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Calculation of the energy levels of barium usingB splines and a combined
configuration-interaction and many-body-perturbation-theory method

V. A. Dzuba*
School of Physics, University of New South Wales, Sydney, 2052, Australia

W. R. Johnson
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

~Received 17 October 1997!

A recently developed method of precise atomic calculations@Phys. Rev. A54, 3948~1996!# which combines
many-body perturbation theory with the configuration-interaction method is used to calculate the 24 lowest
energy levels of Ba.B-spline functions in a cavity of a finite radius are used as a unified many-purpose basis
set. The calculation reproduces the experimental removal energies for Ba within a fraction of a per cent.
Advantages of the new method andB splines are discussed.@S1050-2947~98!04604-6#

PACS number~s!: 31.15.Ar, 31.15.Md, 31.15.Pf
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I. INTRODUCTION

Recent measurements of parity nonconservation~PNC!
effects in atoms emphasize the need for high-precis
atomic structure calculations in heavy atoms. The la
achievement in this field was the first observation of
nuclear anapole moment@1#. The contributions of the nuclea
anapole moment and other spin-dependent weak interac
to PNC in cesium have been extracted by comparing
PNC for different components of the hyperfine multiple
The accuracy of the measurement of the spin-indepen
PNC effect was 0.35% in this experiment. Earlier, an ac
racy of ;1% in atomic PNC measurements was achiev
for Tl @2#, Pb @3#, and Bi @4#. Interpretation of these exper
ments is now limited by the uncertainty in the theory. T
accuracy of atomic PNC calculations is about 1% for alka
metal atoms@5–7#, while for other atoms it is considerabl
lower, e.g., for Tl, Pb, and Bi, it ranges from 3% to 10
@8,9#. Further improvement in the theoretical accuracy c
probably be achieved for alkali-metal atoms within t
framework of existing methods@5–7#, whereas for atoms
with more than one external electron new ideas are requi

The main source of error in calculations of many-electr
atoms is electron correlations. It is well understood now t
certain sequences of the correlation diagrams should be
cluded in all orders to obtain accurate results. There are
all-order techniques available at present time. The m
popular one is probably a coupled cluster~CC! approach
@10#, in which correlation terms are grouped by the numb
of excited particles rather than by the order of the pertur
tion theory. Most of the existing implementations of the C
approach include pair correlations in all orders, but neg
triple and higher correlations. However, as demonstrate
Ref. @11#, even for alkali-metal atoms triple correlations a
important if better than 1% accuracy is needed. Owing
computer limitations and other technical difficulties, only s
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lected triple and quadrupole excitations can be included
CC calculations. Although extending the CC approach to
clude many-particle correlations is one way to improve
accuracy of atomic structure calculations, alternatives sho
also be considered. An all-order technique, developed in R
@12#, uses a different approach to group diagrams in infin
series; associating them with different correlation effects
atoms. Three dominating chains of diagrams have been
vealed and summed to all orders:~a! screening of the Cou-
lomb interaction,~b! the hole-particle interaction, and~c! it-
erations of the self-energy operator. This alternative met
is not restricted to pair correlations, since the Feynman d
gram technique used in Ref.@12# includes all possible time
ordering of the loops, therefore, screening diagrams con
any number of excited electrons. This approach gives v
good results for alkali-metal atoms@12#, where a single ex-
ternal electron is well separated from all other atomic el
trons. However, it does not work well for atoms other th
alkalis, especially for atoms with more than one valen
electron, because the omitted higher-order diagrams bec
important here@12#.

An obvious way to account for the correlations betwe
the valence electrons fully is direct diagonalization of t
many-electron Hamiltonian matrix. This is done in th
configuration-interaction~CI! method @13#. However, rela-
tively few core excitations can be included into matrix d
agonalization owing to a rapid increase of the matrix si
Thus most of the core-valence correlations are not includ
A way to incorporate most of the core-valence correlatio
~e.g., all second-order correlations! into CI calculations was
suggested in Ref.@14#. In that work, correlations between th
valence and core electrons were calculated by means
many-body perturbation theory~MBPT!. They were then in-
cluded into the CI matrix in the form of corrections to th
matrix elements, while the size of the matrix remained un
fected. The precision obtained in Ref.@14# for the energy
levels of Tl was better than 1%. This means that both
core-valence and valence-valence correlations are tre
quite accurately by the new method. As found in Ref.@14#,
the major factor limiting the effectiveness of the method a
thus the accuracy of the final results is the choice of
2459 © 1998 The American Physical Society
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2460 57V. A. DZUBA AND W. R. JOHNSON
valence-electron basis set. Hence, we now try to improve
new method along this line.

