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Response calculations in the framework of time-dependent density-functional tAi&iD¥T) have by now
been shown to surpass time-dependent Hartree-HdgkF) calculations in both accuracy and efficiency. This
makes TDDFT an important tool for the calculation of frequency-depentigpenpolarizabilities, excitation
energies, and related properties of medium-sized and large molecules. Two separate approximations are made
in the linear DFT response calculations. The first approximation concerns the exchange-cortettjmmn
tential, which determines the form of the Kohn-Sham orbitals and their one-electron energies, while the second
approximation involves the so-called xc kerrfgl, which determines the xc contribution to the frequency-
dependent screening. By performing calculations on small systems with accurate xc potentials, constructed
from ab initio densities, we can test the relative importance of the two approximations for different properties
and systems, thus showing what kind of improvement can be expected from future, more refined, approxima-
tions to these xc functionals. We find that in most, but not all, cases, improvemenjsseem more desirable
than improvements td,.. [S1050-294{©8)10004-3

PACS numbds): 31.15.Ew, 33.15.Kr

[. INTRODUCTION (moleculay response calculations using TDDFT. Calcula-
tions on frequency-dependent multipole polarizabilified—
Several reliable quantum-chemied initio methods have 15], excitation energies[16-19,13,20-2B frequency-
become available over recent years for the accurate deternfiependent hyperpolarizabilitie§24], Van der Waals

nation of such molecular properties as excitation energieﬂ'SperSiO” CO%ﬁiCie.Tt@S'l"':]’ anthagnan .scagterinbze] .
frequency-dependent  polarizabilities, and frequency- ave appeared until now. From the data in these papers It

R . > appears that the TDDFT results are usually superior to their
dependent hyperpolarizabilities. In particular, we mention -, - counterparts, and in many cases competitive with cor-

coupled-cluster response theofit,2], multiconfiguration  yo|atedab initio results at the TDMP2 level. At the same
time-dependent Hartree-FOCRMCTDHF) [3], and time-  time, implementations of the TDDFT linear response equa-
dependent MPP4-7], which have, among other things, been tions using auxiliary basis functiortt functions [25,20,22
used for the calculation of hyperpolarizabilities and excita-have been reported to scale 48 (N being the number of
tion energies. atoms in the calculationwhich is even more favorable than

However, because they are computationally intensivethe nominalN* scaling of TDHF. TDDFT thus surpasses
these methods are restricted to small or medium-sized syd-DHF both in the accuracy of the results and in the effi-
tems. For systems where the cost of the most reliable of thegdency of the calculations.

ab initio methods becomes prohibitive, a computationally Now that the usefulness of TDDFT in this regime has
more efficient method is required, which is accurate at thé)een firmly established and many different properties can be

same time. Density-functional theof@ET) provides such a routinely obtained, it is of importance to know which factors

L0 restrict the accuracy of the TDDFT calculations. If an even
method through its time-dependent extensi©@DDFT). higher quality in the results is required than is attainable with

Almost two decades ago, Zangwill and Sov} were  he approximations that are presently used in these calcula-
among the first to apply this theory in the linear responseions, it will be important to know which approximations
regime. They calculated photoabsorption cross sections afave the largest influence on the various properties that are
rare gases in the local density approximatiobA). Only a  accessible.
few years later did the rigorous justification of their approach Apart from practical limitations in accuracy due to the use
appear, with the work of Runge and Gr¢9% who proposed of finite basis sets, two approximations are made in the
a set of time-dependent Kohn-ShdiS) equations. For a TDDFT linear-response calculations: one for the usual xc
recent review of TDDFT and applications of it, the reader ispotentialv,. and one for the less common xc keriigl. Our
referred to Ref[10]. aim is to estimate the importance of the two approximations

The first response calculations on molecules in this frameby performing calculations using accurate xc potentials con-
work appeared only recentliafter an initial attempt by Le- structed from essentially exaab initio densities. If such a
vine and Soven,11] whose approach was based on a single-density is available, one can construct an xc potential which
center expansion which made it impractical for generalields this target density, by iteratively adapting the xc po-
molecule$. At the moment several groups have performedtential until the target density is finally obtained within sat-
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isfactory accuracy, in a KS calculation with this potential. In This is the question that will be addressed in the part of the
this manner, the approximation fog, is basically removed. paper dealing with the molecular case.
By increasing the technical accuracy of the calculations to In the following section, the most important equations for
the limit (we are referring to basis and fit set size, integrationthe DFT linear-response calculations will be repeated and the
accuracy, convergence criterion for the iterative solution of€levant terms and equations will be introduced. After that,
the KS equations, and so pnwe can be sure that the bulk of the technipal Qetails of the calc_:ulations will be given as well
the remaining deviations from the experimental values is du@S the indications that our basis sets are very accurate. After
to deficiencies in the second approximation: the approximathis, our results will be discussed. First, the atomic polariz-
tion to f .. ap|I|ty results are treated. Th(_an_the excitation energies are
Unfortunately, the reliable xc potentials which are needeod'scussed and compared to similar caIpuIa’uons which have
for these calculations are available for a few small systemi{.e.ry r_ecently been _performed by Petersiézal. [18] and by
only: the He, Be, and Ne atoms. The reason for this is tha llippi et al. [32]' Finally, we p_resent our molec_ular results
virtually all accurate densities are obtained frah initio ~ 2"d We end with some conclusions and suggestions for future
programs using Gaussian-type orbitdBTIOg. Constructing ork.
an xc potential belonging to such a density leads to certain
anomalies in the potential which are due to the specific prop- IIl. OUTLINE OF THE THEORY

erties of the GTOs. The anomalies include an incorrect pET is based on the papers by Hohenberg and K&8h
asymptotic behavior and spurious oscillations in the potential 4 by Kohn and Sharf34]. The main result is that the
[27]. The exact xc potential should asymptotically display agensity of a system is identical to the density of an associated
— 1/r behavior, but a Gaussian density results in a potentiahsninteracting particle system, defined by the Kohn-Sham

which diverges quadratically at infinity. Furthermore, the PO-equationgatomic units are used throughiut
tential exhibits oscillations which are also due to the use of

Gaussian basis functions. Although these oscillations should
disappear in the basis-set limit, they form a practical problem
even for very large GTO basis sets.

This problem can be circumvented by using accurate derHereuv [ p](r) is the so-called Kohn-Sham potential, consist-
sities based on Slater-type orbité®TO9 or densities which ing of the external potential ., (the Coulomb field of the
have not been expanded in a basis set at all. Such densitigficlej, the Hartree potentiab,, which is trivially calcu-
however, are rare. Accurate densities based on STOs are, igted from the density, and the xc poteniig}, which is the
the best of our knowledge, only available for Be and Ne.only unknown part:

These densities were obtained by Bunge and Esquivel from a

ClI calculation using large STO basis s¢28,29. For He V(1) =vex{r) toy(r)toy(r). 2
and Be, accurate xc potentials have been constructed by Um- ) L . o

rigar and Gonz¢30,31). They numerically generated essen- The xc potentlab?(c, WhICh.IS the functional derlvqtlve of
tially exact densities for these systems by integrating veryh€ XC energy functionat, with respect to the density, has
accurate wave functiorf80] (for He) or by employing vari- 0 be approxlmayed in practical calculations. The most com-
ous Monte Carlo techniqud81] (for Be). mon approximations are the LDA and GGAs, although for

For these atomic systems, we have calculated several réSponse calculations the use of asymptotically correct xc
sponse properties, such as static dipole and quadrupole pBotentials(such as the LB potenti§B5]) seems more appro-
larizabilities, the frequency dependence of the dipole polarPriate. The' Xc potential determnjes' the Kohn-Sham orbitals
izability, singlet and triplet excitation energies, and oscillator®i and their one-electron energiesin Eq. (1). It also de-
strengths, using approximations of varying quality for botht€rmines the density, which is obtained from the squares of
the xc potential and the xc kernel. This provides useful in-the occupied Kohn-Sham orbitals times their occupation
formation on the appropriateness of the respective approxumbersf;:
mations for these systems. Noce

In order to check whether or not the conclusions we draw ()= 2 £l i(r)|? 3)
from these atomic cases hold for molecules as well, we also P o '
consider some small molecules in the final part of the paper.

Here we have to cope with the problem indicated above, that The exact xc potential, which is unique, yields the exact
very accurate xc potentials do not exist for these systemslensity of the system. This fact can be exploited to find a
However, as will be explained later, we have constructed x¥ery accurate xc potential for systems for which a very ac-
potentials which can be expected to improve upon existingurate density is known. After having iteratively found the
approximate xc potentials for these systems, such as thee potential which generates the very accurate target density,
LDA, generalized gradient approximaté®GA) and van one immediately obtains Kohn-Sham orbitals and one-
Leeuwen—Baerend$5] (LB) potentials. electron energies to very good accuracy.

