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Energy-loss spectrum of swift ions in charge-state equilibrium

Lev G. Glazov*
Physics Department, Odense University, DK-5230 Odense M, Denmark

and Institute of High Current Electronics, Akademicheski 4, Tomsk Russia
~Received 31 July 1997; revised manuscript received 3 November 1997!

The energy-loss spectrum of ions in the presence of charge exchange is analyzed theoretically for large path
lengths. The evaluation is based upon steepest-descent integration of the generalized Bothe-Landau formula.
General approximation formulas for the spectrum are derived without reference to particular collision cross
sections, and their regions of validity are discussed. The approximations are tested against numerical curves for
32-MeV 3He ions in carbon. General asymptotic expressions for the peak energy loss and half-widths of the
spectrum are found. The asymptotic expression for the mean-to-peak interval is specified and analyzed. In
particular, it is shown and illustrated on a model system that the sign of the difference between the peak and
mean energy loss may be opposite to that in the one-state case.@S1050-2947~98!03404-0#

PACS number~s!: 34.50.Bw, 34.70.1e, 52.40.Hf, 61.85.1p
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I. INTRODUCTION

The problem of determining the energy-loss spectrum
charged particles penetrating a layer of material has b
extensively studied for pointlike particles@1–3# under the
assumption that the mean energy loss is small compare
the initial ion energy. For sufficiently fast ions, the domina
energy-loss mechanism is electronic stopping: excitation
ionization of target atoms. The spectrum may be appro
mated by a Gaussian@4,1# when the path length is larg
enough so thatV@Tm , whereV2 is the straggling andTm
the maximum energy transfer in a single collision. For th
ner layers (V&Tm), the Gaussian approximation becom
insufficient and a more general formalism is applied, wh
is based upon the Bothe-Landau formula@5–7#. However, in
many cases, especially for ions at moderate velocities,
nificant effects may be due to the charge exchange by e
tron capture and loss.

The statistical description of energy loss in the prese
of charge exchange is considerably more complicated t
for pointlike particles. At the very least, one has to acco
for a significant dependence of the stopping power and, m
generally, the differential energy-loss cross section on
instantaneous charge state of the ion. In the presenc
charge exchange, one has to deal with a set of cross sec
ds I(T) for every charge stateI and a transition is equivalen
to abrupt switching from one cross section to another. T
energy-loss spectrum is therefore formed by the superp
tion of collision statistics for a given charge state and sta
tics of charge-state transitions governed by electron-lo
capture cross sections. It depends on the initial and fi
charge states of the ion and therefore forms a matrix.

Moreover, charge-changing collisions may represent
important mechanism of the energy loss affecting the sp
trum. Accordingly, in general, one has to characterize
energy loss by a whole matrix of cross sectionsds IJ(T)
depending on the charge state before (I ) and after (J) a
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collision. The minimum energy consumed in a capture-lo
cycle is the energy of an electron at the velocity of the io
Differential cross sectionsds IJ for charge-changing colli-
sions (IÞJ) differ qualitatively from those for a frozen
charge state (I 5J).

Due to these factors, the statistical description of ener
loss spectra in the presence of charge exchange is assoc
with considerable mathematical difficulties. Early theoretic
estimates@8–11# addressed primarily average energy lo
and straggling and were mainly based upon a simplifi
model neglecting the energy loss in charge-changing co
sions and assuming the stopping power to be proportiona
the square of the ionic charge. Important progress in
topic had been achieved when the Bothe-Landau form
was generalized to include charge exchange@12,13#. This
allowed a powerful and sufficiently general formalis
@13,14# that was used to study the low moments of the sp
trum, the mean energy loss, the straggling, etc.@13–17#, and
to calculate the spectra in specific cases@18,17,14#. An effi-
cient technique for direct numerical evaluation of the gen
alized Bothe-Landau formula was discussed in Ref.@19#.

This formula, as it stands, is not convenient for a dire
computation of the spectra; it can hardly be handled ana
cally even for the simplest cases. Furthermore, a dir
evaluation requires the complete set of differential cross s
tionsds IJ(T), which are rarely available for a given system
These circumstances warrant a reduction of the neces
input characterizing elementary events.

Such an approach, valid for relatively large path lengt
is developed in the present paper. The method employed
approximate evaluation of the Bothe-Landau formula is
generalization of a powerful steepest-descent technique
lined in Ref. @20# for pointlike particles. Below, analytica
approximations for the energy-loss spectrum and its par
eters~the peak energy loss, the half-widths, etc.! are found,
which have high accuracy in a wide region of validity~V
*Tm). Being derived without specifying explicit cross-
sectional input, these approximations are very general
represent readily calculable expressions. General prope
of the spectra at large path lengths are primarily determi

K-
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57 2747ENERGY-LOSS SPECTRUM OF SWIFT IONS IN . . .
by statistical laws rather than by the underlying physics
elementary events.

II. ENERGY-LOSS SPECTRUM
AND EIGENVALUE EXPANSION

A. Notation and starting relations

In the presence of charge exchange, the energy-loss s
trum of a particle can be described by the mat
uuFIJ(DE,x)uu5F(DE,x), I ,J51,2, . . . ,n, where n is the
number of available charge states.FIJ(DE,x)d(DE) is the
probability for a particle occupying an initial charge stateI
to occupy stateJ at path lengthx and to have lost energ
@DE,d(DE)# @13#. The spectrum satisfies the normalizati
condition

(
J
E FIJ~DE,x!d~DE!51 ~1!

and is determined by the generalized Bothe-Landau form
@12,13#

F~DE,x!5
1

2pE2`

`

eikDEeNxQ~k!dk, ~2!

whereN is the volume density of atoms~or molecules! of the
medium andQ(k) is a matrix with the elements

QIJ~k!5E
T
e2 ikTds IJ~T!2d IJ(

L
E

T
ds IL~T!. ~3!

Here ds IJ(T) represents the differential cross section fo
transitionI→J accompanied by an energy loss (T,dT).

Formula ~2! is valid under the following assumption
@12,13#: uniform random medium, statistical independen
of successive collisions, and energy loss sufficiently sma
neglect variations in cross sections over the path lengthx. A
derivation of formula~2! is sketched in Appendix A. Fo
pointlike particles (n51), Q(k) in Eq. ~2! is reduced to the
scalar function

Q~k!52E
T
~12e2 ikT!ds~T! ~4!

and Eq. ~2! becomes equivalent to the standard Both
Landau formula@5–7,12,20#. In the discussion below, gen
eral results will occasionally be illustrated by the relative
simple case of a system with two charge states (n52).

