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In parallel with standard density-functional theory, we study the energy of the ground state of a finite
many-body system as a functional of the one-particle density matrix. We show that the formulation of a
variational principle that is valid beyond the Hartree-Fock limit requires that two-body correlations be included
not only in the ground-state energy but also in the constraints. As an illustration, we apply a linear-response
argument to derive formulas for first-order corrections to the Hartree-Fock density matrix. Further analysis
suggests an approach in terms of the density matrix of an independent-particle system, which can be introduced
by the application of an alternative variational principle. This approach is reminiscent of Kohn-Sham theory,
but the effective external potential is not required to be local. This variational method can be implemented in
a systematic fashion by means of the linked-cluster expansion. In an appendix we study a variant of the
Hohenberg-Kohn theorem for nonlocal potenti@fs1050-294{®8)06104-6

PACS numbgs): 31.15.Ew, 31.15.Ne, 31.15.Pf

[. INTRODUCTION method based on a functional of the one-matrix that goes
beyond the Hartree-FodF) approximation.

Since the publication more than three decades ago of the Let us first consider the question of “appropriate formu-
Hohenberg-Kohn theorefii] asserting that the ground-state lation.” To see what is involved, we consider a many-body
energy of a many-partic]e system is a unique functional 01Hamiltonian of the form(summation over repeated indices
the one-particle density, followed shortly by the Kohn-Shamthroughout this paper
(KS) formulation [2], there has been a vast enterprise of

. N - - 1 -
theoretical development and useful applications to con- H=N50 0t 5 Wapy6T 5yga (1)
densed matter, atoms, molecules, and nu@eill]. As a 2
side issue, it was natural to ask whether and in what form . o
similar theorems could be formulated and applications car- Pap= l/f;r;l//m 2
ried out for the ground-state energy as a functional of the A U
one-particle density matrixone-matriy. Compared to the o,syﬁa:z/le//gz,/;&(//y. ©)]

quantity of literature associated with the density-functional
development, the number of papers that consider the problefiere the greek indices refer to an arbitrary single-particle
of the one-matrix set forth above has been minisfa—  basis,h, is the sum of the kinetic energy plus any single-
21]. particle potential that may be preseM,z,s is a matrix
We shall make no effort to summarize this work, which is element of the two-particle interactiop, is the one-body
largely associated with questions of existence rather than ¢fensity operatofwhose expectation value in the ground state
implementation. An exception to this general characterizais the one-matrix ¢ is the two-body density operator, agd
tion is the paper of Levy20], which, first of all contains a is the single-particle annihilation operator. ¥, is the
brief characterization of almost all the references cited abovground-state vector, with nondegeneracy assumed, the
that predated it. More significantly, it investigates a numberground-state ener@oz(\lfo||3||\lfo> is given by the expres-
of properties of the correlation energy, including scaling,sion
bounds, convexity, and asymptotic behavior. Finally, it con-
tains a suggested structure for this correlation function that
satisfies all the requirements established earlier. To our Eo=happapt EWHBWUMBW )
knowledge, the ideas contained in this work have not been
carried further. In this paper we take another route on whictwhere clearly the removal of carets from symbols indicates
we shall be concerned exclusively with the problem of howthat an expectation value has been taken. The restriction to
to formulate appropriately and to possibly apply a variationaldegeneracy is for simplicity of presentatigand applica-
tion). Further brief discussion of this point is given in Sec.
VI.
*Electronic address: aklein@walet.physics.upenn.edu If we want to formulate the variational property of H¢)
"Electronic address: dreizler@th.physik.uni-frankfurt.de with respect to the density matrix, we have a double prob-
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lem. The first, which has been universally recognized, is thatvhich allows us to introduce a complete set of orbitals that
we need the two-matrix as a functional of the one-matrix inyields p and simultaneously in diagonal form.

such a form as to guarantee their common origin in a trial It now stands to reason that if we are to have a variational
state vector. This problem has never been solved in full genprinciple that generalizes the one just reviewed, we must
erality [22]. In fact, the difficulty of expressing the two- enforce a constraint that generalizes E6). The formal
matrix in terms of the exact one-matrix in any useful form strycture of this constraint is easily obtained and will be de-
(beyond the HF approximatigteads us, as a practical mea- rived in Sec. Il as part of our discussion of the generalized
sure, to replace the first form of the variational principle with 5 iational principle. Conceptually, it should be clear that

an alternative that is more easily carried into practice. just as the advance beyond HF requires the introduction of

The second problem appears to have been completefyamical correlations, these same correlations must also be

overlooked in the existing literature. It can be formulated and,esent in and generalize the constraint conditions associated
solved, assuming that the first problem has been dealt with i

ith the Pauli principle. As a result, we shall find that the

some reasonable way. This second problem is how to i”CIUdgommutator(lz) which vanishes for HF theorgwhere M

constraints on variation of the one-matrix arising from thz{ominues to mean the derivative of the energy with respect

Eaull p?nup'l_?l.:Trrl]at theri.suould bg such cpns(;ramts IS WellH the one-matrix no longer vanishes and thus the two ma-
nown from HF theory, which must be contained as a speCialiceg cannot be diagonalized simultaneously.