It can be expected that the improved potentials will yield In the time-dependent extension of the Kohn-Sham equa-
improved results. However, the results with the usual potentions, as proposed by Runge and Gri@s a time-dependent
tials (especially the LB potentialare already quite satisfac- Kohn-Sham potentiabg(r,t) appears:
tory. It is therefore an open question whether much further 72 5
improvement can be obtained by improving the xc potential, v _. 2
or that improvements to the xc kernel are more important. 2 Fodplrt)iro=i at $i(r0). @

2
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The unknown xc part of this time-dependent Kohn-Shamalone, but also on the potential which is induced by the den-
potential is called the time-dependent xc potentigdr,t).  sity change through screening effects. The density change
In linear-response calculations one needs the functional deéhus reacts to aneffective potential vt through the
rivative f,(r,r’,t,t') of this time-dependent xc potential independent-particle linear-response equation:
with respect to the time-dependent dengify,t):
Su,(r 1) 5p(r,w)=f dr’ x(r,r',w)oven(r’, ). (8)
foc(r,r’ tit')y=——, (5
op(r',t") Here, x; is the single-particle Kohn-Sham response function,
constructed from occupied and virtual Kohn-Sham orbitals
and one-electron energig42,25. This means that the exact
¢ potential will lead to the exaggs. The effective potential
onsists of the external potentiél .,; and two parts which
Qepend upon the induced densify(r,): the Coulomb or
Hartree term and the xc term:

which, as it depends oti—t’ only, can be Fourier trans-
formed to f,(r,r’',w). This functional derivativef,; is
called the xc kernel and constitutes the second xc function
for which approximations have to be made in DFT respons
calculations. In nonlinear-response calculations, higher fun
tional derivatives ofv,(r,t) are needed as wellL0,24,38,
but usually these do not affect the results very m&H. In Sp(r', o)
this paper, we restrict ourselves to the linear-response case. v .4(r,w) = 5Uext(raw)+f dr/ ————

As f,. is a function of two spatial variables and one fre- Ir—r’|
guency variable, it is rather complicated. However, the most €)
usual and simplest approximation to it, the adiabatic LDA
(ALDA), provides a very simple functional form for the xc
kernel, by taking the derivative of the time-independent LDA
expression fow,. with respect to the density:

+ U y(r,w).

This implies that, if an exact xc potential is available, the
only remaining unknown in Eq(9) is the xc part to the
screeningguv,.. This xc part is given in terms of the Fourier
transform of the xc kerndl,. of Eq. (5):

d2
fi‘éDA(r,r’,wF5(r—r’)d—pz[ps'x‘(?m(p)]lpzpw)y (6) 5vxc(r,w):fdr’fxc(r,r',w)ap(r',w). (10)

where £/°™ is the xc energy density of the homogeneousAn important advantage of the ALDA in practical applica-
electron gas in the Vosko-Wilk-NusaiVWN) approxima-  tions, is that the evaluation afv, in the integration points
tion [38]. Evidently, this is a rough approximation to the becomes a trivial multiplication of,. and ép, due to the
exactf,. as the frequency dependence is totally igndteé  delta function appearing in Ed6). For nonlocal kernels,
adiabatic approximation assumes systems which are slowfguch as the TDOEP kernel of E), the evaluation oBv,
varying in time, as is the spatial nonlocality of the kernel. in all integration points becomes an expensive computational
More refined approximations for the xc kernel are avail-task.

able. Petersilka and co-workers have introduced the time- Equations(8)—(10) are solved self-consistently in an it-
dependent optimized effective potenti@DOEP expression erative fashion, starting from the uncoupled approximation
for the exchange part of the xc kernfl6,17. In spin-  (Svef=Svey) in Eq. (9). The induced density immediately

unrestricted form, it is given b{16,1§ yields the frequency-dependent polarizability tenagi )
[42,43,29 for a density changép;(r,») due to an external
fIOOFF ) == 8(t—t') 8 pgr potential Sv g (r, ) =r;coS(t):
2
Zk fk(r¢k(r(r)¢:¢7(r’) aij(w):_zf drépi(r:w)rj- (11)
, —, ()
Ir=r"nos(r)ng,(r") wherei and j denote the Cartesian directionsy,z. We

. . , .. remark that in the actual implementation the polarizability is
wherefy, is the occupation number of the KS spin orbital ypaineq as the trace of a matrix product of the first-order
bx, and whereny, is the ground-state number density of the yengijty matrix and the dipole moment matrix, which is
spin o electrons. Although at present their expression Sti”equivalent to the integration in this equation.

ignores the frequency dependencefqf, which is hard to By considering different multipole external electric fields,
model, their result should be very close to the exacly myitipole polarizabilities can be obtained. The excitation
exchange-only expression for the xc kernel in the limit energies and oscillator strengths presented in this \i28k
—0. A frequency-dependent extension of the ALDA expres-yaye been obtained along the lines of REES,13, using the
sion has been provided by Gross and K¢B8-43. In this  same auxiliary basis functions techniques as in [Re5].

work, we will be using the ALDA expression fdt and its The singlet excitation energies and oscillator strengths ob-

exchange—only counterpart. ] tained in this manner are directly related to the frequency-
In a linear-response calculation, we want to find the dengependent polarizability(w) by the relation

sity changedp(r,»), which is induced by a frequency-

dependent external electric fieldv g r,w). In time- f
dependent density-functional linear-response theory, the aa\/(w)IZ > ' 5
density change does not depend on the external potential I wpTw

(12)
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where f; are the oscillator strengths ang the excitation We have tried to reach the basis-set limit by constructing
energies, and where the average polarizabilityis equal to  large even-tempered STO basis sets. The final results and
(axxt ayy+ a,)/3. The frequency dependence of this aver-error margins have been obtained by comparing results from
age polarizability is often expressed in terms of the Cauchyarious basis sets @¥ery) high quality. The basis sets con-
coefficientsS; : sist of several hundreds p, d, andf functions(higher an-
. gular momentum values are not available yet in ADF, but
_ 2(k-1) they are not needed in our present calculafiongh both
“av(“’)_gl S- 2k : 13 very diffuse and very contracted functions.
A typical basis set consists of functions, 20p func-
The Cauchy coefficients can be obtained from the excitatiofons, 21d functions, and 21f functions, giving a total of
energies and oscillator strengths by the relafib] 331 primitive basis functions. The most contracted functions
of each type are adlfunction with exponent 20, af2func-
o tion with exponent 20, a @ function with exponent 40, and
S_x=2 ) ;. (14 a 4f function with exponent 60. The most diffuse functions
' are 6s, 6p, 6d, and & functions with exponents of 0.17 for
one particular basis set. In other basis sets even more diffuse
functions have been used, without significant change in the
sults.
The fit sets withs, p, d, f, andg functions have also been
i constructed in an even-tempered fashion, the most diffuse fit
function being adapted to the most diffuse product of basis
unctions and the most contracted fit function adapted to the
%roduct of the most contracted basis functions. With these fit
only, s equivalent to the approximatidy;~O. The resuis R IS B8 £ Bt e o8 e e
arising from this approximation will be denoted by “Cou- squared difference between the exact and fitted converged

lomb” in the tables. The main part of the xc screening come - —7
from the exchange part as could be expected. This will b%CF de'nsme)sof only 10" * occurred. The most contrapted
it functions possessed the smallest possiblealue, while

shown by calculations in which we talig=0, effectively the most diffuse fit functions had anvalue of 10 for alll

ums;?igr?nvéﬁz f;%"g;ﬁétfgé’ g;’/ |ti1ccgsﬂ)lﬁl;of2,/’3i.nTtk;1|2 ?gg;:sx'_ values. The basis and fit sets are available for the interested
X ' reader[48].

