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Variational principle for the ground-state energy as a functional of the one-particle
density matrix: Beyond Hartree-Fock theory
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In parallel with standard density-functional theory, we study the energy of the ground state of a finite
many-body system as a functional of the one-particle density matrix. We show that the formulation of a
variational principle that is valid beyond the Hartree-Fock limit requires that two-body correlations be included
not only in the ground-state energy but also in the constraints. As an illustration, we apply a linear-response
argument to derive formulas for first-order corrections to the Hartree-Fock density matrix. Further analysis
suggests an approach in terms of the density matrix of an independent-particle system, which can be introduced
by the application of an alternative variational principle. This approach is reminiscent of Kohn-Sham theory,
but the effective external potential is not required to be local. This variational method can be implemented in
a systematic fashion by means of the linked-cluster expansion. In an appendix we study a variant of the
Hohenberg-Kohn theorem for nonlocal potentials.@S1050-2947~98!06104-6#

PACS number~s!: 31.15.Ew, 31.15.Ne, 31.15.Pf
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I. INTRODUCTION

Since the publication more than three decades ago of
Hohenberg-Kohn theorem@1# asserting that the ground-sta
energy of a many-particle system is a unique functiona
the one-particle density, followed shortly by the Kohn-Sha
~KS! formulation @2#, there has been a vast enterprise
theoretical development and useful applications to c
densed matter, atoms, molecules, and nuclei@3–11#. As a
side issue, it was natural to ask whether and in what fo
similar theorems could be formulated and applications c
ried out for the ground-state energy as a functional of
one-particle density matrix~one-matrix!. Compared to the
quantity of literature associated with the density-functio
development, the number of papers that consider the prob
of the one-matrix set forth above has been miniscule@12–
21#.

We shall make no effort to summarize this work, which
largely associated with questions of existence rather tha
implementation. An exception to this general characteri
tion is the paper of Levy@20#, which, first of all contains a
brief characterization of almost all the references cited ab
that predated it. More significantly, it investigates a num
of properties of the correlation energy, including scalin
bounds, convexity, and asymptotic behavior. Finally, it co
tains a suggested structure for this correlation function
satisfies all the requirements established earlier. To
knowledge, the ideas contained in this work have not b
carried further. In this paper we take another route on wh
we shall be concerned exclusively with the problem of h
to formulate appropriately and to possibly apply a variatio
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method based on a functional of the one-matrix that g
beyond the Hartree-Fock~HF! approximation.

Let us first consider the question of ‘‘appropriate form
lation.’’ To see what is involved, we consider a many-bo
Hamiltonian of the form~summation over repeated indice
throughout this paper!

Ĥ5habr̂ba1
1

2
Wabgdŝdgba , ~1!

r̂ab5ĉb
† ĉa , ~2!

ŝdgba5ĉa
† ĉb

† ĉdĉg . ~3!

Here the greek indices refer to an arbitrary single-parti
basis,hab is the sum of the kinetic energy plus any singl
particle potential that may be present,Wabgd is a matrix
element of the two-particle interaction,r̂ is the one-body
density operator~whose expectation value in the ground sta
is the one-matrix!, ŝ is the two-body density operator, andĉ
is the single-particle annihilation operator. IfC0 is the
ground-state vector, with nondegeneracy assumed,
ground-state energyE05^C0uĤuC0& is given by the expres-
sion

E05habrab1
1

2
Wabgdsdgba , ~4!

where clearly the removal of carets from symbols indica
that an expectation value has been taken. The restrictio
degeneracy is for simplicity of presentation~and applica-
tion!. Further brief discussion of this point is given in Se
VI.

If we want to formulate the variational property of Eq.~4!
with respect to the density matrix, we have a double pr
2485 © 1998 The American Physical Society



h
in

ria
e
-
m
a-
ith

te
n
h
lu
he
e

ci
a
a
t

ul

i-
n

e
-

ia
b

fo

-

ed

F

hat

nal
ust

e-
ed
at
of

o be
iated
e

ect
a-

of
ay
nal

of
ch

in
hat
the
a-
s as
he
re-

ain
ap-

ty
at-
act

, by
a

ex-

we
th a
e of
on-
w
ef-
h a
ed-

vel-

the
KS
ter
sity-
r
he
fly

A
a

ith
B

2486 57ABRAHAM KLEIN AND REINER M. DREIZLER
lem. The first, which has been universally recognized, is t
we need the two-matrix as a functional of the one-matrix
such a form as to guarantee their common origin in a t
state vector. This problem has never been solved in full g
erality @22#. In fact, the difficulty of expressing the two
matrix in terms of the exact one-matrix in any useful for
~beyond the HF approximation! leads us, as a practical me
sure, to replace the first form of the variational principle w
an alternative that is more easily carried into practice.

The second problem appears to have been comple
overlooked in the existing literature. It can be formulated a
solved, assuming that the first problem has been dealt wit
some reasonable way. This second problem is how to inc
constraints on variation of the one-matrix arising from t
Pauli principle. That there should be such constraints is w
known from HF theory, which must be contained as a spe
case of the formulation under construction, just as the H
tree approximation is a limiting case of density-function
theory. Whereas the only constraint on the density is tha
integrate to the fixed total number of particles, for the f
HF theory we have the additional constraint

rabrbg2rag50, ~5!

i.e.,

r22r50, ~6!

which guarantees thatr is associated with a Slater determ
nant. Condition~6! is a consequence of the HF factorizatio
~cf. the extended discussion in Sec. II!

sdgba5rdbrga2rdargb . ~7!

