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Physics of transformation from Schrödinger theory to Kohn-Sham density-functional theory:
Application to an exactly solvable model

Zhixin Qian and Viraht Sahni
Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210
and The Graduate School and University Center of the City University of New York, 33 West 42nd Street,

New York, New York 10036
~Received 11 September 1997; revised manuscript received 22 December 1997!

According to Hohenberg-Kohn-Sham density-functional theory~DFT!, and its constrained search formula-
tion, the Schro¨dinger ground-state wave functionC is a functional of the ground-state electronic densityr~r !.
But theexplicit functional dependence ofC on r is unknown. It is, however, possible to describe Kohn-Sham
~KS! DFT and its electron-interaction energy functional and functional derivative rigorously in terms of the
wave functionC. This description involves a conservative field which is a sum of two fields, the first repre-
sentative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, and the second
of correlation-kinetic effects. The sources of these fields are expectations of Hermitian operators with respect
to C. The energy functional is expressed in integral virial form in terms of these fields, whereas the functional
derivative is the work done to move an electron in the conservative field of their sum. In this paper we illustrate
the physics of transformation from Schro¨dinger to KS theory by application of this description to a ground
state of the exactly solvable Hooke’s atom. As such we determine properties such as the pair-correlation
density, the Fermi and Coulomb holes, the Schro¨dinger and KS kinetic-energy-density tensors and kinetic
fields, and the electron-interaction and correlation-kinetic fields, potentials, and energies, the majority of these
constituent properties of the transformation being obtained analytically. In this manner we demonstrate the
separate contributions and significance of each type of electron correlation to the KS electron-interaction
energy and its functional derivative. Based on this study and previous work, it is proposed that in the con-
struction of approximate energy functionals and their derivatives for application to more complex systems, it
is the fields that be directly approximated.@S1050-2947~98!07904-9#

PACS number~s!: 31.15.Ew, 03.65.2w
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I. INTRODUCTION

In this paper, we explain, by example, the physics
transformation from Schro¨dinger @1# theory to Hohenberg-
Kohn-Sham@2# density-functional theory@3#. For a system
of N electrons in a local external potential, the Schro¨dinger
equation is a 3N-dimensional coupled differential equatio
On the other hand, the Kohn-Sham equations comprisN
three-dimensional single-particle equations fornoninteract-
ing fermions bound by thesame local effective potential.
The relationship between the theories is based on two fun
mental theorems@2#. First, the Schro¨dinger system wave
functionC(x1 ,x2 ,...,xN) with x[r ,s, is a functional of the
ground-state electronic densityr~r !. Thus, the ground-stat
energyE is such a functional. And second, that the groun
state energy can be obtained by a variational principle
volving only the density. Therefore, for arbitrary norm
conserving variations of the density, the exact ene
corresponds to that of the ground-state density. Accordin
Hohenberg-Kohn-Sham, therefore,all information about the
system can be obtained by a knowledge of the ground-s
density. The functionalC@r# is also defined by the con
strained search formulation@4# as that antisymmetric func
tion which yields the ground-state densityr~r ! and delivers
the minimum of the expectation of the kinetic and electr
interaction operators. However, theexplicit functional de-
pendence ofC on r~r ! is at present unknown. It is, howeve
possible to describe@5–8# Kohn-Sham density-functiona
571050-2947/98/57~4!/2527~12!/$15.00
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theory directly in terms of the system wave functionC itself.
This quantum-mechanical interpretation@5,6# involves fields
whose source distributions are expectations of Hermitian
erators. These sources, and consequently the fields, are
resentative of the different electron correlations present
this manner, a rigorous physical description of Kohn-Sh
theory is provided. It is this description, by application to
exactly solvable model system, that we provide in the pap

The model we consider is Hooke’s atom@9#, which is
comprised of two electrons in an external harmonic oscilla
potential. For a certain infinite set of discrete oscillator fr
quencies, analytical solutions@10,11# of the corresponding
Schrödinger equation exist. The model, and a variation@12#
of it that incorporates an additional linear electro
interaction term to the Hamiltonian, have been employed
various studies in the literature@12,13#. But as a consequenc
of the fact that the exact density is known, the model h
more recently been used@14# in the context of density-
functional theory for testing the accuracy of approxima
Kohn-Sham ‘‘exchange-correlation’’ energy functionals a
their derivatives~potentials!. In our work we employ the
ground-state wave function to illustrate the physics, where
this interactingsystem is transformed to one ofnoninteract-
ing fermions with the same density and energy. Since
wave function is exactly known, the majority of the requis
properties of this transformation are determinedanalytically.

In Sec. II we define properties within conventional Koh
Sham theory, and briefly describe its quantum-mechan
interpretation. In Sec. III we determine the constituent pro
2527 © 1998 The American Physical Society
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2528 57ZHIXIN QIAN AND VIRAHT SAHNI
erties of the interpretation for the Hooke’s atom, and end
Sec. IV with a summary and concluding remarks.

II. DEFINITIONS

A. Definitions within conventional Kohn-Sham theory

In Kohn-Sham~KS! theory, the ground-state energy fun
tional is written as

E@r#5Ts@r#1E n~r !r~r !dr1Eee
KS@r#, ~1!

whereTs@r# is the kinetic energy of noninteracting fermion
of densityr~r !, n~r ! the external potential, andEee

KS@r# the
KS electron-interaction energy functional. The function
Eee

KS@r# thus incorporates correlations due to the Pauli exc
sion principle, Coulomb repulsion, as well as the correlat
contributionTc@r# to the kinetic energy. The KS differentia
equations are

@2 1
2 “

21n~r !1nee~r !#w i~x!5e iw i~x!, i 51, . . . ,N,
~2!

where the local potentialnee(r ) representing all the electro
correlations is defined as the functional derivative

nee~r !5
dEee

KS@r#

dr~r !
. ~3!

