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According to Hohenberg-Kohn-Sham density-functional the@¥T), and its constrained search formula-
tion, the Schrdinger ground-state wave functioh is a functional of the ground-state electronic dengify).
But theexplicit functional dependence &f on p is unknown. It is, however, possible to describe Kohn-Sham
(KS) DFT and its electron-interaction energy functional and functional derivative rigorously in terms of the
wave functionW. This description involves a conservative field which is a sum of two fields, the first repre-
sentative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, and the second
of correlation-kinetic effects. The sources of these fields are expectations of Hermitian operators with respect
to V. The energy functional is expressed in integral virial form in terms of these fields, whereas the functional
derivative is the work done to move an electron in the conservative field of their sum. In this paper we illustrate
the physics of transformation from Schiinger to KS theory by application of this description to a ground
state of the exactly solvable Hooke’s atom. As such we determine properties such as the pair-correlation
density, the Fermi and Coulomb holes, the Sdimger and KS kinetic-energy-density tensors and kinetic
fields, and the electron-interaction and correlation-kinetic fields, potentials, and energies, the majority of these
constituent properties of the transformation being obtained analytically. In this manner we demonstrate the
separate contributions and significance of each type of electron correlation to the KS electron-interaction
energy and its functional derivative. Based on this study and previous work, it is proposed that in the con-
struction of approximate energy functionals and their derivatives for application to more complex systems, it
is the fields that be directly approximatd&1050-2947@8)07904-9

PACS numbdps): 31.15.Ew, 03.65-w

[. INTRODUCTION theory directly in terms of the system wave functidritself.
This quantum-mechanical interpretati6] involves fields
In this paper, we explain, by example, the physics ofwhose source distributions are expectations of Hermitian op-
transformation from Schabnger[1] theory to Hohenberg- erators. These sources, and consequently the fields, are rep-
Kohn-Sham[2] density-functional theory3]. For a system resentative of the different electron correlations present. In
of N electrons in a local external potential, the Sctinger ~ this manner, a rigorous physical description of Kohn-Sham
equation is a 8l-dimensional coupled differential equation. theory is provided. It is this description, by application to an
On the other hand, the Kohn-Sham equations compise exactly solvable model system, that W,e provide in '.the paper.
three-dimensional single-particle equations faminteract- The model we consider is Hooke's atdifl], which is

ing fermions bound by thsamelocal effective potential. comprised of two electrons in an external harmonic oscillator

The relationship between the theories is based on two fundzP—Otent'al' For a certain infinite set of discrete oscillator fre-

. o guencies, analytical solutiorj40,11] of the corresponding
mentgl theoremg2]. F|rst3 the_Scthmger system wave Schralinger equation exist. The model, and a variatjitg]
function ¥ (x¢,X,,...,Xy) With X=r,0, is a functional of the

d | ic densi Th h q of it that incorporates an additional linear electron-
ground-state electronic densipfr). Thus, the ground-state jteraction term to the Hamiltonian, have been employed for

energyE is such a functional. And second, that the ground-aioys studies in the literatuf@2,13. But as a consequence
state energy can be obtained by a variational principle ingf the fact that the exact density is known, the model has
volving only the density. Therefore, for arbitrary norm- mqre recently been useid4] in the context of density-
conserving variations of the density, the exact energ¥unctional theory for testing the accuracy of approximate
corresponds to that of the ground-state density. According t&ohn-Sham “exchange-correlation” energy functionals and
Hohenberg-Kohn-Sham, therefoad| information about the their derivatives(potentialg. In our work we employ the
system can be obtained by a knowledge of the ground-staiground-state wave function to illustrate the physics, whereby
density. The functionaN’[p] is also defined by the con- thisinteractingsystem is transformed to one nbninteract-
strained search formulatio@] as that antisymmetric func- ing fermions with the same density and energy. Since the
tion which yields the ground-state densjigr) and delivers  wave function is exactly known, the majority of the requisite
the minimum of the expectation of the kinetic and electronproperties of this transformation are determimealytically.
interaction operators. However, thexplicit functional de- In Sec. Il we define properties within conventional Kohn-
pendence off on p(r) is at present unknown. It is, however, Sham theory, and briefly describe its quantum-mechanical
possible to describg5—8] Kohn-Sham density-functional interpretation. In Sec. lll we determine the constituent prop-
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erties of the interpretation for the Hooke’s atom, and end in  The KS electron-interaction energy functiog)3[ p] and
Sec. IV with a summary and concluding remarks. its derivative can be expressed in virial form in terms of the
fields E.4(r) andZtc(r):

Il. DEFINITIONS
A. Definitions within conventional Kohn-Sham theory Esslpl=Eed p]+ Tdlp], (7)
In Kohn-Sham(KS) theory, the ground-state energy func- where
tional is written as
Eee{p]=fdr p(r)r-Eedr) ®

E[p]=Tdp]+ f v(r)p(r)dr+Eglp], (D)
is the quantal electron-interaction energy, and

whereT p] is the kinetic energy of noninteracting fermions
of density p(r), 1(r) the external potential, anBXS[ p] the N
KS electron-interaction energy functional. The functional Tc[p]sz dr p(r)r-Z,(r) ©
EXS[p] thus incorporates correlations due to the Pauli exclu-
sion principle, Coulomb repulsion, as well as the correlations the correlation-kinetic energy. The functional derivative
contributionT [ p] to the kinetic energy. The KS differential ved(r) is the work done to move an electron in the field
equations are Fr):