case of the formulation under construction, just as the Har- 1,4 body of this paper is given over initially to the task of

tree approximation is a limiting case of density—_fur?ctional_how the more complicated equations of the full theory may
theory. Whereas the only constraint on the density is that i formylated and solved. In Sec. Il we derive the variational
integrate to the fixed total ngmber of par't|cles, for the full method that is meant to provide the advertised extension of
HF theory we have the additional constraint HF theory. The practical difficulty inherent in this approach
is to obtain useful expressions for the correlation energy in
PapPpy™ Pay=0, ) terms of the exact one-matrix. The only direct method that
suggests itself is to study the equations of motion, within the
single-time formalism, that couple lower-order density ma-
02— p=0 6) trices to higher-order ones and to solve these equations as
' series in the one-matrix. This option is not studied in the
present paper. We restrict ourselves, in Sec. lll, to the pre-
sentation of a calculation that utilizes the formalism to obtain
first-order corrections to the one-matrix beyond the HF ap-
proximation.
(7) In Sec. IV we discuss a solution to the practical difficulty
mentioned by the introduction of a modified variational treat-

It is instructive to review how Eq(6) makes its presence Ment. The idea is to introgiu;:e a mapping from the exact
felt in the formulation of HF theory in terms of the one- ON€-matrix to the one-matrix® of an independent-particle
matrix. The point is simply that we must constrain the varia-SyStem. Th's can be done in a general way, for example, by
tions of the HF energy both by number conservation and b Green’s-function diagram expansion, equivalent to a

Eq. (6), i.e., we may carry out unconstrained variations for inked-cluster expansion, and the results can be used to ex-
the functional press the energy as a functional gt By application of the

variational argument to the new variable, where now we
1. need only the simpler constraint conditions associated with a
Gue=hoppga™t EWaBy(gp(gﬁpya—Qaﬁ[pz—p]ﬁa—/Lpaa, Slater determinant, we can determine the optimum choice of
) the single-particle system. How this can be done most con-

veniently in practice is studied in Sec. V. We first review

certain aspects of a fully diagrammatic definition of the ref-
erence single-particle system; this is the definition of such a
system that one encounters in the usual discussion of linked-
cluster expansions. The variational description is then devel-

oped and contrasted with the former.

The theory studied in Secs. IV and V can be likened to the

which guarantees that is associated with a Slater determi-
nant. Condition(6) is a consequence of the HF factorization
(cf. the extended discussion in Seg. Il

O s5yBa™ P5pP ya™ PsaPyp -

w_here\TVaﬁy(;: Wogy6— Wﬁ_m/g is t.he antisymmetrizeq ma-
trix element of the potentiak) ., is a Lagrange multiplier
matrix, andw is the chemical potential. The unconstrained
variation of Eq.(8) yields the conditions

[H=(Qp) = (p D)+ D]op= 1ap=0, ©) implementation of the Hohenberg-Kohn theorem by the KS
method. The connection of the present work to linked-cluster
H=h+V, (10 expansions bears a resemblance to recent work on density-
functional theory[23,24]. In Sec. VI we first summarize our
Vaﬁzwa,yﬁgpg,y. (11)  results, then consider the feasibility of application of the

theory developed in this paper, and finally comment briefly

By forming the commutator gb with Eq. (9) and enforcing on the possibility of extensions of the theory.
the constraints, we regain the more familiar form of HF  The paper also contains two appendixes. In Appendix A
theory, we give formulas for the computation of derivatives of a
functional of the one-matrix of a Slater determinant with
[p,H]=0, (12 respect to matrix elements of this one-matrix. In Appendix B
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we discuss a matter tangential to the main thrust of this pa‘g=<\IfO|I:||\I’O>—trQ(
per, developing the point of view that, in contrast to the

density-functional formulation, there is, in principle, nothing 1 1 )

so special about a local potential. If one considers a nonlocal ~ + 5WapysPssPyat 7WapysSsysa™ Qaplp®=p=Slpa
potential in the representation of its eigenstates, assumed

complete, it appears that considerations thought to depend on  — 4p4q (18)
locality can be carried over.

p?=p—S)—p trp=N,ppp,

where, as before, W, z,5=W,zy5—Wpaps, Qup is a
Lagrange multiplier matrix, ang is the chemical potential.
The unconstrained variation @ at fixed ) and x now
yields the conditions

