PHYSICAL REVIEW A VOLUME 57, NUMBER 4 APRIL 1998

Calculation of the energy levels of barium usingB splines and a combined
configuration-interaction and many-body-perturbation-theory method

V. A. Dzubd&
School of Physics, University of New South Wales, Sydney, 2052, Australia

W. R. Johnson
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556
(Received 17 October 1997

A recently developed method of precise atomic calculatjétys. Rev. A54, 3948(1996 | which combines
many-body perturbation theory with the configuration-interaction method is used to calculate the 24 lowest
energy levels of BaB-spline functions in a cavity of a finite radius are used as a unified many-purpose basis
set. The calculation reproduces the experimental removal energies for Ba within a fraction of a per cent.
Advantages of the new method aBdsplines are discusse51050-294708)04604-4

PACS numbses): 31.15.Ar, 31.15.Md, 31.15.Pf

I. INTRODUCTION lected triple and quadrupole excitations can be included in
CC calculations. Although extending the CC approach to in-
Recent measurements of parity nonconservatieNC) clude many-particle correlations is one way to improve the

effects in atoms emphasize the need for high-precisioccuracy of atomic structure calculations, alternatives should
atomic structure calculations in heavy atoms. The lates@ls0 be considered. An all-order technique, developed in Ref.
achievement in this field was the first observation of thel12], uses a different approach to group diagrams in infinite
nuclear anapole momeft]. The contributions of the nuclear Series; associating them with different correlation effects in
anapole moment and other spin-dependent weak interactioféems. Three dominating chains of diagrams have been re-
to PNC in cesium have been extracted by comparing th¥€@led and summed to all ordefs) screening of the Cou-
PNC for different components of the hyperfine multiplet. omb interaction(b) the hole-particle interaction, ard) it-

The accuracy of the measurement of the spin-independeﬁ{aﬂons of the self-energy operator. This alternative method

PNC effect was 0.35% in this experiment. Earlier, an accu> not restrlpted to pair correlatpns, since the Fe_ynman dia-
ram technique used in Rdfl2] includes all possible time

o . )
racy of ~1% in atomic PNC measurements was aCh'evecgrdering of the loops, therefore, screening diagrams contain

for Tl [.2]’ Pb[3_], gnd Bi4]. Interpret{mon_ of these experi- any number of excited electrons. This approach gives very
ments is now limited by the uncertainty in the theory. Theg,q reqyits for alkali-metal atonjg2], where a single ex-
accuracy of atomic PNC calculations is about 1% for alkali-yerna| electron is well separated from all other atomic elec-
metal atomg5—7], while for other atoms it is considerably ons. However, it does not work well for atoms other than
lower, e.g., for Tl, Pb, and Bi, it ranges from 3% to 10% gjkalis, especially for atoms with more than one valence
[8,9]. Further improvement in the theoretical accuracy canglectron, because the omitted higher-order diagrams become
probably be achieved for alkali-metal atoms within theimportant herd12].
framework of existing methodg5-7], whereas for atoms  An obvious way to account for the correlations between
with more than one external electron new ideas are requiredne valence electrons fully is direct diagonalization of the
The main source of error in calculations of many-electronmany-electron Hamiltonian matrix. This is done in the
atoms is electron correlations. It is well understood now thatonfiguration-interactio(Cl) method[13]. However, rela-
certain sequences of the correlation diagrams should be inively few core excitations can be included into matrix di-
cluded in all orders to obtain accurate results. There are fewgonalization owing to a rapid increase of the matrix size.
all-order techniques available at present time. The mosThus most of the core-valence correlations are not included.
popular one is probably a coupled clusi€@C) approach A way to incorporate most of the core-valence correlations
[10], in which correlation terms are grouped by the number(e.g., all second-order correlatigriato CI calculations was
of excited particles rather than by the order of the perturbasuggested in Ref14]. In that work, correlations between the
tion theory. Most of the existing implementations of the CCvalence and core electrons were calculated by means of a
approach include pair correlations in all orders, but neglectnany-body perturbation theofBPT). They were then in-
triple and higher correlations. However, as demonstrated irluded into the CI matrix in the form of corrections to the
Ref.[11], even for alkali-metal atoms triple correlations are matrix elements, while the size of the matrix remained unaf-
important if better than 1% accuracy is needed. Owing tdected. The precision obtained in R¢fl4] for the energy
computer limitations and other technical difficulties, only se-levels of Tl was better than 1%. This means that both the
core-valence and valence-valence correlations are treated
quite accurately by the new method. As found in Ré#],
*E-mail: V.Dzuba@unsw.edu.au the major factor limiting the effectiveness of the method and
http://www.phys.unsw.edu.autzuba/ thus the accuracy of the final results is the choice of the
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valence-electron basis set. Hence, we now try to improve the
new method along this line. ‘I’JMZZ ¢y, 1)
In the present paper, we show that the method can be

made much more effective by introducingBaspline [15]  \herec, are expansion coefficients to be determined by the