_1lyg2 (X)= € 0 = r
[—2Votu(r) +vedn)]ei(X)=€igi(X), 1=1,... 'N’(Z) Vee(r):_fw]:(r,)'dll' (10)

where the local potential.(r) representing all the electron

correlations is defined as the functional derivative For systems of certain symmetry such as spherically sym-

metric atoms, nonspherically symmetric atoms in the central

KS, field approximation, jellium and structureless pseudopoten-

O0Egelp] . 1
Ve 1) = ———. (3)  tial metal surfaces, jellium metal clusters, etc., the curl of the
p(r) fields E.4(r) and Ztc(r) separately vanishes. For such sys-

tems we may writev.(r) =Wee(r)+WtC(r), where
B. Quantum-mechanical interpretation of Kohn-Sham theory

The quantum-mechanical interpretatid®,6] of KS :_Jr N
theory is in terms of a conservative fiel#(r) so that Wedl ) wsee(r )-di (1)
VX ZF(r)=0. The field F(r) is the sum of its electron-

interaction E.r) and correIation—kinetithc(r) compo- s the work done in the electron-interaction field, and

nents:

.7-'(r)=£ee(r)+ZtC(r). (4) Wtc(r):_J;Ztc(r,)'dll (12)

The field E.¢(r) is determined by Coulomb’s law from the s the work done in the correlation-kinetic field.
pair-correlation densitg(r,r’) so that
g(r, r')(r=r") , C. Hooke’s atom

Eedl)= TP dr’, 5 We consider the singlet ground state of Hooke’s atom, for

which the external potential(r) = zkr?, k=7. The solution
where g(r,r')=(W|2;4;8(r;—r)&(r;—r')|W)/p(r) is the  Of the Schrdinger equation is thefl0,1]]
pair-correlation density. CR22 128
The fieldZ, (r) is the difference of two fields(r) and W(ry,rp)=Ce " e " H(1+r/2), (13

z(r), which are derived from the kinetic-energy-density ten-
sorst,4(r) andts ,4(r) for the interacting Schiinger and
the noninteracting KS systems, respectively. Thus,

where r=r,—r;, R=(ry+r,)/2, and C=1[27"45\m
+8)Y2]=0.029 112 2 a.u. The resulting analytical expres-
sion for the density(r) is given in the Appendix(See also

1 Kais et al.[14].) The corresponding KS theory orbita|(r)
Z, (r)y=—={zr;[ ys]) —2z(r;[v])}, (6) can be expressed in terms of the density agr)
¢ p(r) =+p(r)/2; i=1,2. With the assumption that the functional
derivativev (r) vanishes at infinity, the KS equation can be
inverted so thatve(r) can also be written in terms of the
density as

where the componentz,(r) of the field z(r) is
2o(1) =22 43100 tap(TsLY]), tap(r3LVD) = (0% 0 Lory
+ﬂZ/ar;;ar’c’Y)y(r’,r”)|,n:r~:r, and y(r,r’) is the spinless
single-particle density matrij3]. The fieldzy(r) is similarly 5
obtained from the idempotent Dirac density matfig] 1 Vyp(r)

ved =g+ = ——— 312, (14
ys(r,r") derived from the KS Slater determinadt ¢;}. ed 2 i °
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where g;=5/4. Hooke’s atom wave function satisfies the T T Hectronatr=0
electron-electron but not the electron-nucleus cusp condition Hooke's Atom .-
[15]. Furthermore, for this aton¥V X £¢(r) =V XZ; =0, so 0.08F ____ p(r) NN i
that the work donaVN, (r) and Wtc(r) are separately path- | - rle@) [/ ‘
independent.
0.04 Ny T
Il. PROPERTIES OF THE QUANTUM-MECHANICAL ,/' \
INTERPRETATION
For the wave functionV (rq,r,) of Eq. (13), essentially s T o
all the constituent properties of the quantum-mechanical in- s 000 T /f’
terpretation of KS theory have been determined in closed N /
analytical form. The remaining few are semianalytical. These | kY 7
expressions are given in the Appendix. Here we discuss each \ /}:"/
property separately. -0.04 e e
. A Pi(r.r)]
A. Pair-correlation density g(r,r") NS T Pxel(r,rt)
The pair-correlation density, which is the source charge -0.08_4 32 a1 o 1 2 3 4

distribution for the electron-interaction component, can be
further separated into its local and nonlocal components as
g(r.r')=p(r') +px(r,r'), wherep,(r,r') is the quantal FIG. 1. Densityp(r') and radial probability density?p(r’).
Fermi-Coulomb  hole  charge  distribution  with cross sections through the quantal Fermi-Coulquygr,r’) and
Jpx(r,r')dr’=—1. The Fermi-Coulomb hole can be further ks theory FermipkS(r,r’) and Coulombp“S(r,r’) holes for an
separated6] into the KS theory FermpS(r,r’) and Cou- electron at the nucleugs indicated by the arrovare also plotted.
lomb pXS(r,r") holes aspy(r,r')=pk>(r,r')+pS(r,r"),
wherep!S(r,r') is defined in terms of the KS density matrix
ys(r,r") as pkS(r,r’y=—|y4(r,r')|%2p(r). The sum rules
satisfied by the Fermi and Coulomb holes are
JoRS(rr)ydr’=—1, p5S(r,r")=<0, pkS(r,r)=—p(r)/2, and
[peS(r,r')dr’=0.

