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Semiclassical theory of nonadiabatic transitions in a two-state exponential model

Vladimir I. Osherov,1 Vladimir G. Ushakov,1 and Hiroki Nakamura2
1Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovska, Moscow 142432, Russia

2Division of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki 444, Japan
~Received 10 September 1997!

A general two-state exponential potential model is solved with use of the Bessel transformation and the
WKB ~Wentzel-Kramers-Brillouin! type semiclassical approximation. Accurate expressions are obtained for
the nonadiabatic transition probability for one passage of the transition point and for the two dynamical phases.
Functionalities of these quantities in terms of two basic parameters are the same as those obtained before by
Nikitin. The two basic parameters are, however, expressed in more general and accurate forms. Accuracies of
these expressions are numerically confirmed. The three quantities, the nonadiabatic transition probability and
the two dynamical phases, constitute the nonadiabatic transition matrix and can be used to describe various
~spectroscopic as well as scattering! processes not only for a two-state but also for a multichannel system. A
possible generalization of the present theory is also briefly discussed to formulate a unified theory that can
cover both Landau-Zener-Stueckelberg and Rosen-Zener-Demkov cases within the adiabatic state representa-
tion. @S1050-2947~98!07504-0#

PACS number~s!: 03.65.Nk
n
a
ys
ar

-
ro
an
d

in

th
c
o
ti
as
ob
e
b

ion
w

o

ial
an
s
en-

t
on

e
s-
ion
ion
del
ally
als
ex-
fol-
re-

e

ma-
m-
g
rre-

-

o-
sel

ities
hich

in
the
I. INTRODUCTION

It is well known that nonadiabatic transitions present o
of the most essential mechanisms of state and/or ph
changes in various physical, chemical, and biological s
tems@1–5#. The most fundamental models among them
the Landau-Zener-Stueckelberg~LZS! type curve crossing
and the Rosen-Zener-Demkov~RZD! type noncrossing prob
lems. Recently, the Landau-Zener-Stueckelberg type p
lem has been completely solved by Zhu and Nakamura;
the compact and accurate analytical formulas have been
rived for both Landau-Zener and nonadiabatic tunnel
~NT! type crossings@5–8#. They can cover practically the
whole ranges of energy and coupling strength. Besides,
theory does not require any nonunique diabatization pro
dure and information of any coupling, neither diabatic n
nonadiabatic. What is required is the information of adiaba
potentials on the real axis. On the other hand, the most b
model of the Rosen-Zener-Demkov type noncrossing pr
lem, i.e., constant diabatic potentials coupled by an expon
tial potential, was solved quantum mechanically exactly
Osherov and Voronin@9#.

It is interesting to note that the nonadiabatic transit
probability for one passage of the transition point at lo
energies is given by

p5e2D, ~1.1!

whereD is the imaginary part of complex phase integral, f
both LZS and RZD cases@1,2,4,5#. At high energies the
probability in the LZS case is still given by Eq.~1.1! and
goes to unity in theE→` limit; in the RZD case, on the
other hand,p is given by

p5
e2D

11e2D , ~1.2!
571050-2947/98/57~4!/2672~11!/$15.00
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and goes to 1/2 in the limit. Interestingly, in the exponent
model ~two exponential diabatic potentials coupled by
exponential potential! the corresponding probability contain
two parameters and can cover both LZS and RZD cases m
tioned above in the high-energy limit@1#. This suggests tha
it might be possible to formulate a unified theory based
the exponential model.

It was Nikitin who solved an exponential model for th
first time within the framework of time-dependent semicla
sical theory based on the linear trajectory approximat
@1,10–12#. Recently, the exact quantum mechanical solut
was obtained for a special case of the exponential mo
@13,14#. Based on these achievements we want to eventu
formulate a unified theory that relies only on phase integr
along the adiabatic potentials and can be free from any
ponential potential parameters. Our main concern is the
lowing nonadiabatic transition matrix in the adiabatic rep
sentation:

SA12pe2w

2Ape2 ic

Apeic

A12peiwD , ~1.3!

where p is the nonadiabatic transition probability for on
passage of the avoided crossing point, andw andc represent
the accompanying phases called dynamical phases. This
trix represents a transition at the crossing point in the inco
ing ~from right to left! segment of the two-state scatterin
process. It should be noted that the adiabatic state 1 co
sponds to the lower one@see Eq.~2.2!#. Once we obtain these
quantities (p,w,c), then not only the whole two-state pro
cess but also multichannel problems can be formulated@4–
8#. In the present work we solve the time-independent tw
state exponential potential problem with use of the Bes
transformation and the WKB~Wentzel-Kramers-Brillouin!
type semiclassical approximation. The above three quant
are expressed in terms of two parameters, as is known, w
are found to be expressed in terms of contour integrals
momentum space. They can be generalized to forms of
2672 © 1998 The American Physical Society
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57 2673SEMICLASSICAL THEORY OF NONADIABATIC . . .
phase integral along adiabatic potentials. Accuracies of th
expressions are confirmed by using quantum mechanic
exact numerical solutions and analytical solutions for
special case.