Il. VARIATIONAL PRINCIPLE FOR GROUND-STATE
ENERGY

Starting with the Hamiltoniarl), our aim in this section s
is to obtain a system of equations for the calculation of the 3/ ()~ (pQ)+Q], 5+ —— (rQS) — u 8, 5=0,
one-matrixp , 5 from a version of the ground-state variational “p 0P ga “p

principle in which we consideE,=(W¥,|H|¥,) as a func- (19

tional of this matrix. We shall var§, subject to constraints \\nhere

that incorporate both the Pauli principle and number conser-

vation. We write H=h+V+U, (20
Os5yBa= P6pPya™ pyﬁp5a+ S&yﬁa ' (13) VuB:VVa'yﬁﬁpﬁy! (21)

which serves as a formal definition of the correlation func- U :E S (WoosS05) 22

tion s, which must satisfy the antisymmetry requirements B4 Spp,  VEOTTIOVE

As we shall see below, to have a full set of equations to
(149 . )

determine all the variables, we need one more set of equa-

tions, which we obtain by computing the commutatorpof

The practical success of any procedure built upon the equggith H, using both Eqs(19) and (17). We thereby find the
tions derived below will depend on our ability to provide gquations

useful approximate forms of. The choices=0 will return

us to a well-known result, the HF approximation. [p.H]=—-P, (23
Of course, for the variational principle to provide an up-

per bound to the ground-state eneigy,;, must be deriv-

able from an approximate state vector. For approximations P=[Q,S]+

for which this is not the case, the sign of the error will be

unknown. Based on extensive experience with algebraigy contrast to the HF case, we see that the density matrix
methods applied to relatively simple problems in quantumcannot be diagonalized simultaneously with the operator
mechanics and to the nuclear many-body problem, whicRyhich would appear to be a natural candidate for single-
avoid completely the use of wave functiofb,26, we be-  particle Hamiltonian. In the following section, we show how
lieve that this is more a matter of theoretical rather thanpe set(17), (19), and(23), which constitutes the basic equa-
practical concern. For the methods to be applied in this pagons of the variational method, can be used to calculate first-

per, our approximations will correspond closely to state Vecprder corrections to the one-matrix of HF theory.
tors derived from perturbation theory. Nevertheless, we have

to admit t_hat the sign of the_: error is not guara_nteed. lll. CALCULATION OF THE FIRST-ORDER CHANGE
_ To dgrlvg useful constraints to_ incorporate into the varia- IN THE DENSITY MATRIX

tional principle forgy, we setB= §in Eq.(13) and sum over

indices. Assuming that we are dealing with a system Wwith To carry out this calculation, we write

particles, we deduce

S&yﬁa: - Syﬁﬁa: - S&yaB i

P
P, 5—ptr(QS)} . (24)

p=p°+pt, (25

(N=1)p,a=Np,o—(p%) ot Sya’ (15 H= 10+ M, (26)
S,u=S,p8a- (16) Q=001 (27

In matrix notation we therefore have the constraint s=s'[p°l, (28)
S=Sp]. (29

p?—p—S=0. (17)

Here p° is the density matrix for a Slater determinant satis-

To determine the ground-state energy, we vary the funcfying Eq. (17) with S=0 and determined by the equation of
tional motion
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[p°H°]1=0, (30

P1=[Q°s'+ (43)

)
po,—otr(Qosl)

H°=h+1p°]. (31) Sp
and H! has been defined in Eqé36) and (37). From Eq.

(43) we see that we do not requif®! for this calculation. In
fact, this equation yields, for the matrix elementsRdf the

We supposeH® to generate a complete sgt) of single-
particle functions. In the following=h will identify occu-
pied orbitals in the Slater determinant aae p unoccupied

ones. From Eq(19) we learn that values
Q%) 1 = (1180 (32) (PY)nnr=(€n— €n) (S, (44)
(095 =(Q%) ppdop, (33) (PYpp = (€pr =€) (SHppr, (45)
0y — (10 _ = _ 5 tr(QOSsh)
Q) h=(H)hh— n=€n— u, (34 (Pl)ph: _(€p+€h_2,U«)(Sl)ph+ T' (46)
hp
_(Qo)pp:(Ho)pp_MEGp_ﬂ- (39
Ol
Furthermore, 0°) 1, is undetermined and may be set to zero. (PYnp=(€p+ €n—2u)(SHpp+ %05)_ (47)
To proceed to first order, one should understand that for 3(p”) ph

what follows the right-hand sides of Eq28) and (29) are ) ) )

considered to be known quantities. It is not necessary, how- We proceed finally to the study of the equation of motion

ever, to restrict these quantities to their lowest-order approxi(42)- We verify inmediately the reassuring fact that tile’

mations, though that is what would likely be done initially. @hdpp’ matrix elements of Eq42) contain no new infor-
We require also a note about the form7f [Eq. (26)].  Mation in comparison to Eq¢39) and (40). The remaining