B. Quantum-mechanical interpretation of Kohn-Sham theory

The quantum-mechanical interpretation@5,6# of KS
theory is in terms of a conservative fieldF~r ! so that
“3F(r )50. The fieldF~r ! is the sum of its electron
interaction Eee(r ) and correlation-kineticZtc

(r ) compo-
nents:

F~r !5Eee~r !1Ztc
~r !. ~4!

The fieldEee(r ) is determined by Coulomb’s law from th
pair-correlation densityg(r ,r 8) so that

Eee~r !5E g~r , r 8!~r2r 8!

ur2r 8u3
dr 8, ~5!

where g(r ,r 8)5^Cu( iÞ jd(r i2r )d(r j2r 8)uC&/r(r ) is the
pair-correlation density.

The field Ztc
(r ) is the difference of two fieldszs(r ) and

z~r !, which are derived from the kinetic-energy-density te
sorstab(r ) and ts,ab(r ) for the interacting Schro¨dinger and
the noninteracting KS systems, respectively. Thus,

Ztc
~r !5

1

r~r !
$zs~r ;@gs# !2z~r ;@g#!%, ~6!

where the componentza(r ) of the field z~r ! is
za(r )52(b(]/]r b)tab(r ;@g#), tab(r ;@g#)5 1

4 (]2/]r a8]r b9
1]2/]r b8]r a9 )g(r 8,r 9)ur95r95r , and g(r ,r 8) is the spinless
single-particle density matrix@3#. The fieldzs(r ) is similarly
obtained from the idempotent Dirac density matrix@3#
gs(r ,r 8) derived from the KS Slater determinantF$w i%.
n

l
-
n

-

The KS electron-interaction energy functionalEee
KS@r# and

its derivative can be expressed in virial form in terms of t
fieldsEee(r ) andZtc

(r ):

Eee
KS@r#5Eee@r#1Tc@r#, ~7!

where

Eee@r#5E dr r~r !r•Eee~r ! ~8!

is the quantal electron-interaction energy, and

Tc@r#5 1
2 E dr r~r !r•Ztc

~r ! ~9!

is the correlation-kinetic energy. The functional derivati
nee(r ) is the work done to move an electron in the fie
F~r !:

nee~r !52 È r
F~r 8!•dl8. ~10!

For systems of certain symmetry such as spherically s
metric atoms, nonspherically symmetric atoms in the cen
field approximation, jellium and structureless pseudopot
tial metal surfaces, jellium metal clusters, etc., the curl of
fields Eee(r ) and Ztc

(r ) separately vanishes. For such sy

tems we may writenee(r )5Wee(r )1Wtc
(r ), where

Wee~r !52 È r
Eee~r 8!•dl8 ~11!

is the work done in the electron-interaction field, and

Wtc
~r !52 È r

Ztc
~r 8!•dl8 ~12!

is the work done in the correlation-kinetic field.

C. Hooke’s atom

We consider the singlet ground state of Hooke’s atom,
which the external potentialn(r )5 1

2 kr2, k5 1
4 . The solution

of the Schro¨dinger equation is then@10,11#

C~r1 ,r2!5Ce2R2/2e2r 2/8~11r /2!, ~13!

where r5r22r1 , R5(r11r2)/2, and C51/@2p5/4(5Ap
18)1/2#50.029 112 2 a.u. The resulting analytical expre
sion for the densityr~r ! is given in the Appendix.~See also
Kais et al. @14#.! The corresponding KS theory orbitalw i(r )
can be expressed in terms of the density asw i(r )
5Ar(r )/2; i 51,2. With the assumption that the function
derivativenee(r ) vanishes at infinity, the KS equation can b
inverted so thatnee(r ) can also be written in terms of th
density as

nee~r !5« i1
1

2

¹2Ar~r !

Ar~r !
2 1

8 r 2, ~14!
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57 2529PHYSICS OF TRANSFORMATION FROM SCHRO¨ DINGER . . .
where « i55/4. Hooke’s atom wave function satisfies th
electron-electron but not the electron-nucleus cusp condi
@15#. Furthermore, for this atom,“3Eee(r )5“3Ztc

50, so

that the work doneWee(r ) and Wtc
(r ) are separately path

independent.

III. PROPERTIES OF THE QUANTUM-MECHANICAL
INTERPRETATION

For the wave functionC(r1 ,r2) of Eq. ~13!, essentially
all the constituent properties of the quantum-mechanical
terpretation of KS theory have been determined in clo
analytical form. The remaining few are semianalytical. The
expressions are given in the Appendix. Here we discuss e
property separately.

A. Pair-correlation density g„r,r 8…

The pair-correlation density, which is the source cha
distribution for the electron-interaction component, can
further separated into its local and nonlocal components
g(r ,r 8)5r(r 8)1rxc(r ,r 8), where rxc(r ,r 8) is the quantal
Fermi-Coulomb hole charge distribution wit
*rxc(r ,r 8)dr 8521. The Fermi-Coulomb hole can be furth
separated@6# into the KS theory Fermirx

KS(r ,r 8) and Cou-
lomb rc

KS(r ,r 8) holes asrxc(r ,r 8)5rx
KS(r ,r 8)1rc

KS(r ,r 8),
whererx

KS(r ,r 8) is defined in terms of the KS density matr
gs(r ,r 8) as rx

KS(r ,r 8)52ugs(r ,r 8)u2/2r(r ). The sum rules
satisfied by the Fermi and Coulomb holes a
*rx