The fully coupled results refer to the ALDA with the Vosko- For helium and beryllium the accuracy of our basis sets
Wilk-Nusair approximation t@, [38]. They will be denoted was confirmed by the fact that they reproduced the one-

by etther “ALDA™ or “Coulomb + 1. electron energies of Ref§l18] and[32,49 to all presented
digits. For neon we have adopted the same basis sets. The
1. COMPUTATIONAL DETAILS accuracy of the basis sets is further supported by the values

The Amsterdam density-functional progra@DF) [44—  for the Cauchy momers, of Eg. (13) which we obtained. In
46] has been used for all calculations. The distinctive fealn€ basis-set limit, the value & (which is equal to the sum

tures of this program include the use of Slater-type orbital® the oscillator strengthsshould equal the number of elec-
(STO9, a well-balanced numerical integration schefug],  rons. Typical deviations with our present basis sets are
a density fitting procedure for the Coulomb-type integralsMerely 10 to 1077, while for the largest basis sets in the
using auxiliary basis functiongit functions [44], and a ADF database, these errors are in the _order of O.l_to 1.
fully vectorized and parallelized code in combination with "€ accurate potentials were used in the following way.
the use of symmetry46]. The same features hold for the We used linear interpolation on the available accurate xc

extension of ADF by which the response properties havéotential data, as provided by Umrigar and Gof&@31], in
been calculate47]. order to find the values of these potentials in the integration

points generated by ADF. Afterwards, the Kohn-Sham equa-
tions were solved in these fixed xc potentials. As the number
of points in which the accurate xc potentials were generated
In the atomic calculations on He, Be, and Ne, our goal havy Umrigar and Gonze is very large, the linear interpolation
been to provide benchmark quality results with essentiallyscheme will not influence our results by a significant amount.
exact xc potentials. For this reason we have tried to perfornThis is clear from the fact that we retrieve the KS orbital
the calculations as accurately as possible. We included a#inergies obtained by Savet al. [49].
electrons in the solution of the Kohn-Sham and the response For the neon atom, there is ng. potential available of
equations. In other words, we did not use a frozen core apsomparable accuracy. We have generated one from the STO
proximation. The numerical integration accuracy was suctCl density of Bunge and EsquivE29]. This STO density is
that 12 significant digits were demanded for a representativaot sufficiently accurate in the outer region in order to allow
set of test integralgby default four significant digits are for a straightforward determination of the xc potential in the
demandefl The convergence criterion in the self-consistentwhole r range. In the iterative procedure to determine the
procedure for the solution of the Kohn-Sham equations wagotential(the accurate updating procedure of Schipgieal.
set to 10 *? (default value 10°). [27]), the potential was fixed in the outer region of the atom

In the basis-set limit, the Cauchy coefficie®f should be
equal to the number of electrons. The coeffici&t, is
equal to the average static polarizability, as can be seen br)?
substitutingw=0 in Eq. (13).

In this work, we will approximate the screening part o
Sve(r,w) in different ways. The approximationbv
= vy IS Called the uncoupled approximation, as screenin
is fully ignored. Taking into account Coulomb screening

A. Atomic calculations
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for this reason, in order to obtain the correct asymptoticsuch a fashion that the outer region of the potential was left
—1/r behavior. The potential was constructed in such a wayirtually unchanged53], so as to retain its asymptotically
that it reached the- 1/r behavior at a certain cutoff point, correct behavior. The updating scheme slowly converges to
beyond which the potential was taken identicaktd/r. The  the (undesirable exact xc potential. After a hundred cycles,
cutoff point was chosen in such a way that the orbital energyhe integrated absolute density error with respect to the CI
of the highest occupied KS orbital was very close to thedensity, as defined in Ref27], has typically dropped to a
experimental ionization enerd®.792 hartrep The resulting ~ satisfactory 102 or 10~ 3. Further convergence hardly im-
cutoff point was 6.72 a.u. Consequently, the accurate xc pagsroves this difference, but it does introduce the spurious os-
tential for Ne may be somewhat less accurate than the xcillations mentioned before. For this reason we used, as rec-

potentials for He and Be. ommended[27], the potentials which appeared after a
hundred cycles. The parameteof the starting{a potential
B. Molecular calculations was chosen such that the eigenvalue of the highest occupied

Kohn-Sham orbitakH°M®, belonging to the final potential,

We have constructed molecular xc potentials which pos—equals minus the ionization potential, as it should.

sess some important features which are typical of the exact The potentials, which have all been constructed in this

>écr:err>]ct>:t:T:)?}lf?r:ﬁavzg:ff;nt[(;?g\cfﬁ&&uéé?;g:;rgﬁustz'arn mUIrt]'ref'manner, can certainly not be called exact, and our method of
g Y €ason- - construction severely restricts the freedom of the potential.

able accuracy. By construction, the potentials generated 'Bor example, the distance at which the potential gets close to
our procedure will be smooth, possess the correct asymptotl[ e —1ir behavior is predominantly determined by the

f_ :{L bﬁih?]wotr, yleldi tgeKezpesrlrznentalb!?nlmatlgn potent!al tart-up potential. However, our results did not change very
tg re::aovgr fr? Oh(;I(I:?ljgle d o_tn-t am or Iabl’ and are reqlfll:ff‘ uch if another start-up potential with correct asymptotic
c ensity to reasonable accuracy. 'Nigqpavior was used. On the other hand, if thparameter in

final requirement ensures that the mte_rshell peaks, exhibite e start-up potential was not adapted in order to obtain the
by the exact xc potential, are present in our constructed po-

: experimental ionization potential, relatively poor results
tential as well. X
The Hartree-Fock and subsequent dirguotiltireference were obtained.
. . q N enc Although the potentials will not be the exact ones, which
ClI calculations, at the single-double excitation level, werey

performed with theaTmoL [50] package. The correlation en- long to the exactnot the GTO-C) correlated densities,
ergy which was recovered was 98% for,H00% for HF, there are good reasons to assume that the constructed poten-

: tials improve upon the xc potentials which were used in pre-
82% for Np, and typically around 75_2.30 %. for the othe_r vious DFT response calculations, such as the usual potentials
moIecuIes,_ when compayed to the semiempirical correlatlorE)elonging to the LDA or GGAs or the asymptotically correct
en((a:rgy els?mates O.f tsa\fteé‘_”ll_lb[sbl]'. s of at least val Van Leeuwen—Baerends potent[&5] (LB). These poten-
triol orreta |on-?on5|s en d t asrl]s ie sto "’:Cd?f?s V? €NCfals all exhibit one or several distinct weaknesses, such as
riple zeta quality were used, to which sets of diffuse fUnC-y,o ¢aqter than Coulombic decay of the potential in the outer
tions were added. The basis set sizes were different depen sgion (LDA and GGAS, inferior values for the highest oc-
Ing on the mo_lecule. Ogr am was to t_ake a re“‘fiblecupied Kohn-Sham orbital which should equal minus the ex-
correlation-consistent basis set including diffuse funCt'onSperimental ionization energyLDA and GGAS, poor de-
Typically, we took Woon and Dunningt52] doubly or in scription or absence of the intershell pea(k.ﬁ)’A, GGAs,

most cases triply augmented correlation-consisteot va- LB e ) .
lence triple zet¢VTZ) basis sets denoted by d-aug-cc-pVTZ :'?odms i)n’ t?]r;dmpoc;(e)gucliée_sg)rlptlon of the inner region of the

or t-aug-cc-pVTZ. We have also performed calculations with

correlation-consistent quadruple zeta basis sets to which we

added some diffuse functions ourselves. The total number of IV. RESULTS AND DISCUSSION
GTOs was typically between 100 and 150.

We have further used the straightforward scheme of Ref. ] o
[35] for updating the xc potential until the density resulting !N Table I, the dipole and quadrupole polarizabilities are
from the KS calculation with that xc potential was suffi- presented for the three atoms which are studied here. The
ciently close to the target CI density. We used an asymptotiteSults for He and Ne with the LDA and LB potentials are

cally correct initial guess for the xc potential of the form ~ SOmewhat more accurate than our previous re§@%s12
due to the removal of the frozen core approximation for Ne

Vi) =0xa( 1)+ 28N (1) + 26 2°99r), (15  and the improvements in the basis sets. As expected, this has
led to slightly higher values for the polarizabilities. The LDA
consisting of theXa potential, the Vosko-Wilk-Nusair pa- dipole polarizabilities of He and Ne are now in perfect agree-
rametrization of the LDA correlation energy density, and thement with the numerical results reported in Table 4.4 of Ref.
Becke energy functional for the correction to ther ex-  [43], showing that our results are very close to the basis set

A. Atomic results, polarizabilities

change. This last term ensures the correct asymptofifr limit. The quadrupole polarizability results are not identical
behavior. This initial guess has been successfully employetb those obtained by Mahd®4], because the Gunnarsson-
several times beforgb3]. Lundqvist parametrizatio55] for v,. was used in that

Because of the known problerfia7] which arise, in case work.
of a Gaussian CI density, if the potential is converged com- It has been emphasized several tini&6,12 that the
pletely (such as spurious oscillations and incorrectusual xc potentials, such as the LDA potential, overestimate
asymptotic behavigr the updating scheme was changed inthe polarizabilities due to their incorrect asymptotic behav-
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TABLE I. Dipole and quadrupole polarizabilities of helium, beryllium, and neon with various xc poten-
tials using the ALDA forf,..