In the present paper, we show that the method can
made much more effective by introducing aB-spline @15#
basis set. Intensive use ofB splines in atomic calculation
began about ten years ago@16#, and since then their popular
ity has been growing~see, e.g., Ref.@17#!. The reason is tha
B splines have the remarkable property of providing eff
tive completeness with a relatively small number of ba
functions. By incorporating them into the combine
CI1MBPT method, we can significantly improve its conve
gence and numerical accuracy. This allows us to calcula
whole series of states of barium with high accuracy.

There are several reasons to choose barium for our ca
lations. First, the barium atom is a candidate for future m
surements of PNC in atoms@18#. Therefore, it is important to
assess the theoretical accuracy that can be achieved fo
atom. On the other hand, barium is a good object to test
new technique, since it has a relatively simple electro
structure with only two valence electrons. Even so, corre
tions between the valence electrons and with the core
strong, and must be treated to a high level of accuracy
obtain good results.

II. METHOD

A detailed description of the combined CI1MBPT
method was given in Ref.@14#. We briefly repeat it here
emphasizing the role of the single-electron basis set.

A. Starting approximation

It is widely accepted that the best starting point for MBP
calculations is the Hartree-Fock approximation. This is
cause certain classes of the MBPT diagrams cancel e
other exactly, simplifying MBPT significantly. Thus firs
order terms vanish completely, while the number of seco
order diagrams decreases several times. In the cas
barium, the MBPT would have its simplest form in theVN22

approximation, in which the self-consistent potential is d
termined for theBa21 ion, and the states of the extern
electrons are calculated in the field of the frozen core. Ho
ever, in calculations for a neutral atom, starting from
double ion can lead to a slow convergence and an unde
timate of the core-valence correlation correction. Therefo
we prefer to work in theVN approximation. This slightly
compromises the simplicity of the MBPT: a new class
‘‘subtraction’’ diagrams appears@14#. Nevertheless, the
MBPT is still relatively simple, and the advantage of havi
a more realistic starting approximation justifies the comp
mise. Note also that we use the relativistic Hartree-Fo
method or, as it is often called, the Dirac-Hartree-Fo
method.

B. Configuration interaction

As mentioned above, full-scale CI calculations are n
feasible for atoms such as barium. Therefore, following
standard approach, we fix all states below 6s and consider
them as a core. No core excitations are allowed at this st
A many-electron wave vector describing an atomic state w
angular momentumJ,M may be written
e
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CJM5(
I

cIF I , ~1!

wherecI are expansion coefficients to be determined by
variational principle and the configuration state vectorsF I
are defined by

F I[F i j 5h i j (
mimj

Cj imi j jmj

JM ai
†aj

†u0&, i< j ; ~2!

with

h i j 5 H1
1/&

if iÞ j
if i 5 j . ~3!

Cj imi j jmj

JM designates a Clebsh-Gordan coefficient,ai
† is the

creation operator for the electron in valence statei , andu0& is
the state function for the frozen Hartree-Fock co
(1s,2s,...,5p). Variation with respect tocI leads to a matrix
eigenvalue problem~see, e.g., Ref.@14#!

(
I

~^F I uHCIuFJ&2Evald IJ!cI50. ~4!

HereEval is the energy of the valence electrons, andHCI is
the effective CI Hamiltonian acting in the valence space:

HCI5h~r 1!1h~r 2!1
e2

r 12
,

~5!

h~r !5cap1~b21!mc22
Ze2

r
1V̂core~r !,

whereVcore(r ) is the Hartree-Fock potential created by t
core electrons. Note that the 6s state does not contribute t
Vcore.

The eigenvalue problem~4! corresponds to the standar
CI method. Prohibiting excitations from the core means t
no correlations between the core and valence electrons
included in Eq.~4!. One of the possible ways to includ
correlations with the core is to extend Eq.~1! to allow for
selected core excitations. However, this leads to a rapid
crease of the matrix size in Eq.~4!. On the other hand, as i
known from a number of MBPT calculations, the cor
valence correlation energy is spread over large numbe
terms, no term being dominant. Thus only a small fraction
the core-valence correlations can be included in this w
This significantly restricts the accuracy of the CI calculatio
for many-electron atoms. Another way to include cor
valence correlations, suggested in Ref.@14#, is to use MBPT
instead; this approach is used in the following section.

