whether the Bethe mean excitation energy calculated
with optical oscillator strengths is the same as the Bethe mean excitation energy appearing in the stopping
power formula. | show that the result of the constructive procedure agrees with the result of Peek in the
asymptotic limit, and | develop a criterion to determine the asymptotic I{i8it050-294{®8)05304-9

PACS numbd(s): 34.50.Bw, 34.10tx

[. INTRODUCTION where M is the reduced mass; the Bethe mean excitation
energy for the subshell is defined by
Stopping-powefSP measurements on thin solids with an g

accuracy of better than 1% have shown significant, and as
yet unegplained, differences between the Béglﬂemean ex- Zy(0)In(ly) = ( > +f d8> Je [(8.0In(Ente).
citation energy () calculated from atomic optical oscillator (1b)
strengthd2—4] (OOS or extracted from SP calculations us-
ing the generalized oscillator strend®OS formulation of  (h k/27r)2:2meEp, with E, the projectile energy, angl, is
the plane wave Born approximatigPWBA), and that in- a momentum cutoff given by
ferred from measurements on solis—7]. For example,
with OOS one findd ~124 eV for Al [2—4], with the GOS (hgn/2m)2=2m.E,,. (10
one findsl =~ 132 eV for Al[8], while the value inferred from
thin foil measurements ik~ 163—165 e\[5-7]. A possible  The definition of the cutoff used here differs from Dalgar-
explanation for the discrepancy is that thealue calculated no’s [11] Eq. (13) by the use oim, in place of the reduced
with the OOS is not theé value of a SP experiment. In the mass M. At the cutoff the squared momentum transfer
course of analyzing explicit PWBA subshell stopping-powerequals the subshell ionization energy, in Rydberg unitg,|f
calculationg4,8], two features stood out. First, as illustrated were much larger than this, one could not approximate the
in Figs. (99-(11) of Ref. [9], for 4f and & subshells, the GOS at smallg? with the OOS in Eq(1b) (which, in any
OOS is often not a good approximation to the GOSdér case, is a dubious approximation if the OOS is a poor ap-
<E,, whereE,, is the subshell ionization energy agds  proximation forq<gg). The one-electron GOS for ioniza-
the momentum transfer, both in Rydberg units. Second, withion pernl electron perl’ continuum hole is defined by
the leading term in the subshell SP of the form
Z(nl)In(4mE,/M,), it proved impossible to fit the calcula- d , o
tions with either the choic(nl)=Z.(0), the subshell  gg 'm(&:a%1")=[(En+e)/a?]Knllexpliq-r)el )
OO0S summed over excited statasmoccupied or partially (1d)
filled subshellg or with Z(nl)=N,,, the subshell occupa-
tion number. The fittedZ(nl) was generally close to Wwith asimilar definition for the excitation GOS. If one makes
1[Z,,(0)+ N, ]. Just such a factor had been found earlier bythe further assumption that, =Z,(0)=Z2,,, Eq.(1a sim-
Bethe etal. [10]. The difficulty with using Z(nl)  plifies to
=1[Z,(0)+N,, ] is thatZ,,(0) is relevant to small momen- 22
tum transfer collisions andll,, to large momentum transfer Zny In[2(h72m)"KEIM L ] =Zpy IN(4EpmMe /Mol ),
collisions. Then if one applies a traditional analysis, such as

:if:)ar;[atl)ftoDalgarnc[ll], to the subshell SP, the SP is propor- where the cutoffs drop out of the final result. Further, with

Np) In(kae/Mqnl)+Zn|(o)|n[(h/277)2kqnl/MInl]l(la) ZIn()=2, Z,(0)In(1,) (1)
nl

(le
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one defines the Bethe mean excitation energy based on OOS. K2max
However, not only is the OOS not a good approximation 1 1
to the GOS fom?’<E,,, but, in generalZ,,(0)#N,,, with A
the difference particularly large fat andf subshells. Then
Eq. (18 becomes
Eg |--~----—————mmm
%[an+znl(o)]|n(4Epme/Mplnl)
+%[an_znl(o)]ln[zmelnll(hqnllz'“')z]- (28
On summing Eq.(2a) over subshells, one has in place of ) Pnf
Egs.(1d) and(le c '
1 |
|
|
Z IN(4E,me/M 1)+ 32 [Npy—Zn(0)1IN(4Eme /Ml o) i
nl EnQ - .
Qng i
32 [No=Zn(0)In[2mel oy /(hn/27)?] S
Ka2pmin Kz':‘i" : : :
0 1 1 1
=Z IN(4Epme/Mpl)+ 3> [Ny—Zy(0)] 0 En) Ep Ea Ep
nl €
XIn(4Epme /M Ey)). (2b) FIG. 1. Sketch of the region of the—K? plane between the

curvesC, andC, where the GOS is significant. At largethe GOS

Unless it can be shown that the second term in &tp) is peaked on the Bethe ridge, where K2, The cutoffs discussed
vanishes, it will contribute an additional term to the Bethein Sec. Il areP,, and Q. At Qu(Pn)=(K?)mn, One hasep
mean excitation energy. =(4McEpQni/Mp) "2 [ep=(4MEpPy /Mp) ™). At Eg, (K?)min

Betheet al. [10] did discuss but did not evaluate the ad- intersects the Bethe ridge andEg=(4m.Ep/Mp)—E,
ditional term in Eq.(2b). Peek[12] continued the analysis of +2(MeEp/Mp)[(1—MpEy /mEp)Y*~1)~4mEp/Mp.
Ref.[10], and in a tour-de-force, used distribution theory to
evaluate the finite part of divergent integrals, and avoidingned for the case of Al. In Sec. IV the analysis of Sec. Il is
momentum cutoffs, explicit asymptotic limits, or any discus-extended to the case of a structured projectile, leading to an
sion of the interchange of limits of energy and momentumextended Bethe formula. In Sec. V the extended Bethe for-
integrals, concluded that the second term in Ep) does mula is compared with PWBA calculations for Li ions inci-
vanish. Peek’'$12] analysis indicates that subshelvalues, dent on neutral Zn and Au. A discussion of other efforts to
I,» may be changed significantly from those calculated withgeneralize the Bethe formulas is given in Sec. VI. The con-
the OOS, but that thé value in the Bethe formula is the  clusions are in Sec. VII.
value obtained by summing over subshell contributions cal-
culated with the OOS. 2