With these definitions we have for the ground state of
Hooke's atom piS(r,r’)=—p(r')/2 and pS3(r,r')
=g(r,r')—p(r')/2. The nonlocal nature of the pair-
correlation density in this case is then due to the dynamic
Coulomb hole charge. In Fig. 1 we plot the dengify) and
the radial probability density?p(r). Other than the lack of a

r' (a.u.)

0.01 T T T
Hooke's Atom

()

0.00

-0.01

cusp at the origin, the densitgnd radial probability density

is similar to that of the He atom, though different in magni-
tude. Also plotted in the figure are the quantal Fermi-
Coulomb p,(r,r') and KS Fermiplfs(r,r’) and Coulomb
pss(l’,l") holes for an electron at the nucleus. Observe that
the holes are all spherically symmetric about the electron. At
the electron positiorr’=r both the Fermi-Coulomb and
Coulomb holes exhibit a cusp representative of the electron-
electron cusp condition. These holes are also essentially all
negative about the electron. The positive part of the Cou-
lomb hole is not evident in the figure.

Since the Fermi hole for this model is independent of
electron position, we consider only the Coulomb hole for
other electron positions. In Fig. 2 we plot the Coulomb hole
for electron positions at=0.8 a.u. in the interior of the
atom, and at =1.585 a.u., which corresponds to the maxi-
mum of the radial probability density. The electron is along

]ZS( r, r')(au)

Coulomb Hole p

0021 Eectron at r=0.8 a.u.

-4 2 0

0.00

-0.01f

Electron at r = 1.585 a.u.

-0.02_ 4 5 0

r (au.)

the z axis corresponding to#=0°. The cross sections
through the Coulomb hole correspond #6=0°, 45°, and
90° with respect to the electron-nucleus directidihe graph  and 90° with respect to the nucleus-electron direction. The electron
for r’ <0 corresponds to the structure fé= 7 andr’>0.) s on thez axis corresponding t6=0° atr=0.8 a.u. in(a) and at

In Fig. 3 we present surface plots of the Coulomb hole along =1.585 a.u. in(b). The plots forr’ <0 correspond to the structure
the lines of Pangt al.[16] for the electron positions of Fig. for 6=, r'>0.

FIG. 2. Cross sections through the structure of the KS Coulomb
hO|EpES(I’,I’ ") in different directions corresponding t=0°, 45°,
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0.02 T T T T T
Electron at r=0.8 a.u. (@) (a)
Hooke's Atom
0.01f 7
~ 0.01 -
= =
s .0 5
o - 0.01 ~_
:. -0.02 "= 0.00 I
5 -
<1 -4
< s Electron atr =4.5 a.u.
Mo
e 0.01 s p - : y
3 o -4 -2 0 2 4
) 4 0 £ 0.020 . ; ~ T T
'g Electron at r= 18 a.u. (b)
k=) 0.015} 4 ]
=
°
© o0o010F .
Electron at r=1.585 a.u. ®) 0.005 i
0.000
g -0.005 ) ) 0 > P
r' (a.u.)
» FIG. 4. Same as in Fig. 2 except that(® the electron is at

=4.5a.u., and inb) atr=18 a.u.

FIG. 3. Surface plots of the Coulomb hole corresponding to the
electron positions of Fig. 2. Her€ is the projection of ' onr, i.e., Electron at r=4.5 a.u.
x'=r't-t’, andy’ is the projection of ' on the direction perpen-
dicular tor, i.e.,y'=r'[1—(f'-r)?]¥2

2. These plots are possible due to the spherical symmetry of
the model atom. The cuts along tkeandy axes correspond

to 6'=0° and 90°. A study of Figs. 2 and 3 clearly shows
the cusp in the Coulomb hole at the electron position, and the
fact that it is no longer spherically symmetric about the elec-
tron. In Figs. 4 and 5 we consider electron positions near the
surface (r)=3.489 025 a.u.) of the atom a&4.5 a.u., and

in the classically forbidden region at=18 a.u. Observe that

as the electron position from the nucleus increases, the posi-
tive part of the Coulomb hole becomes more prominent on
the other side of the nucleUsigs. 2, 3, and @&)]. For
asymptotic positions of the electrpRigs. 4b) and §b)], the

positive part of the hole is concentrated about the nucleus. Electron at r=18 a.u.

For these positions the hole becomes essentially a static

charge as well as spherically symmetric about the nucleus. In 0.02

Fig. 6 we plot the center of mass’) of the Coulomb hole as 3 0 Olr

a function of electron position. The center of mass liesalong =

the nucleus-electron direction, but is on the other side of the < 0

nucleus from the electron, approaching the nucleus asymp- V; -0.01

totically. < -4 ¢

A comparison of the structure of Hooke’s atom Coulomb
hole with that of the He atorfil 7] shows that, although for
certain electron positions there are qualitative differences,
the overall structure is strikingly similar, although different
in magnitude, in spite of the fact that the external potentials FIG. 5. Surface plots of the Coulomb hole corresponding to the
of the two atoms are differenEx post factpthis must be so electron positions of Fig. 4.