C. Inclusion of core excitations

Now, following Ref. @14#, we extend expansion~1! to
allow for excitations from the core

CJM5(
I

cIF I1(
K

cK8 FK8 , ~6!

with
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FK8 5H ai
†aj

†ak
†anu0& single excitations

ai
†aj

†ak
†al

†anamu0& double excitations

. . . higher excitations,

~7!

wherean creates a hole in the core staten.
Considering the second term in Eq.~6! as a perturbation

varying cI , and keeping the perturbation in the lowest no
vanishing order, we obtain the following equations~see Ref.
@14# for details!:

(
I

S ^F I uHCIuFJ&1(
K

UIKUKJ

Eval2EK
D cI5EvalcJ , ~8!

whereEK is the energy of the virtual configuration which h
single or double excitation from the core:EK5( i 5particlese i

2( j 5holese j , UIK[^F I uÛuFK8 &, and

Û5(
i , j

e2

r i j
2(

i
VN~r i !

is the residual Coulomb interaction. Equations~8! are the
main equations of the combined CI1MBPT method. They
differ from the standard CI equations~4! by the second-orde
term with respect to residual Coulomb interactionÛ. As
seen from Eq.~8!, application of the lowest-order MBPT i
justified when the residual Coulomb interaction is sm
compared to the excitation energies of the core. In particu
this means that a division of atomic electrons into valen
and core electrons should be done so as to maintain a s
cient energy gap between the core and valence states.
that inclusion of the core-valence correlations by means
MBPT leads to a correction in the effective Hamiltonian,

HCI→HCI1(
K

ÛuK&^KuÛ
Eval2EK

, ~9!

while the expression for the wave function~1! remains the
same as in the standard CI method. It should also be n
that restricting the perturbation expansion to the second
der means that only single and double excitations from
core are included in Eq.~7!. Thus the maximum total numbe
of electron excitations in Ba is four~in Tl in Ref. @14#, the
maximum total number of electron excitations was five!. In
this sense, the present method goes far beyond pair cor
tions.

To calculate the second-order core-valence correla
term, we use a diagram technique described in detail in R
@14#. To calculate the diagrams and evaluate the effective
matrix, we need a complete basis set of one-electron fu
tions.

D. B-spline basis set

There are two points in the method where completen
of the basis set needs to be achieved:~1! Calculation of the
second-order MBPT terms in Eq.~8! involves infinite single
or double summations over intermediate states. Saturatio
these sums corresponds to an effective completeness o
basis used for these states.~2! Decomposition of the two-
particle wave function of the valence electrons~1! must also
-
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be reasonably complete. It is convenient to use the sa
basis set for both purposes, although this is not absolu
necessary. Since the core states are fixed, the only condi
imposed on the basis states for valence electrons are the
lowing. They must provide effective completeness and
orthogonal to the core states. In principle, any basis
which satisfies these conditions can be used for the calc
tions. For example, three different basis sets were use
Ref. @14#:

~1! Single-electron eigenstates of the Hartree-Fock ope
tor in the discrete and continuum spectra. This basis set
used to calculate the MBPT diagrams only. It was not app
priate for the construction of many-electron wave functi
for the CI calculations, because of slow convergence.

~2! State-dependent basis functions having fix
asymptotic form. These were calculated using the sa
Hartree-Fock Hamiltonian, but different boundary cond
tions. That is, their long-range form was chosen to fit t
known experimental ionization potential from a particul
state. This basis set was not suitable for a calculation of
diagrams due to its lack of completeness for this purpo
However, the convergence for the CI calculations was
tremely fast. Actually, the use of this basis set demonstra
that convergence can be very much improved by adjus
the basis to a particular state~or group of states!, and thereby
reducing the number of terms in the decomposition for
state~s!. The use ofB splines, discussed below, is anoth
way to accomplish this.

~3! A combination of polynomials with eigenstates of th
Hartree-Fock Hamiltonian. This basis set has the advan
of being suitable for both the diagram calculation and
construction of the many-electron wave function. Howev
the convergence was not particularly good.