Peek’s[12] analysis did not examine changes in the shell Il. THE EFFECT OF A q7-DEPENDENT GOS SUM RULE
corrections. In attempting to verify inner-shell corrections The contribution of electrons in thel subshell to proton
from explicit PWBA calculations to apply to experiment, one stopping power can be written in terms of the GOS as
wants accurate subshéllvalues from the asymptotic theory,
and some indication when asymptotia is reached. This is dE
done here. In addition, to determine analytic approximations — (1) 53¢
for the asymptotic energy loss when the projectile is struc-
tured, one begins with an extended version of the Born ap-
proximation for unstructured projectiles. It is clear that thewhere
proper approach in either case is that introduced by Bethe
etal. [10] and continued by Peekl2]: the use of a K2 12 2 )
g2-dependent subshell sum rule. However, one wants a con-  Bnl= E 2 (da*/q*) fninn(a%)
structive formalism in place of the analysis Pddl?] did nl min
using distribution theory. In Sec. Il | develop an asymptotic Ep—En| K2 d
analysis of SP using tw@ather than onemomentum cutoffs +f dsf (dq?lo?) de foi(e,9%), (3b)
to accurately represent the physics of the GOS. | confirm Kmin
Peek’s[12] conclusions, that even when one includes in the ]
analysisZ,/(0)#N,, and rapid changes of the GOS with WhereEp andM, are the proton energy and maks, is the
squared momentum transfey?, nearq?=0, the atomicl  Subshell ionization energyy ,/+(g°) is the calculated GOS
value calculated with OOS is the Bethe mean excitation enffom occupied or partially occupied levetl, to partially
ergy. In Sec. Il assertions are made that certain parameters @¢cupied or unoccupied level/l’, and
the analysis are large and small enough that an asymptotic
approximation applies. In Sec. Il these assertions are exam-  K?|ax mir= (M o /M) {(E) ¥ [E,— AE, 132, (30)

:[47T(a0)2(Mp/me)/Ep]Bnl , (33

nl

0
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with AE,=E,—E, for excitation andAE, =|E|+e forbidden transitions either add to the right-hand <idelS)
for ionization. All energies and squared momentum transfersf Eq. (4a), if E,,/;»<E,, or subtract ifE,/|.=E,,.

are in Rydbergs. If, for fixed)?, one sums the GOS over  The cutoffsQ,,= a,E, and P, = 8,E, are introduced
unoccupied or partially unoccupied subshells, one has thas illustrated in Fig. 1. The upper cutd,, is chosen so

subshell GOS sum rule: that, forg?=P,,,, Z,(9?)=N,,. In Fig. 1 the curve€; and
q C, define the region ing,q°) space where the GOS is sig-
7 (g?)= f(g? +f de — f 2 4 nificantly different from zeroQ,, is defined as that value of
(@) ; vt (A7) o de ni(2,4% 43 g? at whichKZ;,=C, and which simultaneously satisfies the
condition
=Not 2 (@)= 2 [fo (6] [fu(£,0%) — fri(8,0 V[ fr(e,0)]1< 3, (5
n’l’<nl n’l’>nl

(4D wheres is a small parameter, such that a Taylor series ex-
pansion can be made. The valuegdfat whichK2, =C, is

=Ny— 2 nI Vi 2 > fgl n,l,(qz) determined approximately b2, evaluated at that value
n’'l’<nl nI’>nl whereC, crosses th@?=0 axis, sayM,,E,,;. Then
(40)
QnI:(Mp/me)(Mnl+1)2(Enl)2/Ep- (5b)

wherefgl‘n,l,(qz) is the GOS to fully or partially occupied
levels, and the sum in Eq4a) includes partially and fully For any choice ofé one can choose sufficiently larges
empty subshells, only. The transitions in E¢#h) and(4c)  such thatQm simultaneously satisfies both conditions.
are forbidden by the Pauli principléhe FOS. Since the Where K2, (¢) crosses the Bethe ridgsee Fig. 1, at
GOS depends on the energy difference in the transition, the—E ;=4m.E, /M, defines a nevKrznaw Eq. (3b) becomes

Ep Ep—Enp d
Bn|=f (dqzlqz)[E fnl,n’l’(qz)"_f " de d_fnl(saqz)
Pni n'1’ 0 €

I:‘nl
+f (dq2/q2>|2 fotnrr (%)
Qni n'l’

qZJ

} : (69
92=0

For the first term in Eq(6a) the sum and integral in curly bracketsNg, by the definition ofP,,;, while the second term in
curly brackets in Eq(6a) is Z,,(g?). The third term is

E 7En| d
+f ’ de — fnl('8 q )] +E dqzlqz){ nl, n’I’(O)+q dqz fnI n’I’(q )

0 n'l’ Kmin

EprnI d d d
+f0 fK m(dqzlqz)[—fm(s 0+0° g2 [— m(s,qz)}

mi

>

n'l’

Fatnrt (0)IN(Qui /KFin) + (Qui— Kfiin) 2fn|n'|'(Q) (6b)

q2=0

Since bothQ,,, and Kmln are proportional to Hp, the integral overs of terms proportional to (()n,—Kﬁqm)df/dq2 can be
neglected to order (Ef). Thus we drop the second term in Efb). A similar argument applies to the fourth term in EGa),
and with the limitEp— E,,, in the fourth term replaced byp=(4m.EpQn /Mp)*? (WhereK?,,=Q,), Eq. (68 becomes