It is instructive to review how Eq.~6! makes its presenc
felt in the formulation of HF theory in terms of the one
matrix. The point is simply that we must constrain the var
tions of the HF energy both by number conservation and
Eq. ~6!, i.e., we may carry out unconstrained variations
the functional

GHF5habrba1
1

2
W̃abgdrdbrga2Vab@r22r#ba2mraa ,

~8!

whereW̃abgd5Wabgd2Wbagd is the antisymmetrized ma
trix element of the potential,Vab is a Lagrange multiplier
matrix, andm is the chemical potential. The unconstrain
variation of Eq.~8! yields the conditions

@H2~Vr!2~rV!1V#ab2mdab50, ~9!

H5h1V, ~10!

Vab5W̃agbdrdg . ~11!

By forming the commutator ofr with Eq. ~9! and enforcing
the constraints, we regain the more familiar form of H
theory,

@r,H#50, ~12!
at
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which allows us to introduce a complete set of orbitals t
yields r andH simultaneously in diagonal form.

It now stands to reason that if we are to have a variatio
principle that generalizes the one just reviewed, we m
enforce a constraint that generalizes Eq.~6!. The formal
structure of this constraint is easily obtained and will be d
rived in Sec. II as part of our discussion of the generaliz
variational principle. Conceptually, it should be clear th
just as the advance beyond HF requires the introduction
dynamical correlations, these same correlations must als
present in and generalize the constraint conditions assoc
with the Pauli principle. As a result, we shall find that th
commutator~12!, which vanishes for HF theory~whereH
continues to mean the derivative of the energy with resp
to the one-matrix!, no longer vanishes and thus the two m
trices cannot be diagonalized simultaneously.

The body of this paper is given over initially to the task
how the more complicated equations of the full theory m
be formulated and solved. In Sec. II we derive the variatio
method that is meant to provide the advertised extension
HF theory. The practical difficulty inherent in this approa
is to obtain useful expressions for the correlation energy
terms of the exact one-matrix. The only direct method t
suggests itself is to study the equations of motion, within
single-time formalism, that couple lower-order density m
trices to higher-order ones and to solve these equation
series in the one-matrix. This option is not studied in t
present paper. We restrict ourselves, in Sec. III, to the p
sentation of a calculation that utilizes the formalism to obt
first-order corrections to the one-matrix beyond the HF
proximation.

In Sec. IV we discuss a solution to the practical difficul
mentioned by the introduction of a modified variational tre
ment. The idea is to introduce a mapping from the ex
one-matrix to the one-matrixrs of an independent-particle
system. This can be done in a general way, for example
a Green’s-function diagram expansion, equivalent to
linked-cluster expansion, and the results can be used to
press the energy as a functional ofrs. By application of the
variational argument to the new variable, where now
need only the simpler constraint conditions associated wi
Slater determinant, we can determine the optimum choic
the single-particle system. How this can be done most c
veniently in practice is studied in Sec. V. We first revie
certain aspects of a fully diagrammatic definition of the r
erence single-particle system; this is the definition of suc
system that one encounters in the usual discussion of link
cluster expansions. The variational description is then de
oped and contrasted with the former.

The theory studied in Secs. IV and V can be likened to
implementation of the Hohenberg-Kohn theorem by the
method. The connection of the present work to linked-clus
expansions bears a resemblance to recent work on den
functional theory@23,24#. In Sec. VI we first summarize ou
results, then consider the feasibility of application of t
theory developed in this paper, and finally comment brie
on the possibility of extensions of the theory.

The paper also contains two appendixes. In Appendix
we give formulas for the computation of derivatives of
functional of the one-matrix of a Slater determinant w
respect to matrix elements of this one-matrix. In Appendix
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57 2487VARIATIONAL PRINCIPLE FOR THE GROUND-STATE . . .
we discuss a matter tangential to the main thrust of this
per, developing the point of view that, in contrast to t
density-functional formulation, there is, in principle, nothin
so special about a local potential. If one considers a nonlo
potential in the representation of its eigenstates, assu
complete, it appears that considerations thought to depen
locality can be carried over.

II. VARIATIONAL PRINCIPLE FOR GROUND-STATE
ENERGY

Starting with the Hamiltonian~1!, our aim in this section
is to obtain a system of equations for the calculation of
one-matrixrab from a version of the ground-state variation
principle in which we considerE05^C0uĤuC0& as a func-
tional of this matrix. We shall varyE0 subject to constraints
that incorporate both the Pauli principle and number con
vation. We write

sdgba5rdbrga2rgbrda1sdgba , ~13!

which serves as a formal definition of the correlation fun
tion s, which must satisfy the antisymmetry requirements

sdgba52sgdba52sdgab . ~14!

The practical success of any procedure built upon the eq
tions derived below will depend on our ability to provid
useful approximate forms ofs. The choices50 will return
us to a well-known result, the HF approximation.

Of course, for the variational principle to provide an u
per bound to the ground-state energysdgba must be deriv-
able from an approximate state vector. For approximati
for which this is not the case, the sign of the error will
unknown. Based on extensive experience with algeb
methods applied to relatively simple problems in quant
mechanics and to the nuclear many-body problem, wh
avoid completely the use of wave functions@25,26#, we be-
lieve that this is more a matter of theoretical rather th
practical concern. For the methods to be applied in this
per, our approximations will correspond closely to state v
tors derived from perturbation theory. Nevertheless, we h
to admit that the sign of the error is not guaranteed.

To derive useful constraints to incorporate into the var
tional principle forE0, we setb5d in Eq. ~13! and sum over
indices. Assuming that we are dealing with a system withN
particles, we deduce

~N21!rga5Nrga2~r2!ga1Sga , ~15!

Sga5sgbba . ~16!

In matrix notation we therefore have the constraint

r22r2S50. ~17!

To determine the ground-state energy, we vary the fu
tional
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G5^C0uĤuC0&2trV~r22r2S!2m trr5habrba

1
1

2
W̃abgdrdbrga1

1

4
W̃abgdsdgba2Vab@r22r2S#ba

2mraa , ~18!

where, as before,W̃abgd5Wabgd2Wbagd , Vab is a
Lagrange multiplier matrix, andm is the chemical potential
The unconstrained variation ofG at fixed V and m now
yields the conditions

@H2~Vr!2~rV!1V#ab1
d

drba
~ trVS!2mdab50,

~19!

where

H5h1V1U, ~20!