B. Eigenvalue expansion

Let q(n)(k), n51, . . . ,n, be the set of~generally com-
plex! eigenvalues of the matrixQ(k), and b(n)(k),t(n)(k)
the corresponding eigenvectors of the matrix and its tra
pose:

Qb~n!5q~n!b~n!, QTt~n!5q~n!t~n!. ~5!

It is convenient to normalize the vectorsb(n)(k) andt(n)(k)
by the condition
f

ec-

la

e
o

-

s-

~b~n!,t~m!![(
I 51

n

b I
~n!t I

~m!5dnm . ~6!

Using the column vectorsb(n)(k) and the row vectors
t(n)(k) to form the matricesB(k) andB21(k), respectively,
one representsQ5BqB21, whereq is the diagonal matrix
with elementsq(1),q(2), . . . . Then one has for the matrix
exponential exp@NxQ#5B exp@Nxq‡B21 and formula~2! is
rewritten as

F~DE,x!5
1

2pE2`

`

eikDE(
n

F~n!~k!eNxq~n!~k!dk, ~7!

where the matricesF(n)(k) are expressed in terms of th
eigenvectors

FIJ
~n!5b I

~n!tJ
~n! . ~8!

The representation~7!,~8! can be used for a direct numer
cal tabulation of the energy-loss spectrum for a given se
cross sections@19#: Eigenvalues and eigenvectors of the m
trix Q(k) are tabulated for a grid ofk values with the forth-
coming numerical evaluation of the integral~7!. In general,
eigenvaluesq(n) may be determined by solving numerical
the characteristic equation detuuQIJ2qd IJuu50; for a small
number of charge states (n<4), analytical solutions are
available. It is convenient to defineq(n)(k) as continuous
functions and the function vanishing atk50 will be denoted
as q(1)(k): q(1)(0)50. For a two-state system (n52), de-
noting SpQ5Q111Q22, D5(Q112Q22)

214Q12Q21, and
interpretingAD as the value of the square root with a po
tive real part, one has

q~1!~k!5
1

2
@SpQ~k!1AD~k!#,

q~2!~k!5
1

2
@SpQ~k!2AD~k!# ~9!

for small values ofk; the signs atAD alterate if and when
D(k) comes through a real negative value.

C. Charge-state equilibrium

Integration of FIJ(DE,x) over DE yields1 the charge-
state distributionFIJ(x) @13#:

F~x!5eNxQ~0!5(
n

F~n!~0!eNxq~n!~0!, ~10!

where

1This and similar derivations are most easily performed via
representationeNxQ(k)5*2`

` e2 ikDEF(DE,x)d(DE) @cf. Eq. ~2! and
Appendix A#, which, in particular, gives Eq.~10! for k50. Note
that integration here may be performed with the limits6`, regard-
less of the possible existence of lower or upper boundaries ofDE:
Formula~2! will automatically produceF(DE,x)50 outside such
boundaries~for example, forDE,0).
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2748 57LEV G. GLAZOV
Q~0![Q~k50!5(
L

~dLJ2d IJ!s IL , ~11!

s IL[*Tds IL(T) being the total cross sections of state tra
sitions. The properties of the eigenvalues atk50 were con-
sidered in Ref. @13#. It can be easily checked tha
(JQIJ(0)50; henceb(1)(0)5$1,1, . . . ,1% is an eigenvector
of Q(0) corresponding to the eigenvalueq(1)(0)50. All
other eigenvalues have negative real parts~this is a special
case of a more general theorem considered in Appendix!:

q~1!~0!50; Re q~n!,0, nÞ1. ~12!

In particular, q(n)(0) are real in the two-state cas
q(1)~0!50, q(2)(0)52(s121s21); cf. Eq. ~9!. The eigen-
vector t(1)(0) has real non-negative components and de
mines the equilibrium charge-state distribution

FIJ~x!.FIJ
~1!~0!5tJ

~1!~0!

for largex when

eNxRe q~n!~0!!1, nÞ1. ~13!

The associated term in the expansion~7! determines the
spectrum for sufficiently largex:

F~DE,x!.
1

2pE2`

`

F~k!eikDE1Nxq~k!dk, ~14!

whereq(k)[q(1)(k) andF(k)[F(1)(k). A general theorem
to this effect, valid for all physically relevant cross section
is proved in Appendix B. It turns out in particular that th
relative contributions of thenÞ1 terms in expansion~7! to
the main part of the spectrum are exponentially small
sufficiently largex.

The asymptotic expression~14! significantly simplifies
the analysis of energy-loss spectra for large path length
will be shown in Sec. III and Appendix C that the analytic
properties ofq(k) are in many respects similar to those
Q(k) for pointlike particles@Eq. ~4!#. Therefore, analytica
methods initially developed for the one-state case may
successfully applied to Eq.~14! with only minor modifica-
tions.

It is assumed below thatx is large enough for Eq.~14! to
be valid. However, caution is indicated: A universal simp
criterion for how large the path length should be has not b
found. For many important cases, the limitations on the
propriate path lengths can be shown to be synonymous
the charge-state equilibrium condition~13!. Several such ex-
amples are briefly considered in Appendix B.

III. APPROXIMATE EXPRESSIONS FOR THE SPECTRUM

A. Steepest-descent integration†6,20‡

For sufficiently largex, the integral~14! receives its main
contribution from the vicinity of a pointk0 in the complex
plane where the exponent is stationary:

DE5 iNx
]q~k!

]k U
k5k0

[ iNxq8~k0!. ~15!
-

r-

,

r

It
l

e

n
-
th

This implies the proper choice of the path of integratio
namely, it should come through the saddle pointk5k0 as the
line of steepest descent@21#.

For pointlike particles, the saddle pointk0(DE) is known
to be located at the imaginary axis ofk @20#. For an arbitrary
number of charge states, the analytical properties of eig
values along the imaginary axis are considered in Appen
C. It is shown in particular that the saddle point is also
cated at the imaginary axis for any value ofDE: k0(DE)
5 ik08(DE) with real k08 ; in addition, FIJ( ik08) is real non-
negative,q8( ik08) imaginary, andq9( ik08) real negative.

