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Energy-loss spectrum of swift ions in charge-state equilibrium
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The energy-loss spectrum of ions in the presence of charge exchange is analyzed theoretically for large path
lengths. The evaluation is based upon steepest-descent integration of the generalized Bothe-Landau formula.
General approximation formulas for the spectrum are derived without reference to particular collision cross
sections, and their regions of validity are discussed. The approximations are tested against numerical curves for
32-MeV 3He ions in carbon. General asymptotic expressions for the peak energy loss and half-widths of the
spectrum are found. The asymptotic expression for the mean-to-peak interval is specified and analyzed. In
particular, it is shown and illustrated on a model system that the sign of the difference between the peak and
mean energy loss may be opposite to that in the one-state[&is¥0-294{@8)03404-(

PACS numbeps): 34.50.Bw, 34.70te, 52.40.Hf, 61.85:p

I. INTRODUCTION collision. The minimum energy consumed in a capture-loss
cycle is the energy of an electron at the velocity of the ion.
The problem of determining the energy-loss spectrum oDifferential cross sectionslo; for charge-changing colli-
charged particles penetrating a layer of material has beesions (#J) differ qualitatively from those for a frozen
extensively studied for pointlike particldd—3] under the charge statel=J).
assumption that the mean energy loss is small compared to Duye to these factors, the statistical description of energy-
the initial ion energy. For sufficiently fast ions, the dominant|oss spectra in the presence of charge exchange is associated
energy-loss mechanism is electronic stopping: excitation angith considerable mathematical difficulties. Early theoretical
ionization of target atoms. The spectrum may be_ approXisstimates[8—11] addressed primarily average energy loss
mated by a Gaussiaf,1] wheg the path length is large 4y straggling and were mainly based upon a simplified
enough so thaf)>T,,, whereQ)” is the straggling and'n 154l neglecting the energy loss in charge-changing colli-

the rInaX|mum<e_|r_1erg)t/htragsfer In a single c_olll?on.bFor thln'sions and assuming the stopping power to be proportional to
ner 'ayers (1=Tp), the Gaussian approximation becomes, . square of the ionic charge. Important progress in the
insufficient and a more general formalism is applied, which

is based upon the Bothe-Landau form[Ba-7]. However, in tog;c Ziirgﬁsg dat((:)hlii\tlzlef d:’tﬁgrth: eigah;ﬁ- LZ ri%auT;(i);mula
many cases, especially for ions at moderate velocities, si% 9 9 42,13.

nificant effects may be due to the charge exchange by ele IIowedha powerfu(lj and guff;]CIelntly general fforrr]nahsm
tron capture and loss. 13,14 that was used to study the low moments of the spec-

The statistical description of energy loss in the presencdUm. the mean energy loss, the straggling, EX8-17, and
of charge exchange is considerably more complicated thalp calculate the spectra in specific cage8,17,14. An effi-
for pointlike particles. At the very least, one has to accoun€ient technique for direct numerical evaluation of the gener-
for a significant dependence of the stopping power and, mor@lized Bothe-Landau formula was discussed in RES)].
generally, the differential energy-loss cross section on the This formula, as it stands, is not convenient for a direct
instantaneous charge state of the ion. In the presence épmputation of the spectra; it can hardly be handled analyti-
charge exchange, one has to deal with a set of cross sectiopglly even for the simplest cases. Furthermore, a direct
do(T) for every charge stateand a transition is equivalent evaluation requires the complete set of differential cross sec-
to abrupt switching from one cross section to another. Theionsdao,;(T), which are rarely available for a given system.
energy-loss spectrum is therefore formed by the superposiFhese circumstances warrant a reduction of the necessary
tion of collision statistics for a given charge state and statisinput characterizing elementary events.
tics of charge-state transitions governed by electron-loss— Such an approach, valid for relatively large path lengths,
capture cross sections. It depends on the initial and findk developed in the present paper. The method employed for
charge states of the ion and therefore forms a matrix. approximate evaluation of the Bothe-Landau formula is a
Moreover, charge-changing collisions may represent amgeneralization of a powerful steepest-descent technique out-
important mechanism of the energy loss affecting the spedined in Ref.[20] for pointlike particles. Below, analytical
trum. Accordingly, in general, one has to characterize theapproximations for the energy-loss spectrum and its param-
energy loss by a whole matrix of cross sectiahs,;(T) eters(the peak energy loss, the half-widths, gtre found,
depending on the charge state befof¢ &nd after §) a  which have high accuracy in a wide region of validiif
=T,). Being derivedwithout specifying explicit cross-
sectional input, these approximations are very general and
*Present address: Physics Department, Odense University, DKepresent readily calculable expressions. General properties
5230 Odense M, Denmark. of the spectra at large path lengths are primarily determined
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by statistical laws rather than by the underlying physics of n

elementary events. (B, A= g =s,,. (6)
=1

Il. ENERGY-LOSS SPECTRUM Using the column vectorg” (k) and the row vectors
AND EIGENVALUE EXPANSION #"(k) to form the matrice8(k) andB~(k), respectively,
A. Notation and starting relations one represent@z BQBil, Whereq is the diagonal matrix
with elementsq®,q®, . ... Then one has for the matrix
In the presence of charge exchange, the energy-loss Spe&)’(ponential exiNxQ]=B exdNxq]B~* and formula(2) is
trum of a particle can be described by the matrixrewritten as

[|F\;(AE,X)||=F(AE,x), 1,J=1,2,...n, wheren is the

number of available charge statés;(AE,x)d(AE) is the 1 (= "
probability for a particle occupying an initial charge state F(AE,x)= 2—f eKAED F(KyeNxd gk (7)
to occupy state) at path lengthx and to have lost energy TS v
[AE,d(AE)] [13]. The spectrum satisfies the normalization

condition where the matrice$(")(k) are expressed in terms of the

eigenvectors
EJ: fFu(AE,X)d(AE)Il (1) FiD= g, ®)