This paper is organized as follows. Our model discus
in this paper is explained in Sec. II. In Sec. III the problem
transformed into the momentum space by the Bessel tr
formation and the WKB type wave functions are derived.
Sec. IV the nonadiabatic transition matrix is expressed
terms of the two parameters that are defined by contour
tegrals in the momentum space. Section V summarizes
semiclassical theory convenient for practical applicatio
Some numerical examinations are presented in Sec. VI. C
cluding remarks and discussions for the final goal of
present project are provided in Sec. VII. Derivations of so
formulas presented in the text are summarized in App
dixes.

II. BASIC MODEL

A. Model potential system

Model diabatic potentials considered in this paper are
fined by

H11~x!5u12V1e2ax,

H22~x!5u22V2e2ax,
~2.1!

H12~x!5Ve2ax,

whereH j j (x)( j 51,2) are the diabatic potentials,H12(x) rep-
resents a coupling between them, and the parameters ar
sumed to satisfy the relations,u1.u2 , V1.V2.0, andV
.0. Adiabatic potentials and the diabatic-adiabatic trans
mation are given as usual by

uj
a~x!5

1

2
@H11~x!1H22~x!#6F S H11~x!2H22~x!

2 D 2

1H12
2 ~x!G1/2

@ j 51~2! for 2~1 !#, ~2.2!

S w1~x!

w2~x! D5TS c1~x!

c2~x! D , ~2.3!

T5S cosg,
sin g,

2sin g
cosg D ~2.4!

with

sin 2g52H12~x!/@u2
a~x!2u1

a~x!#, ~2.5!

where w j (c j )( j 51,2) represent adiabatic~diabatic! wave
functions.

The diabatic potential crossing occurs at

xc
d52

1

a
ln

u12u2

V12V2
~2.6!

and the corresponding complex crossing point is given b
se
lly
e

d

s-

n
n-
he
.
n-
e
e
-

e-

as-

r-

x* 52
1

a
lnF ~u12u2!/2V

11@~V12V2!/2V#2 S V12V2

2V
6 i D G .

~2.7!

It should be noted that the potentials exponentially ne
tively diverge atx→2`. The main purpose of the prese
work is to derive a general expression for the so-called no
diabatic transition matrix@Eq. ~1.3!# which provides transi-
tion amplitudes at the avoided crossing. If necessary, we
put repulsive potential walls atx,0 to describe a scatterin
process in radial coordinate.

B. Relation to the Nikitin’s model

Nikitin solved an exponential model within the time
dependent framework in which the coordinate is a line
function of timet @1,10–12#. In this treatment only the dif-
ference between the two adiabatic potentials is important
it is given by

DU~ t !5De@122 cos 2u0e2avt1e22avt#1/2, ~2.8!

wherev represents the velocity, andDe andu0 are the basic
parameters.

In the present model we have

Dua~x!5~u12u2!@122B cos 2u0e2ax1B2e22ax#1/2

~2.9!

with

B cos 2u05~V12V2!/~u12u2!

and

B sin 2u052V/~u12u2!. ~2.10!

If we put B5eax0, then the coordinatex is shifted byx0 and
Eq. ~2.9! is essentially the same as Eq.~2.8!. It should be
noted, however, that we deal with the time-independ
quantum mechanical problem in this paper. Thus the ba
parameters appearing in the nonadiabatic transition ma
are more general than those in the Nikitin’s treatment.

III. BESSEL TRANSFORMATION AND SEMICLASSICAL
WAVE FUNCTIONS

A. Bessel transformation

If we introduce the following variable and parameters,

r25
8mV

\2a2 e2ax, ~3.1a!

n25
8m

\2a2 ~E2u1!, m25
8m

\2a2 ~E2u2!, ~3.1b!

and

b j5Vj /V ~ j 51,2!, ~3.1c!

then the basic coupled Schro¨dinger equations are expresse
as
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Fr2
d2

dr2 1r
d

dr
1n21b1r2Gc15r2c2 , ~3.2a!

Fr2
d2

dr2 1r
d

dr
1m21b2r2Gc25r2c1 . ~3.2b!