B =N | dePra?+ J:”'<dq2/q2>zn.<q2>+2fm,an(onn(Qm/Kﬁw [de - tae oM@k 60
nl nl

n'l’

or

Pn
Bni=Np In[4meEp/Man|]+fQ l(dqz/qz)zm(qz)+Zn|(0)|n{4meEan|/[Mp“gf)z]}' (6d)

nl

where thel value based on optical oscillator strength is defined by

Z,(0)In(ID) = 2 frain (O)IN(E, 1 — nl)+f d8 fri(e,0(Ep+e). (6

Using Eq.(4b) one has for Eq(6d) [replacingZ,,(g?) with N, plus a correctioh
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BnI:an[ln(4meEp/Man|)+|n( Pnl/in)]+znl(0)|n{4meEanl/[Mp(lgllj)z]}
Pn
+f dotre?] X - >
Qn n'l’<nl n’l’>nl
= [an(o) + an]ln(4meEp/M pI g?) +[an_ an(o)]ln(l g’I)/QnI)

+fp"'<dq2/q2>[ > -3

fg|,n'|'(q2) f2|,n'|'(q2)

fgl,n’l’(qz) f2|,n'|'(qz)

ni n'l’<nl n'l’>nl

] | (60

The first term in Eq(6f) is that which was obtained by Betle¢al.[10], the second term is the effect of the difference between

the summed OOS and the occupation number; it also depends on the choice of low momentum transfer cutoff. The third term
is a consequence of the forbidden GOS created by the Pauli exclusion principle; its contribution would be Bgro if
=Qpn - These additional terms contribute to an effective subshell Bethe mean excitation dngrgy,

—[Z1(0)+ N JIn(1y) = = [Z(0) + Ny 1In(15P) + [Ny = Zi (0) 1In(15§/ Q)

Ph
- (dqzlqz>[ S-S @ } (60
nl n’l’<nl n’l’>nl
|
wherel is determined by the OOS in E(Gd). subshell withn; of n,q electrons to a partially filled2) sub-
If one averages over initial states and sums over finashell with n, of n,y electrons, the GOS iR(n;/ng)(Nyg
states then —ny)/n,y. But the part of the GOS lost due to the Pauli
o 5 o , principle is that due to the partial occupancy of the final
ot (@) ==f0 (@), (78 level. If (2) were unoccupied the GOS would Bén, /nyg),

L . . . . . : so the forbidden GOS iR(n;/nqg)(ny/nyg). The result is
which is not immediately obvious, since there is no involve- . . ) .

ment of statistical weights in Eq7a). To demonstrate its §ymmetr|cal in(1) and (2.)’ for the reverse trgngtpq one
validity, consider thaR is the GOS from a filled subshell finds the same result with a minus sign. This !ustmes Eq.
(1), with ny, electrons to an empty subshéf), with ny _(7a), and Eq.(_?a) ensures that the GOS sum r_ule IS presgrved
holes. For the transition from a fille®) subshell to an N EG-. (4D) since ifno is the outermost partially occupied
empty (1) subshell the GOS is-R, since in both cases the Ie_veI, and we sum ovenl for occupied and partially occu-
initial term is aS. For a transition from a partially filledt) ~ Pied shells,

No no no
2 |2 @)= 2 (@)= > o (@ = 2 X [fo ()]
=0 [t <ni n’l’>nl n=11=0 /' <p| n=11=0 p/['>q
Mo no—1
= fo . 2N fo o 2 .
n=21=0 n/|"<n| | nl.n’l (q )| n:1z,|:0 n’I’E>nI | nl,n’l (q )|
(7b)
But by Eq.(7a)
fo No no—1
> e (@l= > o a@l= 2 X (@), (79
n=21=0 n/|"<n| n=2l=0 n/|"<n| n'=11'=0 ni=n’l’
which by an interchange of summation variables is
Mo np—1
S Re@l= X 3R () (79)
n=21=0p/yr<n n=T0=0 yifrep

so that Eq(7b) reduces to zero.
We can rewrite Eq(6g) as
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—[Z1(0) + N JIn(1 1) = = [Z4(0) + Ny IIN(15P) + [Ny = Zi (0) 1In(15F/ Qry)

+| — 2 f'l’nl(0)+ 2 n| nr|l(0) In(l /in)
n'l’<nl n'l’>nl
Pt o 2 o 0 2 0 2

+ | e S R S @), (8a
nl n'l’<n n'l’>n

where all the FOS are now positive. First, | examine dipole allowed FOS, \Mrﬂ%el,(O)#O, where there is a scale
parameter determined by the more negative energy in the transition, i.e.,

fg'v,nl(qz):fg'v,m(qz/En’l’) (8b)
so that for dipole allowed transitions
,|, n|(q2) f n’l’, n|(0)[f ne, nI 2/E /I)/( n’l’,nl O))] (80)
Then
—[Z(0)+ Ny IIn(ly) = —[Zy(0)+ Ny JIn(18D) + B, (93
where
Bo=— > fo n(OIN{IS[En T(n'1" .01, Py/Enrir,Qui/Enny) 1}
n’l’<nl
+ 2 Y (O EL (LN Pyt /Eqt,Qui/En) T} (9b)
n’l’>nl
T
with

Y 0 0
)= | (@28 D1 (01 1)+ ().

