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Many-body calculations of the static atom-wall interaction potential for alkali-metal atoms
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We present third-order many-body perturbation theory calculations of the Lennard@guwesfficient for
the alkali-metal atoms lithium, sodium, potassium, rubidium, cesium, and francium. All-order singles-doubles
calculations ofC; are also presented for lithium, sodium, and potassium. For lithium and sodium the present
values ofC5 are compared with other theoretical and semiempirical va[lB:H50-2947®8)04404-7

PACS numbe(s): 34.50.Dy, 31.15.Md, 31.15.Dv

[. INTRODUCTION are about 2% smaller than the corresponding value obtained
. . f{om a Hartree-FockHF) calculation.
The long-range interaction between an atom and a perfec ' - .
An accurate semiempirical value @f; for sodium was

conducting wall is dominated by a static image potential, : .
first considered by Lennard-Jongs| more than 60 years '?T:ZOSObtstljrr]T?(:utl)g' Kharchenlet al. [5] from an analysis of
_l .

ago. At distances from the wall, large compared to the
atomic size, the Lennard-Jones potential is given by the

. ) . : o ) 2 f,
dipole-dipole interaction between the atom and its image: S,1=§(R2>:E E_E.
2
V(Z)=— € C3_ (1) wheref, is the oscillator strength of the transition from the
z3 ground state to an excited stateThe quantitie€, andE,,

are energies of the ground state and excited state, respec-
The coefficientC; in Eq. (1) is the expectation value of the tively. This value differs from the HF value &5 by about
operatot 10%. While more elaborate calculatiof8] improve the
agreement between theoretical and semiempirical values for
1 sodium somewhat, all calculations known to the authors dis-
16 |§J: (xixj+yiyj +22Z)), agree with the semiempirical value by more than 2%.

' In the paragraphs below, we carry out third-order many-
body perturbation theoryMBPT) calculations ofC; for all
alkali-metal atoms. For lithium, these calculations differ
érom the CI value by about 0.2%, while for sodium, they
differ from the semiempirical value by 0.6%. Comparisons
of third-order MBPT calculations of dipole transition ampli-

1 tudes with precise experimental valy&$ lead us to believe

Ca=-=(0|R?[0), that the present MBPT calculations are accurate to better

12 than 5% for all alkali-metal atoms.

For lithium, sodium, and potassium, we also carry out
where R=Zr;. It is worth noting that the Lennard-Jones all-order many-body calculations using the relativistic
interaction constant is an integral part of models accountingingles-doublegSD) approach[10]. The values ofC; ob-
for the finite conductivity of the wall material by Bardef?]  tained from these all-order calculations are in very close
and by Mavroyanni$3]. In addition, the wall-atom-wall in-  agreement with the CI value for lithium and the semiempir-
teraction constant for small wall separation distances is alsgal value for sodium. The SD value @f; for potassium is
proportional toC;, as discussed in Refg4,5]. 0.8% smaller than the MBPT value. The aim of this paper is

Precise values o€; for lithium were obtained by Yan twofold: first, to provide accurate third-order MBPT values
and Drake[6] from an elaborate configuration interaction of C; for all alkali-metal atoms; and second, to confirm the
(CI) calculation and confirmed by an independent calculatiorsemiempirical value o€; for sodium using an all-order SD
by Yanet al.[4]. The CI value ofC5 for lithium is in close  calculation.
agreement with the value inferred from a variational calcu-
lation by King[7]. These accurate values 6% for lithium

in the atomic ground state. Heme=(X;,Y;,z) is the coor-
dinate of theith atomic electron with respect to the nucleus.
For an atom with a spherically symmetric ground state, on
can replaceC; by the equivalent expression

II. MBPT

The present calculations @f; are based on the relativistic
There is a factor of 2 error in the expression for this operatorno-pair Hamiltonian [11], H=Hy+V, which in second
given in Ref.[1]. quantization is given by
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TABLE I. Contributions toS") and 21D,

Term Li Na K Rb Cs Fr

st 17.7393 20.7148 31.5133 35.4253 42.4514 40.5414
s 0.8904 6.4050 19.4792 31.4361 51.2239 65.6445
sW 18.6297 27.1198 50.9924 66.8614 93.6753 106.1860
2T 0.0000 —0.1046 —0.3894 —0.6746 —1.0407 —1.8341
2T 0.0000 —2.4128 —7.6073 —13.2647 —22.9727 —30.0423
2T 0.0000 —2.5174 —7.9967 —13.9393 —24.0134 —31.8764
(RHM 18.6297 24.6024 42.9957 52.9221 69.6618 74.3096