In the present paper we use a basis set constructed froB
splines. We follow deBoor@15#, and use the software rou
tines described therein. To construct a coordinate grid
consider the atom to be in a cavity of radiusR. Atomic wave
functions are assumed to be zero forr>R. The interval
@0,R# is divided inton segments by the knot sequencet i .
The knot points are distributed on@0,R# on an exponential
scale, with smaller intervals at the origin and larger interv
at large distances.B-spline basis functionsBi ,k are piecewise
polynomials of degreek21 inside the intervalt i<r ,t i 1k ;
they vanish outside this interval. The set ofB splines of
orderk on the knot sequence$t i% forms a complete basis fo
piecewise polynomials of degreek21 on the interval
spanned by the knot sequence. It is natural to assume
any smooth function with a limited number of nodes can
approximated to very high precision by piecewise polynom
als. This means that theBk,i basis set is complete for thes
functions too. In our calculations for Ba we usen540, k
57, andR540a0 ~a0 is the Bohr radius!.

In principle, theB-spline basis setBi ,k can be directly
used to solve Eqs.~4! or ~8!. However, it is not convenient to
do so because the functionsBi ,k(r ) are not orthogonal to
each other and to the core states. Instead, we construc
thonormalized combinations of theB splines by diagonaliz-
ing the matrix of the Hartree-Fock Hamiltonian

(
i

~^Bi ,kuHHFuBj ,k&2Ed i j !ci50, ~10!
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HHF~r !5cap1~b21!mc22
Ze2

r
1VN~r !. ~11!

Note that unlike forVcore in Eq. ~5!, 6s electrons also con
tribute to theVN. Eigenstates of Eq.~10! are variational
finite-basis solutions of the atomic Hartree-Fock problem
the cavity of radiusR. In Table I we compare the energ
spectrum of Eq.~10! for thes states with the actual spectru
of the problem which was obtained by accurate numer
solution of the Hartree-Fock equationHHF(r )c(r )5Ec(r )
with the boundary conditionc(R)50. The energies must b
the same if theB-spline basis set is complete. As seen fro

TABLE I. Energies~in a.u.! of the single-particles states of Ba
in a cavity of radiusR540a0.

n B splines Accurate numerical solution

1 21383.8365 21383.8365
2 2222.5776 2222.5776
3 248.6516 248.6516
4 210.2573 210.2573
5 21.6035 21.6035
6 20.1631 20.1631
7 0.0044 0.0043
8 0.0176 0.0174
9 0.0391 0.0388

10 0.0685 0.0681
11 0.1059 0.1054
12 0.1493 0.1487
13 0.2778 0.1992
14 0.3383 0.2565
15 0.6548 0.3205
16 1.6740 0.3912
17 4.6333 0.4684
18 13.6900 0.5523
19 42.4656 0.6428
20 131.7190 0.7398
21 165.9604 0.8433
22 381.4315 0.9534
23 1003.1873 1.0700
24 2382.6952 1.1930
25 5122.8775 1.3226
26 10 048.0796 1.4596
27 18 197.4531 1.6010
28 30 907.3301 1.7499
29 50 016.4662 1.9052
30 78 228.4827 2.0669
31 119 575.1598 2.2350
32 180 321.4070 2.4095
33 270 192.1563 2.5904
34 405 671.8233 2.7777
35 614 983.5032 2.9713
36 957 203.1898 3.1713
37 1 563 072.3099 3.3776
38 2 892 240.5288 3.5903
39 7 107 212.9123 3.8093
40 48 924 980.8393 4.0346
n

l

the table, forn<6 the energies coincide precisely. Forn
>7 the energies ofB-spline states start to deviate from th
accurate values, and forn.13 they differ significantly. This
means that a set of 40 splines is incomplete for the hig
excited rapidly oscillating states. However, it is comple
with very high precision for the lowest states.

It is interesting to note that if the eigenstates of Eq.~10!
are used in the CI calculations@Eqs. ~4! or ~8!#, then the
number of basis states which contribute significantly to
many-electron wave function~1! is considerably smaller than
the number of splinesn. Indeed, if configuration mixing is
treated perturbatively, then the mixing of two basis sta
would be inversely proportional to the energy interval b
tween them. But, as can be seen from Table I, the hig
B-spline eigenstates have very large energies, which me
that their admixture to the lower states is negligible. No
that if accurate numerical solutions of the Hartree-Fock pr
lem in a cavity~next column of Table I! are used instead a
basis functions for the CI calculations, then the number
the mixed components would be considerably larger. T
means that the convergence improves significantly ifB
splines are used. This improvement is achieved by sacrific
the completeness of the basis for higher states. Since lo
states are always of most interest, one can say thatB splines
provide a very effective and natural way to adopt the basi
the problem of interest. Moreover, it is still possible to co
sider the higher states if appropriate adjustments of
B-spline parametersn, k, andR are made.