(9¢)

e _ y 0 0
T(n'l ,nl,y,X)—In(X)+L (dZ/Z){fnrlr’n|(z)/[fnf|r,n|(o)]} Because f o n.(Z) decreases rapidly as z—,

In[T(n'l",nly,x)] will be independent of, if y=P, /E, is
=T1(X)+Ta(y), (99 sufficiently large, i.e.T,(y) approaches a constant gsn-
creases. Similarly, one expect§T(n’l’,nly,x)] to be inde-
pendent ofx, if x=Qu /Ey=(Mp/dmg)(M,,+1)%E,,/Ep
is sufficiently small, i.e.,T;(x) approaches a constant as
goes to zero. Clearly such choicesfficiently small, suffi-
N ciently large can be asserted in an analytic theory; in nu-
T1(X)=f (dz2)[°,,, . (2/(f%,, (0)—1] (9d) merical calculations and experiment one needs to know
X : when these asymptotic limits are reached. | return to this
point in the next section.
Assuming the asymptotic criteria have been satisfied one
and can write Eq.(9b) as

where

BR=— X Ty n(OIN{ISIE T AT+ X 2 1 (0)In{I[ELT(nl,n'I")]}

n’l’<nl n’l’>nl

— X o OIIRENT(LN I+ X £ L (OIS EyT(nl,n"1")1}

n’l’>nl n'l’>nl

= >t (OINAIR). (10)

n’l’>nl

Then in the asymptotic limit



_[an(0)+NnI]|n(|nI
and if we sum ovenl, we have
27 In<|>=; [Z4i(0)+ Ny 1In(l o) E [Z(0)+

ExpressingZ,(0) in terms of the FOS one finds

PIRE N (OEDY

n'l’<nl

27 |n(|)=22I N, |n(|25’)+2|

which with an obvious interchange of variables becomes

27 |n(|):22I In(1P)

n'l’<nl

BETHE STOPPING-POWER FORMULA FOR STRUCTURE . .

~[Zn(0)+Nplin(18D + >

n'l’>nl

Not 2 o (0)—

n'l’>nl

2763
2 Ifﬁ.,n,lxonn(l ) (119
N JIn(13P) — E > o (0)INCISR,). (11b
n’'l’>nl
fo (0NN =2 3 £, (0GR ),
n’l'>nl
(119
z nIn’I’O)} 22 an(o)ln(|0p) (110)

Thus the Bethe mean excitation energy is identical to theavhich Q(n’l’,nl,x) is unchanging. In this asymptotic limit
Bethe mean excitation energy calculated with optical oscilwhereQ(n’l’,nl,x)=Q(n’l’,nl,),

lator strengths as first demonstrated by PgeN.

The nondipole terms in the FOS contribute a correction,

BS, to the RHS of Eq(8a), given by

PnI
Bnl_f 2 (dq2/q2) E 0?|df n|(q )
Khin n’l'<nl
- X (g )], (12a
n’l’>nl
where scaling is assumed
Fon (@)= (GPEqro). (12b
Since
£2N9 4(0)=0, (129
| continue the analysis wnhfﬁlng,l,(q2)|maxzfgfg,l,|max,
rather than Wlthfof‘ld, ,(0). Then
Ba= X ol (@) ma(n'l 01, Py [Eqiy))
n'l’<nl
- 2 o lmeQnln’l Py /Ey), (138
n'l’>nl
where

Q(n'l”,nl,x)= f (AdYWLEn DT () |masd-
(13b)

In Eq. (13b) | have set the lower limit to zero since the

d e
BI?I: 2 0?|rn|(q2)|maxQ(n| ,nl,o)
n'l’<nl
= 2 felmeQlnle), (14
n’l’>nl

which vanishes when one interchanges primed and unprimed
indices in one of the above sums, completing the proof of

Eq. (11d).

Ill. THE ASYMPTOTIC LIMITS IN Al

To illustrate the asymptotic limits assumed in Sec. Il, in

Fig. 2@ I show the calculated dipole FOS ratio,
O,I, nl(x)/[f 1 m(0)] for transitions in neutral Al, where
x=0%/E,. The shapes vary from transition to transition,
with zeros occurring as a function of=q?/E,, for the
2s-3p and 2p-3s transitions. In Fig. &) | showT,(x) ver-
susx for the six Al dipole transitions; it is clear thai; (x)
saturates fox=0.01. In Fig. Zc) | show T,(x) versusx,
which saturates fox=10. These are sufficient conditions for
the validity of the asymptotic approximation. From Egb)
the conditionQ,,, /E,<0.01 requires

Qni/En=(My/me)(My+1)%Ep, /E,<0.01 (153
or

E,=100M,/mg) (M +1)2Ey. (15b)
For Al with M,;,=3 andE;s=112 Ry, the sufficiency con-
dition in Eq.(15b) is Ep>10° eV.

ond ond

In Fig. 3 I showf nI(y)/f "7 1Y) max for the mono-
pole FOS in Al, wherex= q%/E,,. The points are explicit
calculations while the solid curve is a rough universal fit.

nondipole FOS is zero in this limit. Since the nondipole FOSThe integral is discussed in the Appendix. Fét,

drops off rapidly with largey, there is some(P,) above

>4E,,,, W(n'l’,nl,x)=3.15 (but not ).
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_
S £ A
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§ 0.1 E  Transition n {00 g 0.1 Q(nQ’ n Q »X) 8 110
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= F nf-n{ &
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gg-g: o110 A2p3p  (0.01321)
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0 01 5 10 100 0.01 0.1 1.0 10.0
(a) q /Enz x=q2/EnQ

0.0 LI N B B BN R N | T T T TTTIrr[ LI S B )

figure is the fitting functiorf (X)/f (X) max, While Q is the integral of
Eq. (13b).

T1(V)

loss from elastic scattering of particle) and excitation and
ionization of thenl subshell of ion(b) is

'2'08001 1 L |||||0|I01 1 1 ||||||0I1 L [ ||l||10 / dE ) / /
) : . X . —(1/n) & esnl_[477(a0) (M, /my) Er]BesnIi
0.28 LU Bt R D | T T TtV TT] T 1 T TTT11T (163
0.24: =
2s-2p
] where
0.20 —
= 0.16 7
2 u K2 Er*Em
F o012 N Bes,n|: E szax(dqzlqz)fnl,n’l’(q2)|-7:ES(q2)|2+ J;)
1 n’l’ min
0.08 ] ) d
7 K
- ] xde [ <TP1a?) 3 (.00 Fed @,
T Kﬁwin d8
0'000 = ”1I(|).o — ”1Iolo.o — I;(Iioo.o (16b
(c) y

