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Response calculations in the framework of time-dependent density-functional theory~TDDFT! have by now
been shown to surpass time-dependent Hartree-Fock~TDHF! calculations in both accuracy and efficiency. This
makes TDDFT an important tool for the calculation of frequency-dependent~hyper!polarizabilities, excitation
energies, and related properties of medium-sized and large molecules. Two separate approximations are made
in the linear DFT response calculations. The first approximation concerns the exchange-correlation~xc! po-
tential, which determines the form of the Kohn-Sham orbitals and their one-electron energies, while the second
approximation involves the so-called xc kernelf xc , which determines the xc contribution to the frequency-
dependent screening. By performing calculations on small systems with accurate xc potentials, constructed
from ab initio densities, we can test the relative importance of the two approximations for different properties
and systems, thus showing what kind of improvement can be expected from future, more refined, approxima-
tions to these xc functionals. We find that in most, but not all, cases, improvements tovxc seem more desirable
than improvements tof xc . @S1050-2947~98!10004-5#

PACS number~s!: 31.15.Ew, 33.15.Kr
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I. INTRODUCTION

Several reliable quantum-chemicalab initio methods have
become available over recent years for the accurate dete
nation of such molecular properties as excitation energ
frequency-dependent polarizabilities, and frequen
dependent hyperpolarizabilities. In particular, we ment
coupled-cluster response theory@1,2#, multiconfiguration
time-dependent Hartree-Fock~MCTDHF! @3#, and time-
dependent MP2@4–7#, which have, among other things, bee
used for the calculation of hyperpolarizabilities and exci
tion energies.

However, because they are computationally intens
these methods are restricted to small or medium-sized
tems. For systems where the cost of the most reliable of th
ab initio methods becomes prohibitive, a computationa
more efficient method is required, which is accurate at
same time. Density-functional theory~DFT! provides such a
method through its time-dependent extension~TDDFT!.

Almost two decades ago, Zangwill and Soven@8# were
among the first to apply this theory in the linear respon
regime. They calculated photoabsorption cross section
rare gases in the local density approximation~LDA !. Only a
few years later did the rigorous justification of their approa
appear, with the work of Runge and Gross@9#, who proposed
a set of time-dependent Kohn-Sham~KS! equations. For a
recent review of TDDFT and applications of it, the reader
referred to Ref.@10#.

The first response calculations on molecules in this fram
work appeared only recently~after an initial attempt by Le-
vine and Soven,@11# whose approach was based on a sing
center expansion which made it impractical for gene
molecules!. At the moment several groups have perform
571050-2947/98/57~4!/2556~16!/$15.00
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~molecular! response calculations using TDDFT. Calcul
tions on frequency-dependent multipole polarizabilities@12–
15#, excitation energies @16–19,13,20–23#, frequency-
dependent hyperpolarizabilities@24#, Van der Waals
dispersion coefficients@25,14#, and Raman scattering@26#
have appeared until now. From the data in these pape
appears that the TDDFT results are usually superior to t
TDHF counterparts, and in many cases competitive with c
relatedab initio results at the TDMP2 level. At the sam
time, implementations of the TDDFT linear response eq
tions using auxiliary basis functions~fit functions! @25,20,22#
have been reported to scale asN3 ~N being the number of
atoms in the calculation!, which is even more favorable tha
the nominalN4 scaling of TDHF. TDDFT thus surpasse
TDHF both in the accuracy of the results and in the e
ciency of the calculations.

Now that the usefulness of TDDFT in this regime h
been firmly established and many different properties can
routinely obtained, it is of importance to know which facto
restrict the accuracy of the TDDFT calculations. If an ev
higher quality in the results is required than is attainable w
the approximations that are presently used in these calc
tions, it will be important to know which approximation
have the largest influence on the various properties that
accessible.

Apart from practical limitations in accuracy due to the u
of finite basis sets, two approximations are made in
TDDFT linear-response calculations: one for the usual
potentialvxc and one for the less common xc kernelf xc . Our
aim is to estimate the importance of the two approximatio
by performing calculations using accurate xc potentials c
structed from essentially exactab initio densities. If such a
density is available, one can construct an xc potential wh
yields this target density, by iteratively adapting the xc p
tential until the target density is finally obtained within sa
2556 © 1998 The American Physical Society
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isfactory accuracy, in a KS calculation with this potential.
this manner, the approximation forvxc is basically removed.
By increasing the technical accuracy of the calculations
the limit ~we are referring to basis and fit set size, integrat
accuracy, convergence criterion for the iterative solution
the KS equations, and so on!, we can be sure that the bulk o
the remaining deviations from the experimental values is
to deficiencies in the second approximation: the approxim
tion to f xc .

Unfortunately, the reliable xc potentials which are need
for these calculations are available for a few small syste
only: the He, Be, and Ne atoms. The reason for this is t
virtually all accurate densities are obtained fromab initio
programs using Gaussian-type orbitals~GTOs!. Constructing
an xc potential belonging to such a density leads to cer
anomalies in the potential which are due to the specific pr
erties of the GTOs. The anomalies include an incorr
asymptotic behavior and spurious oscillations in the poten
@27#. The exact xc potential should asymptotically display
21/r behavior, but a Gaussian density results in a poten
which diverges quadratically at infinity. Furthermore, the p
tential exhibits oscillations which are also due to the use
Gaussian basis functions. Although these oscillations sho
disappear in the basis-set limit, they form a practical probl
even for very large GTO basis sets.

This problem can be circumvented by using accurate d
sities based on Slater-type orbitals~STOs! or densities which
have not been expanded in a basis set at all. Such dens
however, are rare. Accurate densities based on STOs ar
the best of our knowledge, only available for Be and N
These densities were obtained by Bunge and Esquivel fro
CI calculation using large STO basis sets@28,29#. For He
and Be, accurate xc potentials have been constructed by
rigar and Gonze@30,31#. They numerically generated esse
tially exact densities for these systems by integrating v
accurate wave functions@30# ~for He! or by employing vari-
ous Monte Carlo techniques@31# ~for Be!.

For these atomic systems, we have calculated severa
sponse properties, such as static dipole and quadrupole
larizabilities, the frequency dependence of the dipole po
izability, singlet and triplet excitation energies, and oscilla
strengths, using approximations of varying quality for bo
the xc potential and the xc kernel. This provides useful
formation on the appropriateness of the respective appr
mations for these systems.

In order to check whether or not the conclusions we dr
from these atomic cases hold for molecules as well, we a
consider some small molecules in the final part of the pa
Here we have to cope with the problem indicated above,
very accurate xc potentials do not exist for these syste
However, as will be explained later, we have constructed
potentials which can be expected to improve upon exis
approximate xc potentials for these systems, such as
LDA, generalized gradient approximated~GGA! and van
Leeuwen–Baerends@35# ~LB! potentials.

It can be expected that the improved potentials will yie
improved results. However, the results with the usual pot
tials ~especially the LB potential! are already quite satisfac
tory. It is therefore an open question whether much furt
improvement can be obtained by improving the xc potent
or that improvements to the xc kernel are more importa
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This is the question that will be addressed in the part of
paper dealing with the molecular case.

In the following section, the most important equations f
the DFT linear-response calculations will be repeated and
relevant terms and equations will be introduced. After th
the technical details of the calculations will be given as w
as the indications that our basis sets are very accurate. A
this, our results will be discussed. First, the atomic polar
ability results are treated. Then the excitation energies
discussed and compared to similar calculations which h
very recently been performed by Petersilkaet al. @18# and by
Filippi et al. @32#. Finally, we present our molecular resul
and we end with some conclusions and suggestions for fu
work.

II. OUTLINE OF THE THEORY

DFT is based on the papers by Hohenberg and Kohn@33#
and by Kohn and Sham@34#. The main result is that the
density of a system is identical to the density of an associa
noninteracting particle system, defined by the Kohn-Sh
equations~atomic units are used throughout!:

F2
¹2

2
1vs@r#~r !Gf i~r !5« if i~r !. ~1!

Herevs@r#(r ) is the so-called Kohn-Sham potential, consi
ing of the external potentialvext ~the Coulomb field of the
nuclei!, the Hartree potentialvH , which is trivially calcu-
lated from the density, and the xc potentialvxc , which is the
only unknown part:

vs~r !5vext~r !1vH~r !1vxc~r !. ~2!