To start with, this form is matrix elements yield coupled linear inhomogeneous equa-

tions for theph andhp matrix elements of the form
R S AP Y 1 1y 1
H :Wp + Zg(trWS )5_p (36) [(Ep_eh)ﬁhh’épp’+wph’hp’](p )p’h’+pr’hh’(p )h’p’
o = (PYpn, (48)
In the lowest approximation, the last factor of the second
term may b_e replaced by qn_lty. The_ formulas necessary for [(ep—eh)ﬁhh,5pp,+\7Vhp,ph,](pl)h,p,+\7th,pp,(p1)p,h,
the calculation of the remaining derivative are given in Ap- .
pendix A and applied in detail to the theory discussed in Sec. =~ (P )np, (49
V. We shall write the two terms of E¢36) as

where
H=H"4+U°. (37) ~
(Pl)ph: ( I:)1)ph+ (uo)ph+pr’hp”(pl) p’p’
Turning to the constraint conditiofil7), the first-order - L
equations read +Won (P ) e (50
P01+ plpd— pl=St. (39) (PY ph=(PY) ot (UO) it W hpr( 1) prp-
'I_'he apparently straightforward conclusions from these equa- +\7Vph’hh”(p1)h”h’- (51)
tions are
L . The structure of Eqg48) and(49) is not unfamiliar. If we
(P )nn = (S)hnr, (39  write these equations in the matrix form
(PYpp=—(SYpprs (40) Mpl= 1P, (52)
0=(S"ph- (41)  wherers is the diagonal Pauli matrix, we recognize tivais

the linear operator associated with the eigenvalue problem of
Of these statements, only the last one defies cred¢itde.  the random-phase approximatiGRPA). The solution of the
straightforward to check that the right-hand side of )  inhomogeneous equati@s2) by expansion op? in the RPA
does not vanisfhWe can, however, extricate ourselves from eigenvectors is then standard.
its unacceptable consequences by noting that because

(2%pr=0, we can argue that the particle-holeh) matrix IV. GENERALIZED KOHN-SHAM THEORY:
elements of Eq(38) are not part of the constraint condition ALTERNATIVE VARIATIONAL APPROACH
when the latter is expressed in the appropriate basis.

This leaves the matrix elementﬁloph to be determined. In this section we make a transition to a form of the
For this purpose, we turn to the equations of moti@8). To  theory that is analogous to the transition from the original
first order, we must solve the equations form for the realization of the Hohenberg-Kohn theorem to

the more useful KS form. We have noted above the difficulty
[p° HY+[pt HO=—P1, (42)  of creating a general formalism with the full one-matrix as
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the fundamental entity. Though not out of the question for- The application of these equations depends on the use of
mally, there is no immediate incentive to pursue this direc-suitable approximating functionals for the total energy. To-
tion, especially in view of the simpler alternative that we ward this end we shall apply several versions of linked-
shall now expound. cluster perturbation theoryGreen’'s-function and time-
The basic idea behind the simplified approach is to makéndependent formsn order to exhibit all terms of the energy
use of a mapping from the full one-matrixto a one-matrix  as functionals op®. Essential details of this approach, which
p® for a Slater determinant, seems the only feasible one, are supplied in Sec. V, where,
for the sake of comparison, we start with a brief review of a

s * standard, alternative, diagrammatic approach to the choice of
(p )“B_Ea Va(B)ya(a), (53 a single-particle Hamiltonian.
As a final observation of the present discussion, we note
(p%)%=p%, (54)  the following: If we were dealing with the density in con-

figuration space rather than with a general density matrix,

where the labeh specifies the basis of natural orbitals for  then it is a property of KS theory that a Slater determinant
This mapping can be taken to be defined explicitly as a lim-can be chosen that yields the exact density. The variation can
iting form of Eq. (66) of Sec. V, which expresses the rela- then be restricted to the class of such Slater determinants.
tionship between the exact one-particle Green’s funcGon Though the solution procedure suggested below bears a
and the independent-particle Green’s funct®hfor propa-  striking resemblance to the standard KS formulation, in the
gation by the single-particle Hamiltonidnt+vS. Sincep is  present theory the density matgx4 p°. As we shall see, the
directly an equal time limit of3, it remains only to convince further calculations necessary to build the exact density ma-
ourselves that the right-hand side of this equation can b#ix from the trial matrixp® are part of the procedure used to
considered as a functional pf. This relationship need not construct the total-energy functional.
be explicit; all that is necessary in practice is that we be able
to calculate the change of the right-hand side when we alter
the value ofp®. The explicit calculations that establish this as
fact are given in Appendix A. A. Linked-cluster expansions

If we accept the existence of this mapping, which is cer-
tainly true to any finite order of perturbation theory, then we
can consider the variation

V. DIAGRAMMATIC EXPANSIONS

In the previous text several single-particle operators
played an essential role in the formulation and application of
the variational principles. In Sec. 1l we encountered the op-

eratorH and in Sec. IV the operatdi®. The construction of
9o = ﬁ 2 =0 (55) useful approximate forms of these operators depends first on
opS  Op &pS the choice of approximations for either the total ground-state
energy or the potential energy, depending on the specifics of
becauseSEy/dp=0. Thus, given the variational principle of the formulation used. This section and Appendix A are de-
Sec. Il, Eq.(55) provides us with a means of optimizing the voted to a brief account of the information needed.
choice of p°, namely, it is that independent-particle one- In this section we shall first describe a version of the
matrix that “minimizes” the ground-state energy. To derive historical approach to the choice of a single-particle basis for
equations that exploit this new condition, we must ad&go the application of the linked-cluster theorem. The main rea-
constraint conditions, which may here be chosen of the samson for the injection of this material, which interrupts the
form as in HF theory. Thus we study the functional main flow of the argument, is that it leads to what appears to
A be a natural definition of the single-particle potential. Never-
G=(Vo[H| W) —trQ (p%)%—p5]— utrpS, (56) theless, as we show in Sec. V B, this definition contains only
a subclass of the terms yielded by the variational definition.

