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Semiclassical theory of nonadiabatic transitions in a two-state exponential model
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A general two-state exponential potential model is solved with use of the Bessel transformation and the
WKB (Wentzel-Kramers-Brillouin type semiclassical approximation. Accurate expressions are obtained for
the nonadiabatic transition probability for one passage of the transition point and for the two dynamical phases.
Functionalities of these quantities in terms of two basic parameters are the same as those obtained before by
Nikitin. The two basic parameters are, however, expressed in more general and accurate forms. Accuracies of
these expressions are numerically confirmed. The three quantities, the nonadiabatic transition probability and
the two dynamical phases, constitute the nonadiabatic transition matrix and can be used to describe various
(spectroscopic as well as scattepimgocesses not only for a two-state but also for a multichannel system. A
possible generalization of the present theory is also briefly discussed to formulate a unified theory that can
cover both Landau-Zener-Stueckelberg and Rosen-Zener-Demkov cases within the adiabatic state representa-
tion. [S1050-2947@8)07504-0

PACS numbe(s): 03.65.Nk

I. INTRODUCTION and goes to 1/2 in the limit. Interestingly, in the exponential
model (two exponential diabatic potentials coupled by an
It is well known that nonadiabatic transitions present oneexponential potentigthe corresponding probability contains
of the most essential mechanisms of state and/or phaseo parameters and can cover both LZS and RZD cases men-
changes in various physical, chemical, and biological systioned above in the high-energy linfit]. This suggests that
tems[1-5]. The most fundamental models among them ardgt might be possible to formulate a unified theory based on
the Landau-Zener-Stueckelbe(gZS) type curve crossing the exponential model.
and the Rosen-Zener-Demk@ZD) type noncrossing prob- It was Nikitin who solved an exponential model for the
lems. Recently, the Landau-Zener-Stueckelberg type prolfirst time within the framework of time-dependent semiclas-
lem has been completely solved by Zhu and Nakamura; ansical theory based on the linear trajectory approximation
the compact and accurate analytical formulas have been dgt,10—-12. Recently, the exact quantum mechanical solution
rived for both Landau-Zener and nonadiabatic tunnelingvas obtained for a special case of the exponential model
(NT) type crossingg5-8|. They can cover practically the [13,14). Based on these achievements we want to eventually
whole ranges of energy and coupling strength. Besides, thirmulate a unified theory that relies only on phase integrals
theory does not require any nonunique diabatization procealong the adiabatic potentials and can be free from any ex-
dure and information of any coupling, neither diabatic norponential potential parameters. Our main concern is the fol-
nonadiabatic. What is required is the information of adiabatidowing nonadiabatic transition matrix in the adiabatic repre-
potentials on the real axis. On the other hand, the most basgentation:
model of the Rosen-Zener-Demkov type noncrossing prob-

lem, i.e., constant diabatic potentials coupled by an exponen- v1—pe™*® Jpe'”
tial potential, was solved quantum mechanically exactly by —Jpe ¥ J1—pé€e)’ 13

Osherov and Voronif9].

It is interesting to note that the nonadiabatic transitionwhere p is the nonadiabatic transition probability for one
probability for one passage of the transition point at lowpassage of the avoided crossing point, aahd ¢ represent
energies is given by the accompanying phases called dynamical phases. This ma-

trix represents a transition at the crossing point in the incom-
p=e b (1.1) ing (from right to lef) segment of the two-state scattering
' ' process. It should be noted that the adiabatic state 1 corre-
sponds to the lower orfsee Eq(2.2)]. Once we obtain these
whereA is the imaginary part of complex phase integral, forquantities p,¢,), then not only the whole two-state pro-
both LZS and RZD casefl,2,4,5. At high energies the cess but also multichannel problems can be formulfded
probability in the LZS case is still given by E@1.1) and  8]. In the present work we solve the time-independent two-
goes to unity in theE— limit; in the RZD case, on the state exponential potential problem with use of the Bessel
other handp is given by transformation and the WKBWentzel-Kramers-Brillouin
type semiclassical approximation. The above three quantities
are expressed in terms of two parameters, as is known, which
(1.2 are found to be expressed in terms of contour integrals in
momentum space. They can be generalized to forms of the
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phase integral along adiabatic potentials. Accuracies of these 1 (U —u,)/2V Vi—V,
expressions are confirmed by using quantum mechanically X, == In 1T+ [(Vi—Vo)I2V]2 ( 2V il”-
exact numerical solutions and analytical solutions for the roTe 2.7
special case. '