The xc potentialvxc , which is the functional derivative o
the xc energy functionalExc with respect to the density, ha
to be approximated in practical calculations. The most co
mon approximations are the LDA and GGAs, although
response calculations the use of asymptotically correct
potentials~such as the LB potential@35#! seems more appro
priate. The xc potential determines the Kohn-Sham orbi
f i and their one-electron energies« i in Eq. ~1!. It also de-
termines the density, which is obtained from the squares
the occupied Kohn-Sham orbitals times their occupat
numbersf i :

r~r !5(
i

Nocc

f i uf i~r !u2. ~3!

The exact xc potential, which is unique, yields the ex
density of the system. This fact can be exploited to find
very accurate xc potential for systems for which a very
curate density is known. After having iteratively found th
xc potential which generates the very accurate target den
one immediately obtains Kohn-Sham orbitals and o
electron energies to very good accuracy.

In the time-dependent extension of the Kohn-Sham eq
tions, as proposed by Runge and Gross@9#, a time-dependen
Kohn-Sham potentialvs(r ,t) appears:

F2
¹2

2
1vs@r#~r ,t !Gf i~r ,t !5 i

]

]t
f i~r ,t !. ~4!
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The unknown xc part of this time-dependent Kohn-Sh
potential is called the time-dependent xc potentialvxc(r ,t).
In linear-response calculations one needs the functional
rivative f xc(r ,r 8,t,t8) of this time-dependent xc potentia
with respect to the time-dependent densityr(r ,t):

f xc~r ,r 8,t,t8!5
dvxc~r ,t !

dr~r 8,t8!
, ~5!

which, as it depends ont2t8 only, can be Fourier trans
formed to f xc(r ,r 8,v). This functional derivativef xc is
called the xc kernel and constitutes the second xc functio
for which approximations have to be made in DFT respo
calculations. In nonlinear-response calculations, higher fu
tional derivatives ofvxc(r ,t) are needed as well@10,24,36#,
but usually these do not affect the results very much@37#. In
this paper, we restrict ourselves to the linear-response c

As f xc is a function of two spatial variables and one fr
quency variable, it is rather complicated. However, the m
usual and simplest approximation to it, the adiabatic LD
~ALDA !, provides a very simple functional form for the x
kernel, by taking the derivative of the time-independent LD
expression forvxc with respect to the density:

f xc
ALDA ~r ,r 8,v!5d~r2r 8!

d2

dr2
@r«xc

hom~r!#ur5r0~r ! , ~6!

where «xc
hom is the xc energy density of the homogeneo

electron gas in the Vosko-Wilk-Nusair~VWN! approxima-
tion @38#. Evidently, this is a rough approximation to th
exact f xc as the frequency dependence is totally ignored~the
adiabatic approximation assumes systems which are slo
varying in time!, as is the spatial nonlocality of the kernel

More refined approximations for the xc kernel are ava
able. Petersilka and co-workers have introduced the ti
dependent optimized effective potential~TDOEP! expression
for the exchange part of the xc kernel@16,17#. In spin-
unrestricted form, it is given by@16,18#

f xss8
TDOEP

~r ,r 8,t,t8!52d~ t2t8!dss8

3

U(
k

f ksfks~r !fks* ~r 8!U2

ur2r 8un0s~r !n0s~r 8!
, ~7!

where f ks is the occupation number of the KS spin orbit
fks and wheren0s is the ground-state number density of t
spin s electrons. Although at present their expression s
ignores the frequency dependence off xc , which is hard to
model, their result should be very close to the ex
exchange-only expression for the xc kernel in the limitv
→0. A frequency-dependent extension of the ALDA expre
sion has been provided by Gross and Kohn@39–42#. In this
work, we will be using the ALDA expression forf xc and its
exchange-only counterpart.

In a linear-response calculation, we want to find the d
sity changedr(r ,v), which is induced by a frequency
dependent external electric fielddvext(r ,v). In time-
dependent density-functional linear-response theory,
density change does not depend on the external pote
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alone, but also on the potential which is induced by the d
sity change through screening effects. The density cha
thus reacts to aneffective potential dveff through the
independent-particle linear-response equation:

dr~r ,v!5E dr 8xs~r ,r 8,v!dveff~r 8,v!. ~8!

Here,xs is the single-particle Kohn-Sham response functio
constructed from occupied and virtual Kohn-Sham orbit
and one-electron energies@42,25#. This means that the exac
xc potential will lead to the exactxs . The effective potential
consists of the external potentialdvext and two parts which
depend upon the induced densitydr(r ,v): the Coulomb or
Hartree term and the xc term:

dveff~r ,v!5dvext~r ,v!1E dr 8
dr~r 8,v!

ur2r 8u
1dvxc~r ,v!.

~9!

This implies that, if an exact xc potential is available, t
only remaining unknown in Eq.~9! is the xc part to the
screening,dvxc . This xc part is given in terms of the Fourie
transform of the xc kernelf xc of Eq. ~5!:

dvxc~r ,v!5E dr 8 f xc~r ,r 8,v!dr~r 8,v!. ~10!

An important advantage of the ALDA in practical applic
tions, is that the evaluation ofdvxc in the integration points
becomes a trivial multiplication off xc and dr, due to the
delta function appearing in Eq.~6!. For nonlocal kernels,
such as the TDOEP kernel of Eq.~7!, the evaluation ofdvxc
in all integration points becomes an expensive computatio
task.

Equations~8!–~10! are solved self-consistently in an i
erative fashion, starting from the uncoupled approximat
(dveff5dvext) in Eq. ~9!. The induced density immediatel
yields the frequency-dependent polarizability tensora i j (v)
@42,43,25# for a density changedr i(r ,v) due to an externa
potentialdvext(r ,v)5r icos(vt):

a i j ~v!522E drdr i~r ,v!r j , ~11!

where i and j denote the Cartesian directionsx,y,z. We
remark that in the actual implementation the polarizability
obtained as the trace of a matrix product of the first-or
density matrix and the dipole moment matrix, which
equivalent to the integration in this equation.

By considering different multipole external electric field
all multipole polarizabilities can be obtained. The excitati
energies and oscillator strengths presented in this work@23#
have been obtained along the lines of Refs.@19,13#, using the
same auxiliary basis functions techniques as in Ref.@25#.

The singlet excitation energies and oscillator strengths
tained in this manner are directly related to the frequen
dependent polarizabilitya(v) by the relation

aav~v!5(
i

f i

v i
22v2

, ~12!
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where f i are the oscillator strengths andv i the excitation
energies, and where the average polarizabilityaav is equal to
(axx1ayy1azz)/3. The frequency dependence of this av
age polarizability is often expressed in terms of the Cau
coefficientsSi :

aav~v!5 (
k51

`

S22kv
2~k21!. ~13!

The Cauchy coefficients can be obtained from the excita
energies and oscillator strengths by the relation@13#

S22k5(
i

v i
22kf i . ~14!

In the basis-set limit, the Cauchy coefficientS0 should be
equal to the number of electrons. The coefficientS22 is
equal to the average static polarizability, as can be see
substitutingv50 in Eq. ~13!.

In this work, we will approximate the screening part
dveff(r ,v) in different ways. The approximationdveff
5dvext is called the uncoupled approximation, as screen
is fully ignored. Taking into account Coulomb screeni
only, is equivalent to the approximationf xc50. The results
arising from this approximation will be denoted by ‘‘Cou
lomb’’ in the tables. The main part of the xc screening com
from the exchange part as could be expected. This will
shown by calculations in which we takef c50, effectively
using anXa form for f xc , with a equal to 2/3. This approxi-
mation will be denoted by ‘‘Coulomb1 f x’’ in the tables.
The fully coupled results refer to the ALDA with the Vosko
Wilk-Nusair approximation to«xc @38#. They will be denoted
by either ‘‘ALDA’’ or ‘‘Coulomb 1 f xc .’’

III. COMPUTATIONAL DETAILS

The Amsterdam density-functional program~ADF! @44–
46# has been used for all calculations. The distinctive f
tures of this program include the use of Slater-type orbi
~STOs!, a well-balanced numerical integration scheme@45#,
a density fitting procedure for the Coulomb-type integr
using auxiliary basis functions~fit functions! @44#, and a
fully vectorized and parallelized code in combination w
the use of symmetry@46#. The same features hold for th
extension of ADF by which the response properties h
been calculated@47#.

A. Atomic calculations

In the atomic calculations on He, Be, and Ne, our goal
been to provide benchmark quality results with essenti
exact xc potentials. For this reason we have tried to perfo
the calculations as accurately as possible. We included
electrons in the solution of the Kohn-Sham and the respo
equations. In other words, we did not use a frozen core
proximation. The numerical integration accuracy was su
that 12 significant digits were demanded for a representa
set of test integrals~by default four significant digits are
demanded!. The convergence criterion in the self-consiste
procedure for the solution of the Kohn-Sham equations w
set to 10212 ~default value 1026).
-
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We have tried to reach the basis-set limit by construct
large even-tempered STO basis sets. The final results
error margins have been obtained by comparing results f
various basis sets of~very! high quality. The basis sets con
sist of several hundredss, p, d, and f functions~higher an-
gular momentum values are not available yet in ADF, b
they are not needed in our present calculations! with both
very diffuse and very contracted functions.