where the constraints specify the nature of the trial densityt therefore serves both as an introduction and an interesting
matrix as well as number conservation. This variational princontrast to the “new” treatment that follows it.

ciple, which should be compared with Ed8), is neverthe- For the purposes of this discussion, we use the Feynman
less formally exact. _ form of the theory, which is by far the simplest version for
Varying this equation with respect &, we obtain our initial theoretical aims. Treatments of the relationship of

this approach to linked-cluster expansions can be found in

6G° [27,28. As a preliminary study we consider the Feynman
5_ps:0:HS_QSpS_pSQS+QS_f’ (57 one-particle Green’s function
SE G(1[2)=i(Wo|T(#(1)§(2)| o), (60)
Ho=— (58)
op where an integer stands for a position coordinate, a spin co-

ordinate, and a time coordinat& is a reciprocal of the
differential operator that we consider together with two sim-
pler differential operators, namely,

andE, is found in Eqg.(8). From Eq.(57) it follows that
[p®H°]=0, (59

so thatp® and7* can be diagonalized simultaneously. G l=—ig+h+3, (61
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FIG. 2. Sum of terms to third order defining the effective exter-

FIG. 1. Decomposition of the irreducible self-energy operator | botentialys ted by the time-d dent linked-clust
according to the number of interaction emerging from the open lineN? Potentiab™ suggested by the time-dependent inked-cluster ex-
Each term of this sum contains terms of all orders in the interaction?2">'°":

We study 3 as a matrix in the same representation,

—1_ s
(G?) ™ =—ia+h+v?, (62) 3 (bty|at;) describing a transition from a single-particle
o1 ] statea at timet, to a single-particle state at timet,. We
(G") "=—ig+h. (63 write [27,29

HereZ is the irreducible self-energy operator, whose struc- *

ture is reviewed below, ang® is one of the potentials to be 3= 3., (72)
discussed, either the one defined in this subsection or that n=1

derived in the next subsection.

The matricesG and G® satisfy the integral equations 3 (btylaty) = —i8(t;—to) Wogad P1) e, (72)
G=G%+G’3G, (64) 3,(btylaty)=(—i)’Gya’,t;—tp)

G5= GO+ G%SGS. 65) X Wograre Wardad P)ercard,  (73)

(74)

By eliminating G° between these two equations, we obtain
the formal solution HereP, is the most general closed-loop structure that can be
attached by instantaneous interactions to the remainder of a
” diagram forany quantity. The decomposition & is illus-

G=GS[1_(2_US)GS]%=GS§«0 [(2-v®)G°]" trated in Fig. 1. The first term is a special case to which we

- (66) return below.3, already exhibits the general structure, in
that from the two times associated with the Green’s function
representing propagation along the open line, the two emerg

disposal, so as to cancel “as much as possibleofThis ing interactions “connect” with the closed-loop structure

requires a discussion of the structure of the latter matrix. P2- BY extension,X, contains an open line with—1 G°
Let (x|a) be the coordinate space representation of thdunctions from which emanateinteractions connected to an

irreducible closed-loop structurB,. Reducible structures,
connected only by a singlé® line, arise from higher terms
1) = (h+v%)|a) = e,|a). (67)  in the expansior(66). We emphasize that each tei, is
itself an infinite series in the strength of the potential, arising
from the complex structure d?,,. It is also evident that in
general, terms beyond the first in E§1) cannot be associ-
ated, within this theoretical framework, with an instanta-
neous interactiorisee the end of this subsection, however
Thus, within this diagrammatic description, the “natural”

N choice forv® is
where the operatorg® propagate in time according to the

N . . ; ~
Hamiltonian> and @, is the ground-state Slater determi- v5.=Wogea P1)ab- (75)
nant of this Hamiltonian. We may thus expand

This formula suggests that we choos& which is at our
single-particle eigenfunction

We look more closely a3, which, in analogy with Eq(60),
is defined by the expression

GS(1]2) =i{(Do| T(%(1) #51(2)| Do), (68)

With this definition, the contributions to® through third
~sran NS _ ~g order are illustrated in Fig. 2. As shown in Fig. 3, the ab-
)=y (Xl’tl)_za Ya(ty)(xi]a), sence of contributions of second order is a consequence of
the definition(75). In lowest approximationys is equal to
N . ~s the HF potential. In higher order the solution of E§7) is
Ya()=exp—let) ¥y (69 considerably more difficult because we cannot separate the

] . ] problem of determining thh orbitals from that of determin-
and thus identify), as the destruction operator for the mode

a. Because of the relationship of these operators to the state
d,, it follows that

G(atylbty) = [ dxadeg(alxy)G*(1[2)(xlb)
FIG. 3. lllustration of the cancellation of single-interaction in-
=6,,G%(a,t;—t5). (700 sertions and potential insertions.
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e Nar O - TOO
O Q02 0 -0
FIG. 4. Representation of the correlation energy to third order FIG. 5. Correlation energy functional as a linked-cluster expan-

when the effective external potential is chosen according to théion to second order before variation with respect to the single-
suggestion from time-dependent linked-cluster theory. particle density matrix, corresponding to Ec80).