2
HOIZ eiaiTai, V= %2 Uij|kaiTa.JTaka|_2 U”a,Tal X=- € <S>
i ikl i 6mc
2

Indeed, in Ref[1], Lennard-Jones used this relation to ob-

Here, ¢; is an eigenvalue of the one-electron Dirac equationtain approximate values o5 from measured susceptibili-
that defines the single-electron orbitals, ahdiesignates the ties. It is also interesting to note that the ground-state atomic
central potential used to approximate the effect of the atomigorm factor for elastic scattering of fast electroRgg), in
cloud in the one-electron Dirac equation. For alkali-metalthe limit of small momentum transfey, is given in terms of
atoms, we choos# = V; the “frozen-core” Hartree-Fock  (S) by
potential of the N—1)-electron closed-shell ionic core.

The quantitiess; anda; are electron destruction and cre- B q°
ation operators, respectively. In E®), the summation indi- Fla)=1- (9,
cesi, j, k, andl are restricted to range over positive-
energy states only. The quantity;, in Eq. (2) is the
Coulomb interaction:

UijkI:<ij P

whereZ is the nuclear charge of the atom. Since we deter-
mine the expectation values of the operatBrand T sepa-
rately, the results below can also be applied to calculations of
kl> susceptibilities and elastic scattering form factors.

M2

B. First-order MBPT

First-, second-, and third-order matrix elements of single-
particle operators such &were worked out if12] and later
applied to transition amplitudes in alkali-metal atomg9m
The first-order matrix elements of the operatSrand T can
be conveniently divided into valence and core contributions
The operatoiR? is decomposed into the sum of a single- s(l):sgl).;. sgl) andT(1)=T£1)+T(Cl), with

Later, we use the notatioﬁijk,=vijk|—vij,k to designate
antisymmetrized Coulomb matrix elements.

A. Decomposition ofR?

particle operatoiS and a two-particle operatof, R?=S
+ 2T, where st=s,,, 5
= afa
S=2 siala; ® S¢7=2 son, ®)
1 ~
T= Z%| tijial ajaay. (4) T<vl>:§a: tyavas (7)

Here,s;;=(i[r?[j) andt;;q=(i|r|k)-(j|r|l). 1 T )
In Egs.(3) and(4), and in subsequent equations, we use c T4 abab
the following conventions for the summation indices: the
subscript v designates the valence orbital; subscriptsThe first-order contributions t& are given for alkali-metal
a, b, c,atthe beginning of the alphabet designate occuatoms in the upper two rows of Table I. As might be ex-
pied core orbitals; subscripts m, o, near the middle of pected, the core contribution ®is larger than the valence
the alphabet designate virtual orbitals; and the subscriptgontribution for cesium and francium. The matrix elements
i, ],k andl designate arbitrary orbitals, either occupied of T are given in the fourth, fifth, and sixth rows of the table
or virtual. We also use the notatidn;, =t —ti; for the  and the first-order value ofR?) is given in the last row.
antisymmetrized matrix element. Since we use HF orbitals as our basis, the first-order matrix
It should be mentioned that the diamagnetic susceptibilityelement is just the HF matrix element. For lighter alkali-
of an atom can be expressed in termsSdiy metal atoms, the approximation suggested by Lennard-Jones
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TABLE II. Contributions toS? and 21(?,
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Term Li Na K Rb Cs Fr

s@ 0.0019 0.0386 0.1344 0.2197 0.3382 0.5450
21 —0.0319 —-0.3484 —2.4737 —4.2103 —-8.5791 —11.7083
21 0.0000 —0.0006 0.0010 0.0123 0.0203 0.1106
2T —0.0868 —0.4363 —2.1891 —3.3702 —5.4432 —6.6505
21 0.0000 —0.0052 —0.0128 —0.0135 —0.0152 0.0063
27 —-0.1188 —0.7905 —4.6746 —7.5817 —14.0172 —18.2419
(RH®@ —0.1168 —0.7519 —4.5402 —7.3620 —13.6789 —17.6969

of neglecting contributions frori® is.seen to be well justi- |n the above equations, we have introduc“égng“{ibjb
fied; however, for the heavier alkali-metal atoms these conand used the notatiogy, = €, + € .

tributions are seen to be substantial. The present relativistic The sums over intermediate states in the above expres-
HF values are smaller than previously published nonrelativsions are carried out using-spline basis functions, as dis-
istic HF values[13], presumably because of the relativistic cussed in Ref14]. The contribution ofS?) is given in the
contraction of inner orbitals. As mentioned in the Introduc-top row of Table Il, and a breakdown of contributionsi@’

tion, the HF value ofR?) differs from the accurate semi- together with the entire second-order valug/Bf) is given
empirical value for sodium by 10%. This difference, which isin the following rows.