A typical basis set consists of 19s functions, 20p func-
tions, 21d functions, and 21f functions, giving a total of
331 primitive basis functions. The most contracted functio
of each type are a 1s function with exponent 20, a 2p func-
tion with exponent 20, a 3d function with exponent 40, and
a 4f function with exponent 60. The most diffuse function
are 6s, 6p, 6d, and 6f functions with exponents of 0.17 fo
one particular basis set. In other basis sets even more dif
functions have been used, without significant change in
results.

The fit sets withs, p, d, f , andg functions have also bee
constructed in an even-tempered fashion, the most diffus
function being adapted to the most diffuse product of ba
functions and the most contracted fit function adapted to
product of the most contracted basis functions. With these
sets, which are clearly larger than the associated basis
typical fit errors~defined as the integral over all space of t
squared difference between the exact and fitted conve
SCF densities! of only 1027 occurred. The most contracte
fit functions possessed the smallest possiblen value, while
the most diffuse fit functions had ann value of 10 for alll
values. The basis and fit sets are available for the intere
reader@48#.

For helium and beryllium the accuracy of our basis s
was confirmed by the fact that they reproduced the o
electron energies of Refs.@18# and @32,49# to all presented
digits. For neon we have adopted the same basis sets.
accuracy of the basis sets is further supported by the va
for the Cauchy momentS0 of Eq. ~13! which we obtained. In
the basis-set limit, the value ofS0 ~which is equal to the sum
of the oscillator strengths! should equal the number of elec
trons. Typical deviations with our present basis sets
merely 1023 to 1026, while for the largest basis sets in th
ADF database, these errors are in the order of 0.1 to 1.

The accurate potentials were used in the following w
We used linear interpolation on the available accurate
potential data, as provided by Umrigar and Gonze@30,31#, in
order to find the values of these potentials in the integrat
points generated by ADF. Afterwards, the Kohn-Sham eq
tions were solved in these fixed xc potentials. As the num
of points in which the accurate xc potentials were genera
by Umrigar and Gonze is very large, the linear interpolati
scheme will not influence our results by a significant amou
This is clear from the fact that we retrieve the KS orbi
energies obtained by Savinet al. @49#.

For the neon atom, there is novxc potential available of
comparable accuracy. We have generated one from the
CI density of Bunge and Esquivel@29#. This STO density is
not sufficiently accurate in the outer region in order to allo
for a straightforward determination of the xc potential in t
whole r range. In the iterative procedure to determine t
potential~the accurate updating procedure of Schipperet al.
@27#!, the potential was fixed in the outer region of the ato
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2560 57S. J. A. van GISBERGENet al.
for this reason, in order to obtain the correct asympto
21/r behavior. The potential was constructed in such a w
that it reached the21/r behavior at a certain cutoff point
beyond which the potential was taken identical to21/r . The
cutoff point was chosen in such a way that the orbital ene
of the highest occupied KS orbital was very close to
experimental ionization energy~0.792 hartree!. The resulting
cutoff point was 6.72 a.u. Consequently, the accurate xc
tential for Ne may be somewhat less accurate than the
potentials for He and Be.

B. Molecular calculations

We have constructed molecular xc potentials which p
sess some important features which are typical of the e
xc potential and which recover our target Gaussian multi
erence configuration interaction~MRCI! density to reason-
able accuracy. By construction, the potentials generate
our procedure will be smooth, possess the correct asymp
21/r behavior, yield the experimental ionization potent
for the highest occupied Kohn-Sham orbital, and are requ
to recover the MRCI density to reasonable accuracy. T
final requirement ensures that the intershell peaks, exhib
by the exact xc potential, are present in our constructed
tential as well.

The Hartree-Fock and subsequent direct~multireference!
CI calculations, at the single-double excitation level, we
performed with theATMOL @50# package. The correlation en
ergy which was recovered was 98% for H2, 90% for HF,
82% for N2, and typically around 75–80 % for the othe
molecules, when compared to the semiempirical correla
energy estimates of Savinet al. @51#.

Correlation-consistent GTO basis sets of at least vale
triple zeta quality were used, to which sets of diffuse fun
tions were added. The basis set sizes were different dep
ing on the molecule. Our aim was to take a reliab
correlation-consistent basis set including diffuse functio
Typically, we took Woon and Dunning’s@52# doubly or in
most cases triply augmented correlation-consistent~cc! va-
lence triple zeta~VTZ! basis sets denoted by d-aug-cc-pVT
or t-aug-cc-pVTZ. We have also performed calculations w
correlation-consistent quadruple zeta basis sets to which
added some diffuse functions ourselves. The total numbe
GTOs was typically between 100 and 150.

We have further used the straightforward scheme of R
@35# for updating the xc potential until the density resultin
from the KS calculation with that xc potential was suf
ciently close to the target CI density. We used an asympt
cally correct initial guess for the xc potential of the form

vxc~r !5vXa~r !12«c
VWN~r !12«x

Becke~r !, ~15!

consisting of theXa potential, the Vosko-Wilk-Nusair pa
rametrization of the LDA correlation energy density, and t
Becke energy functional for the correction to theXa ex-
change. This last term ensures the correct asymptotic21/r
behavior. This initial guess has been successfully emplo
several times before@53#.

Because of the known problems@27# which arise, in case
of a Gaussian CI density, if the potential is converged co
pletely ~such as spurious oscillations and incorre
asymptotic behavior!, the updating scheme was changed
c
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such a fashion that the outer region of the potential was
virtually unchanged@53#, so as to retain its asymptoticall
correct behavior. The updating scheme slowly converge
the ~undesirable! exact xc potential. After a hundred cycle
the integrated absolute density error with respect to the
density, as defined in Ref.@27#, has typically dropped to a
satisfactory 1022 or 1023. Further convergence hardly im
proves this difference, but it does introduce the spurious
cillations mentioned before. For this reason we used, as
ommended @27#, the potentials which appeared after
hundred cycles. The parametera of the startingXa potential
was chosen such that the eigenvalue of the highest occu
Kohn-Sham orbital«HOMO, belonging to the final potential
equals minus the ionization potential, as it should.

The potentials, which have all been constructed in t
manner, can certainly not be called exact, and our metho
construction severely restricts the freedom of the poten
For example, the distance at which the potential gets clos
the 21/r behavior is predominantly determined by th
start-up potential. However, our results did not change v
much if another start-up potential with correct asympto
behavior was used. On the other hand, if thea parameter in
the start-up potential was not adapted in order to obtain
experimental ionization potential, relatively poor resu
were obtained.

Although the potentials will not be the exact ones, whi
belong to the exact~not the GTO-CI! correlated densities
there are good reasons to assume that the constructed p
tials improve upon the xc potentials which were used in p
vious DFT response calculations, such as the usual poten
belonging to the LDA or GGAs or the asymptotically corre
Van Leeuwen–Baerends potential@35# ~LB!. These poten-
tials all exhibit one or several distinct weaknesses, such
the faster than Coulombic decay of the potential in the ou
region ~LDA and GGAs!, inferior values for the highest oc
cupied Kohn-Sham orbital which should equal minus the
perimental ionization energy~LDA and GGAs!, poor de-
scription or absence of the intershell peaks~LDA, GGAs,
and LB!, and poor description of the inner region of th
atoms in the molecule~LB!.

IV. RESULTS AND DISCUSSION

A. Atomic results, polarizabilities

In Table I, the dipole and quadrupole polarizabilities a
presented for the three atoms which are studied here.
results for He and Ne with the LDA and LB potentials a
somewhat more accurate than our previous results@25,12#
due to the removal of the frozen core approximation for
and the improvements in the basis sets. As expected, this
led to slightly higher values for the polarizabilities. The LD
dipole polarizabilities of He and Ne are now in perfect agre
ment with the numerical results reported in Table 4.4 of R
@43#, showing that our results are very close to the basis
limit. The quadrupole polarizability results are not identic
to those obtained by Mahan@54#, because the Gunnarsso
Lundqvist parametrization@55# for vxc was used in that
work.

It has been emphasized several times@56,12# that the
usual xc potentials, such as the LDA potential, overestim
the polarizabilities due to their incorrect asymptotic beha
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TABLE I. Dipole and quadrupole polarizabilities of helium, beryllium, and neon with various xc po
tials using the ALDA forf xc .