. . . B. Variational considerations
ing thep orbitals, as is true for the HF problem. As we shall

see for a related case, studied in more detail below, they both In view of the aesthetic qualities of the standard linked-
occur in higher-order terms of the self-consistent potential. cluSter expansion, we should justify why it is necessary or
We turn next to the energy, where we use the linked-desirable to venture beyond its confines. The reason is that it

cluster expansion in the form that follows from the Hellman-does not answer the following question: Suppose we carry
Feynman theorem out an evaluation of the total energy uprtth order, expand-
ing about an unperturbed independent-particle system de-
fined by some choice af* in Eq. (67). What is the choice of
single-particle basis that “minimizes” this approximation to
Eo=2, en+tAE, the energy? From a practical point of view, this can be un-
n derstood to be the question addressed in Sec. IV.
1 . We next show that this question yields a different answer
= 2 ent f dN(Wo(N)[(W=0%)[Wo(N")). (76)  for the choice ob® than the diagrammatic argument given in
0 Sec. V A. It is convenient to base the further considerations
on the formula(76) for the energy. From the requirement

When we expand the integrand in powers\df using the H3=h+v3=(8Ey/6p®), (77)
Feynman form of the contributions, and then do ¥Hente-
gration, we are led to a conventional form of the linked-since
cluster expansion. This approach also informs us that the
linked-cluster expansion for potential energy and the linked-
cluster expansion foA E, are term for term the same except 5§h: €n S(trH%pS)
that in the former each contribution of ordeoccurs with an =
additional factor ofn compared to the latter. With the defi- op® op®
nition of v*° currently in force the linked-cluster expansion
takes a form from which potential insertions are absent. Thid follows that
is represented diagrammatically to third order in Fig. 4,
which still refers to Feynman diagrams.

In these diagrams, anth-order contribution hasm—1
time integrals. Carrying out these integrals leads to the mor
widely applied time-independent form of the linked-cluster

expansio29,30. To the order shown, the time-independent__ The main alternative physics that follows from the defini-

form can be represented by the same set of diagrams as Wi’n. (7.9.) of the effe(_:tive gxternal potential can_be lllustrated
Fig. 4, but the interpretation of each diagram is quite differ—by limiting our considerations to second order in the strength

ent of the interaction. To this ordeAE, is given as a sum of

Before returning to our main subject, we address a pOingiagrams: in Fig. 5. We shall carry out an explicit c_alculation
of possible concern to those readers who are familiar witHﬁJlnd for_ that_ purpose we record the actual expression ky
the Brueckner theory of nuclear matf&t]. At first sight the in the tlme—lndepende_nt form, using the standard rules for the
latter appears to embody a contradiction to our definition o]lmked-cluster expansiof29,30. Namely,
the single-particle potential: In that theory the definition of ~ s 12
v® involves not only terms fronk, but also contributions AE S s L |Whphn = 0pnl
from 3., for anyn. The resolution of the apparent contradic- 0= 2 hhhh = Uhn ™ 5 €h— €p
tion is that the extended potential is also energy dependent. If - )
we consider, for instance, the matrix elemerit, in the n } [Woprni| (80)
“hole” space, in the Brueckner theory it also depends on the 4 e+ e — €p— €pr '
eigenvaluese,, and €y, v =vnn (€, €p). This expresses
the property that the potential in question will, in general, be The derivative of this quantity with respect to the ele-
not only nonlocal in space but also not instantaneous whements ofp® can be calculated by applying EqA3)—(A6) to
viewed from the time-dependent form of the theory. Eq. (79). To first order, e.g., we find, writing

="H5, (78

SAEy/5p°=0, (79

gnd as we shall see momentarily this last formula gives us a
means of calculating®.
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the ground-state energy. In this paper we have sought to
develop corresponding theoretical structures when the
ground-state energy is considered, not as a functional of the
physical density, but as a functional of the physical one-
particle density matriXone-matriy. We bypassed any dis-
FIG. 6. Diagrammatic representation of the second-order terntussion of rigorous existence theorems that have been ex-

vi, given by Eq.(83). plored fully in previous work[12—-21. Rather, we went
directly to the variational formulation of the dynamics. We
vi=vitvit, (81) derived a variational principle in terms of the physical one-
matrix that contains the Hartree-Fock theory as a special
the expected result case. We discovered that to include correlations in the varia-