KS(r ,r 8)dr 8521, rx
KS(r ,r 8)<0, rx

KS(r ,r )52r(r )/2, and
*rc

KS(r ,r 8)dr 850.
With these definitions we have for the ground state

Hooke’s atom rx
KS(r ,r 8)52r(r 8)/2 and rc

KS(r ,r 8)
5g(r ,r 8)2r(r 8)/2. The nonlocal nature of the pair
correlation density in this case is then due to the dyna
Coulomb hole charge. In Fig. 1 we plot the densityr(r ) and
the radial probability densityr 2r(r ). Other than the lack of a
cusp at the origin, the density~and radial probability density!
is similar to that of the He atom, though different in magn
tude. Also plotted in the figure are the quantal Ferm
Coulomb rxc(r ,r 8) and KS Fermirx

KS(r ,r 8) and Coulomb
rc

KS(r ,r 8) holes for an electron at the nucleus. Observe t
the holes are all spherically symmetric about the electron
the electron positionr 85r both the Fermi-Coulomb and
Coulomb holes exhibit a cusp representative of the elect
electron cusp condition. These holes are also essentiall
negative about the electron. The positive part of the C
lomb hole is not evident in the figure.

Since the Fermi hole for this model is independent
electron position, we consider only the Coulomb hole
other electron positions. In Fig. 2 we plot the Coulomb h
for electron positions atr 50.8 a.u. in the interior of the
atom, and atr 51.585 a.u., which corresponds to the ma
mum of the radial probability density. The electron is alo
the z axis corresponding tou50°. The cross section
through the Coulomb hole correspond tou850°, 45°, and
90° with respect to the electron-nucleus direction.~The graph
for r 8,0 corresponds to the structure foru5p and r 8.0.!
In Fig. 3 we present surface plots of the Coulomb hole alo
the lines of Panget al. @16# for the electron positions of Fig
n
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FIG. 1. Densityr(r 8) and radial probability densityr 2r(r 8).
Cross sections through the quantal Fermi-Coulombrxc(r ,r 8) and
KS theory Fermirx

KS(r ,r 8) and Coulombrc
KS(r ,r 8) holes for an

electron at the nucleus~as indicated by the arrow! are also plotted.

FIG. 2. Cross sections through the structure of the KS Coulo
holerc

KS(r ,r 8) in different directions corresponding tou850°, 45°,
and 90° with respect to the nucleus-electron direction. The elec
is on thez axis corresponding tou50° at r 50.8 a.u. in~a! and at
r 51.585 a.u. in~b!. The plots forr 8,0 correspond to the structur
for u5p, r 8.0.
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2530 57ZHIXIN QIAN AND VIRAHT SAHNI
2. These plots are possible due to the spherical symmetr
the model atom. The cuts along thex andy axes correspond
to u850° and 90°. A study of Figs. 2 and 3 clearly show
the cusp in the Coulomb hole at the electron position, and
fact that it is no longer spherically symmetric about the el
tron. In Figs. 4 and 5 we consider electron positions near
surface (̂ r &53.489 025 a.u.) of the atom atr 54.5 a.u., and
in the classically forbidden region atr 518 a.u. Observe tha
as the electron position from the nucleus increases, the p
tive part of the Coulomb hole becomes more prominent
the other side of the nucleus@Figs. 2, 3, and 4~a!#. For
asymptotic positions of the electron@Figs. 4~b! and 5~b!#, the
positive part of the hole is concentrated about the nucle
For these positions the hole becomes essentially a s
charge as well as spherically symmetric about the nucleu
Fig. 6 we plot the center of mass^r 8& of the Coulomb hole as
a function of electron position. The center of mass lies alo
the nucleus-electron direction, but is on the other side of
nucleus from the electron, approaching the nucleus asy
totically.

A comparison of the structure of Hooke’s atom Coulom
hole with that of the He atom@17# shows that, although fo
certain electron positions there are qualitative differenc
the overall structure is strikingly similar, although differe
in magnitude, in spite of the fact that the external potent
of the two atoms are different.Ex post facto, this must be so

FIG. 3. Surface plots of the Coulomb hole corresponding to
electron positions of Fig. 2. Herex8 is the projection ofr 8 on r , i.e.,
x85r 8 r̂• r̂ 8, andy8 is the projection ofr 8 on the direction perpen
dicular to r , i.e., y85r 8@12( r̂ 8•r )2#1/2.
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FIG. 4. Same as in Fig. 2 except that in~a! the electron is atr
54.5 a.u., and in~b! at r 518 a.u.

FIG. 5. Surface plots of the Coulomb hole corresponding to
electron positions of Fig. 4.
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57 2531PHYSICS OF TRANSFORMATION FROM SCHRO¨ DINGER . . .
since electron repulsion is represented in each case by
lomb’s law. Figures 1–5 are a confirmation of this conc
sion.

There is also a striking similarity between the surfa
plots of Figs. 3 and 5 with those of the pair-correlation fun
tion h(r ,r 8)5g(r ,r 8)/r(r 8) of the Ne atom plotted by Pan
et al. @16#. „The comparison is meaningful since for th
Hooke’s atomrc

KS(r ,r 8)5@h(r ,r 8)2 1
2 #r(r 8) and r(r 8) is

monotonic.… The one qualitative difference which appears
that of the presence of the second shell for the Ne at
Other than that, the piling of charge on the other side of
nucleus from the electron position, and other characteris
etc., are all similar.

B. Electron-interaction field Eee„r … and energyEee†r‡

With the pair-correlation density expressed in terms of
components, the electron-interaction field may be written
Eee(r )5EH1Exc(r ), where

EH~r !5E r~r 8!~r2r 8!

ur2r 8u3
dr 8

and

Exc~r !5E rxc~r ,r 8!~r2r 8!

ur2r 8u3
dr 8 ~15!

are the Hartree and Pauli-Coulomb fields, respectively.
turn, the quantal fieldExc(r ) is the sum of the KS Paul
Ex

KS(r ) and Coulomb Ec
KS(r ) fields: Exc(r )5Ex

KS(r )
1Ec

KS(r ), where

Ex
KS5E rx

KS~r ,r 8!~r2r 8!

ur2r 8u3 dr 8

and

Ec
KS~r !5E rc

K.S~r ,r 8!~r2r 8!

ur2r 8u3
dr 8. ~16!