Polarizability Atom LDAa LBb Accuratevxc
c Literature

Dipole He 1.6576 1.3896 1.3824 1.3832d

Be 43.7960.02 42.8760.01 39.5760.01 37.7360.05e

Ne 3.04960.003 2.590 ~2.657! 2.670f

Quadrupole He 3.576 2.561 2.538 2.4451d

Be 369.960.5 342.460.5 300.460.5 298.8g; 298.862.6h

Ne 9.6660.02 7.2660.03 ~7.5260.02! 7.52i; ~7.33j!

aThe VWN @38# parametrization is used.
bThe Van Leeuwen–Baerends model potential@35#.
cAccurate xc potential due to Umrigar and Gonze@30#; for Ne, the potential constructed from the Bung
Esquivel STO CI density was used~see text!.
dBenchmarkab initio calculation using explicitly correlated wave functions@57#.
eRecent basis-set limit result obtained with the explicitly correlated coupled-cluster method@68#.
fValue obtained by comparison of many experimental data@58#.
gCoupled-cluster double-excitation value with fourth-order contribution from singlet and triplet excita
@69#.
hFourth-order Mo” ller-Plesset perturbation theory value@70#.
iCoupled-cluster singles-doubles value, with an approximate triples contribution@CCSD~T!# @71#.
jSecond-order many-body perturbation theory value@72#.
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ior. This is obvious in Table I. The LDA dipole polarizabi
ities are too high by 19.8%, 16.1%, and 14.2% respectiv
while the LDA quadrupole polarizabilities are too high b
46.3%, 23.8%, and 28.3%. The asymptotically correct
potential already improves considerably upon this. The
rors for this potential are10.46%,113.6%, and23.0% for
the dipole polarizabilities. For the quadrupole polarizab
ities, the numbers are14.7%, 114.6%, and23.2%. The
accurate xc potential improves upon the LDA and LB resu
in all six cases. For the dipole polarizabilities, the errors
20.06%,14.9%, and20.5%, while the quadrupole polar
izability errors are13.80%, 10.54%, and 0.0%, respec
tively.

In order to investigate how sensitive these properties
with respect to small changes in the xc potential, we h
repeated the Be calculations not with the Umrigar-Gonze
tential, but with another accurate xc potential, construc
from the Esquivel-Bunge CI STO density@28#, in the same
way as we construct our Ne potential from an STO CI d
sity by Bunge and Esquivel@29#.

The xc potential for Be by Umrigar and Gonze@30#
should be considered more reliable than the present one
these test calculations give an indication of how much
neon results may still differ from results with the truly exa
xc potential. We find a dipole polarizability of 40.0160.01
~instead of 39.57 with the Umrigar-Gonze potential! and a
quadrupole polarizability of 309.260.2 ~instead of 300.4!
with the xc potential constructed from the Esquivel-Bun
density for Be. The differences with respect to the resu
with the accurate potential by Umrigar and Gonze are c
siderable. For this reason we have given the Ne result
parentheses in Table I, although we expect the results
the Bunge-Esquivel density for the rare gas Ne to be m
reliable than those for Be.

The average absolute error for all six numbers in Tab
is reduced by roughly a factor of 4 by going from the LD
y,
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potential to the LB potential. The average absolute error w
the accurate xc potential is again a factor of 4 smaller th
the average absolute LB error, and a factor of 15 smaller t
the LDA error. For these atomic polarizabilities it is cons
quently clear that improvements to the xc potential will yie
the bulk of the improvement which can be obtained. T
remaining errors have to be due to deficiencies in the
kernel f xc . As we are considering static polarizabilitie
these deficiencies relate to the spatial variables, not to
frequency dependence.

In four cases out of six, the accurate xc potential resu
for the polarizabilities of these atoms can be called excelle
The errors for the quadrupole polarizability of He~13.8%!
and the dipole polarizability of Be~14.9%! are, however,
still substantial. Upon closer analysis, the dipole polariza
ity of Be appears to depend strongly on the description of
2s→2p transition~the reason for the different dipole pola
izability obtained with the Esquivel-Bunge density is al
that this transition is differently described!. For this analysis,
it is useful to look at Eq.~12!, which expresses the polariz
ability in terms of the oscillator strengthsf i and the excita-
tion energiesv i . Using this equation for the present stat
case (v50!, we find that about 95% of the polarizability o
Be is due to the~singlet! 2s→2p transition. For this transi-
tion, we obtained an oscillator strength of 1.339 a.u.~having
taken the degeneracy of thep orbitals into account! and an
excitation energy of 0.1868 hartree, as will be shown in o
of the following tables. The experimental value for the ex
tation energy is 0.1939 hartree. Our excitation energy w
the accurate xc potential is consequently too low by 3.7
This should lead to an overestimation in the contribution
the 2s→2p transition to the polarizability of no less tha
7.7%. Apparently, the oscillator strength for this transition
underestimated, leading to a fortuitous cancellation of err
In short, the error in the predicted dipole polarizability
beryllium, obtained with the accurate xc potential, can



nels

2562 57S. J. A. van GISBERGENet al.
TABLE II. Dipole and quadrupole polarizabilities of helium, beryllium, and neon with various xc ker
using the accurate xc potential.

Polarizability Atom Uncoupled Coulomb Coulomb1f x Coulomb1f xc Literature

Dipole He 1.5158 1.2231 1.3665 1.3824 1.3832@57#

Be 73.98 29.36 37.99 39.57 37.7360.05 @68#

Ne 3.063 2.417 2.632 2.657 2.67@58#

Quadrupole He 2.452 2.385 2.518 2.538 2.4451@57#

Be 283.7 251.8 291.5 300.4 298.862.6 @70#

Ne 7.39 6.98 7.45 7.52 7.52@71#
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fully explained from the inability of the ALDA xc kernel to
describe the 2s→2p transition with sufficient accuracy. In
passing, we note that the 2s→2p transition in Be is the only
atomic transition we consider, which is close in energy
excitation energies normally encountered in molecules.

In Table II, the importance of the various contributions
the screening is tabulated. As explained in the introduct
section, the ‘‘uncoupled’’ results refer to a total neglect
screening, which is equivalent to the approximationdveff
5dvext in Eq. ~9!. The uncoupled results for the dipole p
larizability are far too large in all three cases~this is also the
usual case in molecular dipole polarizability calculation!,
while the uncoupled quadrupole polarizabilities are mu
closer to the experimental values. Interestingly, the
coupled quadrupole polarizabilities are too low for Be a
Ne and slightly too high for He.

In agreement with Ref.@13#, we find that the inclusion of
the Coulomb screening in the second column~this is the
approximation f xc50) substantially reduces all the un
coupled polarizabilities and leads to too low values with
spect to experiment in all six cases. In the column deno
by ‘‘Coulomb 1 f x , ’’ the exchange part of the screening
included, using the Vosko-Wilk-Nusair~VWN! exchange
functional ~which is equivalent to theXa parametrization
with a52/3). It is clear from the table that the exchange p
constitutes the major part of the xc screening, as could
expected.

Finally, in the last two columns we have copied the fu
coupled~both exchange and correlation screening includ
in the xc kernel! and experimental orab initio values from
Table I, for ease of comparison. The inclusion of the cor
lation part of the screening substantially reduces the error
four cases out of six. In the other two cases~those with the
largest deviations with respect to the benchmark values! the
results get somewhat worse.

In the rest of this work, it will be shown that the full
coupled calculations for the excitation energies of heli
hardly differ from the uncoupled values~the differences be-
tween occupied and virtual KS orbital energies!, which are
already excellent. In view of this fact, it may be somewh
surprising that the fully coupled~both Coulomb and xc
screening taken into account! result for the static dipole po
larizability of helium is considerably better than the u
coupled value. This must of course be due to the impro
results for the oscillator strengths which appear in Eq.~12!.

In Table III, these fully coupled oscillator strengths f
He, calculated with the accurate xc potential, are compa
to the literature values. Here, it becomes clear that the ex
o
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lent result for the static dipole polarizability of helium doe
not hold for the individual oscillator strengths. The contrib
tion of the 1s→2p transition to the dipole polarizability
using our ALDA values for the oscillator strength and t
excitation energy in Eq.~12!, is 0.471 a.u. The literature
values for the excitation energy and the oscillator stren
yield a contribution of only 0.454 a.u. This is counterba
anced by the other oscillator strengths, which are a bit
low. We note, however, that only the exact frequency dep
dent xc kernel can be expected to give the individual os
lator strengths and excitation energies correctly.