III. RESULTS

Using the technique described above, we have calcula
the energies of the 24 lowest states of Ba. To illustrate
role of different terms in Eq.~8!, in Table II we present the
two-electron energiesEval of the barium ground state ob
tained in different approximations and compare them w
the experiment. The relativistic Hartree-Fock~RHF! value in
the first column is just the matrix element

^6s2J50,M50uHCIu6s2J50,M50&[2e6s2F0~6s,6s!.
~12!

e6s520.16318 a.u. is the Hartree-Fock energy of the
state, andF0(6s,6s)50.17766 a.u. is the direct Coulomb in
tegral of zero multipolarity. Neither the core-valence nor t

TABLE II. Two-electron energiesEval of the Ba ground state in
different approximations~a.u.!

RHFa MBPTb CIc CI1MBPTd Experimente

20.504 02 20.540 53 20.527 90 20.560 65 20.559 15

aSingle-configuration approximation. No correlations are include
bSingle-configuration approximation. Core-valence correlations
included.
cStandard CI method~4!. Only valence-valence correlations are i
cluded.
dCI1MBPT method~8!. Core-valence and valence-valence corre
tions are included.
eThis is the sum of the ionization potentials of Ba and Ba1; Ref.
@19#.
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TABLE III. Excitation energies of Ba (cm21).

State
Experiment

@19,20#

Present work

Other calculationsAa Bb

Even states
6s5d 3D1 9034 9366 9061 9241c, 9423d, 11 164e

3D2 9216 9552 9246 9429c, 9631d,11 280e,12 126f
3D3 9597 9946 9643 9818c,10 065d, 11 492e

6s5d 1D2 11 395 11 871 11 527 11 841c,13 164e, 13 677f

5d2 3F2 20 934 22 021 21 474 21 334c, 23 570e
3F3 21 250 22 348 21 800 21 663c, 23 710e
3F4 21 624 22 742 22 194 22 060c, 23 894e

5d2 1D2 23 062 24 151 23 608 24 256c, 25 427e

5d2 3P0 23 209 24 311 23 765 24 218c, 24 435e
3P1 23 480 24 637 24 090 24 427c, 24 703e
3P2 23 919 25 072 24 526 24 943c, 24 867e

5d2 1G4 24 300~300! 26 145 25 597 25 585c, 29 435e

5d2 1S0 26 444 26 034 29 167e

6s7s 3S1 26 160 26 277 26 104
3S0 28 230 28 634 28 327

Odd states
6s6p 3P0 12 266 12 573 12 300 12 503c, 12 221d

3P1 12 637 12 936 12 661 12 882c,12 583d, 11 902f
3P2 13 515 13 821 13 548 13 792c, 13 448d

6s6p 1P1 18 060 18 347 18 031 18 455c,17 740d, 17 393f

5d6p 3F2 22 065 22 662 22 117 22 705c

3F3 22 947 23 513 22 968 23 632c

3F4 23 757 24 336 23 791 24 491c

5d6p 1D2 23 074 23 730 23 183 23 823c

aPureab initio results.
bHigher-order core-valence correlations are included semiempirically by decreasing a second-order
the s channel by 7.6%.
cRelativistic coupled-cluster method@21#.
dCI1MBPT ~relativistic! @22#.
eMulticonfiguration Dirac-Fock method@23#.
fMulticonfiguration Dirac-Fock method@24#.
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valence-valence correlations are included in Eq.~12!. The
value in the second column is the matrix element

K 6s2J50,M50UHCI1(
K

ÛuK&^KuÛ
Eval2EK

U6s2J50,M50L ,

~13!

whereuK& represents all possible configurations correspo
ing to single and double core-valence excitations@see Eq.
~4!#. This value includes core-valence correlations in
single-configuration approximation. The values in column
and 4 are the lowest solutions of the matrix eigenvalue pr
lems ~4! and ~8!, respectively. Both values include correl
tions between valence electrons, but the latter value also
cludes correlations between the valence and core electro

From the values presented in this table, one can see
the correlation correction constitutes about 10% of the to
two-electron energy of the barium ground state. About 6
of this correlation energy can be attributed to the co
valence correlations, while the remaining 40% arises fr
correlations between the valence electrons. Thus, as in
-

a
3
-

n-
s.
at
l

-

he

case of Tl@14#, the core-valence correlations dominate ov
the valence-valence ones. However, both types of corr
tions are very important, and must be included in accur
calculations. The accuracy of the final resultEval5
20.56065 a.u. is 0.3%, compared with the experimen
value of20.55915 a.u.