Polarizability Atom LDA? LBP Accuratev © Literature

Dipole He 1.6576 1.3896 1.3824 1.3832
Be 43.79:0.02 42.87¢0.01 39.570.01 37.7%0.05
Ne 3.049-0.003 2.590 (2.657 2.670

Quadrupole He 3.576 2.561 2.538 2.4951
Be 369.9-0.5 342.4-0.5 300.4:0.5 298.8; _298.8t_ 2.6
Ne 9.66+0.02 7.26:0.03 (7.52+0.02 7.52; (7.33)

&The VWN [38] parametrization is used.

®The Van Leeuwen—Baerends model poterfta].

“Accurate xc potential due to Umrigar and Gorj3€]; for Ne, the potential constructed from the Bunge-
Esquivel STO CI density was uséskee text

dBenchmarkab initio calculation using explicitly correlated wave functiof].

®Recent basis-set limit result obtained with the explicitly correlated coupled-cluster ni&slod

fValue obtained by comparison of many experimental {58

9Coupled-cluster double-excitation value with fourth-order contribution from singlet and triplet excitations
[69].

PEourth-order Mdler-Plesset perturbation theory val[i#0].

iCoupled-cluster singles-doubles value, with an approximate triples contrif@®8D(T)] [71].
ISecond-order many-body perturbation theory v4lt@.

ior. This is obvious in Table I. The LDA dipole polarizabil- potential to the LB potential. The average absolute error with
ities are too high by 19.8%, 16.1%, and 14.2% respectivelythe accurate xc potential is again a factor of 4 smaller than
while the LDA quadrupole polarizabilities are too high by the average absolute LB error, and a factor of 15 smaller than
46.3%, 23.8%, and 28.3%. The asymptotically correct LBthe LDA error. For these atomic polarizabilities it is conse-
potential already improves considerably upon this. The erguently clear that improvements to the xc potential will yield
rors for this potential are-0.46%, +13.6%, and—3.0% for  the bulk of the improvement which can be obtained. The
the dipole polarizabilities. For the quadrupole polarizabil-remaining errors have to be due to deficiencies in the xc
ities, the numbers are-4.7%, +14.6%, and—3.2%. The kernel f,.. As we are considering static polarizabilities,
accurate xc potential improves upon the LDA and LB resultshese deficiencies relate to the spatial variables, not to the
in all six cases. For the dipole polarizabilities, the errors ardrequency dependence.

—0.06%, +4.9%, and—0.5%, while the quadrupole polar- In four cases out of six, the accurate xc potential results
izability errors are+3.80%, +0.54%, and 0.0%, respec- for the polarizabilities of these atoms can be called excellent.
tively. The errors for the quadrupole polarizability of He3.8%)

In order to investigate how sensitive these properties arand the dipole polarizability of Be-4.9%9 are, however,
with respect to small changes in the xc potential, we havsstill substantial. Upon closer analysis, the dipole polarizabil-
repeated the Be calculations not with the Umrigar-Gonze poity of Be appears to depend strongly on the description of the
tential, but with another accurate xc potential, constructe@®s— 2p transition(the reason for the different dipole polar-
from the Esquivel-Bunge Cl STO densitg28], in the same izability obtained with the Esquivel-Bunge density is also
way as we construct our Ne potential from an STO CI den-+that this transition is differently describedror this analysis,
sity by Bunge and Esquivé¢R9]. it is useful to look at Eq(12), which expresses the polariz-

The xc potential for Be by Umrigar and Gon80]  ability in terms of the oscillator strengtHs and the excita-
should be considered more reliable than the present one, btibn energiesw; . Using this equation for the present static
these test calculations give an indication of how much oukase (=0), we find that about 95% of the polarizability of
neon results may still differ from results with the truly exact Be is due to thesingled 2s— 2p transition. For this transi-
xc potential. We find a dipole polarizability of 40.6D.01  tion, we obtained an oscillator strength of 1.339 éhaving
(instead of 39.57 with the Umrigar-Gonze potentiahd a  taken the degeneracy of theorbitals into accountand an
quadrupole polarizability of 309:20.2 (instead of 300.4 excitation energy of 0.1868 hartree, as will be shown in one
with the xc potential constructed from the Esquivel-Bungeof the following tables. The experimental value for the exci-
density for Be. The differences with respect to the resultgation energy is 0.1939 hartree. Our excitation energy with
with the accurate potential by Umrigar and Gonze are conthe accurate xc potential is consequently too low by 3.7%.
siderable. For this reason we have given the Ne results ifthis should lead to an overestimation in the contribution of
parentheses in Table I, although we expect the results witthe 2s—2p transition to the polarizability of no less than
the Bunge-Esquivel density for the rare gas Ne to be mor@.7%. Apparently, the oscillator strength for this transition is
reliable than those for Be. underestimated, leading to a fortuitous cancellation of errors.

The average absolute error for all six numbers in Table IIn short, the error in the predicted dipole polarizability of
is reduced by roughly a factor of 4 by going from the LDA beryllium, obtained with the accurate xc potential, can be



2562 S. J. A. van GISBERGEIt al. 57

TABLE II. Dipole and quadrupole polarizabilities of helium, beryllium, and neon with various xc kernels
using the accurate xc potential.

Polarizability Atom  Uncoupled Coulomb  Coulomf,  Coulombt+f,. Literature

Dipole He 1.5158 1.2231 1.3665 1.3824 1.3832]
Be 73.98 29.36 37.99 39.57 37%8.05[68]
Ne 3.063 2.417 2.632 2.657 2.638]

Quadrupole He 2.452 2.385 2.518 2.538 2.4051]
Be 283.7 251.8 291.5 300.4 298:2.6[70]
Ne 7.39 6.98 7.45 7.52 7.921]

fully explained from the inability of the ALDA xc kernel to lent result for the static dipole polarizability of helium does
describe the 8- 2p transition with sufficient accuracy. In not hold for the individual oscillator strengths. The contribu-
passing, we note that thes2>2p transition in Be is the only tion of the 1s—2p transition to the dipole polarizability,
atomic transition we consider, which is close in energy tousing our ALDA values for the oscillator strength and the
excitation energies normally encountered in molecules. excitation energy in Eq(12), is 0.471 a.u. The literature
In Table Il, the importance of the various contributions tovalues for the excitation energy and the oscillator strength
the screening is tabulated. As explained in the introductoryield a contribution of only 0.454 a.u. This is counterbal-
section, the “uncoupled” results refer to a total neglect ofanced by the other oscillator strengths, which are a bit too
screening, which is equivalent to the approximatiém.;  low. We note, however, that only the exact frequency depen-
= vy iN EQ. (9). The uncoupled results for the dipole po- dent xc kernel can be expected to give the individual oscil-
larizability are far too large in all three casghis is also the lator strengths and excitation energies correctly.
usual case in molecular dipole polarizability calculatipns Because the static dipole polarizability of He comes out
while the uncoupled quadrupole polarizabilities are muchso nicely with the accurate xc potential, it is interesting to
closer to the experimental values. Interestingly, the unsee if this remains so in the frequency dependent case. In the
coupled quadrupole polarizabilities are too low for Be andstatic polarizability calculations, the spatial part of the xc
Ne and slightly too high for He. kernel is tested. In a frequency-dependent run, one also tests
In agreement with Ref.13], we find that the inclusion of the frequency-dependence of this kernel. In other words, one
the Coulomb screening in the second coluftinis is the tests how well the adiabatic approximation holds when the
approximation f,.=0) substantially reduces all the un- frequency of the external field approaches the first excitation
coupled polarizabilities and leads to too low values with re-energy with nonvanishing oscillator strength.
spect to experiment in all six cases. In the column denoted Our results for the frequency dependence of the dipole
by “Coulomb + f,,” the exchange part of the screening is polarizability of He are gathered in Table IV, as well as in
included, using the Vosko-Wilk-NusaifVWN) exchange Fig. 1. The LDA results are far too large and increase too
functional (which is equivalent to theXa parametrization sharply with increasing frequency. This is of course related
with = 2/3). It is clear from the table that the exchange partto the position of the first pole, which appears much too early
constitutes the major part of the xc screening, as could beith the LDA potential. The LB results are already much
expected. better, but the results with the accurate xc potential are clos-
Finally, in the last two columns we have copied the fully est to the benchmark resultaken from highly accuratab
coupled(both exchange and correlation screening includednitio calculations with explicitly correlated wave functions
in the xc kernel and experimental oab initio values from  [57]). This holds both for the results with the full ALDA and
Table |, for ease of comparison. The inclusion of the correwith the exchange-onlyX{«) approximation forf,.. How-
lation part of the screening substantially reduces the errors iaver, the figure shows that it is not possible to ignore the xc
four cases out of six. In the other two cag#sse with the screening altogether, as the accurajg-Coulomb curve is
largest deviations with respect to the benchmark valtless  quite poor. This was to be expected in view of the poor
results get somewhat worse. corresponding static result in Table II. So it appears that both
In the rest of this work, it will be shown that the fully an accurate,. and a reasonable approximation figg, are
coupled calculations for the excitation energies of helium
hardly differ from the uncoupled valudthe differences be-
tween occupied and virtual KS orbital energieshich are