Because the static dipole polarizability of He comes o
so nicely with the accurate xc potential, it is interesting
see if this remains so in the frequency dependent case. In
static polarizability calculations, the spatial part of the
kernel is tested. In a frequency-dependent run, one also
the frequency-dependence of this kernel. In other words,
tests how well the adiabatic approximation holds when
frequency of the external field approaches the first excita
energy with nonvanishing oscillator strength.

Our results for the frequency dependence of the dip
polarizability of He are gathered in Table IV, as well as
Fig. 1. The LDA results are far too large and increase
sharply with increasing frequency. This is of course rela
to the position of the first pole, which appears much too ea
with the LDA potential. The LB results are already muc
better, but the results with the accurate xc potential are c
est to the benchmark results~taken from highly accurateab
initio calculations with explicitly correlated wave function
@57#!. This holds both for the results with the full ALDA an
with the exchange-only (Xa) approximation forf xc . How-
ever, the figure shows that it is not possible to ignore the
screening altogether, as the accuratevxc-Coulomb curve is
quite poor. This was to be expected in view of the po
corresponding static result in Table II. So it appears that b
an accuratevxc and a reasonable approximation forf xc are

TABLE III. Helium oscillator strengths.

Transition Exacta ALDA b

1s→2p 0.27616 0.283~12.5%!

1s→3p 0.07343 0.0698 (24.9%!

1s→4p 0.02986 0.0282 (25.5%!

1s→5p 0.01504 0.0142 (25.5%!

1s→6p 0.00863 0.0082 (25.0%!

aAccurate nonrelativistic theoretical calculations@73,74#.
bResults with accurate xc potential and ALDA forf xc .
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TABLE IV. Frequency dependence of the dipole polarizability of helium with various xc potentials

Frequency~hartree! Exacta Acc.-ALDAb Acc.–x-onlyc Acc.-Coulombd LDAe LBf

0 1.383 1.382 1.366 1.223 1.658 1.390
0.1 1.399 1.398 1.382 1.236 1.682 1.40
0.2 1.448 1.448 1.431 1.276 1.763 1.45
0.3 1.541 1.542 1.522 1.350 1.921 1.55
0.4 1.698 1.701 1.677 1.475 2.219 1.71
0.5 1.970 1.979 1.946 1.686 2.883 1.99
0.6 2.508 2.537 2.480 2.090 poleg 2.571
0.7 4.116 4.286 4.114 3.192 pole 4.490

aBenchmarkab initio calculation using explicitly correlated wave functions@57#.
bResults with accurate xc potential due to Umrigar and Gonze@30# with ALDA approximation for f xc .
cResults with accurate xc potential due to Umrigar and Gonze@30# with exchange-only (Xa) approximation
for f xc .
dResults with accurate xc potential due to Umrigar and Gonze@30# with approximationf xc50.
eThe VWN parametrization is used@38#.
fVan Leeuwen–Baerends potential@35#.
gFor LDA, the first pole appears before 0.6 hartree.
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needed for reliable results here.
For the accuratevxc-ALDA results, the deviation in the

frequency range of 0 to 0.3 hartree is less than 0.1% from
literature values. For higher frequencies, the deviations
not negligible anymore. At 0.7 hartree, in the neighborho
of the pole, the accuratevxc-ALDA result overshoots by 4%
Interestingly, in this region the accuratevxc–exchange-only
f xc are the best, in contrast to the situation at zero freque

One might be tempted to blame this solely on the ad
batic approximation~the neglect of frequency dependence
the xc kernel!, which is supposed to break down in the v
cinity of a pole. This breakdown is due to the fact that t

FIG. 1. The dynamic polarizability of He calculated with diffe
ent xc potentials and xc kernels.
e
re
d

y.
-

position of this pole, which determines the polarizability
the frequency region near that pole, is only given correc
by the exact frequency-dependent xc kernel. The exact s
xc kernel will give a different position of the first pole, wit
large effects for the frequency-dependent polarizability n
the pole, as is clear from Eq.~12!. However, this question
cannot be answered unless one would know the polariza
ity result with the ~unknown! exact staticf xc . This result
should be equal to the experimental number atv50, but will
differ from the ALDA result at finite frequencies, in case th
static result is obtained from different values for the oscil
tor strengths and excitation energies~especially those be
longing to the first pole!. If one recalculates the polarizabilit
with the experimental values for the excitation energy a
oscillator strength of the 1s→2p transition, the result is even
somewhat below the exact literature value atv50.7 hartree
~4.07 a.u.!. The overestimated value for the oscillat
strength and the underestimated value for the first excita
energy are responsible for the overestimated polarizabilit
larger frequencies in roughly equal amounts.

We have checked whether the curve with the accurate
potential improves if one employs Gross and Kohn
frequency-dependent xc kernel@39–42#, instead of the
ALDA f xc . This is not the case. The Gross-Kohn~GK! ker-
nel indeed lowers the frequency dependence, but the cor
tion is far too large, resulting in a curve which is too low
the whole frequency range~1.49 a.u. at 0.3 hartree and 2.3
a.u. at 0.6 hartree!. Furthermore, an unphysical anomalo
frequency dispersion appears in the very low frequency
gion. This behavior can be understood from the freque
dependence of the real part of the GK kernel. If the f
quency becomes larger than zero, the absolute value o
real part of the GK kernel decreases. The xc screenin
reduced in this way. The magnifying effect of this screeni
~see the results of Table II! on the polarizability also reduces
leading to a polarizability whichdecreaseswith increasing
frequency~for very small frequencies!.

For the Cauchy coefficientS24, which describes the fre
quency dependence of the dipole polarizability in the lo
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frequency region, we obtain 1.55460.001 with the accurate
xc potential. A fit to the literature data@57# yields a value of
1.5460.01. Apparently the fit to the experimental data@58#,
resulting in a value of 1.60, in Ref.@59# overestimates the
frequency dependence of the dipole polarizability in the l
frequency region somewhat.

The LDA and LB results for this coefficient are 2.43
60.001 and 1.57360.001, respectively. For the coefficien
S26 we obtain LDA and LB results of 4.46260.002 and
2.12760.002, respectively. The accurate potential yie
2.086 for S26. For the higher Cauchy coefficients, the im
portance of the first transition with nonvanishing oscilla
strength increases, as can be seen from Eq.~14!. In view of
the overestimated oscillator strength and underestimated
citation energy for this transition with the accurate xc pote
tial, the S24 and S26 can be expected to be somewhat t
large.

For the Cauchy coefficients of Be, we find 1.353103 ,
1.363103, and 1.1053103 for S24 using the LDA, LB, and
accurate xc potentials, respectively. The numbers for theS26

coefficient are 4.263104, 4.433104, and 3.1553104. These
results, even those from the accurate potential, are too l
because of the inaccurate description of the 2s→2p transi-
tion. A correction on these values, based upon the cou
cluster value of the static polarizability of 37.73, and t
experimental excitation energy, would yield~semiempirical!
estimates of (1.060.1)3103 and (2.660.2)3104 for S24

andS26, respectively.

B. Atomic results, excitation energies of helium

In this section we discuss our results for the excitat
energies. Recently, Savin, Umrigar, and Gonze have sh
@49# that the exact Kohn-Sham one-electron energy diff
ences between the highest occupied Kohn-Sham orbital
virtual orbitals provide quite satisfactory approximations
excitation energies for helium and beryllium. The orbital e
ergy differences lie between the experimental singlet
triplet excitation energies, almost without exception.

Going beyond this, Filippi, Umrigar, and Gonze@32# cal-
culated excitation energies using two perturbative schem
One of these first-order perturbative schemes, based u
Görling and Levy’s adiabatic connection approach@60,61#,
improves upon the orbital energy difference approximat
to the excitation energies. We have included these resul
the tables. The other results obtained by Filippiet al. are
based on ordinary perturbation theory and provide no
provement over the Kohn-Sham orbital energy differenc
These results will not be discussed here.

Petersilka, Gossmann, and Gross@18# have recently cal-
culated excitation energies for helium with Umrigar a
Gonze’s accurate xc potential@30#, using the TDDFT ap-
proach. They present numerical results using the ALDA a
TDOEP xc kernels, both in their single-pole approximati
~SPA! and by diagonalizing a matrix containing contrib
tions from as many bound Kohn-Sham orbitals as w
needed for converged results. For ease of reference we re
their equations@18# for the SPA excitation energies here, f
an excitation from occupied orbitalf i to virtual orbitalfa :
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vsing5~«a2« i !12 ReE d3rE d3r 8f i* ~r !fa* ~r !