The representatiof¥),(8) can be used for a direct numeri-

and is determined by the generalized Bothe-Landau formulgal tabulation of the energy-loss spectrum for a given set of

[12,13 cross sectiongl9]: Eigenvalues and eigenvectors of the ma-
1 (e trix Q(k) are tabulated for a grid d values with the forth-
F(AE,x)= _J' elkAEgNXQ(k) g (2)  coming numerical evaluation of the integid). In general,

2m) = eigenvalues)”) may be determined by solving numerically

the characteristic equation d&,;—qé,;||=0; for a small
whereN is the volume density of atontsr moleculesofthe  number of charge statem€4), analytical solutions are
medium andQ(k) is a matrix with the elements available. It is convenient to defingt” (k) as continuous
functions and the function vanishing let 0 will be denoted
asqM(k): g(0)=0. For a two-state systerm& 2), de-
noting S=Q1;+Qz, D=(Q11~Q2)*+4Q1,Qz, and
interpretingy/D as the value of the square root with a posi-
Heredo;(T) represents the differential cross section for ative real part, one has
transitionl —J accompanied by an energy l0SE,¢T). 1

Formula (2) is valid under the following assumptions Doy ISyaRY

[12,13: uniform random medium, statisticzgl indepeE\dence 9k = 2[SpQ(k)+ D],
of successive collisions, and energy loss sufficiently small to

Qu(k):Le_ideUu(T)_@J; deUIL(T)- ©)

neglect variations in cross sections over the path lergth @ 1

derivation of formula(2) is sketched in Appendix A. For q (k)= E[SFQ(k)_ vD(K)] ©)
pointlike particles i=1), Q(k) in Eqg. (2) is reduced to the

scalar function for small values ok; the signs at/D alterate if and when

D(k) comes through a real negative value.

Q)= — fTu—e*‘kT)do(T) @

C. Charge-state equilibrium

and Eg. (2) becomes equivalent to the standard Bothe- Integra’qon.ofF,J(AE,x). over AE yields' the charge-
Landau formulg5-7,12,2Q. In the discussion below, gen- state distributiorf ;(x) [13]:

eral results will occasionally be illustrated by the relatively

simple case of a system with two charge states 2). F(x)=eVRO =3 F)(g)ehxd”©) (10)

B. Eigenvalue expansion where

Let q(k), »=1,... n, be the set ofigenerally com-

plex) eigenvalues of the matriQ(k), and B (k),#") (k)

the corresponding eigenvectors of the matrix and its trans- ‘This and similar derivations are most easily performed via the

pose: representatioeN* QW = [~ e KAEF(AE x)d(AE) [cf. Eq.(2) and
Appendix A], which, in particular, gives Eq10) for k=0. Note

Qﬁ(V):q(V)ﬁ(V), QTT(V):Q(V)T(V)- 5 that integration here may be performed with the limits, regard-

less of the possible existence of lower or upper boundariestof

It is convenient to normalize the vectgfs” (k) and #*) (k) Formula(2) will automatically produce=(AE,x)=0 outside such

by the condition boundariegfor example, forAE<0).
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This implies the proper choice of the path of integration,
Q(0)=Q(k=0)= EL: (SLa— oo, (1D namely, it should come through the saddle péintk, as the
line of steepest descef1].

o =J+do (T) being the total cross sections of state tran-  For pointlike particles, the saddle poi§(AE) is known
sitions. The properties of the eigenvaluekatO were con- to be located at the imaginary axislof20]. For an arbitrary
sidered in Ref.[13]. It can be easily checked that number of charge states, the analytical properties of eigen-
>,Q,;(0)=0; henceBM(0)={1,1, . ..,} is an eigenvector value_s along th_e imaginary axis are con5|dere_d in Appendix
of Q(0) corresponding to the eigenvalgé?(0)=0. Al C.ltis shown in p.art|cular' that the saddle point is also lo-
other eigenvalues have negative real péitss is a special cated at the imaginary axis for any value &E: ko(AE)
case of a more general theorem considered in Appenglix C=Ko(AE) with realky; in addition, F,(iko) is real non-
negative,q’(ik() imaginary, andy”(ikg) real negative.
q(0)=0; Req"”<0, v#1. (12 As shown in Appendix C, the function(k) at the imagi-
. ) , _nary axis may be determined algebraically as (fea) ei-
Irzl)partlcula(ré)q (0) are real in the two-state case: yenyalue of the matriQ(ik’), which is larger than the real
q (0):(1)’ q'7(0)=— (oot 029); cf. Eq. (9). The eigen-  hars of all others. In the two-state case, one may use formula
vgctora-( )(0) has real non-negative components and detertg) for the eigenvalues at arky=ik’ asD (k) is real positive
mines the equilibrium charge-state distribution along the imaginary axis.
Letting the path of integration go throudty parallel to

~@D — A1
Fis()=Fi5(0)=7,7(0) the real axis, one has for sufficiently large

for largex when 1 fon
_ ! L3 i
oNxRe q(V)(O)<l, o 13 F(AE,x)= wa,m{F(lko)[l+ Nxk>q”(ik)/6]
The associated term in the expansi@h determines the +'|ZF’(ik(’))}e*kéAE*NX[q<ik(’))+E2q~(ik(’,>/2]di
spectrum for sufficiently large:
and integration results in the asymptotic expression

1 (= ‘
F(AE,x)= —wa F(k)ekABTNxakg (14) Fko)
_w .