Vab5W̃agbdrdg , ~21!

Uab5
1

4

d

drba
~W̃gedsssdge!. ~22!

As we shall see below, to have a full set of equations
determine all the variables, we need one more set of eq
tions, which we obtain by computing the commutator ofr
with H, using both Eqs.~19! and ~17!. We thereby find the
equations

@r,H#52P, ~23!

P5@V,S#1Fr,
d

dr
tr~VS!G . ~24!

In contrast to the HF case, we see that the density ma
cannot be diagonalized simultaneously with the operatorH,
which would appear to be a natural candidate for sing
particle Hamiltonian. In the following section, we show ho
the set~17!, ~19!, and~23!, which constitutes the basic equa
tions of the variational method, can be used to calculate fi
order corrections to the one-matrix of HF theory.

III. CALCULATION OF THE FIRST-ORDER CHANGE
IN THE DENSITY MATRIX

To carry out this calculation, we write

r5r01r1, ~25!

H5H01H1, ~26!

V5V01V1, ~27!

s5s1@r0#, ~28!

S5S1@r0#. ~29!

Herer0 is the density matrix for a Slater determinant sat
fying Eq. ~17! with S50 and determined by the equation
motion
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@r0,H0#50, ~30!

H05h1V@r0#. ~31!

We supposeH0 to generate a complete setua) of single-
particle functions. In the followinga5h will identify occu-
pied orbitals in the Slater determinant anda5p unoccupied
ones. From Eq.~19! we learn that

~V0!hh85~V0!hhdhh8, ~32!

~V0!pp85~V0!ppdpp8, ~33!

~V0!hh5~H0!hh2m[eh2m, ~34!

2~V0!pp5~H0!pp2m[ep2m. ~35!

Furthermore, (V0)ph is undetermined and may be set to ze
To proceed to first order, one should understand that

what follows the right-hand sides of Eqs.~28! and ~29! are
considered to be known quantities. It is not necessary, h
ever, to restrict these quantities to their lowest-order appr
mations, though that is what would likely be done initially

We require also a note about the form ofH1 @Eq. ~26!#.
To start with, this form is

H15W̃r11
1

4

d

dr0
~ trW̃s1!

dr0

dr
. ~36!

In the lowest approximation, the last factor of the seco
term may be replaced by unity. The formulas necessary
the calculation of the remaining derivative are given in A
pendix A and applied in detail to the theory discussed in S
V. We shall write the two terms of Eq.~36! as

H15H111U 0. ~37!

Turning to the constraint condition~17!, the first-order
equations read

r0r11r1r02r15S1. ~38!

The apparently straightforward conclusions from these eq
tions are

~r1!hh85~S1!hh8, ~39!

~r1!pp852~S1!pp8, ~40!

05~S1!ph . ~41!

Of these statements, only the last one defies credence.@It is
straightforward to check that the right-hand side of Eq.~41!
does not vanish.# We can, however, extricate ourselves fro
its unacceptable consequences by noting that bec
(V0)ph50, we can argue that the particle-hole (ph) matrix
elements of Eq.~38! are not part of the constraint conditio
when the latter is expressed in the appropriate basis.

This leaves the matrix elements (r1)ph to be determined.
For this purpose, we turn to the equations of motion~23!. To
first order, we must solve the equations

@r0,H1#1@r1,H0#52P1, ~42!
.
r

-
i-

d
or
-
c.

a-

se

P15@V0,S1#1Fr0,
d

dr0
tr~V0S1!G ~43!

andH1 has been defined in Eqs.~36! and ~37!. From Eq.
~43! we see that we do not requireV1 for this calculation. In
fact, this equation yields, for the matrix elements ofP1, the
values

~P1!hh85~eh2eh8!~S1!hh8, ~44!

~P1!pp85~ep82ep!~S1!pp8, ~45!

~P1!ph52~ep1eh22m!~S1!ph1
d tr~V0S1!

d~r0!hp

, ~46!

~P1!hp5~ep1eh22m!~S1!hp1
d tr~V0S1!

d~r0!ph

. ~47!

We proceed finally to the study of the equation of moti
~42!. We verify immediately the reassuring fact that thehh8
and pp8 matrix elements of Eq.~42! contain no new infor-
mation in comparison to Eqs.~39! and ~40!. The remaining
matrix elements yield coupled linear inhomogeneous eq
tions for theph andhp matrix elements of the form

@~ep2eh!dhh8dpp81W̃ph8hp8#~r1!p8h81W̃pp8hh8~r1!h8p8

5~P1!ph , ~48!

@~ep2eh!dhh8dpp81W̃hp8ph8#~r1!h8p81W̃hh8pp8~r1!p8h8

52~P1!hp , ~49!

where

~P1!ph5~P1!ph1~U 0!ph1W̃pp8hp9~r1!p9p8

1W̃ph8hh9~r1!h9h8, ~50!

~P1!ph5~P1!ph1~U 0!ph1W̃pp8hp9~r1!p9p8

1W̃ph8hh9~r1!h9h8. ~51!

The structure of Eqs.~48! and~49! is not unfamiliar. If we
write these equations in the matrix form

Mr15t3P1, ~52!

wheret3 is the diagonal Pauli matrix, we recognize thatM is
the linear operator associated with the eigenvalue problem
the random-phase approximation~RPA!. The solution of the
inhomogeneous equation~52! by expansion ofr1 in the RPA
eigenvectors is then standard.