TABLE lll. Helium oscillator strengths.

already excellent. In view of this fact, it may be somewhat  "ansition Exact ALDA”

surprising that the fully coupledboth Coulomb and xc 1s—2p 0.27616 0.283+2.5%
screening taken into accounmesult for the static dipole po- 1s—3p 0.07343 0.0698 £ 4.9%
larizability of helium is considerably better than the un- 1s—4p 0.02986 0.0282 £ 5.5%
coupled value. This must of course be due to the improveds 5, 0.01504 0.0142 4 5.5%
results for the oscillator strengths which appear in @9). 15 ,gp 0.00863 0.0082 { 5.0%

In Table lll, these fully coupled oscillator strengths for
He, calculated with the accurate xc potential, are comparethAccurate nonrelativistic theoretical calculatiors,74.
to the literature values. Here, it becomes clear that the excePResults with accurate xc potential and ALDA féy, .
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TABLE IV. Frequency dependence of the dipole polarizability of helium with various xc potentials.

Frequency(hartreg Exact  Acc.-ALDA®  Acc.—x-only*  Acc.-Couloml§  LDA®  LBf

0 1.383 1.382 1.366 1.223 1.658 1.390
0.1 1.399 1.398 1.382 1.236 1.682 1.406
0.2 1.448 1.448 1431 1.276 1.763 1.456
0.3 1.541 1.542 1.522 1.350 1.921 1.551
0.4 1.698 1.701 1.677 1.475 2.219 1.713
0.5 1.970 1.979 1.946 1.686 2.883 1.996
0.6 2.508 2.537 2.480 2.090 pble 2.571

0.7 4.116 4.286 4.114 3.192 pole 4.490

8enchmarkab initio calculation using explicitly correlated wave functioi].

PResults with accurate xc potential due to Umrigar and GdB&with ALDA approximation forf,..
‘Results with accurate xc potential due to Umrigar and G¢B@gwith exchange-only Xa) approximation
for f,..

YResults with accurate xc potential due to Umrigar and G¢B8&¢with approximationf,.=0.

€The VWN parametrization is usd@8.

fvan Leeuwen—Baerends potentjab].

9For LDA, the first pole appears before 0.6 hartree.

needed for reliable results here. position of this pole, which determines the polarizability in

For the accurate,.-ALDA results, the deviation in the the frequency region near that pole, is only given correctly
frequency range of 0 to 0.3 hartree is less than 0.1% from thby the exact frequency-dependent xc kernel. The exact static
literature values. For higher frequencies, the deviations argc kernel will give a different position of the first pole, with
not negligible anymore. At 0.7 hartree, in the neighborhoodarge effects for the frequency-dependent polarizability near
of the pole, the accuratg,-ALDA result overshoots by 4%. the pole, as is clear from Eq12). However, this question
Interestingly, in this region the accuratg.—exchange-only cannot be answered unless one would know the polarizabil-
fxc are the best, in contrast to the situation at zero frequencyyy result with the (unknown exact staticf,.. This result

One might be tempted to blame this solely on the adiaghqyiq be equal to the experimental numbesat0, but will
batic approximatiorithe neglect of frequency dependence in yiter from the ALDA result at finite frequencies, in case this
the_ xc kerne), wh|ch IS supposed_to break down in the Vi- gia4ic resylt is obtained from different values for the oscilla-
cinity of a pole. This breakdown is due to the fact that thetor strengths and excitation energiésspecially those be-
longing to the first pole If one recalculates the polarizability
_— with the experimental values for the excitation energy and
Frequency dependent i oscillator strength of thes— 2p transition, the result is even
polarizability of Helium i somewhat below the exact literature valuawat 0.7 hartree
409 (4.07 a.u.. The overestimated value for the oscillator
strength and the underestimated value for the first excitation
energy are responsible for the overestimated polarizability at
larger frequencies in roughly equal amounts.

We have checked whether the curve with the accurate xc
potential improves if one employs Gross and Kohn's
frequency-dependent xc kerngB9-42, instead of the
ALDA f,.. This is not the case. The Gross-Kot®K) ker-
nel indeed lowers the frequency dependence, but the correc-
tion is far too large, resulting in a curve which is too low in
the whole frequency rangé.49 a.u. at 0.3 hartree and 2.31
a.u. at 0.6 hartrge Furthermore, an unphysical anomalous
frequency dispersion appears in the very low frequency re-
- gion. This behavior can be understood from the frequency

,,,,,,,,,,, dependence of the real part of the GK kernel. If the fre-
""" |Accurate v,-exchange on|y| guency becomes larger than zero, the absolute value of the

real part of the GK kernel decreases. The xc screening is
Accurate v, -Coulomb reduced in this way. The magnifying effect of this screening
| T | I I . | (see the results of Table)lbn the polarizability also reduces,
0.40 0.45 fﬁéfaouencf-(ff(han?é%g 0.65 0.70 leading to a polarizability Whidde_creaseswith increasing
frequency(for very small frequencigs

FIG. 1. The dynamic polarizability of He calculated with differ- ~ For the Cauchy coefficiers_,, which describes the fre-

ent xc potentials and xc kernels. guency dependence of the dipole polarizability in the low

4.5

|Accurate Vio© ALDA|/”::"I
H

H)

3.5 | Benchmark results|/7'.’r
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polarizability (a.u.)
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frequency region, we obtain 1.554.001 with the accurate
xc potential. A fit to the literature daf&7] yields a value of ~ @sing= (€a=&i) +2 ReJ d3fJ d3r’ ¢ (r) 3 (r)
1.54+0.01. Apparently the fit to the experimental dg58],
resulting in a value of 1.60, in Ref59] overestimates the
frequency dependence of the dipole polarizability in the low %
frequency region somewhat.

The LDA and LB results for this coefficient are 2.432
+0.001 and 1.5730.001, respectively. For the coefficient
S_ we obtain LDA and LB results of 4.4620.002 and Wyip=(8a— &) +2 Rej dng d*r’ ¢ (1) @3 (r)
2.127+0.002, respectively. The accurate potential yields
2.086 forS_g. For the higher Cauchy coefficients, the im-
portance of the first transition with nonvanishing oscillator
strength increases, as can be seen from(E4). In view of
the overestimated oscillator strength and underestimated ex-
citation energy for this transition with the accurate xc potenwheree; ande, are KS orbital energies and Whefrg"' is a
tial, the S_, and S_¢ can be expected to be somewhat t00gpqrthand notation fof 2% (r,r',w,), which is the Fourier

large. N _ transform of the functional derivative
For the Cauchy coefficients of Be, we find 1:350°

1.36x 10°, and 1.10% 10° for S_, using the LDA, LB, and

1
+ U A 14

¢i(r")da(r’),

[r=r’|

X

%[fli—fié—fiﬁfié])¢i<r'>¢a(r'>, (16)

accurate xc potentials, respectively. The numbers foBthe Su(r.t)
coefficient are 4.28 10¢, 4.43< 10%, and 3.15% 10*. These fo0 ()= —— (17
results, even those from the accurate potential, are too large op” (r',t")

because of the inaccurate description of tlse=2p transi-

tion. A correction on these values, based upon the couplegombining these expressions yields the SPA expression for
cluster value of the static polarizability of 37.73, and thethe singlet-triplet splitting

experimental excitation energy, would yiglsemiempirical

estimates of (1.80.1)x10° and (2.6:0.2)x10* for S_,

andS_g, respectively. @eing— w[rip:ReJ d3rj 43’ @ (1) 2 (1)