from second- and higher-order corrections, grows rapidly

along the alkali-metal sequence from lithium to francium. D. Third-order MBPT

The third-order correctiorS® consists of five parts:

C. Second-order MBPT S, the second term in an expansion of RPZ), the
Brueckner-orbital contributionS$), the structural radiation
correction;S{%), the wave-function normalization correction,
andsg?gg, a diagonal third-order contribution that contributes
only for scalar operators such &s These terms are written
out in detail in Refs[9,12] and will not be repeated here. We
do not evaluate third-order corrections Tofor reasons ex-
plained below in our discussion of the SD approximation. A
detailed breakdown o8®) is given in Table Ill. These cor-
rections are dominated by the Brueckner-orbital contribution,
which accounts for the contraction of the valence electron
wave function caused by the interaction of the valence elec-
tron with the dipole moment that it induces in the atomic
core. In Table lll, as in Ref[9], we include third-order and
all higher-order RPA corrections in the ter®g),.

Finally, a summary of the first-, second-, and third-order
corrections taR?) is given in Table IV. It is far from clear,
’ examining this table, that the fourth- and higher-order con-
tributions to the matrix element are negligible. To assess the
role of these higher-order terms, we now turn to all-order
MBPT techniques.

There is a single second-order contributiorStavhich is
the leading term in a perturbation expansion of the random
phase approximatiofRPA):

Sbn¥ U ybonS
8(2)22 bn vnvb+2 vbun nb. (9)

nb €Ep— €p nb €pT €p

The more complicated second-order matrix element a$
the sum of four termsT®@=T@+ T+ T@ 1+ 7 where

t B
2 abmn’ mnab
-|-(c ) — E =

abmn €ap™ €mn

t v t
T 2 abum mvab+ vmabV abmy

a,bom €ab™ €my

a,bm €ab™ €my

tybm® mnwb t bl vbmn
T s, Lonbo s ,

mn,b  €yb~ €mn mnb €yb~ €mn

Ill. SD APPROXIMATION

T ;U v v t
Téz):E bn nb+2 vbun nb. (10)

nb €pT €p nb €pT €p

To go beyond the third-order MBPT calculations for at-
oms with one valence electron, we make use of the singles-

TABLE lIl. Contributions toS(®,

Term Li Na K Rb Cs Fr

s, 0.0002 —0.0028 0.0024 0.0094 0.0210 0.0415

s —0.2533 —1.1042 —4.1836 —5.8553 —8.8675 —-9.4181

s&) 0.0033 0.0251 0.1484 0.2414 0.4101 0.5264
(3) —0.0079 —0.0404 —0.2305 —0.3447 —0.5636 —0.6761

S 0.0008 0.0655 —0.1421 —0.2422 —0.6281 —0.6514

(R?)®) —0.2570 —1.0568 —4.4054 -6.1914 —-9.6281 —10.1776
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TABLE IV. Summary of perturbation theory fqiR?).

Term Li Na K Rb Cs Fr

(R?)D 18.6297 24.6024 42.9957 52.9221 69.6618 74.3096
(R%H®@ —0.1168 —0.7519 —4.5402 —7.3620 —13.6789 —17.6969
(RH® —0.2570 —1.0568 —4.4054 —6.1914 —9.6281 —-10.1776
(R%) pert 18.2559 22.7936 34.0501 39.3687 46.3548 46.4351

doubles approach described and developed in Ré€X. In © -
this approach, the wave functioh, of the atomic system is VAR . b;m . PmncaPmnctfab -
represented as R
1 We now turn to a discussion of the diagonal matrix ele-
W )=|1+2 pmadidat= > PmnatPialasap ment of T. It is convenient to separate this operator into a
% e oA 2mpgp e e sum of zero-bodyl,, one-bodyT,, and two-bodyT, parts:

1

t Tt -
+ﬁ§g pmvamau'i'm%a pmnvaamanaaau |(DU>! TOZ — EaZb tababa (13)
(13)
=> T.afa
where®,, is the unperturbed wave function. The SD wave Tl_iEJ tijaia, (14)

function accounts for single and double excitation from the

core, single excitations of the valence electron, and simulta- 1

neous excitations of the valence electron and a single core Tzzzz tij a7 afaay . (15
electron. Later we will use the antisymmetrized combina- Lk

tions of the doubles coefficientdinnab=Pmnab— Pamabs @nd  Here :: denotes the normal form of operator products. The