As shown in Appendix C, the functionq(k) at the imagi-
nary axis may be determined algebraically as the~real! ei-
genvalue of the matrixQ( ik8), which is larger than the rea
parts of all others. In the two-state case, one may use form
~9! for the eigenvalues at anyk5 ik8 asD(k) is real positive
along the imaginary axis.

Letting the path of integration go throughk0 parallel to
the real axis, one has for sufficiently largex

F~DE,x!.
1

2pE2`

`

$F~ ik08!@11Nx k̃3q-~ ik08!/6#

1 k̃F8~ ik08!%e2k08DE1Nx@q~ ik08!1 k̃2q9~ ik08!/2#d k̃

and integration results in the asymptotic expression

F~DE,x!.
F~k0!

@22pNxq9~k0!#1/2
eik0DE1Nxq~k0!. ~16!

It is not generally possible to analytically extractk08 as a
function of DE from Eq. ~15!. However, one may expres
DE andF as functions of an auxiliary variablek08 @20#:

DE5 iNxq8~ ik08!, ~17a!

F~DE,x!.
F~ ik08!

@22pNxq9~ ik08!#1/2
e2Nx@ ik08q8~ ik08!2q~ ik08!#.

~17b!

Equations~17! allow one to tabulateFIJ(DE,x) versusDE
for a given x provided that q( ik8) and FIJ( ik8)
5b I( ik8)tJ( ik8) have been found. The range of validity o
Eq. ~17! and its accuracy will be discussed in Sec. III C.

B. Simple approximations

In this section limiting cases are considered that lead
simple analytical expressions for sufficiently large pa
lengths. In the limit of largex, the exponential in Eq.~17!
becomes small onceNxuq9(0)uk08

2/2@1. Therefore, apart
from exponentially small tails, the spectrum is determined
Eqs.~17! with small values ofk08&1/ANxuq9(0)u. Then, ex-
panding Eq.~17a! in powers ofk08 , one can extract explicitly
k08 versusDE.

The first approximation

k08.2
DE2 iNxq8~0!

Nxq9~0!
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yields a Gaussian asymptote

F~DE,x!.
1

A2pV2
F~0!e2e2/2, ~18!

where e5@DE2 iNxq8(0)#/V and V252Nxq9(0). This
property is similar to the well-known one-state case@1#.

However, the Gaussian approximation is too rough
many cases of practical interest since the relative error of
~18! in the main part of the spectrum may be;Tm /V. Sig-
nificantly better accuracy is provided by taking the next te
in k08 into account:

k08.
e

VF11
iNxq-~0!e

2V3 G .
This yields a three-term diffusion approximation

F~DE,x!.H F~0!F11
iNxq-~0!

6V3 ~3e2e3!G
1

iF8~0!

V
eJ e2e2/2

A2pV2
, ~19!

which was derived in Ref.@19# directly from Eq.~7!. Expres-
sions for the coefficients in formulas~18! and~19! are given
in Appendix D.

C. Regions of validity

For pointlike particles, energy-loss spectra for a set
model cross sections, where the Bothe-Landau integral
be evaluated analytically, were compared with the steep
descent approximation in Ref.@20#. Although in some spe-
cific cases formula~17! may even represent theexactspec-
trum @20#, terms of relative order;(Nx)21 have been
neglected in the derivation of Eq.~17!. More terms can be
taken into account if necessary; an analysis of these te
shows that half-widths and the most probable energy loss
predicted by the one-term approximation~17! with even bet-
ter accuracy@relative error;(Nx)22# than that of the spec
trum itself @20#.

Therefore, one may expect formula~17! to give a reason-
able approximation for the energy-loss spectrum down
path lengths corresponding toV;Tm . An illustrative prac-
tical example will be considered below.

For sufficiently largex the three-term diffusion approxi
mation ~19! provides a numerical accuracy comparable
Eq. ~17!, it represents a simple analytic expression, and i
readily calculable when only the three first moments of
collision cross sections are known@19#. However, while Eq.
~17! determines an approximation for the whole spectrum
largex, the three-term diffusion approximation is valid on
for DE not too far from the maximum. Thus, for anyx, the
tails of the spectrum will not be correctly determined.

D. Example: 32-MeV 3He in carbon

As an illustration for the concepts discussed above, c
sider energy-loss spectra of 32-MeV3He ions in carbon. In
Ref. @23# a number of parameters for this system~charge-
exchange cross sections, frozen-charge-state stopping
r
q.

f
an
st-

s
re

o

s
e

r

n-

w-

ers, and the average energy consumed in a capture
cycle! were extracted from energy-loss spectra measured
path lengths far below charge-state equilibrium. In Ref.@19#
the measured parameters were used to compose model
sections and to evaluate the same spectra numerically f
Eq. ~7!; good agreement with experimental spectra w
found, apart from the latter being considerably wider for th
foils due to the finite energy resolution of the experiment

The path lengths considered here are larger than in@23#.
Approximations~17–19! are tested below against spectra o
tained by direct numerical evaluation of Eq.~7!. The same
model cross sections are used as in Ref.@19#.

For the chosen parameters, the caseV5Tm corresponds
to a path length slightly smaller thanx52000 mg/cm2 and
condition ~13! of charge-state equilibrium is satisfie
for path lengthsx*100 mg/cm2. The fraction of neutral at-
oms is negligibly small, so one has a system with two ess
tial charge states; indices 1 and 2 below refer to He11 and
He21, respectively.

For the relatively large path lengths to be considered,
spectra slightly depend on the initial charge state of the i
F11.F21, F22.F12. Therefore, only results forF11 andF22
are shown below.

It is worth mentioning that, due to the small cross sect
for electron capture, the spectrumF22 is only weakly af-
fected by charge exchange. Thus the set of results forF22
illustrates also the applicability of the approximations for t
one-state case.

In Figs. 1, 2, and 3, corresponding toV2.Tm
2 ,

V2.Tm
2 /2, andV2.Tm

2 /4, respectively, the approximation
are compared with numerical results. Figure 1 shows t
already forV.Tm the steepest-descent and three-term d
fusion approximations deliver a good accuracy for the sp
trum; except for a narrow region around the maximum, th
curves can hardly be distinguished from the exact one.
expected, the accuracy of all approximations decreases
smaller path lengths~Figs. 2 and 3!. This is accompanied, fo
the three-term diffusion approximation, by visible negati
values on one of the tails. However, the steepest-descen
proximation provides a reasonable accuracy even for th
path lengths, apart from the altitude of the maximum for t
F11 spectrum.