*/@1{.)
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2 -0.15 \\\ I AT e85
I ] AR A— )
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r(a.u.) r(au)
FIG. 6. Center of mas& ') of the KS Coulomb holeXS(r,r") FIG. 7. Quantal Pauli-Coulom8,(r) and KS PaulieXS(r) and
as a function of electron position. Coulomb &KS(r) force fields. The function-1/r? is also plotted.

since electron repulsion is represented in each case by Co-lE-hI? correspor&dlng etXFYESSr:OHS for th? tHart(éJE)ulpmt;
lomb’s law. Figures 1-5 are a confirmation of this conclu—slée -energy and quantal exchange-correlation energies from
sion. g. (8) are then

There is also a striking similarity between the surface
plots of Figs. 3 and 5 with those of the pair-correlation func- Eulpl= f dr p(r)r-Ey(r)
tion h(r,r")y=g(r,r")/p(r’) of the Ne atom plotted by Pang
et al. [16]. (The comparison is meaningful since for the and
Hooke’s atompKS(r,r’)=[h(r,r')—2%1p(r’) and p(r’') is
monotonic) The one qualitative difference which appears is Exc[p]=f dr p(r)r-E,(r). 17
that of the presence of the second shell for the Ne atom.
Other than that, the piling of charge on the other side of then turn, the KS PaulEXS[ p] and CoulombUXS[p] energies
nucleus from the electron position, and other characteristicgre
etc., are all similar.

£l [ dr p(r- 50
B. Electron-interaction field £.¢(r) and energyE.d p]

With the pair-correlation density expressed in terms of itsand

components, the electron-interaction field may be written as

Er)=Ey+E(r), where UCKS[p]Zf dr p(r)r-ES(r). (18
SH(r)=f P(r')(r—;') dr’ In Fig. 7 we plot the fields€,.(r), £(r), £45(r), and
Ir—r’| the function —1/r2. [The field £,(r)=—2&XS(r) is not
plotted] Observe that the fields all vanish at the nucleus.
and This is because the corresponding source charge distribu-
tions, viz., the Fermi-Coulomb, Fermi, and Coulomb holes,
P E(r=1") are all spherically symmetric about the electron for this elec-
ch(r)zf e dr’ (15 tron position(see Fig. 1 The KS Pauli field€¥3(r) is nega-

tive throughout space since the Fermi hole is a negative
charge distribution. The KS Coulomb field is negative over
are the Hartree and Pauli-Coulomb fields, respectively. Iost of space except ttiar interior. (This contrasts with the
turn, the quantal field€(r) is the sum of the KS Pauli case of the He atorfit7], for which this field is negative
E3(r) and Coulomb £:5(r) fields: &£ (r)=E(r)  throughout spacgThe quantal Pauli-Coulomb fiell,(r),
+£CKS(r), where however, is negative over all space. Note that the fields
E,(r) and&‘fs(r) are an order of magnitude larger than the
PNS(rr)(r=r") field £K5(r). The signs of the various fields and their
5;(8:[ W dr’ relative magnitudes are then reflected in the results
for the corresponding energiesE..=0.447 443 a.u.,
E,=1.030250 a.u., E,.=—0.582 807 a.u., EXS
=-0.515125a.u., and UX°=-0.0676820a.u. The
Ks . , corresponding valueg18] for the He atom areE.,
ng(r):f pe(r,r')(r—r’) dr’ (16 —0945819au, E4=2.049137au, E,=-1.103318
c [r—r'[3 ' a.u., EX°=-1.024568a.u., anduX°=-0.078 750 a.u.

and
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Note that although the He atom values &y, and its com-
ponentsEy, E,., andEL> are about twice the magnitude of 0.00
those of Hooke’s atom, the values of the KS Coulomb en-
ergy UK® are about the same.

The asymptotic structure of the various fields in the clas- -0.04
sically forbidden region is

Hooke's Atom

4 S -0.08 - .
. r2 r4!

—

4 2
r_4! 5H(I’) -~ r_2- gxc(r)
r r

1
gee(r) ~ r_z_
r—o

— 00

Potentials (a
S
(o]

£y ~ — 5, £ ~ — . (19 021 T WR //‘
S S L Wee / )
-04F e .
The asymptotic structure of the field,(r) and £X5(r) are 06 F N i
to Gaussian accuracy. The 1/r? structure of the fields e g :
E.(1) andf,')*fs(r) is a general resuf6,7] valid for any finite Y .
system. It is a consequence of the fact that the total charge of et it e nad (D)
the quantal Fermi-Coulomb and KS Fermi holes is negative 0.01 0.1 1 10
unity, and that these charge distributions that are localized r(au)

about the nucleus become static in the limit of asymptotic

positions of the electron FIG. 8. (a) KS WKS(r) and SlateivS(r) Coulomb potentials(b)

The quantal Pauli-CoulomiV,(r) and KS PauliwXS(r) poten-
tials, and the function- 1/r.

C. Electron-interaction potential W (r)

The potentialWe(r), which is the work done in the Wedr) ~ —— =3, Wy(r) ~ E
electron-interaction fiel&€,4(r), may in turn be written as a e 3T roo
sum of the HartreeWy(r) and quantal Pauli-Coulomb
W,(r) potentials: 4
) \Nxc(r)rHDO r 3_r§1
Wt = [ ) -ar
) KS 1 KS 4
WX (r) ~ —F, Wc (r) ~ —F. (21)
r—oo r—oo

;
and. Wio(r)=- LEXC(r )-ar”. (20 Once again, the asymptotie 1/r structure of the potentials