Herem represents the reduced mass of the system.
In the special caseb1b251 or V1V25V2, we can solve

Eqs.~3.2! exactly in terms of the Meijer’sG functions@13#.
In order to solve Eqs.~3.2! approximately, we first move into
the momentum space by using the Bessel transformation

c j~r!5E
C

pFj~p!Zin~rp!dp, ~3.3!

whereZin(z) is a Bessel function, which satisfies

Fz2
d2

dz2 1z
d

dz
1z21n2GZin~z!50. ~3.4!

Putting

F1~p!5
f 1~p!

p1/2~p22a1!~p22a2!
~3.5!

with

a1,25
1

2
~b11b2!7F S b12b2

2 D 2

11G1/2

, ~3.6!

we obtain the following differential equation forf 1(p):

F d2

dp2 1
114m2

4

p424ep21l

p2~p22a1!~p22a2!G f 1~p!50, ~3.7!

where

e5

1
4 ~b11b2!1~b2n21b1m2!

114m2 ~3.8!

and

l5
~b1b221!~114n2!

114m2 . ~3.9!

The functionF2(p) is simply obtained fromF1(p) by

F2~p!5~b12p2!F1~p!. ~3.10!

The integral contourC in Eq. ~3.3! should be chosen so tha
the following conditions are satisfied:

F j~p!
dZin

dp
pnuC50 ~n51,3!,

d

dp
~F j~p!pn!ZinuC50 ~n51,3!,

~3.11!

F j~p!pnZinuC50 ~n50,2!.
B. Semiclassical wave functions

In this subsection we derive general expressions of
wave functionsc1 andc2 under the condition ofm2,n2 @1.
Under this condition Eq.~3.7! can be rewritten as

F d2

dp2 1P0~p!G f 1~p!50 ~3.12!

with

P0~p!5m2
~p22c1!~p22c2!

p2~p22a1!~p22a2!
, ~3.13!

c1,25
1

2
~b11b2n2/m2!7F S b12b2n2/m2

2 D 2

1
n2

m2G1/2

.

~3.14!

Now, we apply the WKB approximation to Eq.~3.12! and
use Hin

(2)(pr), the second kind of Hankel function, fo
Zin(pr). Then we have

F1~p!.
1

p1/2~p22a1!~p22a2!

exp@ i *pAP0dp#

P0
1/4

~3.15!

and

c1~r!.E
C

eiS~p,r!p1/2

~p22a1!~p22a2!~p2r21n2!1/4P0
1/4 dp,

~3.16!

where

S~p,r!5Ep
AP0~p!dp2Epr

A11n2/j2dj. ~3.17!

Here, the contourC is chosen as shown in Fig. 1. This sa
isfies Eq.~3.11!, sinceHin

(2)(z) exponentially decreases bu
F1(p) diverges only by power atz→2 i`. We evaluate Eq.

FIG. 1. The integral contourC to define the wave functionc1

@see Eq.~3.16!#.
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~3.16! by using the saddle-point method; and thej th saddle
point gives the following contribution (j 51,2):

c1 j~r!>Aj~r!eiSj ~r!2 ip/4, ~3.18!

where

Sj~r!5Epj
†
~r!AP0dp2Erpj

†
~r!

@11n2/j2#1/2dj

52Er

@~pj
†~r!!21n2/r2#1/2dp

5
1

\ Ex
A2m@E2uj

a~x!#dx, ~3.19!

Aj~r!5
~pj

†!1/2u2p/Sj9~r!u1/2

@~pj
†!22a1#@~pj

†!22a2#@~pj
†r!21n2#1/4P0

1/4~pj
†!

~3.20a!

5S 2p

m22n2D 1/2F 8m

\2a2 @E2uj
a~x!#G21/4

3 H cosg
2sin g

for j 51
for j 52, ~3.20b!

andpj
†(r) ( j 51,2) are the saddle points given by

@pj
†~r!#25

b11b2

2
2

n22m2

2r2

6F S b12b2

2
2

m22n2

2r2 D 2

11G1/2

. ~3.21!

It should be noted that the saddle pointpj
† corresponds to the

one on the adiabatic stateuj
a(x).

The second and third equations in Eq.~3.19! are derived
by noting the following relations:

dSj

dr
5

]pj
†

]r

]Sj

]pj
† 1

]Sj

]r
52

]pj
†r

]r F11
n2

~rpj
†!2G1/2

52@~pj
†!21n2/r2#1/2 ~3.22!

and

2m@E2uj
a~x!#5

\2a2

4
r2H n21m2

2r2 1
b11b2

2
6F S m22n2

2r2

2
b12b2

2 D 2

11G1/2J
5

\2a2

4
r2$@pj

†~r!#21n2/r2%. ~3.23!