IV. GENERALIZED KOHN-SHAM THEORY:
ALTERNATIVE VARIATIONAL APPROACH

In this section we make a transition to a form of th
theory that is analogous to the transition from the origin
form for the realization of the Hohenberg-Kohn theorem
the more useful KS form. We have noted above the difficu
of creating a general formalism with the full one-matrix
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the fundamental entity. Though not out of the question f
mally, there is no immediate incentive to pursue this dir
tion, especially in view of the simpler alternative that w
shall now expound.

The basic idea behind the simplified approach is to m
use of a mapping from the full one-matrixr to a one-matrix
rs for a Slater determinant,

~rs!ab5(
a

ca* ~b!ca~a!, ~53!

~rs!25rs, ~54!

where the labela specifies the basis of natural orbitals forrs.
This mapping can be taken to be defined explicitly as a l
iting form of Eq. ~66! of Sec. V, which expresses the rel
tionship between the exact one-particle Green’s functionG
and the independent-particle Green’s functionGs for propa-
gation by the single-particle Hamiltonianh1vs. Sincer is
directly an equal time limit ofG, it remains only to convince
ourselves that the right-hand side of this equation can
considered as a functional ofrs. This relationship need no
be explicit; all that is necessary in practice is that we be a
to calculate the change of the right-hand side when we a
the value ofrs. The explicit calculations that establish this
fact are given in Appendix A.

If we accept the existence of this mapping, which is c
tainly true to any finite order of perturbation theory, then w
can consider the variation

dE0

drs
5

dE0

dr

dr

drs
50 ~55!

becausedE0 /dr50. Thus, given the variational principle o
Sec. II, Eq.~55! provides us with a means of optimizing th
choice of rs, namely, it is that independent-particle on
matrix that ‘‘minimizes’’ the ground-state energy. To deriv
equations that exploit this new condition, we must add toE0
constraint conditions, which may here be chosen of the s
form as in HF theory. Thus we study the functional

Gs5^C0uĤuC0&2trVs@~rs!22rs#2mstrrs, ~56!

where the constraints specify the nature of the trial den
matrix as well as number conservation. This variational pr
ciple, which should be compared with Eq.~18!, is neverthe-
less formally exact.

Varying this equation with respect tors, we obtain

dGs

drs
505Hs2Vsrs2rsVs1Vs2ms, ~57!

Hs5
dE0

drs
~58!

andE0 is found in Eq.~8!. From Eq.~57! it follows that

@rs,Hs#50, ~59!

so thatrs andHs can be diagonalized simultaneously.
-
-

e

-

e

le
er

-

e

ty
-

The application of these equations depends on the us
suitable approximating functionals for the total energy. T
ward this end we shall apply several versions of linke
cluster perturbation theory~Green’s-function and time-
independent forms! in order to exhibit all terms of the energ
as functionals ofrs. Essential details of this approach, whic
seems the only feasible one, are supplied in Sec. V, wh
for the sake of comparison, we start with a brief review o
standard, alternative, diagrammatic approach to the choic
a single-particle Hamiltonian.

As a final observation of the present discussion, we n
the following: If we were dealing with the density in con
figuration space rather than with a general density mat
then it is a property of KS theory that a Slater determin
can be chosen that yields the exact density. The variation
then be restricted to the class of such Slater determina
Though the solution procedure suggested below bear
striking resemblance to the standard KS formulation, in
present theory the density matrixrÞrs. As we shall see, the
further calculations necessary to build the exact density
trix from the trial matrixrs are part of the procedure used
construct the total-energy functional.

V. DIAGRAMMATIC EXPANSIONS

A. Linked-cluster expansions

In the previous text several single-particle operat
played an essential role in the formulation and application
the variational principles. In Sec. II we encountered the
eratorH and in Sec. IV the operatorHs. The construction of
useful approximate forms of these operators depends firs
the choice of approximations for either the total ground-st
energy or the potential energy, depending on the specific
the formulation used. This section and Appendix A are d
voted to a brief account of the information needed.

In this section we shall first describe a version of t
historical approach to the choice of a single-particle basis
the application of the linked-cluster theorem. The main r
son for the injection of this material, which interrupts th
main flow of the argument, is that it leads to what appears
be a natural definition of the single-particle potential. Nev
theless, as we show in Sec. V B, this definition contains o
a subclass of the terms yielded by the variational definiti
It therefore serves both as an introduction and an interes
contrast to the ‘‘new’’ treatment that follows it.

For the purposes of this discussion, we use the Feynm
form of the theory, which is by far the simplest version f
our initial theoretical aims. Treatments of the relationship
this approach to linked-cluster expansions can be found
@27,28#. As a preliminary study we consider the Feynm
one-particle Green’s function

G~1u2!5 i ^C0uT~ ĉ~1!ĉ†~2!uC0&, ~60!

where an integer stands for a position coordinate, a spin
ordinate, and a time coordinate.G is a reciprocal of the
differential operator that we consider together with two si
pler differential operators, namely,

G2152 i ] t1h1S, ~61!
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~Gs!2152 i ] t1h1vs, ~62!

~G0!2152 i ] t1h. ~63!

HereS is the irreducible self-energy operator, whose str
ture is reviewed below, andvs is one of the potentials to b
discussed, either the one defined in this subsection or
derived in the next subsection.

The matricesG andGs satisfy the integral equations

G5G01G0SG, ~64!

Gs5G01G0vsGs. ~65!

By eliminating G0 between these two equations, we obta
the formal solution

G5Gs@12~S2vs!Gs#215Gs(
n50

`

@~S2vs!Gs#n.

~66!

This formula suggests that we choosevs, which is at our
disposal, so as to cancel ‘‘as much as possible’’ ofS. This
requires a discussion of the structure of the latter matrix

Let (xua) be the coordinate space representation of
single-particle eigenfunction

Hsua)5~h1vs!ua)5eaua). ~67!