This paper is organized as follows. Our model discussegk should be noted that the potentials exponentially nega-
in this paper is explained in Sec. Il. In Sec. Il the problem i5tively diverge atx— —o. The main purpose of the present
transformed into the momentum space by the Bessel trangyork is to derive a general expression for the so-called nona-
formation and the WKB type wave functions are derived. Ingdjabatic transition matrixEq. (1.3)] which provides transi-
Sec. IV the nonadiabatic transition matrix is expressed ition amplitudes at the avoided crossing. If necessary, we can

terms of the two parameters that are defined by contour inpyt repulsive potential walls at<0 to describe a scattering
tegrals in the momentum space. Section V summarizes thgrocess in radial coordinate.

semiclassical theory convenient for practical applications.
Some numerical examinations are presented in Sec. VI. Con-
cluding remarks and discussions for the final goal of the
present project are provided in Sec. VII. Derivations of some Nikitin solved an exponential model within the time-
formulas presented in the text are summarized in Appendependent framework in which the coordinate is a linear

B. Relation to the Nikitin’s model

dixes. function of timet [1,10-12. In this treatment only the dif-
ference between the two adiabatic potentials is important and
II. BASIC MODEL itis given by
A. Model potential system AU(t)=Ae[1-2cos Poe “'+e 212 (2.9

_ Model diabatic potentials considered in this paper are degnerey represents the velocity, arte and 6, are the basic
fined by parameters.
Hyg(X)=uy— Ve o, In the present model we have

Au?(x)=(u;—Uu,)[1—2B cos Hpe “*+ |32e72ax]1/2

Hoo(X) =up—Vae™ %, 2.0 (2.9
H12(X)2V67 aX, Wlth
whereH;;(x)(j = 1,2) are the diabatic potentiald;,(x) rep- B cos Xp=(V1—V,)/(u;—Uy)

resents a coupling between them, and the parameters are as-
sumed to satisfy the relations;>u,, V,;>V,>0, andv  and
>0. Adiabatic potentials and the diabatic-adiabatic transfor-

mation are given as usual by B sin 26,=2V/(u;~ uy). (2.10
1 Hyy(X) — Haol(X) | 2 If we putB=e"*o, then the coordinate is shifted byx, and
uf(x): = [Hll(x)+H22(x)]i[(—> Eq. (2.9 is essentially the same as E@.9). It should be
2 2 noted, however, that we deal with the time-independent
112 guantum mechanical problem in this paper. Thus the basic
+H§2(x) [[=1(2) for —(+)], (2.2 parameters appearing in the nonadiabatic transition matrix
are more general than those in the Nikitin’s treatment.
e1(X)| [ #1(X)
= , (2.3 Ill. BESSEL TRANSFORMATION AND SEMICLASSICAL
¢2(X) Y2(X) WAVE FUNCTIONS
cosg, —sin g) A. Bessel transformation
= sing, cosg @4 If we introduce the following variable and parameters,
with smVv
PZIW e (3.19
sin 29=2H 15(x)/[u3(x) — ui(x)], (2.9
. . - . 2 m 2 8m
where ¢;(#;)(j=1,2) represent adiabati(diabatio wave vi=gz 2 (E-u), wi=377(E-up, (3.1b
functions.
The diabatic potential crossing occurs at and
1 u—u — -
X¢ > In VoV, (2.6

then the basic coupled Scliinger equations are expressed
and the corresponding complex crossing point is given by as
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2 ? d 2 2 2
p d—pz+p $+v +B1p% |Y1=p"Y, (3.28

d2

P g P, TR B | Ye=p . (32D

Herem represents the reduced mass of the system.