FIG. 6. Center of masŝr 8& of the KS Coulomb holerc
KS(r ,r 8)

as a function of electron position.
u-
-

-
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n

The corresponding expressions for the Hartree~Coulomb
self-energy! and quantal exchange-correlation energies fr
Eq. ~8! are then

EH@r#5E dr r~r !r•EH~r !

and

Exc@r#5E dr r~r !r•Exc~r !. ~17!

In turn, the KS PauliEx
KS@r# and CoulombUc

KS@r# energies
are

Ex
KS@r#5E dr r~r !r•Ex

KS~r !

and

Uc
KS@r#5E dr r~r !r•Ec

KS~r !. ~18!

In Fig. 7 we plot the fieldsExc(r ), Ex
KS(r ), Ec

KS(r ), and
the function 21/r 2. @The field EH(r )522Ex

KS(r ) is not
plotted.# Observe that the fields all vanish at the nucle
This is because the corresponding source charge distr
tions, viz., the Fermi-Coulomb, Fermi, and Coulomb hol
are all spherically symmetric about the electron for this el
tron position~see Fig. 1!. The KS Pauli fieldEx

KS(r ) is nega-
tive throughout space since the Fermi hole is a nega
charge distribution. The KS Coulomb field is negative ov
most of space except thefar interior. ~This contrasts with the
case of the He atom@17#, for which this field is negative
throughout space.! The quantal Pauli-Coulomb fieldExc(r ),
however, is negative over all space. Note that the fie
Exc(r ) andEx

KS(r ) are an order of magnitude larger than t
field Ec

KS(r ). The signs of the various fields and the
relative magnitudes are then reflected in the res
for the corresponding energies:Eee50.447 443 a.u.,
EH51.030 250 a.u., Exc520.582 807 a.u., Ex

KS

520.515 125 a.u., and Uc
KS520.067 682 0 a.u. The

corresponding values@18# for the He atom areEee
50.945 819 a.u., EH52.049 137 a.u., Exc521.103 318
a.u., Ex

KS521.024 568 a.u., andUc
KS520.078 750 a.u.

FIG. 7. Quantal Pauli-CoulombExc(r ) and KS PauliEx
KS(r ) and

CoulombEc
KS(r ) force fields. The function21/r 2 is also plotted.
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2532 57ZHIXIN QIAN AND VIRAHT SAHNI
Note that although the He atom values forEee and its com-
ponentsEH , Exc , andEx

KS are about twice the magnitude o
those of Hooke’s atom, the values of the KS Coulomb
ergy Uc

KS are about the same.
The asymptotic structure of the various fields in the cl

sically forbidden region is

Eee~r ! ;
r→`

1

r 22
4

r 4 , EH~r ! ;
r→`

2

r 2 , Exc~r ! ;
r→`

2
1

r 22
4

r 4 ,

Ex
KS~r ! ;

r→`

2
1

r 2 , Ec
KS~r ! ;

r→`

2
4

r 4 . ~19!

The asymptotic structure of the fieldsEH(r ) andEx
KS(r ) are

to Gaussian accuracy. The21/r 2 structure of the fields
Exc(r ) andEx

KS(r ) is a general result@6,7# valid for any finite
system. It is a consequence of the fact that the total charg
the quantal Fermi-Coulomb and KS Fermi holes is nega
unity, and that these charge distributions that are locali
about the nucleus become static in the limit of asympto
positions of the electron.

C. Electron-interaction potential Wee„r …

The potentialWee(r ), which is the work done in the
electron-interaction fieldEee(r ), may in turn be written as a
sum of the HartreeWH(r ) and quantal Pauli-Coulomb
Wxc(r ) potentials:

WH~r !52 È r
EH~r 8!•dl8

and Wxc~r !52 È r
Exc~r 8!•dl8. ~20!

The KS PauliWx
KS(r ) and CoulombWc

KS(r ) potentials may
be expressed in a similar manner in terms of the fie
Ex

KS(r ) andEc
KS(r ), respectively. Since the densityr(r ) is a

static charge, the potentialWH(r ) may also be expressed a
WH(r )5*dr 8r(r 8)/ur2r 8u. The Pauli potentialWx

KS(r )
52 1

2 WH(r ).
In Fig. 8~a! we plot the potentialWc

KS(r ) and in Fig. 8~b!
the potentialsWxc(r ), Wx

KS(r ), and the function21/r . Ob-
serve that all the potentials have zero slope at the nucl
This is a result of the fact that the corresponding fields fr
which these potentials are derived vanish at this electron
sition. The potentialsWxc(r ) andWx

KS(r ) are monotonic with
positive slope as a result of the fact that the fieldsExc(r ) and

Ex
KS(r ) are negative. In contrast, the potentialWc

KS(r ) is not
monotonic since the fieldEc

KS(r ) changes sign. Furthermore
the potentialsWxc(r ) andWx

KS(r ) are an order of magnitud
greater thanWc

KS(r ) as a result of the magnitudes of th
corresponding fields.

The asymptotic structures of the potentials may be
rived from Eq.~19! to be
-

-

of
e
d
c

s
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-

Wee~r ! ;
r→`

1

r
2

4

3r 3 , WH~r ! ;
r→`

2

r
,

Wxc~r ! ;
r→`

2
1

r
2

4

3r 3 ,

Wx
KS~r ! ;

r→`

2
1

r
, Wc

KS~r ! ;
r→`

2
4

3r 3 . ~21!