F(AE,x)= ; s
whereq(k)=q®(k) andF(k)=F®) (k). A general theorem [—27Nxd'(ko)]
to this effect, valid for all physically relevant cross sections, _ ) )
is proved in Appendix B. It turns out in particular that the It is not generally possible to analytically extragt as a
relative contributions of ther# 1 terms in expansiofi7) to  function of AE from Eq. (15). However, one may express
the main part of the spectrum are exponentially small forAE andF as functions of an auxiliary variable) [20]:
sufficiently largex.

eikOAEJrqu(ko). (16)

The asymptotic expressiofil4) significantly simplifies AE=iNxq’(ikg), (1739
the analysis of energy-loss spectra for large path lengths. It
will be shown in Sec. lll and Appendix C that the analytical F(iky) o
properties ofgq(k) are in many respects similar to those of F(AE,x)= e ket ko malikg)],
Q(k) for pointlike particles[Eq. (4)]. Therefore, analytical [—2mNxd'(iko)]
methods initially developed for the one-state case may be (179
;gﬁgt.essfully applied to Eq14) with only minor modifica Equations(17) allow one to tabulaté=,;(AE,x) versusAE

for a given x provided that gq(ik’) and F;(ik’)

be valid. However, caution is indicated: A universal simple = 81(ik")75(ik’) have been found. The range of validity of
criterion for how large the path length should be has not beefrd- (17) and its accuracy will be discussed in Sec. Ili C.
found. For many important cases, the limitations on the ap-

propriate path lengths can be shown to be synonymous with B. Simple approximations

the charge-state equilibrium conditigh3d). Several such ex-
amples are briefly considered in Appendix B.

It is assumed below thatis large enough for Eq14) to

In this section limiting cases are considered that lead to
simple analytical expressions for sufficiently large path
lengths. In the limit of largex, the exponential in Eq(17)

Ill. APPROXIMATE EXPRESSIONS FOR THE SPECTRUM becomes small oncux|q”(0)|k62/2>1. Therefore, apart

A. Steepest-descent integratiofi,20] from exponentially small tails, the spectrum is determined by
Egs.(17) with small values ok=<1/Y/Nx|/q"(0)|. Then, ex-
panding Eq(173 in powers ofk;, one can extract explicitly
k¢ versusAE.

The first approximation

For sufficiently largex, the integral14) receives its main
contribution from the vicinity of a poinky in the complex
plane where the exponent is stationary:

AE=iNxaq—(k) =iNxq’ (ko). (15) , _AE-iNxq'(0)

K Nk ko= Nxq'(0)
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yields a Gaussian asymptote ers, and the average energy consumed in a capture-loss
cycle) were extracted from energy-loss spectra measured for

1 —e2p path lengths far below charge-state equilibrium. In R&g]
F(AE,X)= 2702 F(0)e =% (18) the measured parameters were used to compose model cross

sections and to evaluate the same spectra numerically from
where e=[AE—iNxq’(0)]/Q and Q?=—Nxq"(0). This  Eq. (7); good agreement with experimental spectra was
property is similar to the well-known one-state ca&é found, apart from the latter being considerably wider for thin
However, the Gaussian approximation is too rough forfoils due to the finite energy resolution of the experiment.
many cases of practical interest since the relative error of Eq. The path lengths considered here are larger thgi23h
(18) in the main part of the spectrum may beT,,/. Sig-  Approximations(17—19 are tested below against spectra ob-
nificantly better accuracy is provided by taking the next termained by direct numerical evaluation of E(). The same
in kg into account: model cross sections are used as in [RE9).
. iNXq"(0)e For the chosen_parameters, the cése T, corresponds
ko= 5[ a7 to a path length slightly smaller than=2000 ug/cm? and
condition (13) of charge-state equilibrium is satisfied
for path lengthsx=100 wg/cm?. The fraction of neutral at-
oms is negligibly small, so one has a system with two essen-

This yields a three-term diffusion approximation

iNxqg”(0) 3 tial charge states; indices 1 and 2 below refer to'Hand
F(AEX)=) F(0)| 1+—caz—(3e—¢€) He?", respectively.
. For the relatively large path lengths to be considered, the
iF'(0) } e <P 19 spectra slightly depend on the initial charge state of the ion:
€ ~ ~
Q 02’ Fi1=F,1, Foo=F1,. Therefore, only results fdf,; andF,,
2} are shown below.
which was derived in Ref19] directly from Eq.(7). Expres- It is worth mentioning that, due to the small cross section
sions for the coefficients in formula48) and(19) are given  for electron capture, the spectrufy, is only weakly af-
in Appendix D. fected by charge exchange. Thus the set of resultd-for

illustrates also the applicability of the approximations for the
one-state case.
. _ In Figs. 1, 2, and 3, corresponding tQ?=T2,

For pointlike particles, energy-loss spectra for a set Ofﬂzszlz andQ?=T2/4, respectively, the approximations
model cross sections, where the Bothe-Landau integral cajy,, commp’ared with numerical results. Figure 1 shows that
be evaluated ar)alyt?call'y, were compared With the Steepes}:{lready forQ=T,, the steepest-descent and three-term dif-
descent approximation in Ref20]. Although in some spe- fusion approximations deliver a good accuracy for the spec-

cific cazsoes formule(lf?) Tay evendreprelienf lthﬁ(actsgec- trum; except for a narrow region around the maximum, these
trur’r|1 [t (]j _te:rr]nsdo .retf':ltlvefoEr fr (M X) ¢ ave e%n curves can hardly be distinguished from the exact one. As
neglected in the derivation of E¢17). More terms can be expected, the accuracy of all approximations decreases for

taken into account if necessary; an analysis of these ter I hi héigs. 2 This i ied. f
shows that half-widths and the most probable energy loss ggﬂa er path lengthéigs. 2 and B This is accompanied, for

dicted bv th o ith b he three-term diffusion approximation, by visible negative
predicted by the one-term approximativ) with even bet- \ 5y,65 on one of the tails. However, the steepest-descent ap-
ter accuracyrelative error~(Nx) ~“] than that of the spec-

. roximation provides a reasonable accuracy even for these
trum itself[20]. i P y