We look more closely atGs, which, in analogy with Eq.~60!,
is defined by the expression

Gs~1u2!5 i ^F0uT~ ĉs~1!ĉs†~2!uF0&, ~68!

where the operatorsĉs propagate in time according to th
HamiltonianHs and F0 is the ground-state Slater determ
nant of this Hamiltonian. We may thus expand

ĉs~1!5ĉs~x1 ,t1!5(
a

ĉa
s~ t1!~x1ua!,

ĉa
s~ t !5exp~2 i eat !ĉa

s ~69!

and thus identifyĉa as the destruction operator for the mo
a. Because of the relationship of these operators to the s
F0, it follows that

Gs~at1ubt2!5E dx1dx2~aux1!Gs~1u2!~x2ub!

5dabG
s~a,t12t2!. ~70!

FIG. 1. Decomposition of the irreducible self-energy operatoS
according to the number of interaction emerging from the open l
Each term of this sum contains terms of all orders in the interact
-

at

e

te

We study S as a matrix in the same representatio
S(bt2uat1) describing a transition from a single-partic
statea at time t1 to a single-particle stateb at time t2. We
write @27,28#

S5 (
n51

`

Sn , ~71!

S1~bt2uat1!52 id~ t12t2!W̃bdac~P1!dc , ~72!

S2~bt2uat1!5~2 i !2Gs~a8,t12t2!

3W̃bd8a8c8W̃a8dac~P2!c8cd8d , ~73!

] . ~74!

HerePn is the most general closed-loop structure that can
attached byn instantaneous interactions to the remainder o
diagram forany quantity. The decomposition ofS is illus-
trated in Fig. 1. The first term is a special case to which
return below.S2 already exhibits the general structure,
that from the two times associated with the Green’s funct
representing propagation along the open line, the two em
ing interactions ‘‘connect’’ with the closed-loop structu
P2. By extension,Sn contains an open line withn21 Gs

functions from which emanaten interactions connected to a
irreducible closed-loop structurePn . Reducible structures
connected only by a singleGs line, arise from higher terms
in the expansion~66!. We emphasize that each termSn is
itself an infinite series in the strength of the potential, aris
from the complex structure ofPn . It is also evident that in
general, terms beyond the first in Eq.~71! cannot be associ
ated, within this theoretical framework, with an instant
neous interaction~see the end of this subsection, howeve!.

Thus, within this diagrammatic description, the ‘‘natura
choice forvs is

vba
s 5W̃bdca~P1!db . ~75!

With this definition, the contributions tovs through third
order are illustrated in Fig. 2. As shown in Fig. 3, the a
sence of contributions of second order is a consequenc
the definition~75!. In lowest approximation,vs is equal to
the HF potential. In higher order the solution of Eq.~67! is
considerably more difficult because we cannot separate
problem of determining theh orbitals from that of determin-

.
n.

FIG. 2. Sum of terms to third order defining the effective ext
nal potentialvs suggested by the time-dependent linked-cluster
pansion.

FIG. 3. Illustration of the cancellation of single-interaction i
sertions and potential insertions.
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ing thep orbitals, as is true for the HF problem. As we sh
see for a related case, studied in more detail below, they
occur in higher-order terms of the self-consistent potenti

We turn next to the energy, where we use the linke
cluster expansion in the form that follows from the Hellma
Feynman theorem

E05(
h

eh1DE0

5(
h

eh1E
0

1

dl8^C0~l8!u~Ŵ2 v̂s!uC0~l8!&. ~76!

When we expand the integrand in powers ofl8, using the
Feynman form of the contributions, and then do thel8 inte-
gration, we are led to a conventional form of the linke
cluster expansion. This approach also informs us that
linked-cluster expansion for potential energy and the link
cluster expansion forDE0 are term for term the same exce
that in the former each contribution of ordern occurs with an
additional factor ofn compared to the latter. With the defi
nition of vs currently in force the linked-cluster expansio
takes a form from which potential insertions are absent. T
is represented diagrammatically to third order in Fig.
which still refers to Feynman diagrams.

In these diagrams, annth-order contribution hasn21
time integrals. Carrying out these integrals leads to the m
widely applied time-independent form of the linked-clus
expansion@29,30#. To the order shown, the time-independe
form can be represented by the same set of diagrams a
Fig. 4, but the interpretation of each diagram is quite diff
ent.

Before returning to our main subject, we address a po
of possible concern to those readers who are familiar w
the Brueckner theory of nuclear matter@31#. At first sight the
latter appears to embody a contradiction to our definition
the single-particle potential: In that theory the definition
vs involves not only terms fromS1, but also contributions
from Sn for anyn. The resolution of the apparent contradi
tion is that the extended potential is also energy dependen
we consider, for instance, the matrix elementvhh8

s in the
‘‘hole’’ space, in the Brueckner theory it also depends on
eigenvalueseh and eh8, vhh85vhh8(eh ,eh8). This expresses
the property that the potential in question will, in general,
not only nonlocal in space but also not instantaneous w
viewed from the time-dependent form of the theory.

FIG. 4. Representation of the correlation energy to third or
when the effective external potential is chosen according to
suggestion from time-dependent linked-cluster theory.
l
th
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B. Variational considerations

In view of the aesthetic qualities of the standard linke
cluster expansion, we should justify why it is necessary
desirable to venture beyond its confines. The reason is th
does not answer the following question: Suppose we ca
out an evaluation of the total energy up tonth order, expand-
ing about an unperturbed independent-particle system
fined by some choice ofvs in Eq. ~67!. What is the choice of
single-particle basis that ‘‘minimizes’’ this approximation
the energy? From a practical point of view, this can be u
derstood to be the question addressed in Sec. IV.

We next show that this question yields a different answ
for the choice ofvs than the diagrammatic argument given
Sec. V A. It is convenient to base the further consideratio
on the formula~76! for the energy. From the requirement

Hs5h1vs5~dE0 /drs!, ~77!

since

d(
h

eh

drs
5

d~ trHsrs!

drs
5Hs, ~78!

it follows that

dDE0 /drs50, ~79!

and as we shall see momentarily this last formula gives u
means of calculatingvs.