Once again, the asymptotic21/r structure of the potentials
Wxc(r ) and Wx

KS(r ) is the same for all finite systems fo
reasons explained previously. Note that the potentialWc

KS(r )
due to the Coulomb hole decays in this case asO(1/r 3). The
asymptotic structure ofWH(r ) andWx

KS(r ) is again quoted to
Gaussian accuracy.

With the Slater electron-interaction potential defined a

Vee
S ~r !5E g~r ,r 8!

ur2r 8u
dr 8, ~22!

we have also plotted in Fig. 8~a! the Slater correlation poten
tial Vc

S(r )5*dr 8rc
KS(r ,r 8)/ur2r 8u. @The Slater @19# ex-

change potential Vx
S(r )5*dr 8rx

KS(r ,r 8)/ur2r 8u5Wx
KS(r )

since the Fermi hole is a static charge in this model.# In
Slater theory, the dynamic nature of the pair-correlation d
sity is not accounted for, and as suchVc

S(r ) does not repre-
sent the potential energy of an electron. The error ofVc

S(r ) in
comparison to the workWc

KS(r ) is evident from Fig. 8~a!.
However, the asymptotic structure of the Slater exchan
correlation potentialVxc

S (r )5*dr 8rxc(r ,r 8)/ur2r 8u is 21/r ,
since the Fermi-Coulomb hole is then essentially a st
charge distribution so thatVxc

S (r )5Wxc(r ) in this limit.

FIG. 8. ~a! KS Wc
KS(r ) and SlaterVc

S(r ) Coulomb potentials.~b!
The quantal Pauli-CoulombWxc(r ) and KS PauliWx

KS(r ) poten-
tials, and the function21/r .
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57 2533PHYSICS OF TRANSFORMATION FROM SCHRO¨ DINGER . . .
D. Kinetic-energy-density tensorstab„r; †g‡… and ts,ab„r; †gs‡…

The source of the correlation-kinetic component is t
difference between the kinetic-energy density tensors for
Schrödinger interactingtab(r ;@g#) and Kohn-Sham nonin-
teractingts,ab(r ;@gs#) systems. As a consequence of sphe
cal symmetry, these tensors are of the form

tab~r ;@g#!5
r ar b

r 2 f ~r !1dabk~r ! ~23!

and

ts,ab~r ;@gs# !5
r ar b

r 2 h~r !, ~24!

respectively, with the functionsf (r ), k(r ), andh(r ) given
in the Appendix. Since the model is comprised of two ele
trons of opposite spin in the ground state,ts,ab(r ;@gs#) is the
von Weizsa¨cker tensor@3#. Note that for the interacting sys
tem, there is an additionaldab k(r ) term which contributes
only to the diagonal elements of the tensor. We note that
our knowledge, this is the first time that the kinetic-energ
density tensors for an interacting nonuniform density syst
and for the equivalent noninteracting system have been
termined, and that too analytically.

FIG. 9. ~a! Functionsf (r ) andh(r ) of the off-diagonal elements
of the interacting and noninteracting system kinetic-energy-den
tensorstab(r ;@g#) and ts,ab(r ;@gs#), respectively.~b! The func-
tions f (r )13k(r ) andh(r ) of the diagonal elements of the tenso
tab(r ;@g#) and ts,ab(r ;@gs#), respectively.
e
e

-

-

to
-
m
e-

In Fig. 9~a! we compare the off-diagonal elements of t
tensors by plotting the functionsf (r ) andh(r ). Observe that
they are essentially the same, vanishing at the nucleus,
decaying in a similar manner asymptotically. In Fig. 9~b! we
compare the diagonal elements of the tensors by plotting
functionsh(r ) and f (r )13k(r ). Note that the diagonal ele
ment of the interacting system tensor is now finite at
nucleus, and that the difference in this element between
two tensors occurs in the interior region of the atom. T
then is the region from which the correlation contribution
the kinetic energy must arise.

The trace of the kinetic-energy-density tensor is t
kinetic-energy-densityt(r ). Thus the fact that the interactin
and noninteracting system tensors are essentially equiva
implies that the corresponding kinetic energiesT andTs are
about the same. The value ofT5* t(r )dr50.664 418 a.u.
and Ts5* ts(r )dr50.635 245 a.u. The differenceT2Ts is
the correlation-kinetic energyTc@r#, which is an order of
magnitude smaller.

E. Correlation-kinetic field Z tc
„r … and energyTc†r‡

The field Ztc
(r ) defined by Eq.~6! and its components

zs(r ;@gs#) andz(r ;@g#) are plotted in Fig. 10. Both compo
nents vanish at the nucleus, withzs(r ) being greater than
z(r ) throughout space. As such,Ztc

(r ) vanishes at the origin

and is positive-definite over all space. In Fig. 11~a! we com-
pare the fieldZtc

(r ) to the KS Coulomb fieldEc
KS(r ) and

observe the two to be the same order of magnitude.
correlation-kinetic energyTc50.029 1731 a.u.@see also Eq.
~9!# is therefore the same order of magnitude as the KS C
lomb energyUc

KS@r#520.067 682 0 a.u..~Note that for the
He atomTc50.036 642 0 a.u.!

As noted, the fieldZtc
(r ) decays asymptotically as a pos

tive function. Its precise asymptotic structure may be o
tained from those of the componentszs(r ) andz(r ), which
are

ty

FIG. 10. Correlation-kinetic fieldZtc
(r ), and its components

zs(r ;@gs#) and z~r ;@g#! for the noninteracting and interacting sy
tems.
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zs~r ! ;
r→`

2
A2ppC2

4 S r 514r 423r 3224r 228r 120

2
20

r
1

8

r 2 1¯ De2r 2/2 ~25!

and

z~r ! ;
r→`

2
A2ppC2

4 S r 514r 423r 3224r 228r 120

2
16

r
2

8

r 2 1¯ De2r 2/2 . ~26!