FIG. 3. Calculated Al monopole GOS forbidden by the Pauli
exclusion principle. The points are the calculations; the unlabeled

FIG. 2. (a) Calculated Al dipole GOS shapes for transitions WhereM, andE, are the reduced mass and energy, and the

forbidden by the Pauli exclusion principleOS. The normalizing ~ €lastic scattering factafes for particle (@) is
values(at g°=0) are tabulated. Thest3p and 3-3p shapes are
almost identical(b) The integralT(x) of Eq. (9d) for the dipole
FOS of Fig.(2a) showing the saturation as—0. (c) The integral Fed0)=2Z,—Fa(dd), (1739
T,(x) of Eq. (9¢) for the dipole FOS of Fig(2a) showing the
saturation ay— .
where

IV. THE ASYMPTOTIC ENERGY LOSS IN STRUCTURED
ION COLLISIONS

o . . Fa(0?) =2 nyialexdiq-fllia) (17b
When the projectile in a collision carries electrons an ad- [

ditional energy loss can occur due to excitation and ioniza-

tion of the projectile. In the center-of-mass systédM) the

energy loss expression is symmetrical in the two collisionand n,; is the occupation number of thi¢h subshell of ion
partners. At high energy the dominant contributions to en<{a). For|q|—0, Fa(9%)—Z,—2,, and Fes— z, the number
ergy loss arise from elastic scattering of one partner andf electrons on the ion, while foig|—, F,(k?)—0, and
ionization (and, to a lesser extent, excitatjoaf the other Fgs—Z,, the nuclear charge. Proceeding as with g one
projectile[13]. In the CM system the contribution to energy finds
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Bs 2 2 INCIN BT e 2 2\2 2
Beani =N [ (0107 e o)1+ | (Ae81a 24P Fed 4P+ 2
nl nl

ep
X[ 2 fot a1 (0)IN(Qu /K ) + fo de 5 fu(e.0IN(Qu /Ky (189

n'l’

or
E P,
Besn=No | (/0| Fed @)+ fQ (AT Zoi( )| Fes D)2+ (22)2Zi(O)IN{AMLE, Qo /TM L (1D)2T}, (18D
nl nl

wherel P is Bethe mean excitation energy calculated with optical oscillator strengths i®&gandEg=4m.E, /M, . Using
Eq. (4b) one has for Eq(18b) [replacingZ,,(q?) with N, plus a correctioh

Ep
BesnI:NnIfQ (dqzlqz)leS(q2)|2+(Za)zznl(o)ln{4meErin/[Mr(lgilj)z]}
nl

P

f2|,n/|/(q2) f2|,n/|'(qz)
n'l’>nl

Pn
+f l(dq2/q2)|-7:ES(q2)|2| >

nl n'l’<nl

] . (189

The last term in Eq(18¢ will vanish in the asymptotic limit by the arguments given in Sec. Il. Then we have
Eg
BesnI:NnIJQ (dg?/a?)| Fed 072+ (22)*Zni(0)IN[EgQp /(17D)?]
nl

Eg
=an(za)2 |n(EB/QnI)_NnIfQ (dqzlqz)[(za)z_|-7:E5(q2)|2]
nl

+(22)*Zp(0)IN[(Eg) ?/ (17))*]~ (22) °Zi(0)IN[ E /Qp]

Eg
:[Nn|(Za)2—(Za)ZZm(O)]ln(EB/Qm)+2(Za)22n|(0)|n[EB/|ﬁﬂ—Nme (dg?/9*)[(Za)*— | Fed@®)I?]. (19
nl

The last term in Eq(19) is of the formdg/g? at largeq and therefore the integral will go to a constantBas—o. Then
Besni=[Nni(Za)?—(22)?Zn(0)]IN(Eg/15D) +2(22) *Z (0)IN[Eg /1 F]

Eg
+[an(za)2_(Za)zznl(o)]ln(lreﬂs/in)_NnIJQ (do?/9®)[(Za)*— | Fes(@®)I?] (203
nl
and if we define 5} by

Eg
[Nn|(Za)2—(Za)ZZm(O)]ln('ﬁf)=[Nn|(Za)2—(Za)22n|(0)]|n(Qn|)+Nme (do?/9®)[(Za)*— | Fed@?)[?] (20D
nl

the second line in Eq203 will vanish. Then .
(zb—zb)|n[|(a,b,1)]=; N, In(18) (213

BesnI:[an(Za)z_(Za)zznl(o)]ln(EB/lﬁl and

+2(2,)2Z(0)IN[Eg /1%7]. (209

. (Zy—2zp)IN[1(8,b,2) 1=, Z,(0)IN(IE)  (21b)
If we define nl
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TABLE I. Values of the subshell parametetg(0) andl ,,(0) (in eV) for Li ions, and neutral Zn and Au,
calculated with optical oscillator strengths.

Level \ lon or Atom Li"2 Litt Li 0 Zn Au

1s 1.000/135. 2.003/100.9 2.004/107.9 1.373/15950.0 1.173/103 000.0
2s 1.000/3.287 1.321/2702.0 1.119/24800.0

2p 5.411/1402.0 3.018/17890.0

3s 0.879/552.9 1.137/7196.0

3p 3.780/361.9 4.273/5362.0

3d 15.08/112.9 9.586/3583.0

4s 2.173/5.695 1.055/1918.0

4p 3.947/1630.0

4d 8.290/1220.0

4f 24.84/535.2

5s 0.643/434.7

5p 2.274/282.5

5d 16.63/45.93

6s 1.124/3.774
Total 1.000/135.0 2.003/100.9 3.004/33.74 30.03/250.5 79.11/660.6

then summing ovenl leads to 125=(1,)%/1(a,b,2). (23b)

o5= 2 Besni=(Zp—2p){2(z2)? IN(4ME, /M,
ab %: esni= (2o~ 2)12(Z0)" In(4MCE, /Ml) Thus, the simple Bethe logarithm for the SP of incident