W,(r) and WKS(r) is the same for all finite systems for
o KS Ks ] reasons explained previously. Note that the potekts¥(r)
The KS PauliwW,™>(r) and CoulombW;>(r) potentials may qye to the Coulomb hole decays in this cas©és/r3). The

be expressed in a similar manner in terms of the fieldg,symptotic structure aivi,(r) andWiS(r) is again quoted to
E.°(r) andE.7(r), respectively. Since the densitfr) isa  gaussian accuracy.

static charge, the potenti&V,(r) may also be expressed as  yijth the Slater electron-interaction potential defined as
Wy (r)=fdr’p(r')/[r=r'|. The Pauli potential W<S(r)

=—3Wy(r). S g(r,r’)

In Fig. 8@ we plot the potentiaWWS(r) and in Fig. §b) Vee(r):f =] dr’, (22)
the potentialdV,(r), WXS(r), and the function-1/r. Ob-
serve that all the potentials have zero slope at the nucleusie have also plotted in Fig(8 the Slater correlation poten-
This is a result of the fact that the corresponding fields fromtial V3(r)=fdr’pS(r,r’)/|[r—r’|. [The Slater[19] ex-
which these potentials are derived vanish at this electron pachange potential VE(r)= fdr’ pS(r,r")/|r —r'|=WES(r)
sition. The potential®V,.(r) andWi>(r) are monotonic with  since the Fermi hole is a static charge in this mddei.
positive slope as a result of the fact that the fiefiig(r) and  Slater theory, the dynamic nature of the pair-correlation den-
Efs(r) are negative. In contrast, the potenwfs(r) is not  Sity is not accounted for, and as su\l@(r) does not repre-
monotonic since the fiel€<S(r) changes sign. Furthermore, sent the potential energy of an electron. The erro/f) in
the potentialdV,(r) andWS(r) are an order of magnitude comparison to the workVi>(r) is evident from Fig. &).
greater than\NCKS(r) as a result of the magnitudes of the However, the asymptotic structure of the Slater exchange-
corresponding fields. correlation potentiaV/5.(r)= [dr’ py(r,r')/|r—r'| is — 1/,

The asymptotic structures of the potentials may be desince the Fermi-Coulomb hole is then essentially a static
rived from Eq.(19) to be charge distribution so thats.(r)=W,(r) in this limit.
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v.uvo T T T v T ! ' 0.04 T T T T T T T
Hooke's Atom (a) Hooke's Atom
0.006 h ) 7 5
-/ N\ £(r) g
- 0.004 - . ?
~ 5
0.002 . M
0.000 f——t— B T S (u)i s 6 7
r(a.
0.008 (b) T
P FIG. 10. Correlation-kinetic fiekﬂtc(r), and its components
0.006 — h() z,(r;[ vs]) andz(r;[y]) for the noninteracting and interacting sys-
woer S/ N Ll 1 tems.
—~ f(r)+3k () |
=
E 0.004 : , ,
In Fig. Y@ we compare the off-diagonal elements of the
tensors by plotting the functiorf§r) andh(r). Observe that
0.002 | g they are essentially the same, vanishing at the nucleus, and
decaying in a similar manner asymptotically. In FigbPwe
compare the diagonal elements of the tensors by plotting the

functionsh(r) andf(r)+3k(r). Note that the diagonal ele-
ment of the interacting system tensor is now finite at the
nucleus, and that the difference in this element between the
FIG. 9. (3) Functionsf(r) andh(r) of the off-diagonal elements two tensors occurs in the interior region of the atom. This

of the interacting and noninteracting system kinetic-energy-densityn€n is the region from which the correlation contribution to
tensorst 4(r;[ v]) andtg .s(r;[ys]), respectively.(b) The func-  the kinetic energy must arise.
tions f(r) +3k(r) andh(r) of the diagonal elements of the tensors ~ The trace of the kinetic-energy-density tensor is the
toa(r;[¥]) andts ,5(r;[vs]), respectively. kinetic-energy-density(r). Thus the fact that the interacting
and noninteracting system tensors are essentially equivalent
o _ implies that the corresponding kinetic energieand T are
D. Kinetic-energy-density tensorstap(r; [7]) and tsap(ri[vs])  apout the same. The value &= [t(r)dr=0.664 418 a.u.
The source of the correlation-kinetic component is theand T,= [t,(r)dr=0.635 245 a.u. The differencé—T; is
difference between the kinetic-energy density tensors for thene correlation-kinetic energ¥[p], which is an order of
Schralinger interactingt ,z(r;[ y]) and Kohn-Sham nonin- magnitude smaller.
teractingts ,5(r;[ vs]) systems. As a consequence of spheri-
cal symmetry, these tensors are of the form

0 1 2 3 4 5
r (a.u.)

E. Correlation-kinetic field Ztc(r) and energy T.[p]

. alp
tap(riLyD = 1z F(r)+ dapk(r) 23 The field Ztc(r) defined by Eq.(6) and its components
and z(r;[ ys]) andz(r;[ y]) are plotted in Fig. 10. Both compo-
nents vanish at the nucleus, wity(r) being greater than
ol g z(r) throughout space. As such,c(r) vanishes at the origin
tsap(rilysD) = rz h(r), (4 and is positive-definite over all space. In Fig(dlwe com-

pare the fieIdZtC(r) to the KS Coulomb fieldﬁgs(r) and

respectively, with the function§(r), k(r), andh(r) given X
in the Appendix. Since the model is comprised of two elec_observe the two to be the same order of magnitude. The