In the special cas@;8,=1 or V;V,=V?, we can solve
Egs.(3.2) exactly in terms of the Meijer's functions[13].
In order to solve Eq93.2) approximately, we first move into
the momentum space by using the Bessel transformation,

t/fj(p)=prF;(p)Ziv(pp)dp, 3.3
whereZ;,(2) is a Bessel function, which satisfies
d2
2 = — 472427 =
z dzz+zdz+z +v°|Z;(2)=0. (3.9
Putting
f1(p)
F = 3.
1(p) pT2(p?—a,)(p?—a,) (3.5
with
1 B ﬁ _B 2 1/2
810=5 (Bi+ B+ ( — 2) +1] ., 386

we obtain the following differential equation fdy (p):

d> 1+4u? p*—4ep’+r B
@ T P anpa P70 0
where
7 (Bt B+ 2+ Bipu?
= (B1 ﬁzi+;iz: B1mn°) (3.9
and
_ 2
)\:(,31/5’2 1)(1+4v°) (3.9

1+4u?
The functionF,(p) is simply obtained fron,(p) by
F2(p)=(B1—P*)F1(p). (3.10

The integral contou€ in Eq. (3.3) should be chosen so that
the following conditions are satisfied:

dz,
Fi(P) g Ple=0 (n=13,

d
dp (Fi(p)p"Zi,lc=0 (n=1,3),
(3.11)

Fj(p)anIV|C:O (n:O,Z)

OSHEROV, USHAKOV, AND NAKAMURA
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FIG. 1. The integral contou€ to define the wave functiog,
[see Eq(3.16)].

B. Semiclassical wave functions

In this subsection we derive general expressions of the
wave functionsy; and, under the condition oft?,v> >1.
Under this condition Eq(3.7) can be rewritten as

d2
{d_pz"‘Po(p) f1(p)=0 (3.12
with
(p*—c1)(p*—cy)
_ .2
Po(p)=pu p2(p?—ay)(p’—ay)’ (3.13
1 B2 u2\2 2112
01,225(,31"‘321/2/#2)1“’31/3#) % .
(3.19

Now, we apply the WKB approximation to E¢3.12 and
use H{®(pp), the second kind of Hankel function, for
Z;(pp). Then we have

1 exd i [P\/Podp]

F f—3
1(p) pllz(pz—al)(pz—az) F,(1)/4
(3.15
and
eiS(pp) 12
= dp,
M= (7 an(pPan(p2?+ A7 PY P
(3.16
where

S(p.p)= f " Po(p)dp- f " T IEde. (3.7

Here, the contou€ is chosen as shown in Fig. 1. This sat-
isfies Eq.(3.11), sinceHi(f)(z) exponentially decreases but
F.(p) diverges only by power &— —i~. We evaluate Eq.
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(3.16 by using the saddle-point method; and ftike saddle v2 w2 [(p)2-cddl(p))?~c.]
point gives the following contributionj& 1,2): (pJT)Z_ (p,—T)z [(p;r)z—al][(p;r)z—az]
Yaj(p)=Aj(p)e’SP 1™, (318 (V= pA(P)* =Bl 2
= =—p° 3.2
where ()% all(p)?a  ~+ %
(o) 1) _ 2_,2
o _ 2 22 112
—— [ "ol 1571 [ }
2 2p
1 [(x
:%f V2m[E—u?(x)]dx, (3.19 (3.253
(p)Y42miS](p)|¥? _+{sin g/lcosg for j=1
A(p)= == : o
)= (2= anll(p) 7~ aall(p )2+ 2 PY b)) cosgising Tori=2 o eh
(3.20a
~1/4 and

2 1/2]
:(W) [W[E—U?(X)]

S(p)= P/ p* [1/sinzg for j=1
o9 for 172 (3200 0= Jpyph - 47 | Ueodg for =2
sing for j=2, (3.26

andp;(p) (j=1,2) are the saddle points given by The saddle pointpjT (j=1,2) are monotonic functions ¢f