. path lengths, apart from the altitude of the maximum for the
Therefore, one may expect formuld?) to give a reason- F,, spectrum
ag{ﬁ |ae$1prt?1§m£rt:zg f:r: dtize f%rle_rl_gy'loAisi"Supsetgwg dr(;vg/_n © “Exact and steepest-descent curves(i8r=T2/6 are com-
P 9 rresp 9 m- P pared in Fig. 4. For so small path lengths they are character-
tical example will be considered below. ized b iceable deviati ally for 1
For sufficiently largex the three-term diffusion approxi- Ized by noticeable deviations, especially for & spec-
trum. However, the steepest-descent approximation still

Eatl(ir;)(litg)repr?evslgﬁfsz Ziunzn?é'ﬁaﬁcgreicﬁe(;%rigﬂafféent? ives good estimates for the most probable energy loss and
4- ’ P P y P ' he half-widths of the spectrum.

readily calculable when only the three first moments of the The Gaussiari18) converges only very slowly to the ex-

collision cross sections are knowh9]. However, while Eqg. act curve with increasing path lengfrelative error in the

(17) determines an approximation for the whole spectrum for_" . >y )
largex, the three-term diffusion approximation is valid only main part of the spectrum decrease¢Nx) *”]. Figure 5

for AE not too far from the maximum. Thus, for any the compares the Gaussian and exact curves for a significantly

. . . larger path length@?=5T2).
tails of the spectrum will not be correctly determined. Approximations(17—19 have also been tested against ex-

act curves for several qualitatively different model cross sec-
tions, which do not correspond to any particular physical

As an illustration for the concepts discussed above, consystem. In all cases, results were similar to those above: a
sider energy-loss spectra of 32-Me¥e ions in carbon. In  good accuracy of the steepest-descent and three-term diffu-
Ref. [23] a number of parameters for this systéaimarge- sion approximations fo€2=T,, and much worse accuracy
exchange cross sections, frozen-charge-state stopping poand a smaller region of validity of the Gaussian.

C. Regions of validity

D. Example: 32-MeV ®He in carbon
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FIG. 1. Comparison of approximations for the energy-loss spec- FIG. 2. Same as Fig. 1, but for path lengtk 1000 ug/cm?
tra of 32-MeV 3He ions for path lengthx=2000 wg/cn? corre-  (Q°=T3/2).
sponding toQ=T,,, for (a) F4; and (b) F,,. Solid lines, straight
numerical evaluation of Eq2); dashed lines, steepest-descent ap- B. Peak energy loss
proximation (17); dotted lines, three-term diffusion approximation
(19); dot-dashed lines, GaussiatB). Initial and final charge states

1. General formula

(@ 1,J=1and(b) 1,J=2. Approximate expressions for the pe@host probableen-
ergy losses AE), ; can be found similarly to the one-state
IV. PARAMETERS OF THE SPECTRUM case|20]. Differentiating Ir-; in the Eq.(17b) with respect
A Moments to ko=ik,, one obtains the equation
The moments of the ener_gy-loss spectrum in the charge- 1 [F{J(kp,u) q" (Ko, 1)
state equilibriun{13] are easily evaluated from E¢L4): Nx= (23

ko130 (Kp 1) Fo(Kp19) 29" (Kp )
Jo(AE)'Fi3(AE,X)d(AE)

(AE") ;= _ for the valuek, |, of the running variablé, corresponding
JoF1,(AEX)d(AE) to the maximum of the distributiofr,;(AE,x). Oncek, ;
it g has been found, the peak energy loss is determined by Eq.
— Nxq(k) 179:
FH(O)(?kr[FIJ(k)e ] k=0- (20) ( a')
(AE)p,13=1INxq'(Kp 5)- (29

In particular, the average energy loss and the straggling can
be written as Equation(23) shows thak, |, is small for largex. Expan-
) sion in powers ok, ; gives
. ) iF;(0)
<AE>|J—INXQ (0)+ m, (21) y B 1 [F{J(O) q///(o) +O( ) -
PTG (O)| Fin(0)  2°0)] T 2\ (xz) (&)

Fi3(0) [F.’Jm)r

_ 2 _ r _
((AE=(AE))%)1;= —Nxd'(0) F,J(O)+ Fi5(0)

and, from Eq.(24),
(22

AE). . —iNXG'(0) + ] Fl’J(O)_ q”(0) +0 1
Expressions for the coefficiengs (0),F/;(0), etc., are given (AB)p13=INXq’(0) +1i F;(0) 29"(0) Nx/’

in Appendix D. (26)
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FIG. 3. Same as Fig. 1, but for path length-500 wg/cm? FIG. 4. Energy-loss spectra of 32-Me¥He ions in carbon for
(Q2=T2/4). path lengthx=300 wg/cm? (Q?=T2/6). Solid lines, straight nu-

merical evalution of Eq(2); dashed lines, steepest-descent approxi-
This formula determines the leading terms of the asymptotighation (17). Initial and final charge state) 1,J=1 and(b) I,J
expansion for the peak energy loss. Compare (E6). with =2.
the average energy loss

a significant dependence on the first moments of the cross

"(0) 1 sections, i.e., in particular, on the contribution of distant col-
(AE);;—(AE), ;=i qT_F (_) (27)  lisions into ion stopping.
P 29"(0) NX (i) In accordance with formula28), for large path

lengths(AE) always exceedsAE), in the case of pointlike
Like in the one-state cag@0], the leading asymptotic term particles. However, fon>1 the asymptotic value ofAE)
in this difference does not depend an Also, it does not —(AE), may well be negative for some parameters.
depend on the initiall() or final (J) charge state.
For pointlike particles, formul&27) is reduced to a well- 2. The generalized Landau-Vavilov case

known expressioh20] As an illustration, consider a simple model for a two-state

case (=2). Apart from its relative simplicity, this model is
sensible for a description of the energy-loss spectrum of light
high-energy ions. Assume the free Coulomb cross section for
close frozen-charge-state collisiof#s5,7,20

[T3do(T) ( 1)

(AE)—(AE),= 37 a0 Ol Nix (29)