; po . ; lation-kinetic energf.=0.029 1731 a.u[see also Eq.
trons of opposite spin in the ground state, 5(r;[ vs]) is the corre ¢ .
von Weizsaker tensoif 3]. Note that for th(f interff\cting sys- (9)]is therefore the same order of magnitude as the KS Cou-

tem, there is an additional, ; k(r) term which contributes 0mb energyU¢ % p]=—0.067 682 0 a.u.(Note that for the
only to the diagonal elements of the tensor. We note that, t!€ atomT.=0.036 642 0 a.y. . .
our knowledge, this is the first time that the kinetic-energy- As noted, the field, (r) decays asymptotically as a posi-
density tensors for an interacting nonuniform density systentive function. Its precise asymptotic structure may be ob-
and for the equivalent noninteracting system have been ddained from those of the componeragr) andz(r), which
termined, and that too analytically. are
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FIG. 11. (a) Correlation-kineticZ; (r) and KS CoulomkeXS(r)
fields. (b) The correlation-kinetidh, (r) and KS CoulomBn/gS(r)
potentials. The functional derivative,(r)= SEXS p]/ 8p(r) is also

plotted.
27w C? 5
2N ~ ————|r
20 8 2
— @2
P + r—z + )e
and

\/EWCZ

+4r*—3r3—24r2—8r+20

(29

z(r) ~ — 7 rS+4r4—3r3-24r?-8r+20
r—o
16 8
—T—r—z'f'"' e_r2/2. (26)

Note the cancellation of terms @ (r®) to O(r°%. The den-

sity p(r) decays as

p(r) ~ 2mmC?r?

r—oe

so that the fielcztc(r) decays asymptotically as

Ztc(r)

4
1+ e 12 27)
1 8
~ S (28)

—
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The structure of the field, (r) for the He atom 6] dif-
fers from Hooke’s model in that it is oscillatory, the differ-
ence arising due to the different external potentials. How-
ever, for both atoms, the fielﬁtc(r) decays as a positive
function. We have recently provg@0] that for atoms with a
Coulomb external potentiaztc(r) decays asymptotically as

a positive function ofO(1/r®).

F. Correlation-kinetic potential Wtc(r)

The structure of the correlation-kinetic fielﬂc(r) dic-
tates that of the corresponding potenW{c(r). Since the
field Ztc(r) vanishes at the nucleus, the poten\‘MIC(r) has
zero slope there. Further, the field is positive, so W%(r)

is monotonic with negative slope over all spdsee Fig.
11(b)]. The potential decays asymptotically as

1 8

TSl @9

Wtc(r) ~

— 0

We have also plotted the KS Coulomb potentdf>(r) in
Fig. 11(b) to show that it is the same order of magnitude as

Wtc(r).

G. Conventional Kohn-Sham theory correlation energy
EXS[p] and its functional derivative v(r)

The KS electron-interaction energy functiorEﬁS[p] is
conventionally written as a sum of the Coulomb self-energy
Enlp] and KS exchange-correlation ener@ﬁs[p], the lat-
ter being further split into its exchangéfs[p] and correla-
tion EXS[p] components. The corresponding KS Hartree
vy(r), exchange-correlation,(r), exchangev,(r), and
correlationv,(r) potentials are, respectively, the functional
derivatives ofE.[p], EXIp], EX[p], and EXS[p]. The
potential vy (r) is the same a8V (r) of Eq. (20) expressed
in terms of the field€y(r). The KS exchange energy
EXS[p], which is defined either via the virial theord] in
terms ofv,(r), or as the energy of interaction between the
densityp(r) and Fermi holgS(r,r’), is the same as in Eq.
(18) written in terms of the field€XS(r). The potential
v,(r), however, is the surf22,6]

SEXp]

3p(r) 30

ve(r)= =WS(r) —W(n),

where \N&)(r) is the work done in the fieldzg)(r)
=z(r;[y{])/p(r) with ¥5(r,r") being the first-order correc-
tion to the KS density matrixys(r,r') obtained via pertur-
bation theory by an expansion of the wave functiénin
terms of the electron-interaction coupling constant. The KS
exchange potential thus contains part of the correlation-
kinetic contribution[A study ofwgcl)(r) for atoms and metal

surfaces has recently been perform@8].] For Hooke's
atom in its ground state, however,(r)=WXS(r), so that

SE&p]

Vc(r)ZWZWES(r)ﬁLWtC(f)- (31
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-0.0 L A S S A attributed to Coulomb correlatio24] by comparison with
Hooke's Atom a classical calculation. For completeness we note that at a
metal-vacuum interface, both the PaquS(r) and
-02 correlation—kinetic\/\é?(r) componentgsee Eq.(30)] con-
= tribute [23,25 to the asymptotic structure of the KS ex-
K . change potential,(r) in the classically forbidden and metal
- B I bulk regions.
g
& 06k IV. SUMMARY AND CONCLUDING REMARKS