Bit+ B2 V- p?
[pf(p)P==5— 52 pl—— Vap, pl—— =,
p—® p—0
Bi— B, p2—1?\2 i77) (3.27
+ — +1 (3.21 + Ja; t JB:
2 2p P —— va, P, —— VB,
p—* p—0
It should be noted that the saddle pqilﬁtcorresponds to the
one on the adiabatic staté(x). wherea,;<f;<<a,. It is interesting to note that the turning
The second and third equations in E8.19 are derived Points inp andp space correspond to each other. The former
by noting the following relations: (po) are given by[see Eqs(3.23 and(3.21)]
dS dp 9S, 9S,  pjp 2 |12 L, 1 , ,
—=— +—== 1+ =—7—>{— +
dp _ dp ﬁ_F’Jf p ap (pp?)z Po 27/2,“2{ (Biu™+ Bav°)
=—[(p)?+v?1p*]" (3.22 =\(Biu?+ Bov?)?—4v7u®(B1 B~ 1)}
and =—cy,/1%, (3.29
7202 P4+ u? Bt B, u2— 2 and the latter are equal © , [see Eq(3.13]. There holds
—u? — 2 .
2mE—uj(x)] 7P 2,7 + 5 i[( 27 the following correspondence
2 1/2 2 _ H H
- =C with the lower sign,
_ ,81232 1 (P1) 27 Po g (3.29
5202 (ph)2=ci—po with the upper sign.
= PP (P P+ 2 p?) (3.23

The jth saddle point contribution to the wave function

_ ) ¥,(p) can be easily obtained from E3.18 as[see Eq.
The saddle points in thp space defined by Eq3.21) are (3.10 and Eqs(3.25]

functions of the coordinate, and give dominant contribu-

tions to the integral in Eq3.16) in the sense of semiclassical 1S (o) —imi4

approximation. 2j(p)=Bj(p)e=itP I (3.30
The second equation in E¢3.20 can be obtained from

the following relations: with
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B(p)=—[(p))*~ B1lAj(p)
2 1/2] 8m —-1/4
Z—(m) [W[E ufi(x)]
sing for j=1
x cosg for j=2. (33D

Since cog—0 (sing—1) for p—0 or x—o, only p.]; con-
tributes in Eq.(3.18 and we have

oiS2
®2(X) - A{Zm[E—ug(X)]}lM (3.32
with
7Tﬁ3a3 1/2 )
:(8m(ul_uz)) e (333

On the other hand, gi—o or x— —o the contourC (see
Fig. 1) cannot go throughng and we obtain

@1(X)=Cc0s g (X)
eiSt

A mE— 0] ™
(3.39

Equationg3.32 and(3.34) suggest that the transition matrix
elementN,, for the transitionp(x= — %) — @,(x=) (see
Ref.[13]) is given by

—singy;(x)

X— — 00

N =ei4S

(3.39

with

AS=SZ—81=% jg\/Zm[E—ua(x)]dx, (3.36

AND NAKAMURA
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FIG. 2. The integral contour8; and £, to defines; and 5, [see
Eq. (4.)].
Lt
t

47T'{§’ §~

—(,u v),

12

(t—cy)(t—cyp) dt

(t—ay)(t—ay)

4.3

where the contout’ and£" are shown in Fig. 3. As will be
seen later, these parameters play crucial roles in determining
the nonadiabatic transition amplitudes.

Now, we introduce the high-energy approximation,

where the contour integral is taken from the real axis to go

around the complex crossing point, then back to the real axis
on the different adiabatic potential. Explicit expressions of

P, ¢, andy in the nonadiabatic transition matrix Ed..3) are
provided in the next section.

IV. NONADIABATIC TRANSITION MATRIX

A. High-energy approximation

Before employing the high-energy approximation we in-
troduce the following parameters:

and
5=5,+6,, (4.2)

wherePq(p) is given by Eq.(3.13 and the contourg; are
defined in Fig. 2. It can be easily shown thaf Eq. (4.2) is
given by

v u?—1. (4.9
Then we have
(w?=v?)ay(a;— B1) _
a;— €= 2(a,—C,) =2¢,—0 (E—x),
(4.59
(u2=vay(a—B1)
a—Cy= =2 0 (E—wm),
2= C2 Mz(az_cl) €r— ( )
(4.5b
Imp |i
Ll
L"
N .
/ Rep