3S 1

ur2r 8u
1

1

4
@ f xc
↑↑1 f xc

↑↓1 f xc
↓↑1 f xc

↓↓# D f i~r 8!fa~r 8!,

v trip5~«a2« i !12 ReE d3rE d3r 8f i* ~r !fa* ~r !

3S 1

4
@ f xc
↑↑2 f xc

↑↓2 f xc
↓↑1 f xc

↓↓# Df i~r 8!fa~r 8!, ~16!

where« i and«a are KS orbital energies and wheref xc
ss8 is a

shorthand notation forf xc
ss8(r ,r 8,v0), which is the Fourier

transform of the functional derivative

f xc
ss8~r ,t,r 8,t8!5

dvxc
s ~r ,t !

drs8~r 8,t8!
. ~17!

Combining these expressions yields the SPA expression
the singlet-triplet splitting

vsing2v trip5ReE d3rE d3r 8f i* ~r !fa* ~r !

3S 2

ur2r 8u
1 f xc
↑↓~r ,r 8,v0!1 f xc

↓↑~r ,r 8,v0!D
3f i~r 8!fa~r 8!, ~18!

wheref xc
↑↓ is equal tof xc

↓↑ for closed-shell systems, as aref xc
↑↑

and f xc
↓↓ .

Their approach should yield the same results as ours,
vided that our basis set is sufficiently large. We ha
checked that the orbital energy differences are identica
those obtained by Petersilkaet al. @18# for He, and those by
Savin et al. @49# for He and Be. We have furthermor
checked that we could reproduce the ALDA-SPA results
Petersilkaet al., by calculating the required matrix element
The SPA results were identical, except for a single deviat
of only 0.1 mhartree. We have also confirmed that the imp
mentations off xc andGxc are identical@62#.

However, it appeared that our fully coupled ALDA resul
were not identical to those obtained by Petersilkaet al. by
diagonalizing a large matrix. The reason for this, as s
gested by Petersilka@62#, is that in their numerical program
continuum contributions cannot be taken into account, wh
our basis set program provides a~discrete! description of the
continuum through the virtual orbitals with positive on
electron energies. This was verified by only taking into a
count virtuals with negative one-electron energies in our c
culations. In this way we recovered the results obtained
Petersilkaet al. It will be shown below that this continuum
contribution considerably improves some of the results.
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TABLE V. Helium singlet excitation energies~in hartrees!.

Transition Exacta KS eigenvaluesb ALDA,boundc TDOEP-SPA or PTd ALDA, full e

1s→2s 0.7578 0.7460 0.7678 0.7687 0.7608
1s→3s 0.8425 0.8392 0.8461 0.8448 0.8435
1s→4s 0.8701 0.8688 0.8719 0.8710 0.8706
1s→5s 0.8825 0.8819 0.8835 0.8830 0.8828
1s→6s 0.8892 0.8888 0.8898 0.8894 0.8893

1s→2p 0.7799 0.7772 0.7764 0.7850 0.7751
1s→3p 0.8486 0.8476 0.8483 0.8500 0.8479
1s→4p 0.8727 0.8722 0.8726 0.8732 0.8724
1s→5p 0.8838 0.8836 0.8838 0.8841 0.8837
1s→6p 0.8899 0.8898 0.8899 0.8901 0.8898

Av. abs. error~mhartrees!f 2.2 2.1 2.2 1.0

aAccurate nonrelativistic calculations by Drake@73#.
bZeroth-order approximation provided by differences in KS eigenvalues.
cALDA results obtained by taking into account all bound KS orbitals@18#.
dValues obtained with TDOEP kernel in the SPA@18# or by DFT perturbation theory@32#. The results for the
higher transitions are given in Ref.@18# only.
eThis work, ALDA results obtained by taking into account all bound and unbound KS orbitals.
fThe average absolute error with respect to the ‘‘exact’’ values is given in mhartrees.
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In Table V, several results for the singlet excitation en
gies of helium have been gathered. It is clear that the orb
energy differences in the third column already provide go
approximations to the experimental excitation energies.
average absolute deviation is only 2.2 mhartree from the
perimental values. Petersilka’s fully coupled ALDA resu
with bound orbitals yield a similar deviation of 2.1 mhartre

The best results by Filippiet al. @32# have been given in
the fourth column. These results are in fact identical to
SPA results obtained by Petersilkaet al. with the TDOEP
approximation forf xc . This can be understood from the fa
that, for two-electron systems, both approaches reduce to
calculation of the same Coulomb-type matrix element@com-
pare the appendix of Ref.@32# and Eq.~7!#. Both approaches
give a first-order exchange-only correction to the orbital
ergy differences. The results obtained by Filippiet al. give
no improvement over the ALDA results obtained by Pet
silka et al.

Our fully coupled ALDA results, which have converge
with respect to basis set size, are given in the last colu
The deviation with respect to the experimental values dr
by a factor of 2 in comparison to the results obtained
Petersilkaet al. and those obtained by Filippiet al. The av-
erage absolute deviation is 1.0 mhartree for our results.
emphasize that the only difference between our results in
final column and those obtained by Petersilkaet al. is the
inclusion of virtual orbitals with positive one-electron ene
gies in our calculation@62#. It is the contribution of the con-
tinuum that ensures the improvement in the results. One
speculate that a similar improvement could be obtained
the TDOEP kernel, if a fully coupled calculation would b
performed. It is too early to conclude that the ALDA pe
forms better than the TDOEP for these transitions.

It is interesting to note that the last three columns of Ta
V all correct thes→s orbital energy differences in the righ
direction with respect to the experimental values, but by
-
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large amounts. For thes→p transitions, the ALDA correc-
tions to the orbital energy differences are again in the ri
direction, but for these transitions the correction is not la
enough. The notable exception is the 2s→2p transition.
Here, the ALDA correction actually makes the result wor
The first-order exchange-only results of Filippiet al. are
worse than the ALDA results for the singlets→s and
s→p transitions.

In Table VI, the triplet excitation energies correspondi
to the singlet excitation energies of Table V are presen
Here, all results clearly improve upon the orbital energy d
ferences. Contrary to what was seen in the previous table
two sets of ALDA results do not differ much in accurac
here. The inclusion of the continuum contribution plays le
of a role than in the singlet case and also Filippiet al.’s
exchange-only results are hardly worse than the fu
coupled ALDA results. The exchange-only results ag
overcorrect the orbital energy differences, as in the sing
case, for thes→s transitions. The ALDA results give too
small corrections for these transitions. All coupled results
the s→p transitions are quite satisfactory.

Now we turn to the singlet-triplet splittings for these tra
sitions in Table VII. Here, the ALDA results are clearly be
ter than the exchange-only results. The exchange-only res
give too high splittings, as already observed by Peters
et al. @17,18#. This is due to the fact that the corrections
the orbital energy differences are too large in the exchan
only case, for both the singlet and the triplet energies.

In the ALDA results a cancellation of errors occurs, as t
singlet and triplet excitation energies are both too high
the s→s transitions. For this reason, the ALDA single
triplet splittings come out more accurately than the excitat
energies themselves. From this table, it is obvious that
continuum contribution is of importance and helps to furth
improve upon Petersilka’s ALDA results. The final avera
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TABLE VI. Helium triplet excitation energies~in hartrees!.

Transition Exacta KS eigenvaluesb ALDA,boundc TDOEP-SPA or PTd ALDA,full e

1s→2s 0.7285 0.7460 0.7351 0.7232 0.7334
1s→3s 0.8350 0.8392 0.8368 0.8337 0.8362
1s→4s 0.8672 0.8688 0.8679 0.8667 0.8677
1s→5s 0.8811 0.8819 0.8815 0.8808 0.8813
1s→6s 0.8883 0.8888 0.8885 0.8882 0.8885

1s→2p 0.7706 0.7772 0.7698 0.7693 0.7689
1s→3p 0.8456 0.8476 0.8457 0.8453 0.8454
1s→4p 0.8714 0.8722 0.8715 0.8712 0.8713
1s→5p 0.8832 0.8836 0.8832 0.8831 0.8831
1s→6p 0.8895 0.8898 0.8895 0.8895 0.8895

Av. abs. error~mhartrees!f 3.5 1.1 0.9 0.9

aAccurate nonrelativistic calculations by Drake@73#.
bZeroth-order approximation provided by differences in KS eigenvalues.
cALDA results obtained by taking into account all bound KS orbitals@18#.
dValues obtained with TDOEP kernel in the SPA@18# or by DFT perturbation theory@32#. The results for the
higher transitions are given in Ref.@18# only.
eThis work, ALDA results obtained by taking into account all bound and unbound KS orbitals.
fThe average absolute error with respect to the ‘‘exact’’ values is given in mhartrees.
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absolute error for the fully coupled ALDA results in the la
column is a very satisfactory 0.6 mhartree, which clea
improves upon both the ALDA results with bound KS orb
als only and the exchange-only values based on DFT pe
bation theory~PT!.