By application to a ground state of Hooke’s atom, we
; have illustrated in this paper how Kohn-Sham density-
-0.301 i '“0"1 i 1 S e fqnctional theory can be_described in terms _of the S_chro
‘ ) r(an) dinger system wave functioff. The transformation requires
the construction of two field€.(r) andZ; (r) that in this
FIG. 12. Comparison of KS PauW™(r) and exchange- example are separately conservative, the former representa-
correlation v(r) = SEX p1/6p(r) potentials. The function-1fr  tive of correlations due to the Pauli exclusion principle and
is also plotted. Coulomb repulsion, and the latter that of correlation-kinetic
) ] effects. The structure of these fields then leads ta anori
In Fig. 11(b) we have also plotted the KS correlation po- nderstanding of that of the corresponding potentials and
tential v(r). It lies aboveW >(r) since it also contains the magnitudes of the energies. In this manner, the Kohn-Sham
correlation-kinetic - contribution. The corresponding KS tnheory exchange-correlation energy functiof&i p] and
correlation energy is  EfTp]l=Ugpl+Tdp] its functional derivativer,(r) can be described in terms of
=—0.038 508 9 a.uThe corresponding value &} p] for  the separate Pauli, Coulomb, and correlation-kinetic contri-
He is —0.042 108 0 a.). ObservdFig. 11(a)] that the fields  butions. Here we have provided a complete description of
Ztc(r) and 8CKS(r) and [Fig. 11(b)] potentiaIsWtc(r) and the sources, fields, potentials, and energies required for the
WKS(r), and thus the energigdk[p] and T p], cancel construction of the equivalent noninteracting Kohn-Sham

each other to a great degree. Thus, the KS Pauli potenti&@ystem.

WXS(r) should be essentially equivalent to the KS exchange- 1he following is a summary of our results for Hooke's

correlation potentiab,(r). That this is the case is shown in oM. (i) The representation of electron interaction via the

Fig. 12 where the potential®/“S(r) and v,(r) are com- structure of the Coulomb hole is generally similar to that of
. X XC'

pared. the He atom. Furthermore, the KS Coulonh® and
correlation-kineticT, energies also approximate well the
corresponding values for the He atom. As such, it is mean-
ingful to test approximate exchange-correlation energy func-
tionals and derivatives employing this modél) The fact
From the KS equation for Hooke’s atom E(L4), the that both the Pauli-CoulombE,(r) and correlation-kinetic
asymptotic structure of the functional derivativg.(r) is Ztc(r) fields vanish at the nucleus approaching it linearly

[14] indicates that the KS exchange-correlation potentjg(r) is

H. Asymptotic structure of functional derivative »,.(r)
in terms of electron correlations

SEXS[p] 1 1 4 guadratic with zero slope theréiii) That both the Pauli-

oy SxetPl 2 2 % . (33 CoulombE,(r) and PauliEXS(r) fields are negative-definite

xe(I) 5 or2 3 (32) s X . .
p(r) ., r 2r indicates that the corresponding component potentials

_ _ _ W,(r) and WXS(r) of v,(r) are monotonic with positive
Hirse the leading € 1/r) term is that ofv,(r) or equivalently  gjope. (iv) That the fieldz, (r) is positive-definite indicates
W,>(r), and therefore due to Pauli correlations. The KS cor - the correlation-kinetic componet; (r) is monotonic

relation potential then decays as . . . .
lon p ! y with negative slope(v) The leading 1/r) asymptotic

4 structure ofv,(r) is that of WKS(r) and therefore due en-
ve(l) ~ 5273+ (33 tirely to Pauli correlations(vi) The next term of0(1/r?) is
r=e due to correlation-kinetic effectévii) Terms ofO(1/r%) and

H ¢ Eas(29) and (31 that the t f higher are a sum ofboth Coulomb correlation and
owe;/er, rom q_s( ) and ( . ), we see that the term Of ., e\ ation-kinetic contributions(viii) The structure of the
O(1/r?) of Eq. (33) is a correlation-kinetic contribution. Fur-

thermore, from Eqs(21) and (29), we observe that the next Coulomb&XS(r) and correlation-kineti, (r) f|eld§ shows .
lower order term (4P) of Eq. (33) is comprised of a Cou- thgése effects to cancel so that the correspo_ndmg energies
lomb correlation component of magnitude (#¥Bas well as  Uc L] andT[p] are the same order of magnitude and op-
a correlation-kinetic piece of magnitude (873. All higher ~ POSite in sign.(ix) As a consequence of the cancellation of
order terms also comprise a sum of Coulomb andhe fields€c(r) andZ, (r), the Pauli potentialVy™(r) is
correlation-kinetic contributions. essentially equivalent to the KS exchange-correlation poten-
For a Coulomb external potentialy,(r) decays as tial v, (r). (x) The off-diagonal elements of the Schinger
— al2r*, wherea is the polarizability of the ion. This termis and Kohn-Sham kinetic-energy density tensors are essen-
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tially equivalent.(xi) The diagonal elements of the tensors where
differ only in the interior region of the atom. They are
equivalent elsewhere. As such, the contribution to the
correlation-kinetic energ¥ [ p] arises from this regior(xii) erf(x) = i fxe*yzdy A2)
Furthermore, the interacting and noninteracting system ki- Jz Jo
netic energies are essentially equivalent, so Thgp] is an
order of magnitude smaller. ) )

Since the KS exchange-correlation energy functionalS the error functiorj26].
EXSp] and its functional derivative (r) are unknown, a
focus of research has been the development of accurate ap- 2. Pair-correlation density g(r,r’)
proximate energy functionals and potentials. The quantum-
mechanical interpretation via its application to the He atom c2 s
as well as the present model calculation suggest another ap- g(r,r')= CPY) e (224 r—r")2.  (A3)
proach to the construction of accurate energy functionals and p(r)
their derivatives. The idea here is to approximate the Pauli-
Coulomb &,(r) and correlation-kineticztc(r) fields since

. C 3. Electron-interaction field E.«(r
both EX3[p] and v,((r) are expressible in terms of them. ")