Exact and steepest-descent curves forV2.Tm
2 /6 are com-

pared in Fig. 4. For so small path lengths they are charac
ized by noticeable deviations, especially for theF11 spec-
trum. However, the steepest-descent approximation
gives good estimates for the most probable energy loss
the half-widths of the spectrum.

The Gaussian~18! converges only very slowly to the ex
act curve with increasing path length@relative error in the
main part of the spectrum decreases;(Nx)21/2#. Figure 5
compares the Gaussian and exact curves for a significa
larger path length (V2.5Tm

2 ).
Approximations~17–19! have also been tested against e

act curves for several qualitatively different model cross s
tions, which do not correspond to any particular physi
system. In all cases, results were similar to those abov
good accuracy of the steepest-descent and three-term d
sion approximations forV*Tm and much worse accurac
and a smaller region of validity of the Gaussian.
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IV. PARAMETERS OF THE SPECTRUM

A. Moments

The moments of the energy-loss spectrum in the cha
state equilibrium@13# are easily evaluated from Eq.~14!:

^DEr& IJ[
*0

`~DE!rFIJ~DE,x!d~DE!

*0
`FIJ~DE,x!d~DE!

5
i r

FIJ~0!

] r

]kr@FIJ~k!eNxq~k!#U
k50

. ~20!

In particular, the average energy loss and the straggling
be written as

^DE& IJ5 iNxq8~0!1
iF IJ8 ~0!

FIJ~0!
, ~21!

^~DE2^DE&!2& IJ52Nxq9~0!2
FIJ9 ~0!

FIJ~0!
1FFIJ8 ~0!

FIJ~0!
G2

.

~22!

Expressions for the coefficientsq8(0),FIJ8 (0), etc., are given
in Appendix D.

FIG. 1. Comparison of approximations for the energy-loss sp
tra of 32-MeV 3He ions for path lengthx52000 mg/cm2 corre-
sponding toV.Tm , for ~a! F11 and ~b! F22. Solid lines, straight
numerical evaluation of Eq.~2!; dashed lines, steepest-descent a
proximation~17!; dotted lines, three-term diffusion approximatio
~19!; dot-dashed lines, Gaussian~18!. Initial and final charge state
~a! I ,J51 and~b! I ,J52.
e-

an

B. Peak energy loss

1. General formula

Approximate expressions for the peak~most probable! en-
ergy losses (DE)p,IJ can be found similarly to the one-sta
case@20#. Differentiating lnFIJ in the Eq.~17b! with respect
to k05 ik08 , one obtains the equation

Nx5
1

kp,IJq9~kp,IJ!
FFIJ8 ~kp,IJ!

FIJ~kp,IJ!
2

q-~kp,IJ!

2q9~kp,IJ!
G ~23!

for the valuekp,IJ of the running variablek0 corresponding
to the maximum of the distributionFIJ(DE,x). Oncekp,IJ
has been found, the peak energy loss is determined by
~17a!:

~DE!p,IJ5 iNxq8~kp,IJ!. ~24!

Equation~23! shows thatkp,IJ is small for largex. Expan-
sion in powers ofkp,IJ gives

kp,IJ5
1

Nxq9~0!
FFIJ8 ~0!

FIJ~0!
2

q-~0!

2q9~0!
G1OS 1

~Nx!2D ~25!

and, from Eq.~24!,

~DE!p,IJ5 iNxq8~0!1 i FFIJ8 ~0!

FIJ~0!
2

q-~0!

2q9~0!
G1OS 1

NxD .

~26!

c-

-

FIG. 2. Same as Fig. 1, but for path lengthx51000 mg/cm2

(V2.Tm
2 /2).
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This formula determines the leading terms of the asympt
expansion for the peak energy loss. Compare Eq.~26! with
the average energy loss

^DE& IJ2~DE!p,IJ5 i
q-~0!

2q9~0!
1OS 1

NxD . ~27!

Like in the one-state case@20#, the leading asymptotic term
in this difference does not depend onx. Also, it does not
depend on the initial (I ) or final (J) charge state.

For pointlike particles, formula~27! is reduced to a well-
known expression@20#

^DE&2~DE!p5
*T3ds~T!

2*T2ds~T!
1OS 1

NxD . ~28!

In the presence of charge exchange, explicit expressions
the asymptotic difference between the peak and mean en
loss become much more complicated. General formulas
the calculation of the parametersq9(0) andq-(0) are given
in Appendix D. The following qualitative differences be
tween Eqs.~28! and ~27! for n.1 should be mentioned.

~i! For pointlike particles, the asymptotic value of^DE&
2(DE)p depends only on the second and third moments
the collision cross section and therefore is mainly determi
by properties of very close collisions of ions with target ele
trons. In the presence of charge exchange, there may be

FIG. 3. Same as Fig. 1, but for path lengthx5500 mg/cm2

(V2.Tm
2 /4).
ic

for
gy
or

f
d
-
lso

a significant dependence on the first moments of the c
sections, i.e., in particular, on the contribution of distant c
lisions into ion stopping.

~ii ! In accordance with formula~28!, for large path
lengths^DE& always exceeds (DE)p in the case of pointlike
particles. However, forn.1 the asymptotic value of̂DE&
2(DE)p may well be negative for some parameters.

2. The generalized Landau-Vavilov case

As an illustration, consider a simple model for a two-sta
case (n52). Apart from its relative simplicity, this model is
sensible for a description of the energy-loss spectrum of li
high-energy ions. Assume the free Coulomb cross section
close frozen-charge-state collisions@4,5,7,20#

ds II ~T!.
WB

Tm

dT

T2 , T;Tm52mv2,I 51,2, ~29!

where WB54pZ1
2Z2e4 is Bohr’s straggling parameter@4#,

Z1 andZ2 are atomic numbers of the ion and the target,m is
the electron mass, andv is the ion velocity. One has then fo
the moments*Trds II (T).WBTm

r 22/(r 21) for r>2.
For pointlike particles, assumption~29! corresponds to the

well-known Landau-Vavilov case @5,7,20# and the
asymptotic mean-to-peak interval is@20#

FIG. 4. Energy-loss spectra of 32-MeV3He ions in carbon for
path lengthx5300 mg/cm2 (V2.Tm

2 /6). Solid lines, straight nu-
merical evalution of Eq.~2!; dashed lines, steepest-descent appro
mation ~17!. Initial and final charge states~a! I ,J51 and ~b! I ,J
52.
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^DE&2~DE!p.
Tm

4
. ~30!