B. Atomic results, excitation energies of helium
g x( + 1 wo) + L (r,r, )

. : . - [r—r'
In this section we discuss our results for the excitation
energies. Recently, Savin, Umrigar, and Gonze have shown X di(r')da(r'), (18
[49] that the exact Kohn-Sham one-electron energy differ-
ences between the highest occupied Kohn-Sham orbital and
virtual orbitals provide quite satisfactory approximations towheref! is equal tof ;| for closed-shell systems, as dig
excitation energies for helium and beryllium. The orbital en-andf}(é .
ergy differences lie between the experimental singlet and Their approach should yield the same results as ours, pro-
triplet excitation energies, almost without exception. vided that our basis set is sufficiently large. We have
Going beyond this, Filippi, Umrigar, and GonlZg2] cal-  checked that the orbital energy differences are identical to
culated excitation energies using two perturbative schemehose obtained by Petersille al. [18] for He, and those by
One of these first-order perturbative schemes, based updsavin et al. [49] for He and Be. We have furthermore
Gorling and Levy's adiabatic connection approd@®,61],  checked that we could reproduce the ALDA-SPA results by
improves upon the orbital energy difference approximationPetersilkaet al, by calculating the required matrix elements.
to the excitation energies. We have included these results iihe SPA results were identical, except for a single deviation
the tables. The other results obtained by Filigpial. are  of only 0.1 mhartree. We have also confirmed that the imple-
based on ordinary perturbation theory and provide no immentations off,. and G, are identica[62].
provement over the Kohn-Sham orbital energy differences. However, it appeared that our fully coupled ALDA results
These results will not be discussed here. were not identical to those obtained by Petersi#tal. by
Petersilka, Gossmann, and Grd4$§] have recently cal- diagonalizing a large matrix. The reason for this, as sug-
culated excitation energies for helium with Umrigar andgested by Petersilki@?2], is that in their numerical program,
Gonze's accurate xc potentigB0], using the TDDFT ap- continuum contributions cannot be taken into account, while
proach. They present numerical results using the ALDA andur basis set program providegdiscrete description of the
TDOEP xc kernels, both in their single-pole approximationcontinuum through the virtual orbitals with positive one-
(SPA) and by diagonalizing a matrix containing contribu- electron energies. This was verified by only taking into ac-
tions from as many bound Kohn-Sham orbitals as wereount virtuals with negative one-electron energies in our cal-
needed for converged results. For ease of reference we repeaatiations. In this way we recovered the results obtained by
their equation$18] for the SPA excitation energies here, for Petersilkaet al. It will be shown below that this continuum
an excitation from occupied orbita}; to virtual orbital ¢, : contribution considerably improves some of the results.
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TABLE V. Helium singlet excitation energig@ hartrees

Transition Exac KS eigenvaluds ALDA,bound® TDOEP-SPA or P$ ALDA, full ©
1s—2s 0.7578 0.7460 0.7678 0.7687 0.7608
1s—3s 0.8425 0.8392 0.8461 0.8448 0.8435
1s—4s 0.8701 0.8688 0.8719 0.8710 0.8706
1s—5s 0.8825 0.8819 0.8835 0.8830 0.8828
1s—6s 0.8892 0.8888 0.8898 0.8894 0.8893
1s—2p 0.7799 0.7772 0.7764 0.7850 0.7751
1s—3p 0.8486 0.8476 0.8483 0.8500 0.8479
1s—4p 0.8727 0.8722 0.8726 0.8732 0.8724
1s—5p 0.8838 0.8836 0.8838 0.8841 0.8837
1s—6p 0.8899 0.8898 0.8899 0.8901 0.8898
Av. abs. errorimhartree¥ 2.2 2.1 2.2 1.0

@Accurate nonrelativistic calculations by DraKes3].

bZeroth-order approximation provided by differences in KS eigenvalues.

CALDA results obtained by taking into account all bound KS orbifdlg].

dvalues obtained with TDOEP kernel in the SP¥8] or by DFT perturbation theo§82]. The results for the
higher transitions are given in RgfL8] only.

€This work, ALDA results obtained by taking into account all bound and unbound KS orbitals.

"The average absolute error with respect to the “exact” values is given in mhartrees.

In Table V, several results for the singlet excitation enerdarge amounts. For the— p transitions, the ALDA correc-
gies of helium have been gathered. It is clear that the orbitaions to the orbital energy differences are again in the right
energy differences in the third column already provide goodiirection, but for these transitions the correction is not large
approximations to the experimental excitation energies. Th@nough. The notable exception is the—22p transition.
average absolute deviation is only 2.2 mhartree from the ex-ere, the ALDA correction actually makes the result worse.

perimental values. Petersilka’s fully coupled ALDA results The first-order exchange-only results of Filippt al. are
with bound orbitals yield a similar deviation of 2.1 mhartree.orse than the ALDA results for the singlet—s and

The best results by Filippet al. [32] have been given in s—p transitions.
the fourth column. These results are in fact identical to the In Table VI, the triplet excitation energies corresponding

SPA results obtained by Petersilieal. with the TDOEP to the singlet excitation energies of Table V are presented.

approximation forf,c. This can be understood from the fact Here, all results clearly improve upon the orbital energy dif-

that, for two-electron systems, both approaches reduce to tr}grences Contrary to what was seen in the previous table, the
calculation of the same Coulomb-type matrix eleneaim- ' Y P '

pare the appendix of R€f32] and Eq.(7)]. Both approaches two sets O.f ALD.A results do r_10t differ m.uch.in accuracy
give a first-order exchange-only correction to the orbital en€"€- The inclusion of the continuum contribution plays less
ergy differences. The results obtained by Filigpial. give ~ ©f & role than in the singlet case and also Filigpial's
no improvement over the ALDA results obtained by Peter-8xchange-only results are hardly worse than the fully
silka et al. coupled ALDA results. The exchange-only results again
Our fu”y Coup|ed ALDA resu'ts] which have Converged overcorrect the orbital energy differences, as in the Singlet
with respect to basis set size, are given in the last columrtase, for thes—s transitions. The ALDA results give too
The deviation with respect to the experimental values dropsmall corrections for these transitions. All coupled results for
by a factor of 2 in comparison to the results obtained bythe s—p transitions are quite satisfactory.
Petersilkaet al. and those obtained by Filipgt al. The av- Now we turn to the singlet-triplet splittings for these tran-
erage absolute deviation is 1.0 mhartree for our results. Weitions in Table VII. Here, the ALDA results are clearly bet-
emphasize that the only difference between our results in thter than the exchange-only results. The exchange-only results
final column and those obtained by Petersitiaal. is the  give too high splittings, as already observed by Petersilka
inclusion of virtual orbitals with positive one-electron ener- et al. [17,18. This is due to the fact that the corrections to
gies in our calculatiof62]. It is the contribution of the con- the orbital energy differences are too large in the exchange-
tinuum that ensures the improvement in the results. One caonly case, for both the singlet and the triplet energies.
speculate that a similar improvement could be obtained for In the ALDA results a cancellation of errors occurs, as the
the TDOEP kernel, if a fully coupled calculation would be singlet and triplet excitation energies are both too high for
performed. It is too early to conclude that the ALDA per- the s—s transitions. For this reason, the ALDA singlet-
forms better than the TDOEP for these transitions. triplet splittings come out more accurately than the excitation
It is interesting to note that the last three columns of Tableenergies themselves. From this table, it is obvious that the
V all correct thes—s orbital energy differences in the right continuum contribution is of importance and helps to further
direction with respect to the experimental values, but by todmprove upon Petersilka’s ALDA results. The final average
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TABLE VI. Helium triplet excitation energiegin hartreeg

Transition Exact KS eigenvalués ALDA,bound® TDOEP-SPA or PT ALDAfull ©
1s—2s 0.7285 0.7460 0.7351 0.7232 0.7334
1s—3s 0.8350 0.8392 0.8368 0.8337 0.8362
1s—4s 0.8672 0.8688 0.8679 0.8667 0.8677
1s—5s 0.8811 0.8819 0.8815 0.8808 0.8813
1s—6s 0.8883 0.8888 0.8885 0.8882 0.8885
1s—2p 0.7706 0.7772 0.7698 0.7693 0.7689
1s—3p 0.8456 0.8476 0.8457 0.8453 0.8454
1s—4p 0.8714 0.8722 0.8715 0.8712 0.8713
1s—5p 0.8832 0.8836 0.8832 0.8831 0.8831
1s—6p 0.8895 0.8898 0.8895 0.8895 0.8895
Av. abs. errorimhartree¥ 35 1.1 0.9 0.9

@Accurate nonrelativistic calculations by DraKes3].

bZeroth-order approximation provided by differences in KS eigenvalues.

CALDA results obtained by taking into account all bound KS orbifdlg].

dvalues obtained with TDOEP kernel in the SP¥8] or by DFT perturbation theo§82]. The results for the
higher transitions are given in RgfL8] only.

€This work, ALDA results obtained by taking into account all bound and unbound KS orbitals.