In the presence of charge exchange, explicit expressions for

the asymptotic difference between the peak and mean energy doy, (T)—

loss become much more complicated. General formulas for

the calculation of the parameteg$(0) andq™(0) are given

in Appendix D. The following qualitative differences be- Where Wg=47Z3Z,e* is Bohr's straggling parametd#],

tween Eqgs(28) and(27) for n>1 should be mentioned. Z, andZ, are atomic numbers of the ion and the targeis
(i) For pointlike particles, the asymptotic value @E)  the electron mass, andis the ion velocity. One has then for

—(AE), depends only on the second and third moments othe momenty T'do, (T)=WgT,, 2/(r—1) forr=2.

the collision cross section and therefore is mainly determined For pointlike particles, assumpti@g@9) corresponds to the

by properties of very close collisions of ions with target elec-well-known Landau-Vavilov case[5,7,20 and the

trons. In the presence of charge exchange, there may be alasymptotic mean-to-peak interval[i20]

Wg dT

2 T~Tp=2mv21=1,2, (29
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1.2 T ig”(0) 1 T,+eB(16+37¢)
10* g /cm? (AB)=(AB)o=270)"2 — 1+287
(a) (31)
T o.sf 1 . )
= with dimensionless parameters
p _ _ _
804_ \ i B=01,02108%116Wg, 7=(P+012)°+(P—0y)?
& / \ -
/ §=(012=021)P—201,01,
0 ! AN
1400 1600 where o= (o1t 0212, o1;=0;/0, P=AS/oe, and AS
AE (keV) =[T[do1(T)—do,(T)] is the difference between the
frozen-charge-state stopping powers.
8 ' For
/ 10* pg/cm? ,
/ \ (b) 0e<|(01— 02)AS| (32
7
Z \ one may neglect energy loss in charge-changing collisions
‘f: 4 . (=0, Vollmer's model[8-11]). This reduces Eq(31) to
) the expression
o
B
80 WgT,+ 30 1,021(0 15— 001) (AS)3
<AE>—(AE)p2 B2m - 12 21( 12 21)2( ) .
0 | 80' [40' WB+0'120'21(AS) ]
1400 1600 33

AE (keV) . . .
In particular, this formula predictsAE) ,>(AE) for
FIG. 5. lllustration of the approach of spectra to the Gaussian
form: 32-MeV 3He ions in carbon for path lengtt=10* wg/cm? 80 W T,
(QZ:STZm). Initial and final charge state® 1,J=1 and(b) 1,J (012~ 021)(A5)3<_
=2. Solid lines, exact curves. The straight numerical evaluation of
Eq. (2) and approximation$17) and (19) deliver indistinguishable
results. Dashed lines, Gaussids). To illustrate this property, compose a model system ex-
hibiting both positive and negative values dfAE)
—(AE),, depending on the ratio of electron-capture and
(30 -loss rates. Take=0 and arbitrary values oiVg and T,,.
For cross sectiong29), the frozen-charge-state stopping
powers may be represented in the form
Take also the following model cross sections for charge-
changing collisions:

301201

T

(AE)—(AE),= 2

Wg
Sllzf TdUII(T):T_LIv
m
doT)=0128(T—e1)dT, doyy(T)=028(T—e,)dT,
with typical values of the logarithmic factors,~10. Let
with a constank =g, + ¢, representing the average energy L,>L, (state 2 corresponds to a larger ion charge; and
consumed in a capture-loss cyéle. 051 @re cross sections for electron loss and capture, respec-
Applying the general formulas of Appendix D, one finds atively). Then, for sufficiently smallo;,+ 05, formula (33)
mean-to-peak interval for this model from Eg7). Omitting ~ predicts QE),>(AE) for 0,;<o4, and not too smalbr,;
indicesl,J on the left-hand side, one has andoq,— 0,1. For largex, having chosen appropriate values
of Ly,o;, one easily can draw spectra witAE),>(AE)
by making use of the three-term diffusion approximation
2The distinction between energy consumed in electron-loss an(fl9). However, this procedure would not deliver a confirma-
-capture collisions is actually of no importance here since enly tion of the AE),>(AE) effect independent from Eq&7)
=g,+¢, enters asymptotic expression for the mean-to-peak interand (33) because the factag”(0)/2q"(0) explicitly enters
val. Indeed, in accordance with E(R7), the asymptotic mean-to- also Eq.(19). So here the effect will be checked directly by
peak interval is common for all spectfa;, while spectreF;; and ~ numerical evaluation of the generalized Bothe-Landau for-
F,, are made up of particles that have suffered an equal number ghula(2) [19]. Let charge states 1 and 2 correspond to the ion
electron-loss and -capture collisions and therefore may not depergharges Z;—1)|e| andZ,|e|, respectively. Take the model
on g, ande, separately. cross sections
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FIG. 6. lllustration of the change of sign ¢AE)—(AE),:
energy-loss specti@) F,; and(b) F,, for model cross section(84)
and Nx=2T2/W;. Vertical solid lines show values of the mean
energy loss for every spectrum. The model parameterg gre?,
2L,=L,=10, ando,= 3WB/T§1; Wz andT,, are arbitrary. Solid,
dashed, and dot-dashed lines correspond,tdo,=1/4, 1/2, and
3/2, respectively. The corresponding values &E) — (AE), pre-
dicted by the asymptotic formulé33) are —0.74T,,,, —0.32T,,,
and 0.2 ,.

dUn(T)Z\-/rﬁ(-jr—-zr
m
1 for 1=2 orl=1, T,<T<T,
“NZi-1%Z2 for 1=1, Tyn=T<T,,
(34

where the parameterg,,, and T; are determined from the
conditions:

Tm

T
— +
lnTt

(Z,-1)?
Z1

Ty
Tmin

In
Tmin

In L,, L.

Numerically evaluated spectrid,; and F,, are shown in
Figs. §a), and Gb), respectively, forz,=2, 2L,=L,=10,
and o1,= 3WB/Tr2n. The spectra are shown for three values
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values predicted by formula33). These discrepancies
quickly disappear with further increasing path length.