Pmmwa=Pmmwa™ Pnmva - effective one-body matrix elemer'ﬁij was defined previ-
Substituting the wave function from E¢L1) into the no-  ously. Matrix elements of the one-body operalagrcan be

pair Hamiltonian, one obtains a set of coupled algebraigalculated in precisely the same way as the matrix elements

equations given in Ref10] for the singles and doubles ex- of the operatolS, discussed earlier.

citation coefficients. Iteration of these equations corresponds At this point, we derive matrix elements of the two-body

to the order-by-order hierarchy of MBPT, with a major set of part T,. The resulting expression consists of 36 terms, which

diagrams iterated to all orders. After thecoefficients are will not be written out in detail. Fortunately, there is a sig-

determined, one is in a position to calculate matrix elementsificant reduction in the number of terms for the lithium

of operators corresponding to physical observables. The dground state due to angular selection rules. We obtain only

agonal matrix element of a one-particle operatdr 14 nonvanishing terms for the case of lithium. Below we

=Ei,jzijaf“aj is represented as separate these terms into groups corresponding to the effec-
tive MBPT order of contribution. Such a separation is based
7 -7 Zyal (12) on the fact that the all-order doubles coefficiepfs,a, and
vv. e 146N, Pmma @ppear initially in the first-order MBPT wave function,

) - ~while the singles coefficientp,,, and p,, appear starting
Here, 6N, is the valence electron contribution to normaliza- from the second order. We find effective second order:

tion of |¥,). Z,4 is represented as a sum of 21 terms given
in Ref.[10]. The expression foZ ., was not given if10],

(a) — - (b) _ -
since it vanishes for nonscalar operators. Howe®ers a T2 a,b,Em,n tmnaPmnaps T2 za%n tmaPmmwas
scalar operator, so we must include these additional terms.

They are given by =20+ 20+ ... +26) with effective third order
(0) = (1) — (C)_l - -
z _2 Zyay Z _22 PmaZam> Ty'=5 2 tmnrsP mmaPrsva s
a am a,m,n,r,s
_ _ d T - =
VACESS E PmaPmblab z283)= E PmaPnaZmn, T(z )= 2 tpnarPnmvaPmrob s
a,b,m a,m,n a,b,m,n,r
zW=2 E PnbPmnatam: T(ze): 2 ComnrP movaPnrabs
a,b,m,n a,b,m,n,r

~ f)_ T -~ -
z®= 2 PmnabP mrabZnr s T(z)_ 2 tonro PmmvaP rmab;
nr a,b,m,n,r
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TABLE V. Effective order-by-order contributions toT2 for TABLE VII. Comparison of many-body calculations for
lithium in the SD approach. lithium.

MBPT order xT, S 2T (R? C,
(2T,))@ —0.140772 Yan and Drakd6] 18.354614 —0.138610 18.216004 1.518000
(2T,)® 0.003022 King [7] 18.35474 —0.13861 18.21613 1.51801
(2T,)® —0.000232 SD 18.3519 —0.1389 18.2130 1.5178
(2T2) norm 0.000056 CcC 18.3460
2T, —0.137926 Third-order MBPT 18.3746 —0.1188  18.2558  1.5213

o all other terms. The derivation of such a size-consistent nor-
TY = 2 TncorPmnatPmrac: malization expression can be found in Rgf0].
G Mt The present SD calculations for lithium include all non-
1 vanishing terms in the expression fd5. An order-by-order
-|—(2h>:_ > trnre mnatP rsabs analysis of the contributions to the matrix elemenfToffor
a,b,mn,r,s lithium, which is presented in TadlV , shows that there is a
strong suppression of contributionsTg with increasing ef-
oty o7o5 = fective ordgr of MBPT. _
2 2aSing norv P mrabP mnab: Calculations ofT, for sodium and other more complex
atoms ideally require the evaluation of all 36 terms. Since the
. leading contribution tqR?) arises mainly from the operator
TY=-2 > tmnrProabPmnabs S, and the contributions td, become smaller with increas-
a,b,m,n,r ing effective order, we approximate the matrix element of
for sodium by the effective second-order terms only. There is
an additional effective second-order term, that vanishes for
lithium, but remains finite for the other alkali-metal atoms:

effective fourth order

K ~
T(Z '=2 2 tarnmPrv P mma s
a,mn,r

(TZ)(O):Z 2 tmuab’l;vmab- 17)
a,b,m
h_ -
T(z)—za b%n . tnnrbPraP mnabs In general, we expect the all-order SD results to be more

reliable than the corresponding MBPT calculations. For ex-

ample, in a particular case of one-particle operator, the SD

TM=2 > thumnPual mnabs apprqximati.o_n re_produces .third—order MBPT_contributions
a,b,m,n and, in addition, includes higher-order corrections.