Note the cancellation of terms ofO(r 5) to O(r 0). The den-
sity r(r ) decays as

r~r ! ;
r→`

A2ppC2r 2S 11
4

r De2r 2/2, ~27!

so that the fieldZtc
(r ) decays asymptotically as

Ztc
~r ! ;

r→`

1

r 32
8

r 4 . ~28!

FIG. 11. ~a! Correlation-kineticZtc
(r ) and KS CoulombEc

KS(r )
fields. ~b! The correlation-kineticWtc

(r ) and KS CoulombWc
KS(r )

potentials. The functional derivativenc(r )5dEc
KS@r#/dr(r ) is also

plotted.
The structure of the fieldZtc
(r ) for the He atom@6# dif-

fers from Hooke’s model in that it is oscillatory, the diffe
ence arising due to the different external potentials. Ho
ever, for both atoms, the fieldZtc

(r ) decays as a positive
function. We have recently proved@20# that for atoms with a
Coulomb external potential,Ztc

(r ) decays asymptotically a

a positive function ofO(1/r 6).

F. Correlation-kinetic potential Wtc
„r …

The structure of the correlation-kinetic fieldZtc
(r ) dic-

tates that of the corresponding potentialWtc
(r ). Since the

field Ztc
(r ) vanishes at the nucleus, the potentialWtc

(r ) has

zero slope there. Further, the field is positive, so thatWtc
(r )

is monotonic with negative slope over all space@see Fig.
11~b!#. The potential decays asymptotically as

Wtc
~r ! ;

r→`

1

2r 22
8

3r 3 . ~29!

We have also plotted the KS Coulomb potentialWc
KS(r ) in

Fig. 11~b! to show that it is the same order of magnitude
Wtc

(r ).

G. Conventional Kohn-Sham theory correlation energy
Ec

KS
†r‡ and its functional derivative nc„r …

The KS electron-interaction energy functionalEee
KS@r# is

conventionally written as a sum of the Coulomb self-ene
EH@r# and KS exchange-correlation energyExc

KS@r#, the lat-
ter being further split into its exchangeEx

KS@r# and correla-
tion Ec

KS@r# components. The corresponding KS Hartr
nH(r ), exchange-correlationnxc(r ), exchangenx(r ), and
correlationnc(r ) potentials are, respectively, the function
derivatives ofEH@r#, Exc

KS@r#, Ex
KS@r#, and Ec

KS@r#. The
potentialnH(r ) is the same asWH(r ) of Eq. ~20! expressed
in terms of the fieldEH(r ). The KS exchange energ
Ex

KS@r#, which is defined either via the virial theorem@21# in
terms ofnx(r ), or as the energy of interaction between t
densityr~r ! and Fermi holerx

KS(r ,r 8), is the same as in Eq
~18! written in terms of the fieldEx

KS(r ). The potential
nx(r ), however, is the sum@22,6#

nx~r !5
dEx

KS@r#

dr~r !
5Wx

KS~r !2Wtc
~1!~r !, ~30!

where Wtc
(1)(r ) is the work done in the fieldZtc

(1)(r )

5z(r ;@g1
c#)/r(r ) with g1

c(r ,r 8) being the first-order correc
tion to the KS density matrixgs(r ,r 8) obtained via pertur-
bation theory by an expansion of the wave functionC in
terms of the electron-interaction coupling constant. The
exchange potential thus contains part of the correlati
kinetic contribution.@A study ofWtc

(1)(r ) for atoms and meta

surfaces has recently been performed@23#.# For Hooke’s
atom in its ground state, however,nx(r )5Wx

KS(r ), so that

nc~r !5
dEc

KS@r#

dr~r !
5Wc

KS~r !1Wtc
~r !. ~31!



o-

S

nt
ge
n

or

f
-
t

n

at a

-
l

e
ty-
ro
s

nta-
nd
tic

and
am

f
tri-
of
the

am

’s
he
of

e
an-
nc-

rly

ials

-

gies
p-
of

ten-

sen-

57 2535PHYSICS OF TRANSFORMATION FROM SCHRO¨ DINGER . . .
In Fig. 11~b! we have also plotted the KS correlation p
tential nc(r ). It lies aboveWc

KS(r ) since it also contains the
correlation-kinetic contribution. The corresponding K
correlation energy is Ec

KS@r#5Uc
KS@r#1Tc@r#

520.038 508 9 a.u.~The corresponding value ofEc
KS@r# for

He is20.042 108 0 a.u.!. Observe@Fig. 11~a!# that the fields
Ztc

(r ) and Ec
KS(r ) and @Fig. 11~b!# potentialsWtc

(r ) and

Wc
KS(r ), and thus the energiesUc

KS@r# and Tc@r#, cancel
each other to a great degree. Thus, the KS Pauli pote
Wx

KS(r ) should be essentially equivalent to the KS exchan
correlation potentialnxc(r ). That this is the case is shown i
Fig. 12 where the potentialsWx

KS(r ) and nxc(r ) are com-
pared.

H. Asymptotic structure of functional derivative nxc„r …

in terms of electron correlations

From the KS equation for Hooke’s atom Eq.~14!, the
asymptotic structure of the functional derivativenxc(r ) is
@14#

nxc~r !5
dExc

KS@r#

dr~r !
;

r→`

2
1

r
1

1

2r 22
4

r 3 1¯ . ~32!

Here the leading (21/r ) term is that ofnx(r ) or equivalently
Wx

KS(r ), and therefore due to Pauli correlations. The KS c
relation potential then decays as

nc~r ! ;
r→`

1

2r 22
4

r 3 1¯ . ~33!