Note the specific form of conditio32). Even for small
energy loss in charge-changing collisionss<AS), Voll-
mer’'s model may lead to qualitatively incorrect prediction of
the mean-to-peak interval if cross sections for electron cap-
ture and loss are close to each other. For example, for
o15=02=0 one has from Eq(31):

40WgT+ 02e3—3e(AS)?

<AE>_(AE)p: A[40Wg+ 0%+ (AS)?]

(35

Settinge =0 here, one has

UWBTm

(BB~ (AB= W, (457"

i.e., (AE)>(AE), for any parameters, while E35) gives
the inverse inequality for § AS)%2>40Wg T+ 02>,

Mention here also another case of practical importance
where Vollmer's model is not applicable. For light MeV
ions, the cross section for electron capt(say,o,;) may be
smaller than that for electron loss by several orders of mag-
nitude. Correspondingly, whiler,;e<<|AS|, 01,6 may be
comparable to or larger thaAS. In particular, for o,e
<AS<0gq.¢ (this corresponds, for example, to the case of
32-MeV He ions in carbon considered in Sec. Il ©rmula
(31) is reduced to

WBTm+ 20'2183

<AE>_(AE)p: 4[Wg+ (72182] ,

(36)

which is always positive and coincides with the one-state-
case result30) for Wg> 05,2

Consider briefly the limit transition to the one-state-case
in general terms. As it should be, formul&&l), (33), and
(35) for the mean-to-peak interval are reduced the one-state-
case resul{30) if (i) charge states are equivalent to each
other with respect to energy losA$—0) and ions do not
lose energy in charge-changing collisiors—0) or (ii) one
of the charge states dominates over the other in equilibrium
(012! 097—0 or 091/ 01— 0). However, due to the still im-
plied condition(13), formulas(31), (33), and(35) generally
are not reduced to Eq30) if both o1, and g, are small. In
particular, in the limiting case,;;—0 with o4,/ 0,;=const
#0, one has from Eq31):

3(0’12_ 0'21)AS/(80'2)
—3el4

for O'lzqé ()
<AE>_(AE)p: fOI‘ 012=021.

of o, and, in accordance with the above consideration, exThus a relative smallness of cross sections for electron cap-
hibit (AE),>(AE) for 01,>0; and vice versa. To make ture and loss does not mean that the difference between the
the difference between the mean and peak energy loss cleamyean and peak energy loss is close to its one-state value
visible, the spectra are given here for a relatively small pati30). On the contrary, it is fosufficiently smallvalues ofo
length; this accounts for discrepancies betwegkE) that (AE)— (AE), may become negative in the formulas
—(AE),, for F1; and F,, and ~50% deviations from the above.
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C. Half-widths
Expanding Eq(173 for smallky, one has

- q///(o)
—ko<1+mko+~--),

AE—iNxq"(0)
iNxq"(0)

or, inserting Egs(25), and(26),

_ OBy [ QMO SEy
iNxq"(0)] ~ 2d"(0) iNxg"(0) ’

Ko—Kp.13

37)

where 6E,;=AE—(AE), ;. Now, expansion of the expo-

nent in Eq.(17b) around its maximum gives

Fo(AEx) 1 k2 »
nm__i( 0~ Kp10) “NXd"(Kp 1)

1 3 "
_§(k0_kp,|J) Nxq' (Kp,13)-
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significantly over the trajectory.

(i) The generalization of the steepest-descent method
[20] to include charge exchange delivers an effective and
general technique for an approximate evaluation of spectra
valid for large path lengths. The derivation of the central
formula (17) does not require specification of the number of
charge states or collision cross sections.

(iii ) The steepest-descent approximatidr) gives a good
accuracy fof)=T,, provided that the ion beam has reached
charge-state equilibrium.

(iv) Apart from the tails of the spectrum, a comparable
accuracy is provided by the three-term diffusion approxima-
tion Eq. (19). Coefficients entering Eq19) are determined
by the first three moments of the collision cross sections.

(v) The Gaussian approximation is characterized by a
poorer accuracy and a smaller region of validifys T,,).

(vi) Energy-loss spectra for 32-Me¥He ions in carbon
have been calculated numerically and compared with results
delivered by the approximations.

(vii) The approximations allow one to find asymptotic ex-

Substitution of Eq(37) and simplification within the same pansions for the parameters of the spectrum in inverse pow-
accuracy lead to the following representation for the specers of the path length. Expansiof7) and(39) for the peak

trum:
Fy(AE,X)=F,,(AE, ;,x)ex (9B
13 ’ 1J p,1J 292
iNxg”(0)
t 307 5E|JH : (38

which holds for the main part of the spectrum: féE, ;| not
too large compared witk.

The spectrum38) is skew and the half-widths are given

by

_iNxg"(0)
1+—693

(8E1y) 1=+ \2IN2Q J2In2| (39

and in this accuracy do not depend on either initial or final

energy loss and the half-widths of the spectrum have been
derived. The leading terms coincide with the mean energy
loss and the standard deviation, respectively. In both expan-
sions, the leading correction terms are independent of the
path length as well as initial and final charge states of the
particle and are determined by the first three moments of the
collision cross sections.