The saddle points in thep space defined by Eq.~3.21! are
functions of the coordinater, and give dominant contribu
tions to the integral in Eq.~3.16! in the sense of semiclassic
approximation.

The second equation in Eq.~3.20! can be obtained from
the following relations:
n2

~pj
†!22

m2

~pj
†!2

@~pj
†!22c1#@~pj

†!22c2#

@~pj
†!22a1#@~pj

†!22a2#

[
~n22m2!@~pj

†!22b1#

@~pj
†!22a1#@~pj

†!22a2#
52r2, ~3.24!

~pj
†!22b152H b12b2

2
2

m22n2

2r2

7F S b12b2

2
2

m22n2

2r2 D 2

11G1/2J
~3.25a!

56 H sin g/cosg
cosg/sin g

for j 51
for j 52,

~3.25b!

and

Sj9~r!5
pj

†

AP0~pj
†!

r4

n22m2 H 1/sin2g
1/cos2g

for j 51
for j 52.

~3.26!

The saddle pointspj
† ( j 51,2) are monotonic functions ofr:

p1
† ——→

r→`

Aa2, p1
† ——→

p→0
`,

~3.27!

p2
† ——→

r→`

Aa1, p2
† ——→

r→0

Ab1,

wherea1,b1,a2 . It is interesting to note that the turnin
points inr andp space correspond to each other. The form
(r0) are given by@see Eqs.~3.23! and ~3.21!#

r0
225

1

2n2m2 $2~b1m21b2n2!

6A~b1m21b2n2!224n2m2~b1b221!%

52c1,2/n2, ~3.28!

and the latter are equal toc1,2 @see Eq.~3.13!#. There holds
the following correspondence

~p1
†!25c2↔r0 with the lower sign,

~3.29!

~p2
†!25c1↔r0 with the upper sign.

The j th saddle point contribution to the wave functio
c2(r) can be easily obtained from Eq.~3.18! as @see Eq.
~3.10! and Eqs.~3.25!#

c2 j~r!.Bj~r!eiSj ~r!2 ip/4 ~3.30!

with
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Bj~r!52@~pj
†!22b1#Aj~r!

52S 2p

m22n2D 1/2F 8m

\2a2 @E2uj
a~x!#G21/4

3 H sin g
cosg

for j 51
for j 52. ~3.31!

Since cosg→0 (sing→1) for r→0 or x→`, only p2
† con-

tributes in Eq.~3.18! and we have

w2~x! ——→
x→`

A
eiS2

$2m@E2u2
a~x!#%1/4 ~3.32!

with

A5S p\3a3

8m~u12u2! D
1/2

e2p i /4. ~3.33!

On the other hand, atr→` or x→2` the contourC ~see
Fig. 1! cannot go throughp2

† and we obtain

w1~x!5cosgc1~x!

2sin gc2~x! ——→
x→2`

A
eiS1

$2m@E2u1
a~x!#%1/4.

~3.34!

Equations~3.32! and~3.34! suggest that the transition matr
elementN12 for the transitionw1(x52`)→w2(x5`) ~see
Ref. @13#! is given by

N125eiDS ~3.35!

with

DS5S22S15
1

\ R A2m@E2ua~x!#dx, ~3.36!

where the contour integral is taken from the real axis to
around the complex crossing point, then back to the real
on the different adiabatic potential. Explicit expressions
p, w, andc in the nonadiabatic transition matrix Eq.~1.3! are
provided in the next section.

IV. NONADIABATIC TRANSITION MATRIX

A. High-energy approximation

Before employing the high-energy approximation we
troduce the following parameters:

d j5
1

2p i R
Lj

AP0~p!dp ~ j 51,2! ~4.1!

and

d5d11d2 , ~4.2!

whereP0(p) is given by Eq.~3.13! and the contoursLj are
defined in Fig. 2. It can be easily shown thatd of Eq. ~4.2! is
given by
o
is
f

-

d5
1

4p i H R
L8

1 R
L9

J m

t S ~ t2c1!~ t2c2!

~ t2a1!~ t2a2! D
1/2

dt

5
1

2
~m2n!, ~4.3!

where the contourL8 andL9 are shown in Fig. 3. As will be
seen later, these parameters play crucial roles in determi
the nonadiabatic transition amplitudes.

Now, we introduce the high-energy approximation,

n2/m2→1. ~4.4!

Then we have

a12c15
~m22n2!a1~a12b1!

m2~a12c2!
[2e1→0 ~E→`!,

~4.5a!

a22c25
~m22n2!a2~a22b1!

m2~a22c1!
[2e2→0 ~E→`!,

~4.5b!