However, from Eqs.~29! and ~31!, we see that the term o
O(1/r 2) of Eq. ~33! is a correlation-kinetic contribution. Fur
thermore, from Eqs.~21! and ~29!, we observe that the nex
lower order term (4/r 3) of Eq. ~33! is comprised of a Cou-
lomb correlation component of magnitude (4/3r 3) as well as
a correlation-kinetic piece of magnitude (8/3r 3). All higher
order terms also comprise a sum of Coulomb a
correlation-kinetic contributions.

For a Coulomb external potential,nc(r ) decays as
2a/2r 4, wherea is the polarizability of the ion. This term is

FIG. 12. Comparison of KS PauliWx
KS(r ) and exchange-

correlationnxc(r )5dExc
KS@r#/dr(r ) potentials. The function21/r

is also plotted.
ial
-

-

d

attributed to Coulomb correlations@24# by comparison with
a classical calculation. For completeness we note that
metal-vacuum interface, both the PauliWx

KS(r ) and
correlation-kineticWtc

(1)(r ) components@see Eq.~30!# con-

tribute @23,25# to the asymptotic structure of the KS ex
change potentialnx(r ) in the classically forbidden and meta
bulk regions.

IV. SUMMARY AND CONCLUDING REMARKS

By application to a ground state of Hooke’s atom, w
have illustrated in this paper how Kohn-Sham densi
functional theory can be described in terms of the Sch¨-
dinger system wave functionC. The transformation require
the construction of two fieldsEee(r ) andZtc

(r ) that in this
example are separately conservative, the former represe
tive of correlations due to the Pauli exclusion principle a
Coulomb repulsion, and the latter that of correlation-kine
effects. The structure of these fields then leads to ana priori
understanding of that of the corresponding potentials
magnitudes of the energies. In this manner, the Kohn-Sh
theory exchange-correlation energy functionalExc

KS@r# and
its functional derivativenxc(r ) can be described in terms o
the separate Pauli, Coulomb, and correlation-kinetic con
butions. Here we have provided a complete description
the sources, fields, potentials, and energies required for
construction of the equivalent noninteracting Kohn-Sh
system.

The following is a summary of our results for Hooke
atom. ~i! The representation of electron interaction via t
structure of the Coulomb hole is generally similar to that
the He atom. Furthermore, the KS CoulombUc

KS and
correlation-kineticTc energies also approximate well th
corresponding values for the He atom. As such, it is me
ingful to test approximate exchange-correlation energy fu
tionals and derivatives employing this model.~ii ! The fact
that both the Pauli-CoulombExc(r ) and correlation-kinetic
Ztc

(r ) fields vanish at the nucleus approaching it linea

indicates that the KS exchange-correlation potentialnxc(r ) is
quadratic with zero slope there.~iii ! That both the Pauli-
CoulombExc(r ) and PauliEx

KS(r ) fields are negative-definite
indicates that the corresponding component potent
Wxc(r ) and Wx

KS(r ) of vxc(r ) are monotonic with positive
slope.~iv! That the fieldZtc

(r ) is positive-definite indicates

that the correlation-kinetic componentWtc
(r ) is monotonic

with negative slope.~v! The leading (21/r ) asymptotic
structure ofvxc(r ) is that of Wx

KS(r ) and therefore due en
tirely to Pauli correlations.~vi! The next term ofO(1/r 2) is
due to correlation-kinetic effects.~vii ! Terms ofO(1/r 3) and
higher are a sum ofboth Coulomb correlation and
correlation-kinetic contributions.~viii ! The structure of the
CoulombEc

KS(r ) and correlation-kineticZtc
(r ) fields shows

these effects to cancel so that the corresponding ener
Uc

KS@r# andTc@r# are the same order of magnitude and o
posite in sign.~ix! As a consequence of the cancellation
the fieldsEc

KS(r ) and Ztc
(r ), the Pauli potentialWx

KS(r ) is
essentially equivalent to the KS exchange-correlation po
tial vxc(r ). ~x! The off-diagonal elements of the Schro¨dinger
and Kohn-Sham kinetic-energy density tensors are es
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2536 57ZHIXIN QIAN AND VIRAHT SAHNI
tially equivalent.~xi! The diagonal elements of the tenso
differ only in the interior region of the atom. They ar
equivalent elsewhere. As such, the contribution to
correlation-kinetic energyTc@r# arises from this region.~xii !
Furthermore, the interacting and noninteracting system
netic energies are essentially equivalent, so thatTc@r# is an
order of magnitude smaller.

Since the KS exchange-correlation energy functio
Exc

KS@r# and its functional derivativevxc(r ) are unknown, a
focus of research has been the development of accurate
proximate energy functionals and potentials. The quantu
mechanical interpretation via its application to the He at
as well as the present model calculation suggest anothe
proach to the construction of accurate energy functionals
their derivatives. The idea here is to approximate the Pa
CoulombExc(r ) and correlation-kineticZtc

(r ) fields since

both Exc
KS@r# and vxc(r ) are expressible in terms of them

One constraint on the fields is that their sum be curl-fr
Another restriction is that of the known asymptotic structu
in the classically forbidden region. Any such approximati
would, furthermore, be consistent in that the same total fi
and thus thesameapproximate representation of electro
correlations, leads to both the energy as well as the poten
The potential could be determined self-consistently until
energy is minimized with respect to any parameters in
fields. The bound thus obtained on the ground-state en
would be rigorous since the Hamiltonian is unchanged,
approximating the fields is equivalent to approximating
system wave function.