FIG. 3. The deformed integral contoufs and £” to defined
[see Eq.(4.3)].
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and 1
A2:_ e 6y + w2 Slni‘(wé‘z)F(I 6)efi¢0+i5 |n(41/)'
Pol ):ZJF’M—e1 2p L Re 2P +0(€?) g
olP p 2a;p‘—a; 2a, p-ap ' (4.11b
4.6 Derivation of Eqs.(4.1]) is provided in Appendix B.
According to the definition of Eq4.1), §; and &, are ex- Since
plicitly given by the following expressions in the present
approximation: P2(X=2) = ty() (4.123
P e T (B1=B2)2 ) and
= .
28, 4 VI+[(B1—Ba)I2] ¢1(X= =) =c0Sgoif1(— ) —Sin goiho( —)
. = —©)/cosqgg, 412
_ MT (1+cos 21,) 4.73 1(—) Jo (4.120
the transition matrix elemem,, is given by
and
Nip= o 4.1
€ p—v (B1—B2)/2 127, oS- (413
e N T (IS AT:
roP2 Inserting Eqs(4.8b and(4.9b) into this equation, we obtain
Pra 3o) (4.7b sinh( 7 8;)
= — CO0S 0)s . — 2: — 7o 1
4 p_|N12| e 2 Sln“ﬂé) (414)
where cos g is the value of cos@ in the p— o (X— —®)
limit. and
The diabatic wave functiong(x) in the limits x— o, (a,—ay) v
—(p—0,0) are shown to be given by argNy,= — oo+ 8, In ™) 5 Ina;+argT(isy)
2
1 . .
Py (X) — AlT p v (4.89 —argI'(ié). (4.15
X— 00 14
This p should not be confused with the momentum used
with before. This result clearly indicates that the nonadiabatic
_ . transition probability given by Eq4.14) is equivalent to the
A _m e-i%0(a,—a,)i5- e~ ™% I(1-io) one derived by NikitifEq. (9.153 of Ref.[1]] and the ap-
1 \/; 2“1 F(1-i6)T(1—i6,)" proximate expression obtained from the exact solution in the

(4.8b special casgEq. (3.23 of Ref. [13]] within the following
correspondences of the parametéysand 6, :

and
61-&—§, in Ref. [1]<03—0q; in Ref. [13]
1 .
—iJazp
Y1) —— Bi o e (4.93 Sy£, In Ref. [1]+0,—q, in Ref. [13].
(4.1
with : :
. In the present treatmeng; and 8,, which are given by Eqs.
i S )151—1 2 i, g 82 (4.7) in the high-energy approximation, are more generally
Bi=—= 2= defined by Eq(4.1). The phase given by E@4.15, on the
ARETA p) o T(1=16y) other hand, is just a high-energy approximation, and its im-
(4.9 provement will be discussed in the next subsection. Since
where p1(X=2)=y,(), the transition matrix elemeniNy; is
given by
eo=v—v In(2v). (4.10 A
2
Derivation of these expressions is given in Appendix A. On Nii=— B, COSQo- (4.17
the other hand, the diabatic wave functiafp(x) at x
—»(p—0) is obtained as From Egs.(4.9b and(4.119 we have
1 _ sinh( 7 85)
X A, —p '# 4.11 2_@m 2L 1
Pa(X) )H—Oc> 2 \/;P ( 3 INqq|“=e"1 Sint(75) 1-p (4.18

with and
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argN;;= — @o+ 8 In(4v)— &; In(a,—a;)—v/2In a, At relatively high energies anyS} can be replaced by the

) following expression with good accuracy,
— 8 In(ay /) + w/2+arg I'(i 6)

+argl'(1—id,). (4.19

(4) Vl+ V2 . .
argN,;’=4; In > —argI'(is)+argI'(id,)
B. Dynamical phases (4.29

First, we try to derive accurate expressions for the dy-
namical phase in Eq. (1.3 based on the quantum mechani- With
cally exact solutions in the special cd48)]. In general, the
semiclassical phase along the adiabatic potenflék) at x up—u, V; Up—u, V,

.o is given by L VARR VAL L PR VAR VAR

—1 (x (4.26
fi(X)=T JX V2m[E—uj(x)]dx

wherev is the velocity. The expressions 6f and §, of Eq.