"The average absolute error with respect to the “exact” values is given in mhartrees.

absolute error for the fully coupled ALDA results in the last have been given. Those are the only transitions to virtuals
column is a very satisfactory 0.6 mhartree, which clearlywhich are bound in the LDA potential. Not surprisingly, no
improves upon both the ALDA results with bound KS orbit- reliable values for higher excitation energies could be ob-
als only and the exchange-only values based on DFT pertutained. The ordering of the excitations even differs from the
bation theory(PT). experimental ordering. We can conclude that the LDA po-
tential does not give a qualitatively correct description of all
but the lowest excitations in Be.

For the LB potential, results for the lowest four excitation

Now we turn to the excitation energies of beryllium. The energies are given. For higher excitations, relatively large
singlet excitation energies are given in Table VIII. For thedifferences between results in different basis sets occurred.
LDA potential, only the first couple of excitation energies This is due to the long range of the LB potential, which leads

C. Atomic results, excitation energies of beryllium

TABLE VII. Helium singlet-triplet splittings(in millihartrees.

Transition Exac ALDA,bound® TDOEP-SPA or PT ALDA full ¢
1s—2s 29.3 32.7 455 27.4
1s—3s 7.4 9.4 11.1 7.3
1s—4s 2.9 4.0 4.3 2.9
1s—5s 1.4 2.1 2.2 1.4
1s—6s 0.8 1.3 1.2 0.8
1s—2p 9.3 6.6 15.7 6.2
1s—3p 2.9 2.6 4.7 25
1s—4p 1.3 1.1 2.0 1.1
1s—5p 0.6 0.6 1.0 0.6
1s—6p 0.4 0.3 0.6 0.3
Av. abs. errofmhartree} 11 3.2 0.6

8Accurate nonrelativistic calculations by DraKes].

PALDA results obtained by taking into account all bound KS orbiflg].

“Values obtained with TDOEP kernel in the SP¥8] or by DFT perturbation theor§82]. The results for the
higher transitions are given in Rdfl8] only.

4This work, ALDA results obtained by taking into account all bound and unbound KS orbitals.

€The average absolute error with respect to the “exact” values is given in mhartrees.
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TABLE VIII. Beryllium singlet excitation energie§n hartreey uncertainties in the final digit in paren-

theses.

Transition Expf  KS eigenvalués ALDAfull® PT¢ LBE LDAS
2s—2p 0.193941 0.1327 0.1868 0.1989 0.17®7 0.17721)
2s—3s 0.249127 0.2444 0.2495 0.2556 0.240)2 0.204Q5)
2s—3p 0.274233 0.2694 0.2710 0.2741 0.26®3

2s—3d 0.293556 0.2833 0.2778 0.2852 0.2659

2s—4s 0.297279 0.2959 0.297hH 0.2990

2s—4p 0.306314 0.3046 0.304B 0.3061

2s—4d 0.313390 0.3098 0.3084 0.3106

2s—5s 0.315855 0.3153 0.316D 0.3166

Av. abs. error(mhartree}y 11.03.9 4.23.8 3.2

aThe experimental excitation energigzs].

bZeroth-order approximation provided by differences in KS eigenvalues.

“This work, ALDA results obtained by taking into account all bound and unbound KS orbitals.

dvalues obtained by DFT perturbation thegB2].

&van Leeuwen—Baerends potentidb]. The higher excitation energies are not given as they vary too much

in different basis sets.

"The VWN parametrization is usd@8]. Only the results for the transitions to bound virtual KS orbitals are
given.

9The average absolute error with respect to the “exact” values is given in mhartrees, in parentheses the value
for all but the for all but the first transition.

to increased basis set effects in the very low density region-s transitions of helium in Table VII.

The typical magnitude of the differences is a few millihar-  On the whole, the perturbative values obtained by Filippi
trees. For this reason we decided not to include those nunet al. [32] are somewhat more accurate than our ALDA re-
bers in this and the following tables. sults here, with an average error of 3.2 mhartree. The quality

The LB results are much better already than the LDAof their results does not show the same variety in errors for
potential. Due to the correct asymptotics, these Rydberg-likéhe different types of transitions. It has already been ob-
transitions are described reasonably well, with an averagserved by Petersilka and Grdd¥] that the singlet spectrum
error of 17.4 millihartree(this should be compared to our is reproduced at least as well by the TDOEP kernel as by the
results with the accurate xc potential, which yields an averALDA kernel, while the ALDA kernel is to be preferred for
age error of 6.6 mhartree for these transitjons triplet excitation energies.

The accurate potential results are better still. The average The ALDA and exchange-only triplet energies for beryl-
error of 4.2 mhartree gives a factor of 2.6 improvement withlium in Table IX provide corrections in the right direction
respect to the LB results, and a factor of 2.5 improvementvith respect to the orbital energy differences for all transi-
with respect to the orbital energy differences. However, iftions except the - 4p transition. The ALDA results, with
the 25— 2p transition is disregarde very large correction an average absolute error of 2.7 mhartree, are clearly better
to the orbital energy difference is needed for this transjtion than the exchange-only resuls.4 mhartreg which do not
the ALDA results do not improve upon the orbital energy improve upon the orbital energy differences héel mhar-
differences at all. This is entirely due to tee-d transitions, treg). As in the singlet case, the LB and LDA results are
which are poorly treated by the ALDA kernel. Not only are clearly worse.
the ALDA results for these transitions clearly worse than In Table X the singlet-triplet splittings for beryllium are
both the exact exchange-only results and the orbital energgiven. For the three lowest transitions, the ALDA splitting is
differences, they even correct the orbital energy differenceslearly superior to the exchange-only splitting and can be
in the wrong direction. The results by Filippt al. do pro-  considered very satisfactory. For the higher transitions, this
vide a correction in the right direction, although by too smallis not the case anymore. The ALDA results for the:d
an amount. transitions are even qualitatively incorrect, as the wrong sign

On the other hand, the—s and s—p transitions are for the singlet-triplet splitting is predicted by the ALDA ker-
treated satisfactorily by the ALDA kernel. The errors in the nel. Although the exchange-only results by Filigpial. [32]
ALDA results fors—s transitions(0.4, 0.4, and 0.15 mhar- for these splittings are also not very impressive, they at least
tree are considerably lower than those for the p transi-  give the right sign. The wrong sign remains if one uses either
tions (7.1, 3.2, and 1.5 mhartrigewhich in turn are superior only bound orbitals or the single pole approximation. If one
to the s—d transition results with errors of 15.8 and 5.0 uses only the exchange part of the ALDA kernel, the singlet-
mhartree. The ALDA results for the—s transitions are triplet splitting for the Z— 3d transition remains negative,
clearly better than the exact exchange results and the orbitalut the right sign is predicted if one totally neglects the xc
energy differences, as was also the case for the sirgglet screeningonly “Coulomb” screening.
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TABLE IX. Beryllium triplet excitation energie§in hartree§ uncertainties in the final digit in parenthe-

ses.

Transition Expf  KS eigenvaluds ALDA,full ¢ PT¢ LB® LDAf
2s—2p 0.100153 0.1327 0.08885 0.0629 0.07@65 0.08675
2s—3s 0.237304 0.2444 0.2382 0.2331 0.22B5 0.20214)
2s—3p 0.267877 0.2694 0.2647 0.2640 0.26827

2s—3d 0.282744 0.2833 0.2802 0.2814 0.26B4

2s—4s 0.293921 0.2959 0.2941 0.2928

2s—4p 0.300487 0.3046 0.3030 0.3029

2s—4d 0.309577 0.3098 0.3085 0.3089

2s—5s 0.314429 0.3153 0.3145 0.3139

Av. abs. error{mhartree}y 6.1 2.7 6.4

aThe experimental excitation energigzs].

bZeroth-order approximation provided by differences in KS eigenvalues.

“This work, ALDA results obtained by taking into account all bound and unbound KS orbitals.

dvalues obtained by DFT perturbation thegB2].

&van Leeuwen—Baerends potentidb]. The higher excitation energies are not given as they vary too much
in different basis sets.

"The VWN parametrization is usd@8]. Only the results for the transitions to bound virtual KS orbitals are
given.

9The average absolute error with respect to the “exact” values is given in mhartrees.