The argument used above to determine the role of
correlations for the ground state of barium is not applica
to the excited states, at least as far as valence-valence c
lations are concerned. Indeed, the correlation energy is
fined as the difference between the actual energy of
atomic state and its value in the Hartree-Fock approximat
However, the latter is not well defined for an open-shell s
tem. Moreover, the application of MBPT dictates the use
the same potential for all basis states. Since we use theVN

potential, we have no bound valence states above 6s. Al-
though the continuous spectrum is discretized by putting
atom into a box of finite size, the 7s, 6p, 5d, etc. functions
obtained in this way are very different from what they a
supposed to be in the 6s7s, 6s5d, 6s6p, etc. excited states
of Ba. This leads to a strong configuration mixing for excit
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2464 57V. A. DZUBA AND W. R. JOHNSON
states. In principle, this mixing can be reduced significan
by an appropriate choice of one-electron basis states. Th
usually done when the primary aim of the calculations is
assign a specific configuration to a particular atomic st
Our aim is different—to approximate an atomic wave fun
tion to a very high level of precision. This is achieve
through the effective completeness of the basis, even tho
no particular configuration dominates in the resulting ma
electron wave function.

As for the role of the core-valence correlations for t
excited states, it can be easily investigated by comparing
calculations with and without the second-order correlat
term in the expression for the effective CI Hamiltonian~9!.
These correlations lower the energies of the barium state
4000– 9000 cm21. This constitutes about 10% of the tot
two-electron energy, similar to what we find for the grou
state.

In Table III, we present the calculated energies of the
lowest states of Ba in the format similar to that used
Moore@19#, i.e., we show energies with respect to the Ba 6s2

ground state. The experimental values and results from o
calculations are also included. As can be seen from the n
bers in column A of the table, all theoretical intervals a
slightly overestimated. This is because the correlation in
action between valence electrons and core is always ove
timated by second-order MBPT. The actual correlation c
rection is usually about 10% smaller; the decrease be
caused by the higher-order correlations@12,16,11#. These
higher-order correlations can be included semiempirically
introducing a factorf ,1 into the correlation correction@the
second term in Eq.~9!#. Fitting the energy of the Ba groun
state with a single factorf s , which affects only the correla
tion interaction of thes electrons with the core, givesf s
50.924, in a reasonable agreement with the accurate ca
lation of the higher-order correlations for other man
electron atoms@12,7,11#. New energy intervals found with
the use off s are presented in column B of Table III. Wit
only one fitting parameter, all energy intervals are improv
significantly. This is because the fitting mostly affects t
energy of the ground state. The excited states are less
fected; correlation correction is smaller for them due to
remoteness of the excited electrons from the core. The re
ing absolute discrepancy with the experimental data
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<100 cm21 for all the configurations except 5d2. For the
5d2 configuration the discrepancy ranges between 500
600 cm21. We do not see any significant decrease in ac
racy for the excited states in spite of the fact that the fin
cavity radius (R540a0), and the limited number of spline
n540 should put certain limitations on the accuracy of su
states.

There are many other calculations of the energy levels
Ba, as can be seen from Table III. We would like to menti
particularly the calculations by Eliav, Kaldor, and Ishikaw
@21# and by Kozlov and Porsev@22#. The calculations in Ref.
@22# were done using the method of the present paper,
with a different basis set. This probably led to a slower co
vergence, especially for the excited states. No attempt to
clude higher-order correlations was made in that work. W
note, however, that the results of Ref.@22# are very close to
our second-order results~see column A of Table III!. The
calculations in Ref.@21# were done using a CC approac
with pair correlations included in all orders, while triple an
higher excitations were neglected. The accuracy of these
sults are similar to those in the present work, probably
cause the triple correlations are suppressed for Ba; it has
two valence electrons and triple correlations can appear o
in the core-valence interaction.

In conclusion, we would like to summarize the benefi
given by the use ofB splines in the CI1MBPT method:~1!
The same uniform, state-independent, basis set is used
calculations of the core-valence correlation interaction, a
for the construction of the two-electron wave functions f
the ground and excited states.~2! Fast convergence is
achieved in both of these cases.~3! Good accuracy of the Ba
energy levels was obtained, not only for the lowest states
for many excited states as well.
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