C. Atomic results, excitation energies of beryllium

Now we turn to the excitation energies of beryllium. Th
singlet excitation energies are given in Table VIII. For t
LDA potential, only the first couple of excitation energie
y

r-

have been given. Those are the only transitions to virtu
which are bound in the LDA potential. Not surprisingly, n
reliable values for higher excitation energies could be
tained. The ordering of the excitations even differs from t
experimental ordering. We can conclude that the LDA p
tential does not give a qualitatively correct description of
but the lowest excitations in Be.

For the LB potential, results for the lowest four excitatio
energies are given. For higher excitations, relatively la
differences between results in different basis sets occur
This is due to the long range of the LB potential, which lea
TABLE VII. Helium singlet-triplet splittings~in millihartrees!.

Transition Exacta ALDA,boundb TDOEP-SPA or PTc ALDA,full d

1s→2s 29.3 32.7 45.5 27.4
1s→3s 7.4 9.4 11.1 7.3
1s→4s 2.9 4.0 4.3 2.9
1s→5s 1.4 2.1 2.2 1.4
1s→6s 0.8 1.3 1.2 0.8

1s→2p 9.3 6.6 15.7 6.2
1s→3p 2.9 2.6 4.7 2.5
1s→4p 1.3 1.1 2.0 1.1
1s→5p 0.6 0.6 1.0 0.6
1s→6p 0.4 0.3 0.6 0.3

Av. abs. error~mhartrees!e 1.1 3.2 0.6

aAccurate nonrelativistic calculations by Drake@73#.
bALDA results obtained by taking into account all bound KS orbitals@18#.
cValues obtained with TDOEP kernel in the SPA@18# or by DFT perturbation theory@32#. The results for the
higher transitions are given in Ref.@18# only.
dThis work, ALDA results obtained by taking into account all bound and unbound KS orbitals.
eThe average absolute error with respect to the ‘‘exact’’ values is given in mhartrees.
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TABLE VIII. Beryllium singlet excitation energies~in hartrees!, uncertainties in the final digit in paren
theses.

Transition Expt.a KS eigenvaluesb ALDA,full c PTd LBe LDAf

2s→2p 0.193941 0.1327 0.1868 0.1989 0.1747~1! 0.1772~1!

2s→3s 0.249127 0.2444 0.2495 0.2556 0.2402~2! 0.2040~5!

2s→3p 0.274233 0.2694 0.2710 0.2741 0.2593~3!

2s→3d 0.293556 0.2833 0.2778 0.2852 0.2669~3!

2s→4s 0.297279 0.2959 0.2977~1! 0.2990
2s→4p 0.306314 0.3046 0.3048~1! 0.3061
2s→4d 0.313390 0.3098 0.3084~1! 0.3106
2s→5s 0.315855 0.3153 0.3160~1! 0.3166

Av. abs. error~mhartrees!g 11.0~3.9! 4.2~3.8! 3.2

aThe experimental excitation energies@75#.
bZeroth-order approximation provided by differences in KS eigenvalues.
cThis work, ALDA results obtained by taking into account all bound and unbound KS orbitals.
dValues obtained by DFT perturbation theory@32#.
eVan Leeuwen–Baerends potential@35#. The higher excitation energies are not given as they vary too m
in different basis sets.
fThe VWN parametrization is used@38#. Only the results for the transitions to bound virtual KS orbitals
given.
gThe average absolute error with respect to the ‘‘exact’’ values is given in mhartrees, in parentheses th
for all but the for all but the first transition.
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to increased basis set effects in the very low density reg
The typical magnitude of the differences is a few milliha
trees. For this reason we decided not to include those n
bers in this and the following tables.

The LB results are much better already than the LD
potential. Due to the correct asymptotics, these Rydberg-
transitions are described reasonably well, with an aver
error of 17.4 millihartree~this should be compared to ou
results with the accurate xc potential, which yields an av
age error of 6.6 mhartree for these transitions!.

The accurate potential results are better still. The aver
error of 4.2 mhartree gives a factor of 2.6 improvement w
respect to the LB results, and a factor of 2.5 improvem
with respect to the orbital energy differences. However
the 2s→2p transition is disregarded~a very large correction
to the orbital energy difference is needed for this transitio!,
the ALDA results do not improve upon the orbital ener
differences at all. This is entirely due to thes→d transitions,
which are poorly treated by the ALDA kernel. Not only a
the ALDA results for these transitions clearly worse th
both the exact exchange-only results and the orbital ene
differences, they even correct the orbital energy differen
in the wrong direction. The results by Filippiet al. do pro-
vide a correction in the right direction, although by too sm
an amount.

On the other hand, thes→s and s→p transitions are
treated satisfactorily by the ALDA kernel. The errors in t
ALDA results for s→s transitions~0.4, 0.4, and 0.15 mhar
tree! are considerably lower than those for thes→p transi-
tions ~7.1, 3.2, and 1.5 mhartree!, which in turn are superior
to the s→d transition results with errors of 15.8 and 5
mhartree. The ALDA results for thes→s transitions are
clearly better than the exact exchange results and the or
energy differences, as was also the case for the singls
n.
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→s transitions of helium in Table VII.
On the whole, the perturbative values obtained by Filip

et al. @32# are somewhat more accurate than our ALDA r
sults here, with an average error of 3.2 mhartree. The qua
of their results does not show the same variety in errors
the different types of transitions. It has already been
served by Petersilka and Gross@17# that the singlet spectrum
is reproduced at least as well by the TDOEP kernel as by
ALDA kernel, while the ALDA kernel is to be preferred fo
triplet excitation energies.

The ALDA and exchange-only triplet energies for bery
lium in Table IX provide corrections in the right directio
with respect to the orbital energy differences for all tran
tions except the 2s→4p transition. The ALDA results, with
an average absolute error of 2.7 mhartree, are clearly b
than the exchange-only results~6.4 mhartree!, which do not
improve upon the orbital energy differences here~6.1 mhar-
tree!. As in the singlet case, the LB and LDA results a
clearly worse.

In Table X the singlet-triplet splittings for beryllium ar
given. For the three lowest transitions, the ALDA splitting
clearly superior to the exchange-only splitting and can
considered very satisfactory. For the higher transitions,
is not the case anymore. The ALDA results for thes→d
transitions are even qualitatively incorrect, as the wrong s
for the singlet-triplet splitting is predicted by the ALDA ker
nel. Although the exchange-only results by Filippiet al. @32#
for these splittings are also not very impressive, they at le
give the right sign. The wrong sign remains if one uses eit
only bound orbitals or the single pole approximation. If o
uses only the exchange part of the ALDA kernel, the sing
triplet splitting for the 2s→3d transition remains negative
but the right sign is predicted if one totally neglects the
screening~only ‘‘Coulomb’’ screening!.
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TABLE IX. Beryllium triplet excitation energies~in hartrees!, uncertainties in the final digit in parenthe
ses.

Transition Expt.a KS eigenvaluesb ALDA,full c PTd LBe LDAf

2s→2p 0.100153 0.1327 0.08885 0.0629 0.07665~1! 0.08675
2s→3s 0.237304 0.2444 0.2382 0.2331 0.2265~1! 0.2021~4!

2s→3p 0.267877 0.2694 0.2647 0.2640 0.2527~2!

2s→3d 0.282744 0.2833 0.2802 0.2814 0.2694~2!

2s→4s 0.293921 0.2959 0.2941 0.2928
2s→4p 0.300487 0.3046 0.3030 0.3029
2s→4d 0.309577 0.3098 0.3085 0.3089
2s→5s 0.314429 0.3153 0.3145 0.3139

Av. abs. error~mhartrees!g 6.1 2.7 6.4

aThe experimental excitation energies@75#.
bZeroth-order approximation provided by differences in KS eigenvalues.
cThis work, ALDA results obtained by taking into account all bound and unbound KS orbitals.
dValues obtained by DFT perturbation theory@32#.
eVan Leeuwen–Baerends potential@35#. The higher excitation energies are not given as they vary too m
in different basis sets.
fThe VWN parametrization is used@38#. Only the results for the transitions to bound virtual KS orbitals
given.
gThe average absolute error with respect to the ‘‘exact’’ values is given in mhartrees.
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We obtained similar inversions of the singlet and trip
levels for the 2s→4 f transition in Be and thes→d and
s→ f transitions in helium. For these helium transitions, t
absolute value of the splitting~which should be in the micro
hartree regime! is clearly overestimated as well, both in th
SPA and in the full ALDA results. We do not presume th
this is a basis set artifact, because it was reproduced in
ferent basis sets of high quality. In the same basis sets
approximationf xc50 ~Coulomb screening only! does lead to
positive values for all splittings. As the Coulomb-type mat
elements obtained in this way determine the TDO

TABLE X. Beryllium singlet-triplet splittings~in millihartrees!,
uncertainties in the final digit in parentheses.