5 structureless projectiles has been generalized to an expres-
+(Za)" In[4meE, /M;l(a,b.1)] sion involving two logarithms. Both logarithm terms are pro-
—(2)2 In[4m.E, M, (a,b,2)]}, (220  portional to Z,—z,, the number of electrons on iofb),
while one logarithm is proportional taz{)? while the other
wherel,, is the Bethe mean excitation energy for ion/atomterm is proportional to Z,)?, the limits of the elastic scat-
(b) given by Eg.(1e¢). Combining terms leads to tering factor for ion(a). The single Bethe mean excitation
energy for ion(b) is replaced by a different mean excitation
es _ 2 e energy in each logarithm, both new mean excitation energies
Bab=(Zo~20){(Za)" IN(4MeE /M 159 reflecting properties of both ior(®) and (b).
+(Z,)? IN[4mE, IM,l(a,b,1)]}, (233 Of course the generalized Bethe logarithm in the energy
loss expression is symmetrical in the two collision partners
where in the CM system and is

dE
—(1/n) dx :[477(a0)2(Mr /me)/Er](BZ,Sb+ E,Sa):[477(a0)2(Mr/me)/Er]((Zb_Zb){(za)z In(4meEr/Mr|§%

+(Zo)? IN[4mE, IM1(a,b,1) T} + (Za— 22){(25)? IN(AME, IM, 19+ (Z,,)? In[4mE, /M, I (b,a,1)]}).
(29

This formula is similar to a simpler one given in E§3b) of were 33.66, 103.6, and 141.2 eV, for®j Li*?, and Li*?
Ref. [13]. They differ in the choice of values in the de- respectively, and 271.2 eV for Zn and 860 eV for Au. In
nominators. Table | are listedZ,,(0) and IS values for the ions and
atoms calculated with optical oscillator strengtfx0S). For
all the atoms or ions the summeg,(0) from the raw OOS
is close to the number of electrons. Forfiand Li*?, the
total | value, extracted from the proton calculations, is in
For the cases of Liions on Zn and Au treated in R&8],  excellent agreement with the value calculated with the
the Bethe mean excitation energies, extracted from the eX90S. For Li"2 | use nine times the hydrogenic value of 15
plicit SP calculations for protons on Li ions, Zn, and Au, eV, quoted by Dalgarn¢l1], for the OOS value. This is

V. COMPARISON OF EXPLICIT CALCULATIONS AND
THE EXTENDED BETHE FORMULA
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TABLE Il. Values of the subshell parametdi§ calculated with the ionization energy of one ion and the
modified elastic scattering factor of the other for Li ions on Zn. The generalized mean excitation energies,
I(a,b,j) andl(b,a,j,) are also listed.

Level \ lon or atom Li? Zn Litt Zn Lit° zZn
1s 511.96 221.68 511.91 260.89 511.91 253.77
2s 115.33 191.31 511.87 164.37
2p 169.95 206.20 159.78
3s 43.43 150.27 148.73
3p 58.81 163.87 148.20
3d 27308.0 338.62 147.96
4s 372.75 227.50 147.95
(.. D)A(...2) 511.96/ 713.13/ 511.90/  231.45/  511.90/  156.96/
511.96 1936.2 514.71 258.81 514.38 154.75

slightly smaller than the value 141.2 extracted from the ex-of the contribution of elastic scattering of one ion and ion-
plicit calculations. For Zn and Au thé values calculated ization and excitation of the other ion to the total energy loss
with the OOS are significantly lower than thevalues ex- [13] are shown as solid lines in Fig. 4 for Li ions on Zn. The
tracted from the explicit calculations. In Sec. Il we obtainedopen and solid circles, triangles, and squares are obtained
the criterion Q,,/E;<0.01 to assure that we are in the with Egs.(23). For the 3 upper curves, for elastic scattering
asymptotic region; | use that condition, and thg values of Zn, the results with the approximate energy loss expres-
used in the explicit calculatior{d3], along with thez,,(0)  sion of Eq.(239 (solid circles, triangles, and squarese in
values in Table I, to determin€} in Eq. (20b). The calcu- excellent agreement with the numerical results above the
lations require elastic scattering factors and those of the exreak in the approximate expression at 4 MeV. This should be
plicit calculations were usefll3]. The Zn elastic scattering compared with differences of as much as 50% at 100 MeV
factor is shown in Ref[14]. In Table I1 | list the values of ~With the approximation shown in Fig. 7 of RfL3]. This
I2or each pair in the Li ion-neutral Zn collisions. Consider improvement is due entirely to the new mean excitation en-
first the case of neutral Zn, which is elastically scatterectrgies. On the other hand for the lower three curves, for
from neutral Li, which is excited or ionized. For the eigen- elastic scattering of Li ions, there is excellent agreement for
values of the & and 25 subshells of Li the binding energies Li "% while the approximate formula of E423a overesti-

are much less than 10 Ry, €,,=0.01E,<1.0; since the mqte; the energy loss for elastic sca}tterlng dPland Litt,
argument of the integral in EG20b) is ~(Z,)%/q? for small  This is a consequence {b,a,1) being lower tharl,, for

q° we have Zn. o _ -
In Table 11l | show similar calculations for Li ions on Au.