~ Numerical results
T(zn)zz E tmnrPraPnmva - . . . .
amn.r We solve the SD equations numerically usin@-&pline

. . . basis[14]. The basis set for lithium consists of partial waves
The normalized matrix element of the two-body operator isyjith maximum angular momentutiy,.,=4. We use 25 out
given by an expression similar to E(.2): of 30 splines for each value of A breakdown of the con-

tributions to the value ofR?) for lithium is given in Table

(T2)o=(T>) _,_(TZ—)"a' (16) VI.
Zlov 12T 14+ 6N, The resulting value ofR?) for lithium, 18.213, is in close

) agreement with the value 18.216 from the calculations by
where (T2)core includes all terms of W, |T,|V,) that are  yan and Drakd6] and King[7]. The difference between the
independent 06, such asTs? and T, and (T,) 4 includes  present value and the earlier ones is affected by two factors.

First, the present calculations omitted triple excitations from

TABLE VI. Contributions to(R?) in the SD approach. the wave function. Including triple excitations would change
Term Li Na K TABLE VIII. Comparison of values of;.
S 18.6287 27.1198 509924  T_— - . K mb o &
Seorr —0.2778 —1.0896 —3.7853
Siot 18.3519 26.0302 47.2071 Third-order MBPT 1.5213 1.8895 2.838 3.281 3.863 3.870
2T) e 0.0000 — 25174 ~7.9967  SD 15178 1.8858 2.860
2T cor ~0.1389 ~0.8836 ~48868  CI[67] 1.5180
(2T oy ~0.1389 —3.4010 ~12.8835  Ref.[4] 1.5182)

(R?) ot 18.2130 22.6293 34.3236  Ref.[5] 1.888
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the SD approach into an exact CI calculation. Second, theoupled-cluster method treats triple excitations from the core

present calculations start from a Dirac-Hartree-Fock basigartially, to the extent of including terms nonlinear in singles

thus relativistic effects are included in a initio fashion.  and doubles coefficients. On the other hand, the SD approxi-

We estimate relativistic corrections to be of orderZ)?, mation omits such terms completely. Thus, numerical issues

which could explain a major part of the difference. aside, the difference between these two approaches gives an
The singles-doubles calculations for sodium were perindication of the importance of a full treatment of triple ex-

formed using a basis set consisting of 27 out of 30 splinesitations.

with | ,,,= 6, while the results for potassium were obtained

with a basis of 27 out of 30 splines with,,,=5. A break- IV. SUMMARY

down of the contributions tR?) for Na and K is also given
in Table VI. In this table we explicitly separated contribu- N Table VI, we compare the present MBPT and all-order

tions arising from the Hartree-Fock approximatigirst- ~ calculations ofR?) for lithium with the precise variational
order matrix elements discussed in the MBPT segtiamd values from Refs[6,7]. We see that the more elaborate cal-
the correlation contributions beyond the Hartree-Fock apcfulations agree to better than 0.1%, and that MBPT overes-

proximation. The correlation effects tend to decrease the sizZématesCs by 0.2%. _ ,
of the atom, consistent with the MBPT results. For sodium, the comparisons of the all-order calculations

For heavier systems, in contrast to the case of lithium, w@f Cs with the MBPT and with the precise values obtained in
performed the calculations of the two-body part of two- Refs.[4] and[5] are given in Table VIII. All of the values
particle operatofT in effective second order only, as dis- '€ in close agreement. In particular, the 3% difference be-
cussed earlier. The resulting value(&®) for sodium, 22.63, tween the theoretical and semiempirical value<gfnoted
is in good agreement with the semiempirical value ofin Ref.[S] has been reduced by an order of magnitude. For
Kharchenkoet al. [5], 22.65. potassium, the MBPT and SD values agree to within 0.8%.

In addition to the SD approximation, we also performedAISo in Table Viil, we present our MBPT predictions 6%
relativistic coupled-clustefCC) calculations, including one- for the heavier alkali-metal ions. As mentioned in the Intro-
and two-particle cluster operators. Only matrix elements ofluction, we expect the MBPT calculations to be accurate to
the one-particle operat were calculated in this approach. Petter than 5%.
A discussion of the CC method can be found in R&8]. To
solve the CC equations in intermediate normalization, we
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