Take also the following model cross sections for char
changing collisions:

ds12~T!5s12d~T2«1!dT, ds21~T!5s21d~T2«2!dT,

with a constant«5«11«2 representing the average ener
consumed in a capture-loss cycle.2

Applying the general formulas of Appendix D, one finds
mean-to-peak interval for this model from Eq.~27!. Omitting
indicesI ,J on the left-hand side, one has

2The distinction between energy consumed in electron-loss
-capture collisions is actually of no importance here since onl«
5«11«2 enters asymptotic expression for the mean-to-peak in
val. Indeed, in accordance with Eq.~27!, the asymptotic mean-to
peak interval is common for all spectraFIJ , while spectraF11 and
F22 are made up of particles that have suffered an equal numb
electron-loss and -capture collisions and therefore may not dep
on «1 and«2 separately.

FIG. 5. Illustration of the approach of spectra to the Gauss
form: 32-MeV 3He ions in carbon for path lengthx5104 mg/cm2

(V2.5Tm
2 ). Initial and final charge states~a! I ,J51 and ~b! I ,J

52. Solid lines, exact curves. The straight numerical evaluation
Eq. ~2! and approximations~17! and ~19! deliver indistinguishable
results. Dashed lines, Gaussian~18!.
-

^DE&2~DE!p.
iq-~0!

2q9~0!
5

1

4

Tm1«b~1613hj!

112bh
,

~31!

with dimensionless parameters

b5s̄12s̄21s«2/16WB , h5~P1s̄12!
21~P2s̄21!

2,

j5~ s̄122s̄21!P22s̄12s̄21,

where s5(s121s21)/2, s̄ IJ5s IJ /s, P5DS/s«, and DS
[*T@ds11(T)2ds22(T)# is the difference between th
frozen-charge-state stopping powers.

For

s2«!u~s122s21!DSu ~32!

one may neglect energy loss in charge-changing collisi
(«50, Vollmer’s model@8–11#!. This reduces Eq.~31! to
the expression

^DE&2~DE!p.
8s5WBTm13s12s21~s122s21!~DS!3

8s2@4s3WB1s12s21~DS!2#
.

~33!

In particular, this formula predicts (DE)p.^DE& for

~s122s21!~DS!3,2
8s5WBTm

3s12s21
.

To illustrate this property, compose a model system
hibiting both positive and negative values of̂DE&
2(DE)p , depending on the ratio of electron-capture a
-loss rates. Take«50 and arbitrary values ofWB and Tm .
For cross sections~29!, the frozen-charge-state stoppin
powers may be represented in the form

SII [E Tds II ~T!5
WB

Tm
LI ,

with typical values of the logarithmic factorsLI;10. Let
L2.L1 ~state 2 corresponds to a larger ion charge;s12 and
s21 are cross sections for electron loss and capture, res
tively!. Then, for sufficiently smalls121s21 formula ~33!
predicts (DE)p.^DE& for s21,s12 and not too smalls21
ands122s21. For largex, having chosen appropriate value
of LI ,s IJ , one easily can draw spectra with (DE)p.^DE&
by making use of the three-term diffusion approximati
~19!. However, this procedure would not deliver a confirm
tion of the (DE)p.^DE& effect independent from Eqs.~27!
and ~33! because the factoriq-(0)/2q9(0) explicitly enters
also Eq.~19!. So here the effect will be checked directly b
numerical evaluation of the generalized Bothe-Landau f
mula~2! @19#. Let charge states 1 and 2 correspond to the
charges (Z121)ueu andZ1ueu, respectively. Take the mode
cross sections
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ds II ~T!5
WB

Tm

dT

T2

3H 1 for I 52 or I 51, Tt<T<Tm

~Z121!2/Z1
2 for I 51, Tmin<T,Tt ,

~34!

where the parametersTmin and Tt are determined from the
conditions:

ln
Tm

Tmin
5L2 , ln

Tm

Tt
1

~Z121!2

Z1
2 ln

Tt

Tmin
5L1 .

Numerically evaluated spectraF11 and F22 are shown in
Figs. 6~a!, and 6~b!, respectively, forZ152, 2L15L2510,
ands1253WB /Tm

2 . The spectra are shown for three valu
of s21 and, in accordance with the above consideration,
hibit (DE)p.^DE& for s12.s21 and vice versa. To make
the difference between the mean and peak energy loss cl
visible, the spectra are given here for a relatively small p
length; this accounts for discrepancies between^DE&
2(DE)p for F11 and F22 and ;50% deviations from the

FIG. 6. Illustration of the change of sign of^DE&2(DE)p :
energy-loss spectra~a! F11 and~b! F22 for model cross sections~34!
and Nx52Tm

2 /WB . Vertical solid lines show values of the mea
energy loss for every spectrum. The model parameters areZ152,
2L15L2510, ands1253WB /Tm

2 ; WB andTm are arbitrary. Solid,
dashed, and dot-dashed lines correspond tos21/s1251/4, 1/2, and
3/2, respectively. The corresponding values of^DE&2(DE)p pre-
dicted by the asymptotic formula~33! are 20.74Tm , 20.32Tm ,
and 0.22Tm .
-

rly
h

values predicted by formula~33!. These discrepancie
quickly disappear with further increasing path length.

Note the specific form of condition~32!. Even for small
energy loss in charge-changing collisions (s«!DS), Voll-
mer’s model may lead to qualitatively incorrect prediction
the mean-to-peak interval if cross sections for electron c
ture and loss are close to each other. For example,
s125s21[s one has from Eq.~31!:

^DE&2~DE!p.
4sWBTm1s2«323«~DS!2

4@4sWB1s2«21~DS!2#
. ~35!

Setting«50 here, one has

^DE&2~DE!p.
sWBTm

4sWB1~DS!2 ,

i.e., ^DE&.(DE)p for any parameters, while Eq.~35! gives
the inverse inequality for 3«(DS)2.4sWBTm1s2«3.