Transition Expt.a ALDA, full b PTc LBd LDAe

2s→2p 93.8 98.0 136 98.0~1! 90.4~1!

2s→3s 11.8 11.3 22.5 13.7~1! 2.3~1!

2s→3p 6.4 6.3 10.1 6.6~1!

2s→3d 10.8 22.4 3.8 22.5~1!

2s→4s 3.4 3.6 6.2
2s→4p 5.8 1.8 3.2
2s→4d 3.8 20.1 1.7
2s→5s 2.4 1.5 2.7

Av. err. ~mhartrees! 6.1 8.9

aThe experimental excitation energies@75#.
bThis work, ALDA results obtained by taking into account a
bound and unbound KS orbitals.
cValues obtained by DFT perturbation theory@32#.
dVan Leeuwen–Baerends potential@35#. The higher excitation en-
ergies are not given as they vary too much in different basis se
eThe VWN parametrization is used@38#. Only the results for the
transitions to bound virtual KS orbitals are given.
t

t
if-
he

exchange-only results for He, we can actually calculate
results that would be obtained by Filippiet al. for these tran-
sitions, or by Petersilkaet al. in their SPA-TDOEP results
In turns out that the TDOEP kernel correctly predicts po
tive singlet-triplet splittings for thes→d and s→ f transi-
tions in helium. Even higher quality calculations than t
present ones would be required to see whether these s
tings are also of the correct magnitude, although our res
indicate that they probably will be.

These SPA results can be understood from the SPA
pression for the singlet-triplet splitting in Eq.~18!. From that
expression, it is clear that approximations forf xc which are
diagonal in spin space~such as the TDOEP and exchang
only ALDA kernels! yield no contribution to the singlet
triplet splitting in the SPA. Only the Coulomb term in Eq
~18! remains in that case. For this reason, it should not
very surprising that the ALDA results for the splittings a
usually better than the TDOEP kernel results. This expr
sion also explains why only the ALDA xc kernel can giv
rise to negative SPA singlet-triplet splittings. Apparently, t
correlation part of the ALDA kernel, based on the homog
neous electron gas, is too crude to provide an accurate
rection for this very subtle and small effect for these tran
tions. In short, we can state that although the correlation
of the ALDA kernel in general yields improved results wi
respect to the exchange-only approximations, the nega
singlet-triplet splittings to which it gives rise show that it st
needs to be improved upon.

The LB results show that the singlet-triplet splittings a
more sensitive to the xc kernel than to details of the xc
tential, because they are very similar to the ALDA resu
with the accurate potential. The LDA results, on the oth
hand, show that the xc potential should at least possess
correct asymptotic behavior in order to obtain reliab
singlet-triplet splittings for the higher-lying excitations. On
the LDA result for the first splitting is qualitatively correct

.
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D. Molecular polarizability results

We have performed polarizability calculations using
potentials constructed from~MR!SDCI densities, as has bee
pointed out earlier. The results for the static average po
izabilities of some small molecules are given in Table X
We used the experimental equilibrium bond distances of
bohr for H2 ~0.7408 Å!, 0.917 Å for HF, 1.2746 Å for HCl,
1.12832 Å for CO, 1.09768 Å for N2, and 0.957 Å for the
HuO distance in H2O, with a HuOuH angle of 104.5°.

As usual, the LDA results are clearly and invariably t
high ~on average 8.8%!. The LB results are much bette
They do not show a systematic error~the average error is
only 0.6%!, and the average absolute error~3.6%! is consid-
erably lower than for the LDA results~8.8%!. The results
with the accurate potentials are much better still. The aver
absolute error reduces by almost a factor of 4 to 1.0% w
respect to the LB results. This is a strong indication t
improved models forvxc will considerably improve molecu
lar polarizability results. The results with the accurate pot
tial are invariably too low with respect to the experimental
vibrationless theoretical results. Several reasons can be g
for this. The most obvious one is that the CI results for
polarizabilities~which we obtained from finite field CI cal
culations, using the same type of CI that generated the d
sity from which the ‘‘accurate’’vxc was constructed! are also
invariably too low. In most cases the underestimation w
even more than the result with the accurate potential;
example, we obtained from the finite field CI calculations
polarizability of 5.185 for H2, 16.97 for HCl, and 9.20 for
H 2O ~where the accurate potential results were 5.16, 17
and 9.45, respectively!.

This implies that either the basis sets we used in the
calculations were not large enough or the level of CI~which
was SD! was insufficiently high. We expect both factors
contribute. As far as the level of correlation is concerned
is known from coupled-cluster response calculations t
CCSD~T! results are often clearly better than CCSD or CIS

TABLE XI. Molecular polarizabilities with LDA, LB, and semi-
accurate potential.

Molecule LDA LB Accuratevxc
a Acc.-Expt.b

H2 5.9 5.61 5.16 5.1816c

N2 12.27 11.46 11.68 11.74
HF 6.20 5.31 5.49 5.52d

HCl 18.63 17.86 17.25 17.39
H2O 10.53 9.20 9.45 9.64
CO 13.87 12.62 12.86 13.08

Av. err. 18.8% 20.6% 21.0%
Av. abs. err. 18.8% 3.6% 21.0%

aResults obtained with large GTO basis sets for the CI. The dif
ence in the polarizability by using another large augmented G
basis set is smaller than 1%, typically a few tenths of a percen
bBenchmark theoretical or experimental results.
cVibrationless theoretical value.
dVibrationless estimate.
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results. In the basis sets we used, one or more sets of
menting functions were added, and we obtained Hartr
Fock results for the polarizabilities which were close to t
basis-set limit values. This does not imply that these ba
sets were sufficiently large for the correlated calculatio
however.

One might furthermore suspect our construction sche
for the potential to influence the polarizability results arti
cially. This could lead to a small~possibly systematic! error
in either direction. A final suggestion that the remaining 1
error is due to the intrinsic errors of the xc kernelf xc cannot
be dismissed, although it is much too early on the basis
this evidence to jump to such a conclusion. Finally, a co
parison of our LDA values to the basis set free values
tained by Dickson and Becke@63# shows that our basis set
in the DFT calculation are sufficiently large.

It should be emphasized that we do not suggest
present approach as a practical method for calculating po
izabilities. We have merely tried to indicate that an accur
future model for the xc potential will yield considerable im
provements in molecular polarizabilities as well. Similar pr
liminary calculations on excitation energies and hyperpo
izability have not led to such a clear picture, however.
would be desirable to repeat a similar molecular study us
a higher level correlated method than the present one, p
erably in a fully numerical program, or in a large STO ba
set~although in the latter case one has to make sure that
density in the outer region decays correctly!. Such a study
would allow more definite statements to be made.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have performed accurate atomic calculations us
accurate xc potentials on excitation energies and polariza
ities of three small atoms: He, Be, and Ne. Our results sh
that important improvements with respect to calculations
ing the LDA potential or LB potential are obtained. The u
of an accurate xc potential removes the larger part of
discrepancy with respect to the experimental values. The
maining discrepancies are due to deficiencies in the AL
xc kernel. Our results show that the ALDA kernel is at lea
comparable in quality to the exchange-only TDOEP ker
and that taking into account ‘‘continuum contributions’’ ha
a positive effect on the calculated excitation energies.

We believe that the major deficiencies in the xc kern
are still in the spatial part, not in the frequency dependen
Major improvements may come from a TDOEP kern
which includes accurate correlation contributions. This c
relation contribution is clearly important in the results for t
singlet-triplet splittings. Further improvement should com
from improved modeling of the frequency dependence of
kernel.

The benefit of more refined approximations for the
kernel will be useful only in combination with improved x
potentials. At the very least, these potentials should be s
interaction free, or, in other words, possess the corr
asymptotic behavior. Such potentials can be constructed
either adding a~semiempirical! correction to a usual xc po
tential as in the LB potential@35#, or by using OEP potentials
in the Krieger-Li-Iafrate@64# ~KLI ! approximation@65–67#.
Such an xc potential has to yield accurate predictions for
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experimental ionization potential in order to improve up
existing approximate xc potentials.
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