tional principle, the same correlations that occur in the en-
_ ergy functional must find expression in the kinematical con-
Vhp= Wi ph- (82  straints on the one-matrix associated with the Pauli principle.
This led to equations that may be viewed as the nonlocal
This guarantees not only that the third term on the right-han@nalogs of generalized TF theory. For a systematic treatment
side of Eq.(80) does not contribute to the second order of theby this method we need a representation for the correlation
energy, but also, as shown by a straightforward calculationfunction in terms of the one-matrix. An effort in this direc-
its derivative does not contribute to the second order of thdion that appears to be worthy of further study can be found
potential. However, this is not true of the last term of Eq.in [20]. It may also be of interest to try to develop a repre-
(80). We obtain contributions from differentiating both the sentation of the correlation energy as a series in the one-
numerator and the denominator of this expression, but thenatrix based on the study of single-time equations of motion
latter is of third order. Neither term was a part of the defini-for the associated density operators. In any event, much re-
tion of v° obtained by the diagram cancellation method ofmains to be done along these lines. As one application, we
Sec. V A. The second-order terms have outlined a calculation of first-order corrections to the
HF values of the one-matrix.
~ ~ — — The study of the formalism just described does not imme-
b2 :E WhhppWprprhvp _ 1 Whhrpr pWoprhn diately commend itself by its simplicity and therefore in the
hp™ 2 €h + €n— €pr— € 2 €n+ € — €y — €p second part of the paper our aim was to simplify matters by
(83 constructing an analog of KS theory, i.e., by constructing a
theory in terms of a model one-matrix of independent par-

may also be assigned diagrams as shown in Fig. 6. Note th#i¢les moving this time in an effective nonlocal one-particle
these extra terms depend on the single-particle eneg@s  potential. There are several characteristic differences be-
By studying the structure of higher-order terms, it is nottween the resulting theory and KS theory. On the one hand,
difficult to show thatv™ contains as a subset all the contri- by using the linked-cluster expansion, we could write down a
butions obtained by the diagram cancellation, but the miniformally exact expression for the correlation energy that we
mization procedure introduces additional contributions to thestudy as a perturbation expansion, but that can also be stud-
potential, as has been shown explicitly for the second-ordeied in various partially summed forni81]. Such expressions
contribution. As noted previously, inclusion of any termsare not so readily available in KS theory. On the other hand,
beyond the HF approximation complicates the constructiorthe “natural” formulation of the KS-like theory yielded a
of a complete set of orbitals because we can no longer sep@ne-matrix that is not equal to the physical one-matrix.
rate the problems of computing theorbitals from that of If we examine the elements of the formalism as they fi-
computing thep orbitals since the self-consistent potential Nally emerged in Sec. V, it becomes clear that we are con-
contains the latter. What is finally of interest, from a practi- fronted with a generalized HF problem. The major difference
cal standpoint, is whether the variational approach yields imWwith ordinary HF theory is that evaluation of the potential

proved values for observables compared to the standardfvolves sums of the type encountered in perturbation theory
linked-cluster expansion. for the correlation energy. The solution by iteration of the

associated one-particle ScHinger equation, where occu-
pied and unoccupied orbits play a more equal role than in HF
theory, means that such sums have to be calculated repeti-
We first summarize the basic contents of this paper. Fotively. A survey of some of the review literature on HF
density-functional theory, the original Hohenberg-Kohn for-theory and its extensions to include correlatip83—37 in-
mulation led to a generalized Thomas-Fel(fiF) theory to  dicates that such calculations are within the realm of present
determine the ground-state density. The practical difficultiecapabilities. Indeed, the calculation of perturbation sums has
of this theory were bypassed by the Kohn-Sham formulationbeen a standard part of the repertoire since the seminal work
which is based on the fact that the exact density may bef Kelly more than three decades d@8,39. Physically we
calculated as the density of a system of independent particldgave a sequence of approximations that in its treatment of
moving in an effective one-body local potential. The practi-correlations appears to be distinct from anything in the lit-
cal formulation of both the generalized TF theory and the KSerature of atomic and molecular physics. Whether this makes
theory is given in terms ofrelated variational principles for  the problem of interest to practitioners in the field is for them

VI. CONCLUDING REMARKS
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to answer. In its present form, the theory applies only to s s

closed-shell atoms. —__ SapHpp+ SonHap+ Wanppt —22 (n8)
Beyond what we have set forth in this paper, it is clear 5P§h P;SJh

that all the well-known generalizations of density-functional

theory formulated for a nondegenerate ground Staégen- b s s o U3y

erate ground state, superconducting system, etc[53eare S0 ahHpb~ ObpHant Wapbnt P (A9)

open for further investigation along lines developed in this Php Php

paper. However, there is small incentive to carry out SUChhja 402 elements of these formulas are needed in the evalu-

ehxten5|ﬁns Sf the thelpr()j/ unless and until the nondegeneraléﬁion of derivatives of the energy denominators that occur in
theory has been applied. the linked-cluster contribution to the energy; they can be
calculated with the help of Eq§A3)—(A6).
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We start from a Hamiltonian
APPENDIX A: FORMULAS FOR DERIVATIVES WITH