Mention here also another case of practical importa
where Vollmer’s model is not applicable. For light Me
ions, the cross section for electron capture~say,s21) may be
smaller than that for electron loss by several orders of m
nitude. Correspondingly, whiles21«!uDSu, s12« may be
comparable to or larger thanDS. In particular, for s21«
!DS!s12« ~this corresponds, for example, to the case
32-MeV He ions in carbon considered in Sec. III D! formula
~31! is reduced to

^DE&2~DE!p.
WBTm12s21«

3

4@WB1s21«
2#

, ~36!

which is always positive and coincides with the one-sta
case result~30! for WB@s21«

2.
Consider briefly the limit transition to the one-state-ca

in general terms. As it should be, formulas~31!, ~33!, and
~35! for the mean-to-peak interval are reduced the one-st
case result~30! if ~i! charge states are equivalent to ea
other with respect to energy loss (DS→0) and ions do not
lose energy in charge-changing collisions («→0) or ~ii ! one
of the charge states dominates over the other in equilibr
(s12/s21→0 or s21/s12→0). However, due to the still im-
plied condition~13!, formulas~31!, ~33!, and~35! generally
are not reduced to Eq.~30! if both s12 ands21 are small. In
particular, in the limiting cases IJ→0 with s12/s215const
Þ0, one has from Eq.~31!:

^DE&2~DE!p.H 3~s122s21!DS/~8s2! for s12Þs21

23«/4 for s125s21.

Thus a relative smallness of cross sections for electron c
ture and loss does not mean that the difference between
mean and peak energy loss is close to its one-state v
~30!. On the contrary, it is forsufficiently smallvalues ofs
that ^DE&2(DE)p may become negative in the formula
above.
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C. Half-widths

Expanding Eq.~17a! for small k0, one has

DE2 iNxq9~0!

iNxq9~0!
5k0S 11

q-~0!

2q9~0!
k01••• D ,

or, inserting Eqs.~25!, and~26!,

k02kp,IJ5
dEIJ

iNxq9~0!
F12

q-~0!

2q9~0!

dEIJ

iNxq9~0!
1•••G ,

~37!

wheredEIJ5DE2(DE)p,IJ . Now, expansion of the expo
nent in Eq.~17b! around its maximum gives

ln
FIJ~DE,x!

FIJ„~DE!p,IJ ,x…

.2
1

2
~k02kp,IJ!2Nxq9~kp,IJ!

2
1

3
~k02kp,IJ!3Nxq-~kp,IJ!.

Substitution of Eq.~37! and simplification within the same
accuracy lead to the following representation for the sp
trum:

FIJ~DE,x!.FIJ~DEp,IJ ,x!expH 2
~dEIJ!2

2V2

3F11
iNxq-~0!

3V4 dEIJG J , ~38!

which holds for the main part of the spectrum: forudEIJu not
too large compared withV.

The spectrum~38! is skew and the half-widths are give
by

~dEIJ!61/2.6A2ln2VF17
iNxq-~0!

6V3 A2ln2G ~39!

and in this accuracy do not depend on either initial or fi
charge states of the particles. The mean value between
two half-widths is determined as

1

2
@~dEIJ!11/21~dEIJ!21/2#.~DE!p,IJ1 ln2

iq-~0!

3q9~0!

.^DE& IJ2F1

2
2

1

3
ln2G iq-~0!

q9~0!
.

~40!

The quantity 2 iNxq-(0)/2V2[ iq-(0)/2q9(0) was
shown above to determine the mean-to-peak interval for
spectrum and its properties were discussed in detail in S
IV B.

V. SUMMARY

The following conclusions are made.
~i! The energy-loss spectrum of charged particles in

presence of charge exchange has been analyzed theoret
under the assumption that collision cross sections do not
-

l
the

e
c.

e
ally
ry

significantly over the trajectory.
~ii ! The generalization of the steepest-descent met

@20# to include charge exchange delivers an effective a
general technique for an approximate evaluation of spe
valid for large path lengths. The derivation of the cent
formula ~17! does not require specification of the number
charge states or collision cross sections.

~iii ! The steepest-descent approximation~17! gives a good
accuracy forV*Tm provided that the ion beam has reach
charge-state equilibrium.

~iv! Apart from the tails of the spectrum, a comparab
accuracy is provided by the three-term diffusion approxim
tion Eq. ~19!. Coefficients entering Eq.~19! are determined
by the first three moments of the collision cross sections

~v! The Gaussian approximation is characterized by
poorer accuracy and a smaller region of validity (V@Tm).

~vi! Energy-loss spectra for 32-MeV3He ions in carbon
have been calculated numerically and compared with res
delivered by the approximations.

~vii ! The approximations allow one to find asymptotic e
pansions for the parameters of the spectrum in inverse p
ers of the path length. Expansions~27! and~39! for the peak
energy loss and the half-widths of the spectrum have b
derived. The leading terms coincide with the mean ene
loss and the standard deviation, respectively. In both exp
sions, the leading correction terms are independent of
path length as well as initial and final charge states of
particle and are determined by the first three moments of
collision cross sections.

~viii ! An asymptotic expression for the mean-to-peak
terval has been specified@Eq. ~31!# and analyzed for the
generalized Landau-Vavilov case. In particular, it has be
shown and illustrated on a model system that the asympt
difference between the peak and mean energy loss may
either sign depending on stopping and charge-exchange
rameters.
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APPENDIX A: DERIVATION OF GENERALIZED
BOTHE-LANDAU FORMULA

The derivation of formula~2! sketched below is base
upon the kinetic equations for the energy-loss spectru
Originally, this formula was established by another meth
@12,13#.

Let the ion be in a charge stateI initially. Over a small
path lengthDx, it suffers no collisions with the probability
12NDx(L*Tds IL(T), while NDxds IL(T) is the probabil-
ity of a collision accompanied by an energy loss (T,dT) and
a state transitionI→L. Accordingly, one identifies the two
contributions into the energy-loss spectrum at a larger p
lengthx:
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FIJ~DE,x!5S 12NDx(
L
E

T
ds IL~T! DFIJ~DE,x2Dx!

1NDx(
L
E

T
ds IL~T!FLJ~DE2T,x2Dx!

1O„~Dx!2
….

For Dx→0, one obtains the backward kinetic equation
F(DE,x):

]FIJ~DE,x!

]x
5N(

L
E

T
ds IL~T!@FLJ~DE2T,x!

2FIJ~DE,x!#. ~A1!