[y _a (4.26) can be obtained from Eq$4.7) under the condition
:_ﬂ | JX Uy — uz(x) X V,V,=V? [see also the correspondent&16)]. Since ¢
h Xg \/E—Uzz‘(X)Jr VE—uy should not depend or,, we can putx,=0, and obtain
Ko, 0~
X
+f \/E—uldx], (4.20 V2m 0 Uz—Uu3(x)
X0 p=— = dx
h —= JE—Ud(x)+ VE—ujz
wherexg is an appropriate real position. Similarly, the phase
alongud(x) atx— — is given by f —u3(x) dxb— s Vi+V,
1 \/E u2(X)+ VE—u, ' hva
- _ T
G0==7 Jxo V2m[E=uz(x) Jdx +argT(i8)—argT(i 5,). (4.27)
__V2m fx Us—U3(X) " A simpler semiclassical expression @fcan be obtained if
f xo VE—U3(x)+ VE—us we use the high-energy expansion
X
1
+ fXOvE—UadX], (4.21) V2ME- 100 T=V2mE- -~ u*(x),  (4.28

where u; represents the asymptotic value uf(x) at x—

—= in the special casev;V,=V?) and is given by and the asymptotic forms of the semiclassical wave function

¢1(X) at x— *=oo derived in the previous subsection. Using
U Vot u,Vy the similar procedure as above, we can finally obtain

U3: V1+V2 (422

. , e=y(52)— ¥(9) (4.29
On the other hand, quantum mechanical wave functions are

expressed in each asymptotic region by With 8= 8.+ 5. and
- 2

pa(x— ) =[(2m/A?)(E—uy)] ™

Xexp[—(i/h)\/MX] y(X)=X In X—X—argI'(iX), (4.30
@a(x——) =N [(2m/A2)(E—ug)]~ ¥ where §; and &, are given by Eq(4.26).

The same analysis can be carried out for the dynamical
xXexd —(i/h)y2m(E—uz)x], (4.23  phasey, and we finally obtain the following compact semi-

2 N ) ~ classical expression:
whereN(? is the 4-channel transition matrix element given

by Eg. (3.4) of Ref. [13]. Thus the dynamical phasg is
given by

Y=y(81)—y(8) -2 \/5_52 ? g

—arg Ngﬁ) (4.3])

X— — 0

-1 (X)+ V2m(E—uq)x

1
=| & () + 7 V2Zm(E—ug)X

This phase depends on the choice of reference poi)t, (
(4.24 and the present one is the same as that of Nikitin
X— 400 [Xo=Ref,)]. It should be noted that
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FIG. 5. The same as Fig. 4 in the narrower energy range. Dotted

FIG. 4. The nonadiabatic transition probabiljlyas a function _ wer ang :
of dimensionless energy. The potentials used are defined by Eqand dashed lines are the same as those in Fig. 4. Solid line: Semi-

(2.1) and(5.1). Dotted line: exact numerical solution of the coupled classical approximatiofiEg. (4.14] with & and &, given by Eqgs.
equations. Dashed line: Asymptotic semiclassical approximatior4.3 and(4.33D.
[Eqg. (4.14] with § and &, given by Egs.(5.2 and (5.3), respec-

tively. 1
kj(x)= 7 V2mE—u?(x)]. (4.39

1 (% - -
Re{ﬁ fRe(x*){\/zm[E ui(x)] vam(E UZ(X)]}] dx These can be free from the exponential potential model and
be utilized for general curved potentials. This generalization
- i R JX* [U(x) — u3(x)]dx is not only quite natural from the long history of the semi-
hv Re(X, ) 2 . classical theory of nonadiabatic transitions for the LZS and
RZD problemg1-6], but also confirmed in the present treat-
ment by Eq.(3.36). This could provide us with a possibility

I R
=2V80;+ 8yl Jo+ 5, (4.32 to formulate a unified theory that works for general poten-
2 tials and can cover both LZS and RZD cases.
wherex, is the complex crossing point given by BQ.7).
With the replacement ob; and &, by {é—§&, and &, V. NUMERICAL EXAMINATIONS
respectively, Eqs4.29 and(4.31) coincide with the expres- A simple numerical confirmation of the present semiclas-

sions obtained by Nikitif1,10-13, whereé=A¢/av and . . ; : °
1 sical theory has been carried for the nonadiabatic transition
£p= (1 - cos Fo)/2[see Eq(2.8)]. In the present treatment probability p and the dynamical phasg by using the fol-