RESPECT TO THE DENSITY MATRIX A= H0+\7V+ E ;)a,BUﬁa! (B1)
a,B

We need formulas for derivatives of one-particle matrix
elementsf,, and two-particle matrix elementdpeq With whereH, is a one-body operator, which may be the kinetic
respect to the density matrpé. The basic formulas aresup- ) L .
pressing the superscriptafter the first ling entgrgy or may include a potentidd is the two-body inter-

action,

d|b)=8(p%|b)+(1—p)3b - NN

|b)=8(p°[b) +(1—p)°b)) e 62
= 5bh2 [p") 8pprn— 5bp2, Ih)dprrp,  (AD s the one-particle density operator, ang, is the one-body

P h potential on which we focus. The greek indices indicate that

we are writing the Hamiltonian with respect to a general

5(al= 5ahz (p'| Spnrp— 5ap2 (W' |8ppr,  (A2) single-particle basis, so that in fact the potential may be local

p’' h’' or nonlocal, though we shall emphasize the latter. It is natu-

rally assumed that the set of single-particle functions

where we have used the Hermiticity requireme#it=ppa ¢ _(r,0, . . .) that define the representation are given. There-
and the property of any density matrix for a Slater determifore, knowledge of the matrix,, 5 implies knowledge of the
nant that its first-order variations have orgft andhp non-  nonlocal potentiab (r,o,r’,o’) that gives rise to it. Note,

vanishing matrix elements. however, that when we introduce a basis from the beginning,

Since 0,,= (2| 0|b), etc., we have as a consequence  we can think ofH as defined only on a finite-dimensional

vector space. The interactioh' would then play the role of

0an _ _ Onpdapt OapSon (A3)  residual interaction.

SPph We shall also write the last term of E(B1) asH; and if

50 we replacev by another potentiad’ we shall also replace

5_5“’: Opp0an— Oandop (A4) H, by A}, etc. Thus Iet\If9 and \{I(’) be the ground states,
Php assumed nondegenerate,lbfandH’, respectively. We de-

fine a permissible variation
é\®abcd_

=~ 8apOhpcdt cn® — OO ancdt San® , N A s
5Pph ap“~ hbcd ch™~abpd bp*~ahcd dh ab((Xs) 5H1=H1—Hl (B3)

as one that has at least one nonvanishing matrix element
6®abcd_ P AP S PPN connecting different eigenstatds of H. We now review the
Sppp  2M pbed? TbhTaped  TepTiabhd - TdpTabeh: various parts of the Hohenberg-Kohn procedure, making
(AB) such changes as are required by the altered framework.

@ If v#v’, then¥y#W¥ ). We reproduce the standard
These formulas are needed and applied in Sec. V. Hergroof. If =W/, we deduce

we note the preliminary aspects of their application to the
single-particle Hamiltonian SH W o= (Ey—Ef) ¥y, (B4)

Hep= hab+\7vah,bh,+u§b, (A7) which leads to a contradiction if we take an off-diagonal
matrix element.
which is an approximation to the single-particle Hamiltonian  (b) ¥ uniquely determines, even if nonlocal, within a
K defined in Sec. IV. We find set of nonlocal potentials, to be defined. To see this, choose
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the single-particle representation in whiglis diagonalsup- (i) W, uniquely determines the occupation densdyop-
posing its eigenfunctions to form a complete)set ping the boldfacg
Hi=2 v(@) =2 v(@)n(a). (B5) n(a)=(¥o|n(a)|¥). (B8)
a a

According to our assumptions, the eigenvalugg) com- (if) Converselyn(a) uniquely determinests. We have

pletely determine a nonlocal potential. We define the associn® o conditions
ated set of potentials as those that are diagonal in the same

single-particle basigan infinite set Let the N-dimensional " <(U' QW)+ /
vectora=(a,,a,, ... ,ay) define a Slater determinant with (WolHWo)=(WolH'[Wo) ; [v(@)n"(a)

the occupied orbitals as given. Now write the solution of the ) .

Schralinger equation for the ground state as an expansion —v'(a)n’(a)], (B9)

with respect to these determinants,
WA WY <(W,|A|W)+ '(a)n(a)—v(a)n(a)].

Ve cala). @ (Yol IYO=(YolA[Yo+ 2 [v'()n(a)—v(@n(a)]

a (B10)

In this basis the Schdinger equation takes the form

[E v(ay)

If n(a)=n’(a), by adding the two inequalities, we obtain a

L contradiction unles® (=¥

C(a)=§b: [Eo8ap—(al(Ho+W)|b)]c(b). We also note a more standard version of the theory that
(B7) does not require us to choose a special ba3ikis is the

form that we have actually studied in the body of our paper.

In analogy with the case of a local potential, the same arguin an arbitrary single-particle representation, with

ment can be made that because of the multiplicative charac:(xyo|,3|xpo>, we have

ter of the factor on the left-hand side of this equation, it is

uniquely determined within the set of potentials that also vV p, (B11)

appear as such factors, namely, the set of associated poten-

tials as defined above. From this point of view, the local

potentials appear as a singular limit of potentials that are

diagonal in the basis of improper eigenfunctidnsr). We

turn next to the relationship between the ground-state eigenithin the class of comparison potentials satisfying

function and the occupation density, which is the standard

p—nN=Voouv, (B12)

one. [v,0']=0. (B13)
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