FIG. 2. The integral contoursL1 andL2 to defined1 andd2 @see
Eq. ~4.1!#.

FIG. 3. The deformed integral contoursL8 andL9 to defined
@see Eq.~4.3!#.
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and

AP0~p!.
n

p
1

me1

2a1

2p

p22a1
1

me2

2a2

2p

p22a2
1o~e2!.

~4.6!

According to the definition of Eq.~4.1!, d1 and d2 are ex-
plicitly given by the following expressions in the prese
approximation:

d1.
me1

2a1
.

m2n

4 S 11
~b12b2!/2

A11@~b12b2!/2#2D
5

m2n

4
~11cos 2g0! ~4.7a!

and

d2.
me2

2a2
.

m2n

4 S 12
~b12b2!/2

A11@~b12b2!/2#2D
5

m2n

4
~12cos 2g0!, ~4.7b!

where cos 2g0 is the value of cos 2g in the r→`(x→2`)
limit.

The diabatic wave functionsc1(x) in the limits x→`,
2`(r→0,̀ ) are shown to be given by

c1~x! ——→
x→`

A1

1

An
r2 in ~4.8a!

with

A15
p i

An
e2 iw0~a22a1! id21e2pd2

G~12 id!

G~12 id1!G~12 id2!
,

~4.8b!

and

c1~x! ——→
x→2`

B1

1

a2
1/4r1/2 e2 iAa2r ~4.9a!

with

B15
p i

Am
S d

Ad1d2
D id121

a2
in/2S a

m D id2 e2pd2/2

G~12 id2!
,

~4.9b!

where

w05n2n ln~2n!. ~4.10!

Derivation of these expressions is given in Appendix A. O
the other hand, the diabatic wave functionc2(x) at x
→`(r→0) is obtained as

c2~x! ——→
x→`

A2

1

Am
r2 im ~4.11a!

with
A25
1

An
e2pd21pd/2 sinh~pd2!G~ id!e2 iw01 id ln~4n!.

~4.11b!

Derivation of Eqs.~4.11! is provided in Appendix B.
Since

w2~x5`!5c1~`! ~4.12a!

and

w1~x52`!5cosg0c1~2`!2sin g0c2~2`!

5c1~2`!/cosg0 , ~4.12b!

the transition matrix elementN12 is given by

N125
A1

B1
cosg0 . ~4.13!

Inserting Eqs.~4.8b! and~4.9b! into this equation, we obtain

p[uN12u25e2pd2
sinh~pd1!

sinh~pd!
~4.14!

and

arg N1252w01d2 ln
m~a22a1!

a2
2

n

2
ln a21arg G~ id1!

2arg G~ id!. ~4.15!

This p should not be confused with the momentum us
before. This result clearly indicates that the nonadiaba
transition probability given by Eq.~4.14! is equivalent to the
one derived by Nikitin@Eq. ~9.15a! of Ref. @1## and the ap-
proximate expression obtained from the exact solution in
special case@Eq. ~3.23! of Ref. @13## within the following
correspondences of the parametersd1 andd2 :

d1↔j2jp in Ref. @1#↔q32q1 in Ref. @13#

d2↔jp in Ref. @1#↔q22q3 in Ref. @13#.
~4.16!

In the present treatment,d1 andd2 , which are given by Eqs
~4.7! in the high-energy approximation, are more genera
defined by Eq.~4.1!. The phase given by Eq.~4.15!, on the
other hand, is just a high-energy approximation, and its
provement will be discussed in the next subsection. Si
w1(x5`)5c2(`), the transition matrix elementN11 is
given by

N1152
A2

B1
cosg0 . ~4.17!

From Eqs.~4.9b! and ~4.11b! we have

uN11u25epd1
sinh~pd2!

sinh~pd!
512p ~4.18!

and
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arg N1152w01d ln~4n!2d1 ln~a22a1!2n/2 ln a2

2d2 ln~a2 /m!1p/21arg G~ id!

1arg G~12 id2!. ~4.19!

B. Dynamical phases

First, we try to derive accurate expressions for the
namical phasew in Eq. ~1.3! based on the quantum mechan
cally exact solutions in the special case@13#. In general, the
semiclassical phase along the adiabatic potentialu2

a(x) at x
→` is given by

j i~x!5
21

\ E
x0

x
A2m@E2u2

a~x!#dx

52
A2m

\ H E
x0

x u12u2
a~x!