The main alternative physics that follows from the defin
tion ~79! of the effective external potential can be illustrat
by limiting our considerations to second order in the stren
of the interaction. To this orderDE0 is given as a sum of
diagrams in Fig. 5. We shall carry out an explicit calculati
and for that purpose we record the actual expression forDE0
in the time-independent form, using the standard rules for
linked-cluster expansion@29,30#. Namely,

DE05
1

2
W̃hh8hh82vhh

s 1
1

2

uW̃h8ph8h2vph
s u2

eh2ep

1
1

4

uW̃pp8hh8u
2

eh1eh82ep2ep8

. ~80!

The derivative of this quantity with respect to the el
ments ofrs can be calculated by applying Eqs.~A3!–~A6! to
Eq. ~79!. To first order, e.g., we find, writing

r
e

FIG. 5. Correlation energy functional as a linked-cluster exp
sion to second order before variation with respect to the sin
particle density matrix, corresponding to Eq.~ 80!.
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vs5v11v21•••, ~81!

the expected result

vhp
1 5W̃hh8ph8. ~82!

This guarantees not only that the third term on the right-h
side of Eq.~80! does not contribute to the second order of t
energy, but also, as shown by a straightforward calculat
its derivative does not contribute to the second order of
potential. However, this is not true of the last term of E
~80!. We obtain contributions from differentiating both th
numerator and the denominator of this expression, but
latter is of third order. Neither term was a part of the defi
tion of vs obtained by the diagram cancellation method
Sec. V A. The second-order terms

vhp
2 5

1

2

W̃h8hp8p9W̃p8p9h8p

eh81eh2ep82ep9

2
1

2

W̃h8h9p8pW̃p8hh8h9

eh81eh92ep82ep
~83!

may also be assigned diagrams as shown in Fig. 6. Note
these extra terms depend on the single-particle energies@32#.

By studying the structure of higher-order terms, it is n
difficult to show thatvn contains as a subset all the cont
butions obtained by the diagram cancellation, but the m
mization procedure introduces additional contributions to
potential, as has been shown explicitly for the second-or
contribution. As noted previously, inclusion of any term
beyond the HF approximation complicates the construc
of a complete set of orbitals because we can no longer s
rate the problems of computing theh orbitals from that of
computing thep orbitals since the self-consistent potent
contains the latter. What is finally of interest, from a prac
cal standpoint, is whether the variational approach yields
proved values for observables compared to the stan
linked-cluster expansion.

VI. CONCLUDING REMARKS

We first summarize the basic contents of this paper.
density-functional theory, the original Hohenberg-Kohn fo
mulation led to a generalized Thomas-Fermi~TF! theory to
determine the ground-state density. The practical difficul
of this theory were bypassed by the Kohn-Sham formulati
which is based on the fact that the exact density may
calculated as the density of a system of independent part
moving in an effective one-body local potential. The prac
cal formulation of both the generalized TF theory and the
theory is given in terms of~related! variational principles for

FIG. 6. Diagrammatic representation of the second-order t
vhp

2 given by Eq.~83!.
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the ground-state energy. In this paper we have sough
develop corresponding theoretical structures when
ground-state energy is considered, not as a functional of
physical density, but as a functional of the physical on
particle density matrix~one-matrix!. We bypassed any dis
cussion of rigorous existence theorems that have been
plored fully in previous work@12–21#. Rather, we went
directly to the variational formulation of the dynamics. W
derived a variational principle in terms of the physical on
matrix that contains the Hartree-Fock theory as a spe
case. We discovered that to include correlations in the va
tional principle, the same correlations that occur in the
ergy functional must find expression in the kinematical co
straints on the one-matrix associated with the Pauli princip
This led to equations that may be viewed as the nonlo
analogs of generalized TF theory. For a systematic treatm
by this method we need a representation for the correla
function in terms of the one-matrix. An effort in this direc
tion that appears to be worthy of further study can be fou
in @20#. It may also be of interest to try to develop a repr
sentation of the correlation energy as a series in the o
matrix based on the study of single-time equations of mot
for the associated density operators. In any event, much
mains to be done along these lines. As one application,
have outlined a calculation of first-order corrections to t
HF values of the one-matrix.

The study of the formalism just described does not imm
diately commend itself by its simplicity and therefore in th
second part of the paper our aim was to simplify matters
constructing an analog of KS theory, i.e., by constructing
theory in terms of a model one-matrix of independent p
ticles moving this time in an effective nonlocal one-partic
potential. There are several characteristic differences
tween the resulting theory and KS theory. On the one ha
by using the linked-cluster expansion, we could write dow
formally exact expression for the correlation energy that
study as a perturbation expansion, but that can also be s
ied in various partially summed forms@31#. Such expressions
are not so readily available in KS theory. On the other ha
the ‘‘natural’’ formulation of the KS-like theory yielded a
one-matrix that is not equal to the physical one-matrix.

If we examine the elements of the formalism as they
nally emerged in Sec. V, it becomes clear that we are c
fronted with a generalized HF problem. The major differen
with ordinary HF theory is that evaluation of the potent
involves sums of the type encountered in perturbation the
for the correlation energy. The solution by iteration of t
associated one-particle Schro¨dinger equation, where occu
pied and unoccupied orbits play a more equal role than in
theory, means that such sums have to be calculated re
tively. A survey of some of the review literature on H
theory and its extensions to include correlations@33–37# in-
dicates that such calculations are within the realm of pres
capabilities. Indeed, the calculation of perturbation sums
been a standard part of the repertoire since the seminal w
of Kelly more than three decades ago@38,39#. Physically we
have a sequence of approximations that in its treatmen
correlations appears to be distinct from anything in the
erature of atomic and molecular physics. Whether this ma
the problem of interest to practitioners in the field is for the

m
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to answer. In its present form, the theory applies only
closed-shell atoms.