(viii) An asymptotic expression for the mean-to-peak in-
terval has been specifigdq. (31)] and analyzed for the
generalized Landau-Vavilov case. In particular, it has been
shown and illustrated on a model system that the asymptotic
difference between the peak and mean energy loss may have
either sign depending on stopping and charge-exchange pa-
rameters.
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1 iqrrr(o)
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V. SUMMARY
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APPENDIX A: DERIVATION OF GENERALIZED
BOTHE-LANDAU FORMULA

The derivation of formula(2) sketched below is based

gpon the kinetic equations for the energy-loss spectrum.
Friginally, this formula was established by another method

Let the ion be in a charge stateinitially. Over a small
path lengthAx, it suffers no collisions with the probability
1-NAXZ, [+do, (T), while NAxdo, (T) is the probabil-
ity of a collision accompanied by an energy lo3sdT) and

(i) The energy-loss spectrum of charged particles in thex state transition—L. Accordingly, one identifies the two
presence of charge exchange has been analyzed theoreticatiyntributions into the energy-loss spectrum at a larger path
under the assumption that collision cross sections do not vargngthx:
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Fi3(AE,x) = 1—NAx§L} Jdcr|L(T) F15(AE,x— AX)
T

+NAXD, f do (T)F,(AE—T,x—AX)
L T

+0O((Ax)?).
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limited by the case of redt; however, the main results re-
main valid also if the integration in Ed7) is performed
along a straight line in the complex planeloparallel to the
real axis.

Sinceq™)(0)=0, for sufficiently smalk the integrand in
Eq.(7) is ~1 for anyx. The relative significance of different
contributions in Eq(7) is primarily governed by the behav-
ior of Re q)(k): For given values ok and v, the integral

For Ax—0, one obtains the backward kinetic equation forreceives exponentially small contributions from those re-

F(AE,x):

dF ;(AE,X)

IX =N2 LdfflL(T)[FLJ(AE—T,x)

Alternatively, using the balance relation

F|J(AE,X+ AX):

1-NAXD, f dO'JL(T)) Fi3(AE,X)
L T

+ NAxg f doy(T)F, (AE—T,x)
T

+0((Ax)?),
one can establish the forward equat{@

dF ;(AE,X)

N fT[F.L(AE—T,x)daLJ(T)

—F3(AE,x)doy (T)]. (A2)

Going over to the Fourier transform
F(k,x)zf e KAEF(AE,x)d(AE),

one reduces Eq$Al) and(A2) to the matrix equations

IF(k,X) dF(k,x)
— ~NQUF(kx), —~

=NF(k,x)Q(k),
(A3)

where the matrixQ(k) is determined by Eq(3). Utilizing
the boundary condition

Fis(AEX=0)=6;6(AE), F3(k,x=0)=4);,
one finds
F(k,x) = ek (A4)

and backward Fourier transformation delivers form{@a

APPENDIX B: DOMINANCE OF THE SPECTRUM
BY A SINGLE EIGENVALUE
FOR LARGE PATH LENGTHS

gions of k where Req(k)<0 and Nx|Re q(k)|>1.
Therefore, contributions of alt# 1 terms to the energy-loss
spectrum may be neglected if

[Re 0"*1]1ax<0, Nx[Re q"*!],>1, (Bl

where[Re q"*1]ax is the maximum value of Re™ (k)

for all k andv+# 1. The first inequality here is crucial for the
dominance of the spectrum by a single eigenvalue for large
X, while the second specifies the appropriate region of path
lengths.

For sufficiently small|k|, the functions Req()(k) are
close to thek=0 valuesq’)(0)=0, Re q**¥)(0)<0. For
sufficiently largel|k|, the matrix Q(k) is dominated by its
diagonal elements and all Rg{”(k) have large negative
values. Between these two limits, the functions && (k)
can show a variety of different types of behavior for different
numbers of charge states and sets of cross sections.

Consider a few specific cases whgRe "% 1], can be
estimated analytically. A simple case is delivered by those
systems where all functions Rg”)(k) decrease monotoni-
cally with increasingk|; the example system considered in
Sec. llID belongs to this category. In this case, the first
condition(B1) is obviously satisfied:

[Re 0" ]ma=maxg”(0)<0 (B2)
v#1

and the second conditioB1) coincides with that of the
charge-state equilibrium.

In the case of a triangular matri@(k) (one-way charge
exchangg the eigenvalues are equal to diagonal elements of
the matrix, Req” (k) <Re q(*)(0) for any» andk+0, and
thus[Re q”*1]axiS again given by EqB2). Consider also
a two-state system with a negligible energy loss in charge-
changing collisions. For small values kf the eigenvalues
q (k) are determined by Eq9) with Q,;= o5 for | #J. If
the inequalitiesdo1(T) =do(T), 015> 021 (Or Vice versa
hold; thenD (k) never comes through a real negative value,
Eg. (9 is valid for any value ofk, and therefore
[Re 07 max< — (010 0751) 12 differs from Eq.(B2) by no
more than a factor of 2.

In the general case, findingRe g% May not be
possible by analytical means; numerical tabulation is always
a feasible option for a particular system. However, the in-
equality[Re q"*1],,,<0 is valid for all physical systems

The purpose of this appendix is to prove that for suffi-and therefore the spectrum is dominatedd$¥'(k) for suf-
ciently large path lengths the energy-loss spectrum is solelficiently large path lengths. It follows from the following:

dominated by thev=1 term in expansiori7); estimates of

Theorem 1For any physically relevant set of cross sec-

the pertinent path-length scale will also be given for a fewtions, all eigenvalueg)(k) have strictly negative real parts
special cases. For simplicity, the explicit discussion below idor all realk, the only exception being®)(k=0)=0.
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Proof. Consider the matrixQ(k) at a real value ok.
Diagonal elements of the matrix may be written as

Qu(k)=—ay(k)— 2 (AT
L' (#1)

where o (k)= f+(1—e *T)do, (T). Let « be a real posi-
tive constant such that+Re Q,,(k)>0 for any|. Intro-
duce matrices

ApylakK)=ad;+Qy(k),

Bis(a,k)=y(a,k)6;+Q4(0),
where
2

a—Re ay(k)— oL
L'#D

y(a, k)= max{ oLt
L (%D

1/2
+[Im a’,,(k)]z} ]

The complex matriA(a,k) has eigenvalues +q”(k), v
=1,... n. Eigenvalues of the matriB(«a,k) are given by
y(a,k)+q(0), v=1, ... n, while all its elements are real
and non-negative. The easily verified inequalify;(a,k)|

LEV G. GLAZOV

APPENDIX C: PROPERTIES OF EIGENVALUES
AT THE IMAGINARY AXIS OF k

Let k=ik’ with k' real. All elements of the matrix
Q(ik") are real and monotonically increasing functions of
k', all nondiagonal elements being non-negative. Therefore,
for any finite interval ofk’ one can choose a positive con-
stanta such that all elements of the matr;(k’)=ad);
+Q,;(ik") are real, non-negative and monotonically increas-
ing functions ofk’. Applying theorems valid for matrices
with these propertiegsee[22], Vol. 2, Chap. 13 and the
obvious relations between eigenvalues of matridgsand
Q,;, one proves the following statemerits.