AE2u2
a~x!1AE2u1

dx

1E
x0

x
AE2u1dxJ , ~4.20!

wherex0 is an appropriate real position. Similarly, the pha
alongu2

a(x) at x→2` is given by

j f~x!52
1

\ E
x0

x
A2m@E2u2

a~x!#dx

52
A2m

\ H E
x0

x u32u2
a~x!

AE2u2
a~x!1AE2u3

dx

1E
x0

x
AE2u3dxJ , ~4.21!

where u3 represents the asymptotic value ofu2
a(x) at x→

2` in the special case (V1V25V2) and is given by

u35
u1V21u2V1

V11V2
. ~4.22!

On the other hand, quantum mechanical wave functions
expressed in each asymptotic region by

w2~x→`!5@~2m/\2!~E2u1!#21/4

3exp@2~ i /\!A2m~E2u1!x#

w2~x→2`!5N41
~4!@~2m/\2!~E2u3!#21/4

3exp@2~ i /\!A2m~E2u3!x#, ~4.23!

whereN41
(4) is the 4-channel transition matrix element giv

by Eq. ~3.4! of Ref. @13#. Thus the dynamical phasew is
given by

w5Fj f~x!1
1

\
A2m~E2u3!xG

x→2`

2arg N41
~4!

2Fj i~x!1
1

\
A2m~E2u1!xG

x→1`

. ~4.24!
-

re

At relatively high energies argN41
(4) can be replaced by the

following expression with good accuracy,

arg N41
~4!.d1 ln

V11V2

\va
2arg G~ id!1arg G~ id2!

~4.25!

with

d15
u12u2

\va

V1

V11V2
and d25

u12u2

\va

V2

V11V2
,

~4.26!

wherev is the velocity. The expressions ofd1 andd2 of Eq.
~4.26! can be obtained from Eqs.~4.7! under the condition
V1V25V2 @see also the correspondence~4.16!#. Since w
should not depend onx0 , we can putx050, and obtain

w5
A2m

\ H E
2`

0 u32u2
a~x!

AE2u2
a~x!1AE2u3

dx

1E
0

` u12u2
a~x!

AE2u2
a~x!1AE2u1

dxJ 2d1 ln
V11V2

\va

1arg G~ id!2arg G~ id2!. ~4.27!

A simpler semiclassical expression ofw can be obtained if
we use the high-energy expansion

A2m@E2ua~x!#.A2mE2
1

\v
ua~x!, ~4.28!

and the asymptotic forms of the semiclassical wave funct
w1(x) at x→6` derived in the previous subsection. Usin
the similar procedure as above, we can finally obtain

w5g~d2!2g~d! ~4.29!

with d5d11d2 and

g~X!5X ln X2X2arg G~ iX !, ~4.30!

whered1 andd2 are given by Eq.~4.26!.
The same analysis can be carried out for the dynam

phasec, and we finally obtain the following compact sem
classical expression:

c5g~d1!2g~d!22FAdd21
d1

2
ln

Ad2Ad2

Ad1Ad2
G .

~4.31!

This phase depends on the choice of reference point (x0),
and the present one is the same as that of Nik
@x05Re(x* )#. It should be noted that
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ReH 1

\ E
Re~x

*
!

x
* $A2m@E2u1

a~x!#2A2m@E2u2
a~x!#%J dx

.
1

\v
ReH E

Re~x
*

!

x
* @u2

a~x!2u1
a~x!#dxJ

52Add21d1ln
Ad2Ad2

Ad1Ad2

, ~4.32!

wherex* is the complex crossing point given by Eq.~2.7!.
With the replacement ofd1 and d2 by j2jp and jp ,

respectively, Eqs.~4.29! and~4.31! coincide with the expres
sions obtained by Nikitin@1,10–12#, wherej5Dj/av and
jp5j(12cos 2u0)/2 @see Eq.~2.8!#. In the present treatmen
d1 andd2 can be more generally expressed in terms of c
tour integrals. Bothd1 andd2 are defined by Eq.~4.1! andd
is given by Eq.~4.3! within the exponential model. Both
parametersd1 andd2 can further be generalized as

d15
1

p
ImH E

x1

x
* k1~x!dx2E

x2

x
* k2~x!dxJ ~4.33a!

and

d25
1

p
ImH E

Re~x
*

!

x
* @k1~x!2k2~x!#dxJ , ~4.33b!

wherexj ( j 51,2) are the complex turning points and

FIG. 4. The nonadiabatic transition probabilityp as a function
of dimensionless energy. The potentials used are defined by
~2.1! and~5.1!. Dotted line: exact numerical solution of the couple
equations. Dashed line: Asymptotic semiclassical approxima
@Eq. ~4.14!# with d and d2 given by Eqs.~5.2! and ~5.3!, respec-
tively.
-

kj~x!5
1

\
A2m@E2uj

a~x!#. ~4.34!