Hooke’s atom also allows for the concept of an excit
state. The excited states for this atom are defined@11# by the
number of nodes of the wave function. However, the exter
potential for the first-excited state with one node is differe
from that of the ground state with no nodes. Nevertheles
would be interesting to determine whether an equival
Kohn-Sham system as described by the quantum-mecha
interpretation for the ground state exists for such an exc
state, or how close an approximation such a picture provi
Once again, there would be much to learn, with most pr
erties determinable analytically since the excited state w
functions are known.
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APPENDIX: ANALYTICAL EXPRESSIONS
FOR THE GROUND-STATE PROPERTIES

OF THE HOOKE’S ATOM

In this appendix we give the analytical and semianalyti
expressions for various properties of the Hooke’s atom in
ground state corresponding to a spring constant valuek
51/4.

1. Electron density r„r …

r~r !5
pA2pC2

r
e2r 2/2$7r 1r 31~8/A2p!re2r 2/2

14~11r 2!erf~r /& !%, ~A1!
e

i-

l

ap-
-

p-
d

li-

.

d,

al.
e
e
gy
d

e

al
t
it
t

cal
d
s.
-
e

-

r

l
e

where

erf~x!5
2

Ap
E

0

x

e2y2
dy ~A2!

is the error function@26#.

2. Pair-correlation density g„r,r 8…

g~r ,r 8!5
C2

2r~r !
e2~r 21r 82!/2~21ur2r 8u!2. ~A3!

3. Electron-interaction field Eee„r …

Eee~r !5
1

r 2

C2~A2p!3

2r~r !
e2r 2/2$~r 213!erf~r /& !

23A2/pre2r 2/224&daw~r /& !14r %,

~A4!

where

daw~x!5e2x2E
0

x

et2dt ~A5!

is Dawson’s integral@26#.

4. Hartree field EH„r …

EH~r !5
1

r 2 ~2pC!2$10p erf~r /& !

24A2p~31r 2!e2r 2/2erf~r /& !116Ap erf~r !

28re2r 2
2A2p~10r 1r 3!e2r 2/2%. ~A6!

5. Electron-interaction energyEee

Eee5~4pC!2@p/21Ap#50.447 443 a.u. ~A7!

6. Coulomb self-energyEH

EH54~2pC!4$ 20
3 p21 507

32 p3/219)p14A2p

1Ap~23 arcsin79 232 arcsin13 !%51.030 250 a.u.

~A8!

7. External energyEext

Eext5E r~r ! 1
2 kr2dr52~pC!2@9p114Ap#

50.888 141 a.u. ~A9!
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8. Electron-interaction potential Wee„r …

Wee~r !52C2~A2p!3 È r 1

2r 82r~r 8!
e2r 82/2$~r 82

13!erf~r 8/& !23A2/pr 8e2r 82/2

24& daw~r 8/& !14r 8%dr8, ~A10!

Wee~0!50.659 59 a.u. ~A11!

9. Hartree potential WH„r …

WH~r !5
~2pC!2A2p

r
$5A2p erf~r /& !

212e2r 2/2erf~r /& !18& erf~r !

12A2pr „12erf2~r /& !…2re2r 2/2%. ~A12!

WH~0!5~2pC!2@9A2p14p18#51.442 941 a.u.
~A13!

10. Slater electron-interaction potentialVee
s

„r …

Vee
S ~r !5

pC2

rr~r !
e2r 2/2$4A2pr 12re2r 2/2

1A2p~51r 2!erf~r /& !%. ~A14!

Vee
S ~0!5

4~A2p13!

7A2p116
50.656 598 a.u. ~A15!

11. Single-particle density matrixg„r 8,r9…

g~r 8,r 9!52C2e21/4~r 821r 92!E S 11
ur 82r u

2 D
3S 11

ur 92r u
2 De2r 2/2dr . ~A16!

12. Dirac density matrix gs„r 8,r9…

gs~r 8,r 9!5Ar~r 8!r~r 9!. ~A17!

13. Kinetic-energy-density tensortab„r ; †g‡…

tab~r ;@g#!5
r ar b

r 2 f ~r !1dabk~r !, ~A18!

where

f ~r !5 1
8 S r 2r~r !2

4pC2

r 3 e2r 2/2@A2pr 5

22A2pr 2~12r 2!erf~r /& !14r 3e2r 2/2

26Ap daw~r /& !2A2pr ~r 223!# D ~A19!
and

k~r !5
~A2p!3C2

4r 3 @r 2& daw~r /& !#e2r 2/2. ~A20!

14. Kinetic-energy-density tensorts,ab„r ; †gs‡…

ts,ab~r ;@gs# !5
r ar b

r 2 h~r !, ~A21!

where

h~r !5
1

8r S ]r

]r D 2

. ~A22!

15. Kinetic field z„r ; †g‡…

z~r ;@g#!5
pC2

4r 2 e2r 2/2$A2pr ~2r 613r 418r 2116!

24A2p~r 626r 415r 222!erf~r /& !

28r ~r 427r 212!e2r 2/2

232Ap daw~r /& !%. ~A23!

16. Kinetic field zs„r ; †gs‡…

zs~r ;@gs# !5
1

2r S ]r

]r D F1

r S ]r

]r D2
1

2r S ]r

]r D 2

1
]2r

]r 2G .
~A24!

17. Kinetic energyT†r‡

T@r#5p2C2@14p120Ap#50.664 418 a.u. ~A25!

18. Expectations

^r &5E r~r !r dr52~2pC!2@4p111A2p112#

53.489 025 a.u. ~A26!

^r 2&5E r~r !r 2dr5~4pC!2@9p114Ap#57.105 114 a.u.

~A27!

K 1

r L 5E r~r !
1

r
dr5~2pC!2@4p19A2p18#

51.442 940 a.u. ~A28!

K 1

r 2L 5E r~r !
1

r 2 dr5~2pC!2@11p18Ap

14A2p ln~11& !#51.926 359 a.u.~A29!

^d~r !&5r~0!5pC2@7A2p116#50.089 319 a.u.
~A30!
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