&1 and 8, can be more generally expressed in terms of con;_ . L
tour integrals. Both$; and 8, are defined by Eq4.1) and§ lowing model potential

is given by Eq.(4.3) within the exponential model. Both B 2 2 _ » 2 B
parameterss; and 5, can further be generalized as u;=0 up/(h%a’/2m)=—5, Vi/(h%a®/2m)=3,

51:% Im[ fx*kl(x)dx— fx*kz(x)dx} (4.333
X2

X1

Vo /(h2a?2m)=2, VI(h2a?2m)=+5. (5.1

The probabilityp and the phase are defined by Eq(1.3),
and and are given by Eqs4.14 and (4.29, respectively, in the
present semiclassical approximation.
1 « Figures 4 and 5 show the probabiliiyagainst the dimen-
S,=— Im[ f * [kl(x)—kz(x)]dx], (4.33h  sionless energf/(#%a*/2m). The dotted line represents the
™ Re(x,) exact numerical solution of coupled equations, and the
dashed lines in Fig. 4 and Fig. 5 are the results of (BdL.4)

wherex;(j=1,2) are the complex turning points and with & and &, given by
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0.201

0.18

VI. CONCLUDING REMARKS

P
~
-

With use of the Bessel transformation and the WKB type
approximation, we have developed an accurate semiclassical
theory for the general exponential model defined by Eq.
(2.1). We have discussed only the nonadiabatic transition
matrix defined by Eq(1.3) in this paper; but, as is well
) known, this suffices to solve not only all kinds of two-state

1 problems but also even multichannel problepds-8]. The

,' nonadiabatic transition probabilitp is expressed by Eq.
! (4.14, and the dynamical phasesand ¢ are given by Egs.
,' (4.29 and (4.31), respectively. These expressions are actu-
| ally the same as those obtained by Nikifib,10—-13 the
! pioneer of the exponential model. A development made in
,' the present work is that the important basic parametensd
|
t
i
i
i
H
|
It

0.16;

Dynamical phase
54
=
|

0.12

010 8, are generalized and expressed by Hgs3) [or (4.333]
and (4.33h, respectively. These were confirmed to be very
accurate and useful.

One nice thing about the exponential model is that, as was
noticed before by Nikitin[1,10—13 this model can cover
both Landau-Zener-Stueckelberg and Rosen-Zener-Demkov
problems. Actually, the nonadiabatic transition probabitity

! ! ' ' ' defined by Eq(4.14 gives the Landau-Zener probabilify

20 40 60 80 100 ] nl
Energy =e % in the limit 5~ or §,—0, and covers the Rosen-

FIG. 6. Dynamical phase (in radian as a function of dimen- Zener pzrogbaPilli.ty for Qn? passage Of, the transition paint
sionless energy. The potentials are given by Hgs) and (5.)) ~ =(1+&77°2) " inthe limit 6—26,. This suggests, as men-
except thatv/(%2a2/2m)= 6. Dotted line: quantum mechanical tioned in the Introduction, that we should be able to formu-
result given by Eq(4.24. Dashed line: asymptotic semiclassical late a unified theory that works for general potentials and can
approximation[Eqg. (4.29] with & and 8, given by Eqs.(5.2) and ~ cover both LZS and RZD cases. Zhu pursued a similar idea
(5.3. Solid line: semiclassical approximatigiq. (4.29] with §  in the diabatic representati¢h5]. We want to do this within
and 8, given by Egs(4.3) and(4.33D. the adiabatic representation in such a way that no nonunique