We obtained similar inversions of the singlet and tripletexchange-only results for He, we can actually calculate the
levels for the 2—4f transition in Be and thes—d and results that would be obtained by Filipgi al. for these tran-
s—f transitions in helium. For these helium transitions, thesitions, or by Petersilkat al. in their SPA-TDOEP results.
absolute value of the splittingvhich should be in the micro- In turns out that the TDOEP kernel correctly predicts posi-
hartree regimgis clearly overestimated as well, both in the tive singlet-triplet splittings for thes—d ands—f transi-
SPA and in the full ALDA results. We do not presume thattions in helium. Even higher quality calculations than the
this is a basis set artifact, because it was reproduced in diRresent ones would be required to see whether these split-
ferent basis sets of high quality. In the same basis sets, tH#1gs are also of the correct magnitude, although our results
approximationf .= 0 (Coulomb screening onlydoes lead to  indicate that they probably will be.
positive values for all splittings. As the Coulomb-type matrix  1hese SPA results can be understood from the SPA ex-
elements obtained in this way determine the TDOEPPression for the singlet-triplet splitting in E(L8). From that
expression, it is clear that approximations fQg which are
diagonal in spin spacésuch as the TDOEP and exchange-
only ALDA kernelg yield no contribution to the singlet-
triplet splitting in the SPA. Only the Coulomb term in Eg.

TABLE X. Beryllium singlet-triplet splittinggin millihartrees,
uncertainties in the final digit in parentheses.

Transition Expf ALDA, full® PT® LB LDA® (18) remains in that case. For this reason, it should not be
very surprising that the ALDA results for the splittings are
2s—2p 93.8 98.0 136 98() 90.41)  usually better than the TDOEP kernel results. This expres-
25— 3s 11.8 11.3 225 13(1) 2.31) sion also explains why only the ALDA xc kernel can give
2s—3p 6.4 6.3 10.1 6.4) rise to negative SPA singlet-triplet splittings. Apparently, the
2s—3d 10.8 —-2.4 3.8 —2.51) correlation part of the ALDA kernel, based on the homoge-
2s—4s 3.4 3.6 6.2 neous electron gas, is too crude to provide an accurate cor-
25— 4p 5.8 1.8 3.2 rection for this very subtle and small effect for these transi-
25 4d 3.8 01 1.7 tions. In short, we can state that although the correlation part
25 ,5g 2.4 15 27 of the ALDA kernel in general yields improved results with
respect to the exchange-only approximations, the negative
Av. err. (mhartrees 6.1 8.9 singlet-triplet splittings to which it gives rise show that it still
needs to be improved upon.
&The experimental excitation energigb). The LB results show that the singlet-triplet splittings are
bThis work, ALDA results obtained by taking into account all more sensitive to the xc kernel than to details of the xc po-
bound and unbound KS orbitals. tential, because they are very similar to the ALDA results
“Values obtained by DFT perturbation thed82]. with the accurate potential. The LDA results, on the other

dvan Leeuwen—Baerends potentjb]. The higher excitation en- hand, show that the xc potential should at least possess the
ergies are not given as they vary too much in different basis sets.correct asymptotic behavior in order to obtain reliable
°The VWN parametrization is us€l@8]. Only the results for the singlet-triplet splittings for the higher-lying excitations. Only
transitions to bound virtual KS orbitals are given. the LDA result for the first splitting is qualitatively correct.
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TABLE XI. Molecular polarizabilities with LDA, LB, and semi-  results. In the basis sets we used, one or more sets of aug-

accurate potential. menting functions were added, and we obtained Hartree-

Fock results for the polarizabilities which were close to the

Molecule LDA LB Accuratev,® ACC-EXpt’  pagis set fimit values. This does not imply that these basis

H, 59 561 516 51816 sets were sufficiently large for the correlated calculations,

N, 1227 1146 11.68 11.74 however.

HF 6.20 531 5.49 5.8b One might furthermore suspect our construction scheme

HCl 1863  17.86 17.25 17.39 for the potential to influence the polarizability results artifi-

H,0 10.53 9.20 9.45 9.64 cially. This could lead to a smafpossibly systemat)cerror

co 13.87 12.62 12.86 13.08 in either direction. A final suggestion that the remaining 1%
error is due to the intrinsic errors of the xc kerrig] cannot

Av. err. +8.8% —0.6% —1.0% be dismissed, although it is much too early on the basis of

Av. abs. err.  +8.8%  3.6% —1.0% this evidence to jump to such a conclusion. Finally, a com-

parison of our LDA values to the basis set free values ob-
®Results obtained with large GTO basis sets for the Cl. The differtgjned by Dickson and BecK&3] shows that our basis sets
ence in the polarizability by using another large augmented GTGp, the DET calculation are sufficiently large.

basis set is smaller than 1%, typically a few tenths of a percent. It should be emphasized that we do not suggest the
b, : : . A
Benchmark theoretical or experimental results. present approach as a practical method for calculating polar-
;\/l_bratl_onless theoretical value. izabilities. We have merely tried to indicate that an accurate
Vibrationless estimate. future model for the xc potential will yield considerable im-

provements in molecular polarizabilities as well. Similar pre-

liminary calculations on excitation energies and hyperpolar-

izability have not led to such a clear picture, however. It

D. Molecular polarizability results would be desirable to repeat a similar molecular study using
o ) ) a higher level correlated method than the present one, pref-

We have performed polarizability calculations using XCerapy in 4 fully numerical program, or in a large STO basis
potentials constructed frofMR)SDCI densities, as has been ge(glthough in the latter case one has to make sure that the

.poin't(_aq out earlier. The results for the sta}tic average p°|ardensity in the outer region decays correctiguch a study
izabilities of some small molecules are given in Table XI.\yu1d allow more definite statements to be made.

We used the experimental equilibrium bond distances of 1.4
bohr for H, (0.7408 A, 0.917 A for HF, 1.2746 A for HCI,
1.12832 A for CO, 1.09768 A for B and 0.957 A for the
H—O distance in HO, with a H—O—H angle of 104.5°. We have performed accurate atomic calculations using
As usual, the LDA results are clearly and invariably too accurate xc potentials on excitation energies and polarizabil-
high (on average 8.89% The LB results are much better. ities of three small atoms: He, Be, and Ne. Our results show
They do not show a systematic erréhe average error is that important improvements with respect to calculations us-
only 0.6%, and the average absolute er(8r6% is consid- ing the LDA potential or LB potential are obtained. The use
erably lower than for the LDA resulté3.8%). The results of an accurate xc potential removes the larger part of the
with the accurate potentials are much better still. The averagéiscrepancy with respect to the experimental values. The re-
absolute error reduces by almost a factor of 4 to 1.0% withmaining discrepancies are due to deficiencies in the ALDA
respect to the LB results. This is a strong indication thatxc kernel. Our results show that the ALDA kernel is at least
improved models fop,. will considerably improve molecu- comparable in quality to the exchange-only TDOEP kernel
lar polarizability results. The results with the accurate potenand that taking into account “continuum contributions” has
tial are invariably too low with respect to the experimental ora positive effect on the calculated excitation energies.
vibrationless theoretical results. Several reasons can be given We believe that the major deficiencies in the xc kernels
for this. The most obvious one is that the CI results for theare still in the spatial part, not in the frequency dependence.
polarizabilities(which we obtained from finite field CI cal- Major improvements may come from a TDOEP kernel,
culations, using the same type of Cl that generated the denvhich includes accurate correlation contributions. This cor-
sity from which the “accurate’v,. was constructedare also  relation contribution is clearly important in the results for the
invariably too low. In most cases the underestimation wasinglet-triplet splittings. Further improvement should come
even more than the result with the accurate potential; fofrom improved modeling of the frequency dependence of the
example, we obtained from the finite field Cl calculations akernel.
polarizability of 5.185 for H, 16.97 for HCI, and 9.20 for The benefit of more refined approximations for the xc
H,O (where the accurate potential results were 5.16, 17.2%ernel will be useful only in combination with improved xc
and 9.45, respectively potentials. At the very least, these potentials should be self-
This implies that either the basis sets we used in the Cinteraction free, or, in other words, possess the correct
calculations were not large enough or the level of(@hich  asymptotic behavior. Such potentials can be constructed by
was SD was insufficiently high. We expect both factors to either adding a&semiempirical correction to a usual xc po-
contribute. As far as the level of correlation is concerned, itential as in the LB potentidB5], or by using OEP potentials
is known from coupled-cluster response calculations thain the Krieger-Li-lafrate[64] (KLI) approximation65—67.
CCSOT) results are often clearly better than CCSD or CISDSuch an xc potential has to yield accurate predictions for the

V. CONCLUSIONS AND FUTURE DIRECTIONS
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experimental ionization potential in order to improve uponauthors of Ref[49,32] for making their work available prior
existing approximate xc potentials. to publication. We thank Martin Petersilka for sending his
work prior to publication and for many very useful discus-
sions. S.v.G. gratefully acknowledges financial support from

We are grateful to Professor Dr. Umriga@1,30 for pro-  the Netherlands Organization for Scientific ResedMWO)
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