) ) . The detailed results for Au are similar in origin to those for
[an(za) _(Za) an(o)]ln(lnl

= [an(za)z_ (Za)zznl(o)]ln(in)

Zn

1000

1
T No(Za)? JQ (deP/eP)
nl

Es
Ny [ (eI 22~ Fed P (25)

Forz,=0, the first integral in Eq(25) will cancel the InQ,,)
term leaving only the second integral, which is independent
of E,, and independent dEg for Eg large. Thel§} value

10

Energy Loss (10-15ev cm?)

does depend on the elastic scattering factor. Thus for all the ore Lf*‘:
Li ions thel >} value is 512 eV because the neutral Zn elastic :: "'+2
’ Lit+

scattering factor is used throughout. The same argument ap-
plies to the 3-4s levels of Zn. For the 8 and 2o levels of 1o G e taant L iiinl L L iian
Zn Q,~0(1), and theabove argument begins to break “0.1 1.0 10 100
down. The same arguments apply to ions except zg&t0. Ecm (MeV)

But for Q, =<1, the €,)°Z,(0)In(Qy) term is negative, and FIG. 4. A comparison of the explicit calculation of energy loss
extremely large whe,(0)>Ny, . This is the origin of the o g|astic scattering of one ion plus ionization and excitation of the
large 7 value for the @l subshell in Table I, and accounts other ion with the analytic resultiircles, triangles, and squajes
for the large increase in(b,a,1) andl(b,a,2) for Zn as the from Eq.(234. The solid points are for elastic scattering of Zn, and
degree of ionization of Li is increased. Explicit calculationsthe open points for elastic scattering of Li ions.
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TABLE Ill. Values of the subshell parameter¥ calculated with the ionization energy of the ion and the
modified elastic scaterring factor of the other for Li ions on Au. The generalized mean excitation energies,
I(a,b,j) andl(b,a,j) are also listed.

Level \ lon or Atom Lit2 Au Li*t Au Li*° Au

1s 1027.8 808.75 1027.6 827.80 1027.6 824.53
2s 233.90 280.11 1027.6 274.98
2p 222.20 273.57 269.32
3s 133.59 203.91 188.40
3p 150.97 208.76 185.37
3d 208.40 220.17 180.74
4s 80.95 174.67 155.61
4p 96.17 182.25 153.88
4d 129.24 194.23 151.63
4f 830674.0 361.67 148.73
5s 31.14 137.19 148.78
5p 30.30 137.57 148.17
5d 717099.0 400.84 147.96
6s 506.70 237.14 147.95

(.. 1)A(...2) 1027.8/ 1843.4/ 1027.6/  251.01/  1027.6/  173.94/

1027.8 13426.0 1033.5 288.82 1033.5 164.73

Zn. The 4f and & levels show an enormous increassd jfi

lower three curves, for elastic scattering of £and Li*! the

with increasing degree of ionization. The numerical resultsapproximate expression overestimates the energy loss by a
on energy loss due to elastic scattering of one ion and ionfactor of 2 at 10 MeV and by 20% at 100 MeV. For'Bithe

ization and excitation of the other for Li ions on Au are

agreement is better than 25% above 4 MeV. In comparing

shown as solid lines in Fig. 5. The open and solid circlesthe lower curves in Fig. 5 with the curves using a simpler

triangles, and squares are obtained with E23g. For the

model shown in Fig. 10 of Ref13], one might conclude that

three upper curves, for elastic scattering of Au, the resultshe simpler model is a better approximation. In.Fég show

with the approximate energy loss expression of EXRa
(solid circles, triangles, and squarese in excellent agree-

a continuation of the calculations to the 100—1000-MeV re-
gime. The curves are the explicit calculations with the Li

ment with the numerical results above the peak in the apions being elastically scattered, the open circles, triangles,
proximate expression at 10 MeV. This should be comparednd squares are obtained using EB3a, and the solid
with differences of as much as a factor of 2 at 100 MeV withcircles, triangles, and squares are obtained from Ré&j. It

the approximation shown in Fig. 10 of RdfL3]. For the

Au

104

103

100

Energy Loss (10-15ev cm2)

R a,a Li+1
O,m Li+2
10 L 1l L L 111l L Ll L L LLE
0.1 1.0 10 100
Ecm (MeV)

FIG. 5. A comparison of the explicit calculation of energy loss

for elastic scattering of one ion plus ionization and excitation of the

other ion with the analytic resultgircles, triangles, and squajes
from Eq.(239. The solid points are for elastic scattering of Au, and
the open points for elastic scattering of Li ions.

is seen that the results with the simple expression of Ref.
[13] drift below the explicit results, while there is improved
agreement between the results of E23a and the explicit
calculations at high energy. The explanation appears to be in

40

30 0,0 —m
Byh ——
;.

Li+0

Li+l

Energy Loss (10-15ev cm?2)

Ecm (MeV)

FIG. 6. Results of Fig(5) for elastic scattering of Au, extended
to 1000 MeV. The open circles, triangles, and squares are from
Eq. (233, while the solid circles, triangles, and squares are from
Ref.[13].
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the explicit calculations; for Li ions th&-shell ionization  both qualities in Eq(260), obtained by assuming that is
cross section peaks at 15 MeV, and #eshell ionization  small, are incorrecta is not small.a is K2, in Eq. (30,
cross section peaks at 150 MeV, indicating than 100 MeVand ate y4=Ey—Ep), 8max= MpE M. This is also the mini-

may not be in the asymptotic regime. mum value ob=K?|,,at the same ,,, i.€., the upper and
lower limits on the momentum transfer integral define a
VI. DISCUSSION smooth curve. But, in fact, one can use some knowledge of

f(q) to find a lower maximum foa. For a sharply peaked

Results similar to these have been obtained by Kim angethe ridge one can argue that the maximaia determined
Cheng[15], and by Crawford 16]. However, in both papers a5 the value at whick?|,,, intersects the Bethe ridge. But

there is an error that trivializes the SP calculation. For eXyig cannot be samll since the Bethe ridge extends to infinity.
ample, in their Eq(17) Kim and Chend 15] have anintegral o, estimate is found by setting,.,=¢ which leads to

b dq 4mg
faf(q) F, (2669 Amax— M_p Epr
wheref(0) is not zero. Writing this as which is also large, sincg, can be large. Thus E¢260 is
never valid for calculating SP, certainly not in the linif,
— 00,
fb[f(q)_f(o)] @+ Jb[f(O)] da Because of the effect of the sum rules in the SP formula
a q a q one can get the leading term with a poor calculation, i.e., the

leading term in the first part of Eq24) is

=fbf(q)d—q+f(0)ln(b/a) (26b)
a G (Zo—2o)[(2a)%+(Zo)2lIN(4ME, IM,) (278

and assuming that ) ) ) .
and is also the leading term in E4) of Kim and Cheng

a dg [15]_. However, it is also the leading term in the SP approxi-
f [f(q)—f(0)] —=0(a)=0(1/E,), (269 mation in Ref.[13] that merely assumes the dominance of