diabatization is required and the two basic paramefeand
8, (or 6 and &,) are expressed in terms of complex phase
5= e (5.2) integrals along the adiabatic potentials. Equatidds33
fiva meet this requirement. With use of E¢4.33 we should be
able to treat the general cases. An investigation on this line is
under way, and is planned to be reported in the future.
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the result of Eq(4.14 with 6 and &, given by Eq.(4.3) and .
Eq. (4.330, respectively. This semiclassical theory works APPENDIX A: DERIVATION OF EQS. (4.8 AND (4.9
almost perfectly. Figure 6 shows the results for the dynami- From the asymptotic expression Ef2)(pp) for »?>1,
cal phasep in the special cas¥/(#%2a%/2m)= /6 [see Eq. .
(5.1D]. The dotted line is the most accurate result of Eq. (2 _ _.jpp 5752 }
(4.24) with argN{} given by the exact solution in Ref13]. Hi, (pp)= (p2p2+ 13T exp{ ! L+wviietde),
The solid and dashed lines represent the semiclassical results (A1)
of Eq. (4.29 with 6§ and &, evaluated by Eqs(4.3) and
(4.33 (solid line) or by the asymptotic expressions of Eqs. W& have ap—0(x—x)
(5.2 and (5.3 (dashed ling The accurate semiclassical ap- 1
proximation(solid line) works very well. (2) - —iva—ie
These numerical results clearly indicate that the present Hi (Pp) Jv (Pp) e ¥ (A2)
semiclassical theory is a very good approximation, if we use
é and 8, given by Eq.(4.3 and Eq.(4.33), respectively. with
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po=v—v In(2v), (A3)

since
Jpp(1+ V21 EH)Y2dE —— v In(pp) + @o+0(p?).
p—0

(A4)

Then from Eqs(3.16), (3.17), (4.6), and(4.7) we obtain

—iv

Py (X—0)= >

e '¥(ay—ay)' "t

X J (1+2z)%-17%271dz
Cz

_,n_iefvrﬁzp*iv o is_qu 5 is0
- Vr(1_|52) € (a2 al) (I 2!' ’ ):

(A5)

wherez=(p?—a,)/(a,—a;) and¥(a,c;{) is the confluent
hypergeometric function defined §6]

I'(c—1) I'(c-1) ,_
‘I’(a,c;{)=m¢(a,c;§)+ @) e
X®(a—c+1,2—-c;) (AB)
with
2
<I>(a,c;§)=1+§§ a(a+l) { (A7)

c1! c(ct+1) 21 -

This leads to Eqs4.8).
Next, let us consider the wave functiog;(x) at p

—o(x— —»). Because of the exponential behavior of
H®)(pp) [see Eq.A12) below] we take into consideration

only a contribution from the vicinity op~ \a,. Equation
(3.12 is rewritten as

d?f, 1 6, . A8
WZJF -7 Yk (A8)
with
n="—2iu(p—a,)/Vaz, (A9)
sinceP, at p~ /a, is given by
¥ Ve 1
(A10)

Po(p)=—+ —— ——.
AP " aovas oo

The general solution of EJA8) should be matched to the From the behavior of the confluent hypergeometric function

semiclassical one given by E(8.15. As a result we have

2681

Fi(p)=a"%(a,— 1) }(2//ay)' 2
1, (p—ay)et

X Me e

W(1-16,0,7).
(A11)
SinceH{?(pp) at p~ \a, and p—= is given by

e iVazr

H{2 (pp)= —1z—13. (A12)
a p

we finally obtain Eqs(4.9).

APPENDIX B: DERIVATION OF EQS. (4.1)

Because of Eq(3.10, the wave functiony,(x) is given
by

Pa(X)= fc(ﬂl—p2>F1(p>H§5)<pp>pdp. (B1)
Using Eq.(4.6) and
(2) 1 —iva—ip?p?4
Hi (pp)=—=e '*o(pp)~'"e ' P, (B2)
Vv
we have the following expression from E@®1),
e lvo s
o)== — —iv _ i
Ua(x—)== 5 p (@~ ay)
. ‘ . 5,
xf e 1Z(1+4z)'01 17571 z+ —|dz
—mie le0 .
= WT pflV(az_al)lﬁe*wﬁz
i
X m‘l’(léﬁ-l,l&—i—l;l()
: V(i 5,,i5;] B3
+3F(Ti52) (i6,,18510)¢, (B3)

where the termp?p?/4v is retained in Eq.(B2) [see Eq.
(A4)] and the following relations are used:

z=(p2—a2)/(a2—al),
p?—a;=(a;—ay)(1+2),

(az—ay)
f=—4 p?,

B1—p*=—(a;—ay)[z+(a,~ B1)/(a;—ay)]

2—(a2—a1)(2+ 52/5) (84)

WV(a,c;if) at {—0 we finally obtain Egs. (4.11).
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