One constraint on the fields is that their sum be curl-free. 1 C¥\2m)?® ,
Another restriction is that of the known asymptotic structure Eedl) = ———— € "{(r?+3)erf(r/v2)
in the classically forbidden region. Any such approximation e 2p(r)

would, furthermore, be consistent in that the same total field, .2

and thus thesameapproximate representation of electron —3y2/mre "= 4vadaw(r/v2) + 4},

correlations, leads to both the energy as well as the potential. (A4)

The potential could be determined self-consistently until the

energy is minimized with respect to any parameters in the

fields. The bound thus obtained on the ground-state enerd@fhere

would be rigorous since the Hamiltonian is unchanged, and

approximating the fields is equivalent to approximating the 2 (% .2

system wave function. daw(x)=e"* J e"dt (A5)
Hooke’s atom also allows for the concept of an excited 0

state. The excited states for this atom are def[dddiby the

number of nodes of the wave function. However, the externails Dawson’s integral26].

potential for the first-excited state with one node is different

from that of the ground state with no nodes. Nevertheless, it )

would be interesting to determine whether an equivalent 4. Hartree field £,(r)

Kohn-Sham system as described by the quantum-mechanical 1

interpretation for the ground state exists for s_uch an exqted Eq(r)= = (2wC)2{10m erf(r/v2)

state, or how close an approximation such a picture provides. r

Once again, there would be much to learn, with most prop-

2y 122
erties determinable analytically since the excited state wave —4\2m(3+r2)e " erf(r/v2) + 16\ erf(r)
functions are known.
—8re "= \27(10r +r3)e "2, (AB)
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APPENDIX: ANALYTICAL EXPRESSIONS 6. Coulomb self-energyE

FOR THE GROUND-STATE PROPERTIES

OF THE HOOKE'S ATOM En=4027C)H 237+ 72+ 9v3n+4\27

In this appendix we give the analytical and semianalytical

expressions for various properties of the Hooke’s atom in the + \/;(23 arcsirf —32 arcsir)} =1.030 250 a.u.

giri;znd state corresponding to a spring constant valule of (A8)
1. Electron density p(r) 7. External energy E o
w27 C?
pr)=—"1— e "27r +r3+(812mre Eou= j p(r)ikr2dr=2(7wC)[9m+ 14\~]

+4(1+r2)erf(riva)}, (A1) —0.888 141 a.u. (A9)
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8. Electron-interaction potential W (r)

r 1 ,
wee<r>=—c2(ﬂ)3fw T

+3)erf(r'/v2)—3\2/ar'e "R
—4v2 daw(r'/v2)+4r'}dr’, (A10)

W,(0)=0.659 59 a.u. (A11)

9. Hartree potential Wy (r)

27TC)2\/_

Wy(r)= ——————{5\27 erf(r/v2)

- 12e"2’2erf(r/ﬁ) +8v2 erf(r)
+2\2mr (1—erf(riv2))—re "2, (A12)

Wy(0)=(27C) 927 +4m+8]=1.442 941 a.u.
(A13)

10. Slater electron-interaction potential Vg (r)

Vadr)= . (r) e "R 4\2mr +2re "2

+\2m(5+rd)erf(r/v2)}.
A(\27+3)

V5{(0)= —————-=0.656 598 a.u.

727 +16

(A14)

(A15)

11. Single-particle density matrix y(r’,r")

r'—r]
2

7(r’,r”)=2C2e*1’“2“"2>f (1+

r’—r
X 1+| 5 |)erz/zdr. (A16)

12. Dirac density matrix y(r’,r")
ys(r',r")=~p(r")p(r").

13. Kinetic-energy-density tensort,, g(r;[v])

(A17)

Mol g
tap(r;[yD) = 12 f(r)+ 6apk(r), (A18)

where

e " 2

—2\2mr2(1-r?)erf(rIv2) + 4r3e "2

f(r)=3

—6+\7 daw(r/v2)—\27r(r2=3)]]  (A19)

2537
and
32
k(r)= N_) T [r=v2 daw(r/v2)]e "2 (A20)
14. Kinetic-energy-density tensorts ,g(r;[vs])
ol g
ts,aﬂ(r;[ys]): 2 h(r), (A21)
where
h(r)= — (&p ) A22
(=5, o] - (A22)

15. Kinetic field z(r;[y])

2rily)= = e "R \[27r (— 18+ 3r4+8r2+16)

—4\27(r8—6r*+5r2—2)erf(r/v2)
—8r(rt—7r2+2)e "R

— 327 daw(r/v2)}. (A23)

16. Kinetic field zy(r; [ y<])

1 [dp 1 &p 1 (dp 2+<92p
2p | or a] 2p\ar ar?)

(A24)

zy(r;[ysl) =

17. Kinetic energy T[p]

T[p]=m2C¥ 14w+ 20\7]=0.664 418 a.u.(A25)

18. Expectations

<r>=f p(Nr dr=2(27C) 4w+ 1127 +12]

=3.489 025 a.u. (A26)

<r2>=f p(r)r2dr=(47C)3 9w+ 14Jm]=7.105 114 a.u.
(A27)

r

<l> :f p(r) % dr=(27C) 47 +9\27+8]

=1.442 940 a.u. (A28)

<ri2>:f p(r)rizdr=(2wC)2[11w+8ﬁ
+4\27 In(1+v2)]=1.926 359 a.u.(A29)

(8(r))=p(0)=wCY 727+ 16]=0.089 319 a.u.
(A30)
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