Beyond what we have set forth in this paper, it is cle
that all the well-known generalizations of density-function
theory formulated for a nondegenerate ground state~degen-
erate ground state, superconducting system, etc.; see@5#! are
open for further investigation along lines developed in t
paper. However, there is small incentive to carry out su
extensions of the theory unless and until the nondegene
theory has been applied.
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APPENDIX A: FORMULAS FOR DERIVATIVES WITH
RESPECT TO THE DENSITY MATRIX

We need formulas for derivatives of one-particle mat
elementsuab and two-particle matrix elementsQabcd with
respect to the density matrixrs. The basic formulas are~sup-
pressing the superscripts after the first line!

dub)5d„rsub)1~12r!sub)…

5dbh(
p8

up8)drp8h2dbp(
h8

uh8)drh8p , ~A1!

d(au5dah(
p8

(p8udrh8p2dap(
h8

(h8udrph8, ~A2!

where we have used the Hermiticity requirementrab* 5rba

and the property of any density matrix for a Slater deter
nant that its first-order variations have onlyph andhp non-
vanishing matrix elements.

Sinceuab5(auuub), etc., we have as a consequence

duab

drph
52uhbdap1uapdbh , ~A3!

duab

drhp
5upbdah2uahdbp , ~A4!

dQabcd

drph
52dapQhbcd1dchQabpd2dbpQahcd1ddhQabcp,

~A5!

dQabcd

drhp
5dahQpbcd1dbhQapcd2dcpQabhd2ddpQabch.

~A6!

These formulas are needed and applied in Sec. V. H
we note the preliminary aspects of their application to
single-particle Hamiltonian

Hab
s 5hab1W̃ah8bh81U ab

s , ~A7!

which is an approximation to the single-particle Hamiltoni
Ks defined in Sec. IV. We find
o

r
l

s
h
te

i-

re
e

dHab
s

drph
s

52dapHhb
s 1dbhHap

s 1W̃ahbp1
dU ab

s

drph
s

, ~A8!

dHab
s

drhp
s

5dahHpb
s 2dbpHah

s 1W̃apbh1
dU ab

s

drhp
s

. ~A9!

Diagonal elements of these formulas are needed in the ev
ation of derivatives of the energy denominators that occu
the linked-cluster contribution to the energy; they can
calculated with the help of Eqs.~A3!–~A6!.

APPENDIX B: FORMAL EXTENSION OF THE
HOHENBERG-KOHN THEOREM

We start from a Hamiltonian

Ĥ5Ĥ01Ŵ1(
a,b

r̂abvba , ~B1!

whereĤ0 is a one-body operator, which may be the kine
energy or may include a potential,Ŵ is the two-body inter-
action,

r̂ab5ĉb
† ĉa ~B2!

is the one-particle density operator, andvba is the one-body
potential on which we focus. The greek indices indicate t
we are writing the Hamiltonian with respect to a gene
single-particle basis, so that in fact the potential may be lo
or nonlocal, though we shall emphasize the latter. It is na
rally assumed that the set of single-particle functio
fa(r ,s, . . . ) that define the representation are given. The
fore, knowledge of the matrixvab implies knowledge of the
nonlocal potentialv(r ,s,r 8,s8) that gives rise to it. Note,
however, that when we introduce a basis from the beginn
we can think ofH as defined only on a finite-dimension
vector space. The interactionŴ would then play the role of
residual interaction.

We shall also write the last term of Eq.~B1! asĤ1 and if
we replacev by another potentialv8 we shall also replace
Ĥ1 by Ĥ18 , etc. Thus letC0 and C08 be the ground states

assumed nondegenerate, ofĤ and Ĥ8, respectively. We de-
fine a permissible variation

dĤ15Ĥ182Ĥ1 ~B3!

as one that has at least one nonvanishing matrix elem
connecting different eigenstatesC i of Ĥ. We now review the
various parts of the Hohenberg-Kohn procedure, mak
such changes as are required by the altered framework.

~a! If vÞv8, thenC0ÞC08 . We reproduce the standar
proof. If C05C08 , we deduce

dĤ1C05~E02E08!C0 , ~B4!

which leads to a contradiction if we take an off-diagon
matrix element.

~b! C0 uniquely determinesv, even if nonlocal, within a
set of nonlocal potentials, to be defined. To see this, cho
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the single-particle representation in whichv is diagonal~sup-
posing its eigenfunctions to form a complete set!,

Ĥ15(
a

v~a!ĉa
†ĉa5(

a
v~a!n̂~a!. ~B5!

According to our assumptions, the eigenvaluesv(a) com-
pletely determine a nonlocal potential. We define the ass
ated set of potentials as those that are diagonal in the s
single-particle basis~an infinite set!. Let theN-dimensional
vectora5(a1 ,a2 , . . . ,aN) define a Slater determinant wit
the occupied orbitals as given. Now write the solution of t
Schrödinger equation for the ground state as an expans
with respect to these determinants,

C05(
a

c~a!ua&. ~B6!

In this basis the Schro¨dinger equation takes the form

F(
i

v~ai !Gc~a!5(
b

@E0da,b2^au~Ĥ01Ŵ!ub&#c~b!.

~B7!

In analogy with the case of a local potential, the same ar
ment can be made that because of the multiplicative cha
ter of the factor on the left-hand side of this equation, it
uniquely determined within the set of potentials that a
appear as such factors, namely, the set of associated p
tials as defined above. From this point of view, the lo
potentials appear as a singular limit of potentials that
diagonal in the basis of improper eigenfunctionsur ,s&. We
turn next to the relationship between the ground-state eig
function and the occupation density, which is the stand
one.
s

l

ds

.

y

i-
me

e
n

u-
c-

o
en-
l
e

n-
d

~i! C0 uniquely determines the occupation density~drop-
ping the boldface!

n~a!5^C0un̂~a!uC0&. ~B8!