(i) For anyk’, the functionq(ik") represents a simple real
eigenvalue ofQ(ik’).

(i) g(k) is a continuous and monotonically increasing
function along the imaginary axigdq(ik’)/dk’=0] and is
larger than the real parts of all other eigenvalfiggik’)
>Re q(ik"), v#1].

(iii) For anyk’, all elementsF;(ik’) are real and non-
negative.

(iv) All even-order derivatives of(k) and F,;(k) with
respect tok are real at the imaginary axis, while all odd-
order derivatives are imaginary.

(v) The derivativedq(ik’)/dk’ has large negative and
positive values ak’ — —« andk’— + oo, respectively.

In particular, these statements ensure the existence, for every

<By;(a,k) and relevant theorems on the properties of theyalue ofAE, of a pointk,=kq(AE)=ik,(AE) at the imagi-

matrices with non-negative elementsee[22], Chap. 13
ensure that the moduli of all eigenvalues/Afa,k) do not
exceed the spectral radius Bf «,k), i.e.,

19 (k) + a| = ¥(a,k) +qP(0)=y(a k).

Letting «— + o0, one finds the following upper estimate for

Re q™:

Re g (k)< —minRe o, (k)
[
= —minj (1—cokT)do, (T). (B3)
| T

At k=0, Re q(0)<0 for v#1; for k#0, all functions

Re o, (k) are strictly negativéexceptions are possible only

in the physically unacceptable cases of eittiey; (T)=0 or
doy(T) being aé function). Therefore, except fog™)(k
=0)=0, g™ (k)<0 for anyk and » and the proof is com-
pleted.

nary axis satisfying Eq.15) (i.e., the saddle poihtand such
that all the quantities;(ik()=0 andiq’(ik¢), —q”(ik¢)
>0 are real.

APPENDIX D: COEFFICIENTS
IN APPROXIMATION FORMULAS

The coefficients that enter the approximation formulas for
the spectrum(18), (19), and (38) and its basic parameters
(Sec. IV) can be calculated in accordance with the following
scheme. Differentiate the first relatigh):

(Q'~dg"Id B = —(Q~a"”)dp Idk

whereQ’=dQ/dk. Multiplying this relation by#" and us-
ing Egs.(5) and(6), one finds

(B1)

dq(V)_ r p(v) v)
dk _(Q B( !T( )1

(D2)

where Q' 8", #*)=3, ,Q/,8{”+*). Now substitute the

Utilizing results of Appendix C, one can generalize theexpansiondﬁ‘”)/dk=EMbVMﬁ”) with yet unknown coeffi-

above argument for the case when integration in fornGdila
is performed along a straight line in the complex plané of

cientsb,,, into Eq.(D1). Multiplying the resulting equation
by ##) and taking relationg5) and (6) into account, one

parallel to the real axis, like in Sec. lll A. Similarly, the finds, for v+ u, [q®)—q*)]b,,=(Q’B*),#*) and there-
dominance of the spectrum by a single eigenvalue for suffifore

ciently largex is guaranteed by the following theorem, valid

for all physically relevant sets of cross sections.
Theorem 2.At imaginary k=ik’, q®(ik’) is real and
larger than all Req(ik’),v+#1; for any complexk such

3Strictly, one more requirement should be fulfilled: The matrix
A,; is to beirreducible [22], i.e., there should be no disconnected

that Im k=k’, Re k#0, real parts of all eigenvalues subsets of charge states. If there were, such subsets should be

q (k) are strictly smaller thag)(ik").

treated separately.
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etc., whereq®), ¥, ##) are taken ak=0,

d,3<V> 1

") ) v,

(D3)

n
all= (=) (P, ) =(—i) 3 Py,
A similar evaluation fod 7*)/dk gives[coefficient at=") is (D5)

related tob,,, by condition(6)] and the matrice®") contain the moments of the cross sec-

daiv 1 tions
aK - > ————(Q WA

AN AR D),
w(#v) q(V)_q(M)

[r]_ r

The parameterb,,, are determined by an additional normal- In particular, in the two-state casev£2) q®=— (o,
ization condition and do not enter the final results. Further+ o,,) and the formulas above are reduced as
differentiation of Eq.(D2) and substitution ofv=1, k=0,

andqM=0 expresses the required coefficients in terms of '(0)=all] nrAN — al2] [114[1]
. : =ajy , 0)=aj7'+ ajyasy,
eigenvalues and eigenvectorskat 0 only: a’(0)=ay, q'(0)=ay ot oy 20
q'(0)=aty, g"(0)=aF- altlal] q”(0)=ah+ _3 altal?l+aldaly
e ,u(#l)q Bl 010 0
_L(am althallalll,
g O=ald- 3 3(allalZ+alZaly) o1t oo
2 q () w8
F/ (0)= alll g2, 4 gl g1 (27
(a[l] [l])aghl]a[l:g |J( ) 012+ 0_21[ 12 ﬁl J 21 Bl J ]
whereal!)! are determined by formuléD5) with
_ i[ alalUal1] + alUafLal1l) e ) oL [om
S ' =], - - ,
MFLw g 1 012t 021\ 012
1 012 1
Fl/,(0)=— [a[l]B“” a[l]B(l)T(M)]’ 2)_ A2 = '
13 (#1) q(M) w1 J 0'12+ (%) — 021 ' _1
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