0 q elastic scattering plus ionization and the requirement that the
result reproduce the proton results, i.e., the leading term is
obtained with a poor calculation. The second term in the first
part of Eq.(24) is

then adding Eq(26¢) to Eqg.(26b) one has

be %—J’bf )—f(0) d—q-l—f 0)In(b/a)
L@ = [ @ =T 7+ H(O)in(bra (Zo—20){— (22N (15)%/1 (a,6,2)]— (Zo)2 In[1 (a,b, )]}

—O(1/Ep), (260 =—(Zp—25){2(22)* In(1p) +(Z2)* In[1(a,b,1)]
wherea appears only in the log term. With ER60) [their —(z5)? In[I(a,b,2)7}. (27b
Eqg.(19)] Kim and Chend15] are able to immediately do the

sum rule and the rest is trivial. There is no involvement ofThe first term in Eq(27b) agrees with Kim and Chend.5],
shell structure except through in the log term. However, but the second term,

—(Zy—2){(Z2)? IN[1(a,b,1)]— (2,)? In[l(a,b,zn}:—(za)?; Ny In(lﬁf>+<za>2§ Z(0)In(18}
=_% |[an(za)z_(Za)zznl(o)]ln(in)
Es
Ny | @I - 120 Fu@d T, (@7
nl

should be compared with the second term in Kim and CHasg

—(Zy=2)[(22)*+(Z2)?1IN(GE) = = (Zp— Zb)[ J:(dqzlqz)[(za)z— |Za—Fa(a?)|]

1
—Jo(dqz/qz)[lza— Fa(q2)|2_(za)z]}- (279
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For the case of unstructured projectiles, wh&ge=z, and dia is a multiprogram laboratory operated by Sandia Corpo-
F(g?) =0, both Eq.(27d) and Eq.(27¢ are zero, immedi- ration, a Lockheed Martin Company, for the United States
ately in Eq.(27d), and in Eq.(27¢ by the argument given in Department of Energy. The paper benefitted from an ex-
Sec. I, but so is the poor approximation given in Réf3], = change of views with Dr. O. Crawford of ORNL.

since it is designed to reproduce the proton results. However,

in general, Eqs(27¢ and(27d are unlikely to be related, as APPENDIX
Eq. (27d depends on the target only through thg—z, ] ] )
multiplier, while in Eq.(27¢) there is both the&,—z, mul- The normalized quadrupole calculations of Fig. 3 can be

tiplier and the dependence on the limit on the integgy),,  fitted roughly by the curve
which depends on the subshells of the tardpet
F(x)=6x/(6x+|1—2x|3) (A1)
VII. CONCLUSIONS ) ) )
and the integral in Eq(13b) can be written as
In Sec. Il | gave a direct proof of the assertion that the
Bethe mean excitation energy calculated with optical oscil- y
lator strengths is the same Bethe mean excitation energy that  Q(n’l ’,n|,y):f (dx/x)F(x)
appears in stopping power formula. P€di?] had earlier 0
given a proof using distribution theory to extract the finite y
part of infinite integrals. The advantage of the direct proof is = j (dx/x){6x/[6x+ (1—2x)3]}
twofold. First, one has an explicit criterion as to when as- 0
ymptotia is reached. In Sec. Il | applied the asymptotic cri- (A2a)
terion to Al, finding a proton energy of 1 GeV. Clearly this
asymptotic criterion is conservative. Second, the direct techif y<1/2, and
nigue can be applied with confidence to more complicated
asymptotic calculations. In particular, it allowed us to gener- 12
alize the Bethe formula for structureless projectiles interact-  Q(n’l’,nl,y)= (dx/x){6x/[6x+(1—2x)3]}
ing with targets, to structured projectiles interacting with tar- 0
gets. In SecV | compared the generalized Bethe formula

with explicit calculations for Li ions interacting with neutral + fy (dx/x){6x/[6x+ (2x— 1)3]}
Zn and Au. In the plane wave Born approximation, the en- 12
ergy loss in these collisions is dominated by collisions where (A2b)

one of the ions is elastically scattered and the other excited

or ionized. The generalized Bethe formula for the energyf y=1/2. With the change of variables-12x=2Z in the first
loss was found to be in excellent agreement with the domiintegral and X—1=2Z in the second, the denominator in the
nant of the two processes, where the heavier ion is elasticallyitegrals arez®—3Z+ 3, andZ3+ 3Z + 3, which can be fac-
scattered. For the second process, where the lighter ion igred into Z+Z,)(Z22—2Z,+S) with Z,=2.1038 andS
elastically scattered, the generalized Bethe formula tended te (z,)?—3 in the first integral, andZ,=0.817 73 andS
overestimate the energy loss. It was hypothesized that the 3+ (Z)2 in the second integral. Then with the substitution

cause of this is that the PWBA calculations are notyw=2z+ Z,, one can rewrite the integrals in EqﬁZa) and
asymptotic. To all this one must add the caveat that becaus@2b) as the integral

of the large cross sections for elastically scattering the
heavier ion and ionizing the lighter projectile, the lighter U
projectile is rapidly stripped of electrons, and a scaled proton [ =3f (dW/w) 1AW —3Zow+3[(Zg)?+ 1]}  (A3)
treatment may suffice. However, this is true only when the L
lighter ion is the projectile, suffering multiple collisions. The o ) ]
results here are valid for Zn and Au incident on a Li target.where the plus sign is for the second integral and the minus
Application of these techniques to heavy ion projectiles aresign for the first. This is a tabulated integral so
planned for the future.
I =(142[(Zo)? = 1]})In{w?/|w?—3Zow+ 3[(Zp)2+ 11|}
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