~ii ! Converselyn(a) uniquely determinesC0. We have
the two conditions

^C0uĤuC0&<^C08uĤ8uC08&1(
a

@v~a!n8~a!

2v8~a!n8~a!#, ~B9!

^C08uĤ8uC08&<^C0uĤuC0&1(
a

@v8~a!n~a!2v~a!n~a!#.

~B10!

If n(a)5n8(a), by adding the two inequalities, we obtain
contradiction unlessC05C08 .

We also note a more standard version of the theory
does not require us to choose a special basis.~This is the
form that we have actually studied in the body of our pape!
In an arbitrary single-particle representation, withr
5^C0ur̂uC0&, we have

v→C0↔r, ~B11!

r→n↔C0↔v, ~B12!

within the class of comparison potentials satisfying

@v,v8#50. ~B13!
p.

@1# P. Hohenberg and W. Kohn, Phys. Rev.136B, 864 ~1964!.
@2# W. Kohn and L. J. Sham, Phys. Rev.140A, 1133~1965!.
@3# R. G. Parr and W. Yang,Density-Functional Theory of Atom

and Molecules~Oxford University Press, New York, 1989!.
@4# R. O. Jones and O. Gunnarsson, Rev. Mod. Phys.61, 689

~1989!.
@5# R. M. Dreizler and E. K. U. Gross,Density Functional Theory,

An Approach to the Quantum Many-Body Problem~Springer-
Verlag, Berlin, 1990!.

@6# E. S. Kryachko and E. V. Luden˜a, Energy Density Functiona
Theory of Many-Electron Systems~Kluwer, Dordrecht, 1990!.

@7# I. Zh. Petkov and M. V. Stoitsov,Nuclear Density Functional
Theory~Clarenden, Oxford, 1991!.

@8# Density Functional Theory of Molecules, Clusters, and Soli,
edited by D. E. Ellis~Kluwer, Dordrecht, 1995!.

@9# Density Functional Theory, edited by E. K. U. Gross and R
M. Dreizler ~Plenum, New York, 1995!.

@10# Modern Density Functional Theory, A Tool For Chemistr,
edited by J. M. Seminario and P. Politzer~Elsevier, Amster-
dam, 1995!.

@11# Recent Advances in Density Functional Methods, Part I, edited
by D. P. Chong~World Scientific, Singapore, 1995!.
@12# T. L. Gilbert, Phys. Rev. B12, 2111~1975!.
@13# M. Berrondo and O. Goscinski, Int. J. Quantum Chem. Sym

9, 67 ~1975!.
@14# R. A. Donnelly and R. G. Parr, J. Chem. Phys.69, 4431

~1978!.
@15# M. Levy, Proc. Natl. Acad. Sci. USA76, 6062~1979!.
@16# S. M. Valone, J. Chem. Phys.73, 1344~1980!.
@17# G. Zumbach and K. Maschke, Phys. Rev. A28, 544 ~1983!;

29, 1585~E! ~1984!.
@18# G. Zumbach and K. Maschke, J. Chem. Phys.82, 5604~1985!.
@19# E. V. Ludeña, in Density Matrices and Density Functionals,

edited by R. Erdahl and V. H. Smith~Reidel, Dordrecht,
1987!, p. 289.

@20# M. Levy, in Density Matrices and Density Functionals~Ref.
@19#!, p. 479.

@21# J. Cioslowski, Phys. Rev. Lett.60, 2141~1988!.
@22# A. J. Coleman, Rev. Mod. Phys.35, 668 ~1963!.
@23# A. Görling and M. Levy, Phys. Rev. B47, 13 105~1993!.
@24# A. Görling and M. Levy, Phys. Rev. A50, 196 ~1994!.
@25# A. Klein, Phys. Rev. C30, 1680~1984!.
@26# A. Klein, in Progress in Particle and Nuclear Physics, edited

by D. Wilkinson ~Pergamon, Oxford, 1983!, Vol. 10, p. 39–
129.



y

d

n

57 2495VARIATIONAL PRINCIPLE FOR THE GROUND-STATE . . .
@27# A. Klein and R. E. Prange, Phys. Rev.112, 1008~1958!.
@28# A. Klein, in Lectures on Many Body Problems, edited by E. R.

Caianiello~Academic, New York, 1962!, p. 279–334.
@29# B. H. Brandow, Rev. Mod. Phys.39, 771 ~1967!.
@30# S. Wilson,Electron Correlation in Molecules~Clarendon, Ox-

ford, 1984!, Chap. 4.
@31# K. Kumar, Perturbation Theory and the Nuclear Many Bod

Problem~North-Holland, Amsterdam, 1962!, Chap. 4.
@32# The possible importance of such terms was first recognize

the application of the Breuckner theory to finite nuclei@31#.
@33# Three Approaches to Electron Correlation in Atoms, edited

by O. Sinanogˇlu and K. A. Breuckner~Yale University Press,
New Haven, 1970!.
in

@34# C. Froese Fischer,The Hartree-Fock Method for Atoms, A
Numerical Approach~Wiley, New York, 1977!.

@35# A. F. Starace, inHandbuch der Physik, edited by W. Mehl-
horn, ~Springer, Berlin, 1980!, Vol. 31.

@36# Self-Consistent Field Theory and Applications, edited by R.
Carbóand M. Klobukowski~Elsevier, Amsterdam, 1990!.

@37# Many-Body Theory of Atomic Structure and Photoionizatio,
edited by T.-N. Chang~World Scientific, Singapore, 1993!.

@38# H. P. Kelly, Phys. Rev.131, 684~1963!; Phys. Rev.136, B896
~1964!; Phys. Rev.144, 39 ~1966!.

@39# H. P. Kelley, in Advances in Chemistry and Physics, edited
by R. Lefebre and C. Moser~Interscience, London, 1969!,
Vol. XIV.