These can be free from the exponential potential model
be utilized for general curved potentials. This generalizat
is not only quite natural from the long history of the sem
classical theory of nonadiabatic transitions for the LZS a
RZD problems@1–6#, but also confirmed in the present trea
ment by Eq.~3.36!. This could provide us with a possibility
to formulate a unified theory that works for general pote
tials and can cover both LZS and RZD cases.

V. NUMERICAL EXAMINATIONS

A simple numerical confirmation of the present semicla
sical theory has been carried for the nonadiabatic transi
probability p and the dynamical phasew by using the fol-
lowing model potential:

u150 u2 /~\2a2/2m!525, V1 /~\2a2/2m!53,

V2 /~\2a2/2m!52, V/~\2a2/2m!5A5. ~5.1!

The probabilityp and the phasew are defined by Eq.~1.3!,
and are given by Eqs.~4.14! and ~4.29!, respectively, in the
present semiclassical approximation.

Figures 4 and 5 show the probabilityp against the dimen-
sionless energyE/(\2a2/2m). The dotted line represents th
exact numerical solution of coupled equations, and
dashed lines in Fig. 4 and Fig. 5 are the results of Eq.~4.14!
with d andd2 given by

qs.

n

FIG. 5. The same as Fig. 4 in the narrower energy range. Do
and dashed lines are the same as those in Fig. 4. Solid line: S
classical approximation@Eq. ~4.14!# with d and d2 given by Eqs.
~4.3! and ~4.33b!.
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d5
u12u2

\va
~5.2!

and

d25
u12u2

2\va F12
~b12b2!/2

A11@~b12b2!/2#2G . ~5.3!

These are the high-energy limits of Eq.~4.7!. This
asymptotic semiclassical approximation deviates from
exact one at low energies. In Fig. 5 the solid line represe
the result of Eq.~4.14! with d andd2 given by Eq.~4.3! and
Eq. ~4.33b!, respectively. This semiclassical theory wor
almost perfectly. Figure 6 shows the results for the dyna
cal phasew in the special caseV/(\2a2/2m)5A6 @see Eq.
~5.1!#. The dotted line is the most accurate result of E
~4.24! with argN41

(4) given by the exact solution in Ref.@13#.
The solid and dashed lines represent the semiclassical re
of Eq. ~4.29! with d and d2 evaluated by Eqs.~4.3! and
~4.33b! ~solid line! or by the asymptotic expressions of Eq
~5.2! and ~5.3! ~dashed line!. The accurate semiclassical a
proximation~solid line! works very well.

These numerical results clearly indicate that the pres
semiclassical theory is a very good approximation, if we u
d andd2 given by Eq.~4.3! and Eq.~4.33!, respectively.

FIG. 6. Dynamical phasew ~in radian! as a function of dimen-
sionless energy. The potentials are given by Eqs.~2.1! and ~5.1!
except thatV/(\2a2/2m)5A6. Dotted line: quantum mechanica
result given by Eq.~4.24!. Dashed line: asymptotic semiclassic
approximation@Eq. ~4.29!# with d and d2 given by Eqs.~5.2! and
~5.3!. Solid line: semiclassical approximation@Eq. ~4.29!# with d
andd2 given by Eqs.~4.3! and ~4.33b!.
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VI. CONCLUDING REMARKS

With use of the Bessel transformation and the WKB ty
approximation, we have developed an accurate semiclas
theory for the general exponential model defined by E
~2.1!. We have discussed only the nonadiabatic transit
matrix defined by Eq.~1.3! in this paper; but, as is wel
known, this suffices to solve not only all kinds of two-sta
problems but also even multichannel problems@4–8#. The
nonadiabatic transition probabilityp is expressed by Eq
~4.14!, and the dynamical phasesw andc are given by Eqs.
~4.29! and ~4.31!, respectively. These expressions are ac
ally the same as those obtained by Nikitin@1,10–12# the
pioneer of the exponential model. A development made
the present work is that the important basic parametersd and
d2 are generalized and expressed by Eqs.~4.3! @or ~4.33a!#
and ~4.33b!, respectively. These were confirmed to be ve
accurate and useful.