Alternatively, using the balance relation

FIJ~DE,x1Dx!5S 12NDx(
L
E

T
dsJL~T! DFIJ~DE,x!

1NDx(
L
E

T
dsLJ~T!FIL~DE2T,x!

1O„~Dx!2
…,

one can establish the forward equation@9#

]FIJ~DE,x!

]x
5N(

L
E

T
@FIL~DE2T,x!dsLJ~T!

2FIJ~DE,x!dsJL~T!#. ~A2!

Going over to the Fourier transform

F~k,x!5E
2`

`

e2 ikDEF~DE,x!d~DE!,

one reduces Eqs.~A1! and ~A2! to the matrix equations

]F~k,x!

]x
5NQ~k!F~k,x!,

]F~k,x!

]x
5NF~k,x!Q~k!,

~A3!

where the matrixQ(k) is determined by Eq.~3!. Utilizing
the boundary condition

FIJ~DE,x50!5d IJd~DE!, FIJ~k,x50!5d IJ ,

one finds

F~k,x!5eNxQ~k! ~A4!

and backward Fourier transformation delivers formula~2!.

APPENDIX B: DOMINANCE OF THE SPECTRUM
BY A SINGLE EIGENVALUE

FOR LARGE PATH LENGTHS

The purpose of this appendix is to prove that for su
ciently large path lengths the energy-loss spectrum is so
dominated by then51 term in expansion~7!; estimates of
the pertinent path-length scale will also be given for a f
special cases. For simplicity, the explicit discussion below
r

-
ly

s

limited by the case of realk; however, the main results re
main valid also if the integration in Eq.~7! is performed
along a straight line in the complex plane ofk parallel to the
real axis.

Sinceq(1)(0)50, for sufficiently smallk the integrand in
Eq. ~7! is ;1 for anyx. The relative significance of differen
contributions in Eq.~7! is primarily governed by the behav
ior of Re q(n)(k): For given values ofx andn, the integral
receives exponentially small contributions from those
gions of k where Req(n)(k),0 and NxuRe q(n)(k)u@1.
Therefore, contributions of allnÞ1 terms to the energy-los
spectrum may be neglected if

@Re qnÞ1#max,0, Nxu@Re qnÞ1#maxu@1, ~B1!

where @Re qnÞ1#max is the maximum value of Req(n)(k)
for all k andnÞ1. The first inequality here is crucial for th
dominance of the spectrum by a single eigenvalue for la
x, while the second specifies the appropriate region of p
lengths.

For sufficiently smalluku, the functions Req(n)(k) are
close to thek50 valuesq(1)(0)50, Re q(nÞ1)(0),0. For
sufficiently largeuku, the matrixQ(k) is dominated by its
diagonal elements and all Req(n)(k) have large negative
values. Between these two limits, the functions Req(n)(k)
can show a variety of different types of behavior for differe
numbers of charge states and sets of cross sections.

Consider a few specific cases where@Re qnÞ1#max can be
estimated analytically. A simple case is delivered by tho
systems where all functions Req(n)(k) decrease monotoni
cally with increasinguku; the example system considered
Sec. III D belongs to this category. In this case, the fi
condition ~B1! is obviously satisfied:

@Re qnÞ1#max5max
nÞ1

q~n!~0!,0 ~B2!

and the second condition~B1! coincides with that of the
charge-state equilibrium.

In the case of a triangular matrixQ(k) ~one-way charge
exchange!, the eigenvalues are equal to diagonal element
the matrix, Req(n)(k),Re q(n)(0) for anyn andkÞ0, and
thus@Re qnÞ1#max is again given by Eq.~B2!. Consider also
a two-state system with a negligible energy loss in char
changing collisions. For small values ofk, the eigenvalues
q(n)(k) are determined by Eq.~9! with QIJ5s IJ for IÞJ. If
the inequalitiesds11(T)>ds22(T), s12.s21 ~or vice versa!
hold; thenD(k) never comes through a real negative valu
Eq. ~9! is valid for any value of k, and therefore
@Re qnÞ1#max,2(s121s21)/2 differs from Eq.~B2! by no
more than a factor of 2.

In the general case, finding@Re qnÞ1#max may not be
possible by analytical means; numerical tabulation is alw
a feasible option for a particular system. However, the
equality @Re qnÞ1#max,0 is valid for all physical systems
and therefore the spectrum is dominated byq(1)(k) for suf-
ficiently large path lengths. It follows from the following:

Theorem 1.For any physically relevant set of cross se
tions, all eigenvaluesq(n)(k) have strictly negative real part
for all real k, the only exception beingq(1)(k50)50.
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Proof. Consider the matrixQ(k) at a real value ofk.
Diagonal elements of the matrix may be written as

QII ~k!52s II ~k!2 (
L ~ÞI !

s IL ,

wheres II (k)5*T(12e2 ikT)ds II (T). Let a be a real posi-
tive constant such thata1Re QII (k).0 for any I . Intro-
duce matrices

AIJ~a,k!5ad IJ1QIJ~k!,

BIJ~a,k!5g~a,k!d IJ1QIJ~0!,

where

g~a,k!5max
I

H (
L ~ÞI !

s IL1F S a2Re s II ~k!2 (
L ~ÞI !

s IL D 2

1@ Im s II ~k!#2G1/2J .

The complex matrixA(a,k) has eigenvaluesa1q(n)(k), n
51, . . . ,n. Eigenvalues of the matrixB(a,k) are given by
g(a,k)1q(n)(0), n51, . . . ,n, while all its elements are rea
and non-negative. The easily verified inequalityuAIJ(a,k)u
<BIJ(a,k) and relevant theorems on the properties of
matrices with non-negative elements~see @22#, Chap. 13!
ensure that the moduli of all eigenvalues ofA(a,k) do not
exceed the spectral radius ofB(a,k), i.e.,

uq~n!~k!1au<g~a,k!1q~1!~0!5g~a,k!.

Letting a→1`, one finds the following upper estimate fo
Re q(n):

Re q~n!~k!<2min
I

Re s II ~k!

52min
I
E

T
~12coskT!ds II ~T!. ~B3!

At k50, Re q(n)(0),0 for nÞ1; for kÞ0, all functions
Re s II (k) are strictly negative~exceptions are possible onl
in the physically unacceptable cases of eitherds II (T)[0 or
ds II (T) being ad function!. Therefore, except forq(1)(k
50)50, q(n)(k),0 for anyk andn and the proof is com-
pleted.