One nice thing about the exponential model is that, as w
noticed before by Nikitin@1,10–12# this model can cover
both Landau-Zener-Stueckelberg and Rosen-Zener-Dem
problems. Actually, the nonadiabatic transition probabilityp
defined by Eq.~4.14! gives the Landau-Zener probabilityp
5e2d2 in the limit d→` or d2→0, and covers the Rosen
Zener probability for one passage of the transition poinp
5(11e2pd2)21 in the limit d→2d2 . This suggests, as men
tioned in the Introduction, that we should be able to form
late a unified theory that works for general potentials and
cover both LZS and RZD cases. Zhu pursued a similar i
in the diabatic representation@15#. We want to do this within
the adiabatic representation in such a way that no nonun
diabatization is required and the two basic parametersd1 and
d2 ~or d and d2! are expressed in terms of complex pha
integrals along the adiabatic potentials. Equations~4.33!
meet this requirement. With use of Eqs.~4.33! we should be
able to treat the general cases. An investigation on this lin
under way, and is planned to be reported in the future.
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APPENDIX A: DERIVATION OF EQS. „4.8… AND „4.9…

From the asymptotic expression ofHin
(2)(pr) for n2@1,

Hin
~2!~pr!.

1

~p2r21n2!1/4 expF2 i Epr
A11n2/j2dj G ,

~A1!

we have atr→0(x→`)

Hin
~2!~pr!.

1

An
~pr!2 ine2 iw0 ~A2!

with
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w05n2n ln~2n!, ~A3!

since

Epr

~11n2/j2!1/2dj ——→
r→0

n ln~pr!1w01o~r2!.

~A4!

Then from Eqs.~3.16!, ~3.17!, ~4.6!, and~4.7! we obtain

c1~x→`!.
r2 in

2n
e2 iw0~a22a1! id21

3E
CZ

~11z! id121zid221dz

5
p ie2pd2r2 in

nG~12 id2!
e2 iw0~a22a1! id21C~ id2 ,id;0!,

~A5!

wherez5(p22a2)/(a22a1) andC(a,c;z) is the confluent
hypergeometric function defined by@16#

C~a,c;z!5
G~c21!

G~a2c11!
F~a,c;z!1

G~c21!

G~a!
z12c

3F~a2c11,22c;z! ~A6!

with

F~a,c;z!511
a

c

z

1!
1

a~a11!

c~c11!

z2

2!
1¯ . ~A7!

This leads to Eqs.~4.8!.
Next, let us consider the wave functionc1(x) at r

→`(x→2`). Because of the exponential behavior
Hin

(2)(rp) @see Eq.~A12! below# we take into consideration
only a contribution from the vicinity ofp;Aa2. Equation
~3.12! is rewritten as

d2f 1

dh2 1S 2
1

4
1

id2

h D f 150 ~A8!

with

h522im~p2Aa2!/Aa2, ~A9!

sinceP0 at p;Aa2 is given by

P0~p!.
n2

a2
1

n2e2

a2Aa2

1

p2Aa2

. ~A10!

The general solution of Eq.~A8! should be matched to th
semiclassical one given by Eq.~3.15!. As a result we have
F1~p!5a2
in/2~a22a1! id121~2Aa2! id221

3
1

Am
e2h/2

~p2Aa2! id221

h id2
C~12 id2,0,h!.

~A11!

SinceHin
(2)(pr) at p;Aa2 andr→` is given by

Hin
~2!~pr!.

e2 iAa2r

a2
1/4r1/2 , ~A12!

we finally obtain Eqs.~4.9!.

APPENDIX B: DERIVATION OF EQS. „4.11…

Because of Eq.~3.10!, the wave functionc2(x) is given
by

c2~x!5E
C
~b12p2!F1~p!Hin

~2!~pr!pdp. ~B1!

Using Eq.~4.6! and

Hin
~2!~pr!.

1

An
e2 iw0~pr!2 ine2 ir2p2/4n , ~B2!

we have the following expression from Eq.~B1!,

c2~x→`!.2
e2 iw0

2n
r2 in~a22a1! id

3E
Cz

e2 i zz~11z! id121zid221S z1
d2

d Ddz

5
2p ie2 iw0

n
r2 in~a22a1! ide2pd2

3H ep i

G~2 id2!
C~ id211,id11;i z!

1
d2

d

1

G~12 id2!
C~ id2 ,id; i z!J , ~B3!

where the termr2p2/4n is retained in Eq.~B2! @see Eq.
~A4!# and the following relations are used:

z5~p22a2!/~a22a1!,

p22a15~a22a1!~11z!,

j5
~a22a1!

4n
r2,

b12p252~a22a1!@z1~a22b1!/~a22a1!#

.2~a22a1!~z1d2 /d!. ~B4!

From the behavior of the confluent hypergeometric funct
C(a,c; i z) at z→0 we finally obtain Eqs. ~4.11!.
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