Utilizing results of Appendix C, one can generalize t
above argument for the case when integration in formula~7!
is performed along a straight line in the complex plane ok
parallel to the real axis, like in Sec. III A. Similarly, th
dominance of the spectrum by a single eigenvalue for su
ciently largex is guaranteed by the following theorem, val
for all physically relevant sets of cross sections.

Theorem 2.At imaginary k5 ik8, q(1)( ik8) is real and
larger than all Req(n)( ik8),nÞ1; for any complexk such
that Im k5k8, Re kÞ0, real parts of all eigenvalue
q(n)(k) are strictly smaller thanq(1)( ik8).
e

-

APPENDIX C: PROPERTIES OF EIGENVALUES
AT THE IMAGINARY AXIS OF k

Let k5 ik8 with k8 real. All elements of the matrix
Q( ik8) are real and monotonically increasing functions
k8, all nondiagonal elements being non-negative. Therefo
for any finite interval ofk8 one can choose a positive con
stanta such that all elements of the matrixAIJ(k8)5ad IJ
1QIJ( ik8) are real, non-negative and monotonically increa
ing functions ofk8. Applying theorems valid for matrices
with these properties~see @22#, Vol. 2, Chap. 13! and the
obvious relations between eigenvalues of matricesAIJ and
QIJ , one proves the following statements.3

~i! For anyk8, the functionq( ik8) represents a simple rea
eigenvalue ofQ( ik8).

~ii ! q(k) is a continuous and monotonically increasin
function along the imaginary axis@dq( ik8)/dk8>0# and is
larger than the real parts of all other eigenvalues@q( ik8)
.Re q(n)( ik8), nÞ1#.

~iii ! For anyk8, all elementsFIJ( ik8) are real and non-
negative.

~iv! All even-order derivatives ofq(k) and FIJ(k) with
respect tok are real at the imaginary axis, while all odd
order derivatives are imaginary.

~v! The derivativedq( ik8)/dk8 has large negative an
positive values atk8→2` andk8→1`, respectively.

In particular, these statements ensure the existence, for e
value ofDE, of a pointk05k0(DE)5 ik08(DE) at the imagi-
nary axis satisfying Eq.~15! ~i.e., the saddle point! and such
that all the quantitiesFIJ( ik08)>0 and iq8( ik08), 2q9( ik08)
.0 are real.

APPENDIX D: COEFFICIENTS
IN APPROXIMATION FORMULAS

The coefficients that enter the approximation formulas
the spectrum~18!, ~19!, and ~38! and its basic parameter
~Sec. IV! can be calculated in accordance with the followi
scheme. Differentiate the first relation~5!:

~Q82dq~n!/dk!b~n!52~Q2q~n!!db~n!/dk, ~D1!

whereQ8[dQ/dk. Multiplying this relation byt(n) and us-
ing Eqs.~5! and ~6!, one finds

dq~n!

dk
5~Q8b~n!,t~n!!, ~D2!

where (Q8b(n),t(m))[( I ,JQIJ8 bJ
(n)t I

(m) . Now substitute the
expansiondb(n)/dk5(mbnmb(m) with yet unknown coeffi-
cientsbnm into Eq. ~D1!. Multiplying the resulting equation
by t(m) and taking relations~5! and ~6! into account, one
finds, for nÞm, @q(n)2q(m)#bnm5(Q8b(n),t(m)) and there-
fore

3Strictly, one more requirement should be fulfilled: The mat
AIJ is to be irreducible @22#, i.e., there should be no disconnecte
subsets of charge states. If there were, such subsets shou
treated separately.
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db~n!

dk
5 (

m ~Þn!

1

q~n!2q~m!
~Q8b~n!,t~m!!b~m!1bnnb~n!.

~D3!

A similar evaluation fordt (n)/dk gives@coefficient att(n) is
related tobnn by condition~6!#

dt~n!

dk
5 (

m ~Þn!

1

q~n!2q~m!
~Q8b~m!,t~n!!t~m!2bnnt~n!.

~D4!

The parametersbnn are determined by an additional norma
ization condition and do not enter the final results. Furt
differentiation of Eq.~D2! and substitution ofn51, k50,
and q(1)50 expresses the required coefficients in terms
eigenvalues and eigenvectors atk50 only:

q8~0!5a11
@1# , q9~0!5a11

@2#2 (
m ~Þ1!

2

q~m!
a1m

@1#am1
@1# ,

q-~0!5a11
@3#2 (

m ~Þ1!

1

q~m!H 3~a1m
@1#am1

@2#1a1m
@2#am1

@1#!

1
6

q~m!
~a11

@1#2amm
@1# !a1m

@1#am1
@1#

2 (
l ~Þ1,m!

2

q~l!
@3a1l

@1#alm
@1#am1

@1#1a1m
@1#al1

@1#aml
@1##J ,

FIJ8 ~0!52 (
m ~Þ1!

1

q~m!
@a1m

@1#b I
~m!tJ

~1!1am1
@1#b I

~1!tJ
~m!#,
an

s
,

r

f

etc., whereq(m),b(m),t(m) are taken atk50,

anm
@r #5~2 i !r~P@r #b~n!,t~m!![~2 i !r (

I ,J51

n

PIJ
@r #bJ

~n!t I
~m! ,

~D5!

and the matricesP(r ) contain the moments of the cross se
tions

PIJ
@r #5E

T
Trds IJ~T!.

In particular, in the two-state case (n52) q(2)52(s12
1s21) and the formulas above are reduced as

q8~0!5a11
@1# , q9~0!5a11

@2#1
2

s121s21
a12

@1#a21
@1# ,

q-~0!5a11
@3#1

3

s121s21
Fa12

@1#a21
@2#1a12

@2#a21
@1#

2
2

s121s21
~a11

@1#2a22
@1#!a12

@1#a21
@1#G ,

FIJ8 ~0!5
1

s121s21
@a12

@1#b I
~2!tJ

~1!1a21
@1#b I

~1!tJ
~2!#,

whereaIJ
@r # are determined by formula~D5! with

b~1!5S 1

1D , t~1!5
1

s121s21
S s21

s12
D ,

b~2!5
1

s121s21
S s12

2s21
D , t~2!5S 1

21D .
es.

ds
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