basis set. Intensive use &f splines_in atomic cglculations variational principle and the configuration state vectdrs
began about ten years apt6], and since then their popular- 46 gefined by

ity has been growingsee, e.g., Ref17]). The reason is that

B splines have the remarkable property of providing effec- M

tive completeness with a relatively small number of basis D=0 = 77ijﬁ;T ClimijjmjaiTaiT|o>’ I=J @
functions. By incorporating them into the combined t
CI+MBPT method, we can significantly improve its conver- ith
gence and numerical accuracy. This allows us to calculate a
whole series of states of barium with high accuracy. 1 if i#]
There are several reasons to choose barium for our calcu- Ti= 102 if i=j. ©)

lations. First, the barium atom is a candidate for future mea-

surements of PNC in atonj48]. Therefore, it is importantto ¢c’M designates a Clebsh-Gordan coefficieaft, is the

. ! §imy
assess the theoretical accuracy that can be achieved for this,ation operator for the electron in valence statnd|0) is
atom. On the other hand, barium is a good object to test th

the state function for the frozen Hartree-Fock core

new technique, since it has a relatively simple electroni(‘(ls,ZS,___@)_ Variation with respect te, leads to a matrix

structure with only two valence electrons. Even so, Correla'eigenvalue problentsee, e.g., Ref14])

tions between the valence electrons and with the core are
strong, and must be treated to a high level of accuracy to

obtain good results. EI: ((®|HC D ;) —E q8;)c,=0. (4)

Il. METHOD HereE,, is the energy of the valence electrons, ad is
A detailed description of the combined €MBPT the effective CI Hamiltonian acting in the valence space:

method was given in Ref.14]. We briefly repeat it here e?
emphasizing the role of the single-electron basis set. H=h(ry)+h(r,)+ —.
12

5
A. Starting approximation

ze? .
It is widely accepted that the best starting point for MBPT h(r)=cap+(B—1)mc*~ T Veord ),

calculations is the Hartree-Fock approximation. This is be-

cause certain classes of the MBPT diagrams cancel eacthereV . {r) is the Hartree-Fock potential created by the
other exactly, simplifying MBPT significantly. Thus first- core electrons. Note that thes &tate does not contribute to
order terms vanish completely, while the number of secondV .

order diagrams decreases several times. In the case of The eigenvalue problertd) corresponds to the standard
barium, the MBPT would have its simplest form in ti~2  CI method. Prohibiting excitations from the core means that
approximation, in which the self-consistent potential is de-no correlations between the core and valence electrons are
termined for theBa?"' ion, and the states of the external included in Eq.(4). One of the possible ways to include
electrons are calculated in the field of the frozen core. How<orrelations with the core is to extend EJ) to allow for
ever, in calculations for a neutral atom, starting from aselected core excitations. However, this leads to a rapid in-
double ion can lead to a slow convergence and an underesrease of the matrix size in E¢4). On the other hand, as is
timate of the core-valence correlation correction. Thereforeknown from a number of MBPT calculations, the core-
we prefer to work in thevN approximation. This slightly valence correlation energy is spread over large number of
compromises the simplicity of the MBPT: a new class ofterms, no term being dominant. Thus only a small fraction of
“subtraction” diagrams appear$14]. Nevertheless, the the core-valence correlations can be included in this way.
MBPT is still relatively simple, and the advantage of having This significantly restricts the accuracy of the CI calculations
a more realistic starting approximation justifies the comprofor many-electron atoms. Another way to include core-
mise. Note also that we use the relativistic Hartree-Fock/alence correlations, suggested in Ré&#], is to use MBPT
method or, as it is often called, the Dirac-Hartree-Fockinstead; this approach is used in the following section.
method.

C. Inclusion of core excitations

B. Configuration interaction Now, following Ref.[14], we extend expansiofl) to

As mentioned above, full-scale Cl calculations are notallow for excitations from the core
feasible for atoms such as barium. Therefore, following the
standard approach, we fix all states belos/d@hd consider P 'y
' o . = cd,+ ck®y 6
them as a core. No core excitations are allowed at this stage. M E| " ; KTK ©
A many-electron wave vector describing an atomic state with
angular momenturd,M may be written with
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a?afalan|0> single excitations be reasonably complete. It is convenient to use the same
basis set for both purposes, although this is not absolutely

o =1 alalajalaan|0) double excitations (7) necessary. Since the core states are fixed, the only conditions
higher excitations, imposed on the basis states for valence electrons are the fol-

lowing. They must provide effective completeness and be

wherea, creates a hole in the core state orthogonal to the core states. In principle, any basis set

Considering the second term in H) as a perturbation, which satisfies these conditions can be used for the calcula-
varying ¢, and keeping the perturbation in the lowest non-tions. For example, three different basis sets were used in
vanishing order, we obtain the following equatidsse Ref.  Ref.[14]:

[14] for details: (1) Single-electron eigenstates of the Hartree-Fock opera-
tor in the discrete and continuum spectra. This basis set was
E <(DI|HCI|(DJ>+E UikUks ¢ =E,C;, (8 us_ed to calculate the MBPT diagrams only. It was not appro-
[ K Eva—Ex priate for the construction of many-electron wave function
for the CI calculations, because of slow convergence.
whereEy is the energy of the virtual configuration which has  (2) State-dependent basis functions having fixed
single or double excitation from the corBx=3_paice€i  asymptotic form. These were calculated using the same
— 3 holes€j » Uik=(®,|0|d}), and Hartree-Fock Hamiltonian, but different boundary condi-
tions. That is, their long-range form was chosen to fit the
- e? N known experimental ionization potential from a particular
U :;j E_EI Vi) state. This basis set was not suitable for a calculation of the
diagrams due to its lack of completeness for this purpose.

is the residual Coulomb interaction. Equatiof@ are the However, the convergence for the CI calculations was ex-
main equations of the combined €MBPT method. They tremely fast. Actually, the use of this basis set demonstrated
differ from the standard Cl equatio4) by the second-order that convergence can be very much improved by adjusting
term with respect to residual Coulomb interactioh As the ba_15|s to a particular stafier group of statesand_ t.hereby

seen from Eq(8), application of the lowest-order MBPT is reducing the number of terms in the decomposition for the

justified when the residual Coulomb interaction is smaIIStatétS)' The usle_ ﬁfﬁ]_splmes, discussed below, is another

compared to the excitation energies of the core. In particulat’fvay3 oAaccortr;_p ISt 'Sf' | ials with ei fth

this means that a division of atomic electrons into valenc (3) A com Ination of polynomiais with eigenstates of the
Jartree-Fock Hamiltonian. This basis set has the advantage

and core electrons should be done so as to maintain a suffi bei ‘table for both the di lculati d th
cient energy gap between the core and valence states. Ndie Peing suitabié Tor bo € diagram caicuation an €
onstruction of the many-electron wave function. However,

that inclusion of the core-valence correlations by means of

MBPT leads to a correction in the effective Hamiltonian, the convergence was not pamcularly good.
In the present paper we use a basis set constructedBrom

splines. We follow deBoof15], and use the software rou-

HC'ﬁHC'JFE M 9) tines described therein. To construct a coordinate grid we
K Ea—Ex consider the atom to be in a cavity of radRsAtomic wave
. . ) . functions are assumed to be zero forR. The interval
while the expression for the wave functigh) remains the R] is divided inton segments by the knot sequertce

same as in the standard Cl method. It should also be not
that restricting the perturbation expansion to the second o
der means that only single and double excitations from th
core are included in Eq7). Thus the maximum total number
of electron excitations in Ba is fouin Tl in Ref. [14], the
maximum total number of electron excitations was ¥iva
this sense, the present method goes far beyond pair correl
tions.

e knot points are distributed d®,R] on an exponential
'Scale, with smaller intervals at the origin and larger intervals
Gt large distance®-spline basis functionB; , are piecewise
polynomials of degre&—1 inside the intervat;<r<t;,;
they vanish outside this interval. The set Bf splines of
orderk on the knot sequendg;} forms a complete basis for
Bi'ecewise polynomials of degrek—1 on the interval
spanned by the knot sequence. It is natural to assume that

To calculate the second-order core-valence correlatlor%ny smooth function with a limited number of nodes can be

term, we use a diagram technique described in detail in Re . : L : . N
[14]. To calculate the diagrams and evaluate the effective C:]approx!mated to very high precision b'y piecewise polynomi

. . als. This means that thB, ; basis set is complete for these
matrix, we need a complete basis set of one-electron fun :

tions SUnctions too. In our'calculations fo'r Ba we use=-40, k
' =7, andR=40a, (a, is the Bohr radius
_ ) In principle, theB-spline basis seB; can be directly

D. B-spline basis set used to solve Eqg4) or (8). However, it is not convenient to

There are two points in the method where completenesdo so because the functior ((r) are not orthogonal to
of the basis set needs to be achiev:Calculation of the each other and to the core states. Instead, we construct or-
second-order MBPT terms in E¢B) involves infinite single thonormalized combinations of tH& splines by diagonaliz-
or double summations over intermediate states. Saturation ¢1g the matrix of the Hartree-Fock Hamiltonian
these sums corresponds to an effective completeness of the
bas[s used for the;e statd®) Decomposition of the two- Z (<Biyk|HHF| B, ) —E&;)ci=0, (10)
particle wave function of the valence electrqd$ must also i
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TABLE I. Energies(in a.u) of the single-particles states of Ba TABLE II. Two-electron energie&, , of the Ba ground state in
in a cavity of radiusR=40a,. different approximationga.u)
n B splines Accurate numerical solution ~ RHF? MBPT® ClI° CI+MBPTY Experimerit
1 —1383.8365 —1383.8365 —0.50402 —0.54053 —0.52790 -—-0.56065 —0.55915
2 — 2225776 —222.5776 aSingl f' . - - N " —luded
3 —48.6516 —48.6516 bsl_ngle-confl.gura'il'on approx!mattl_on. C0 COI’i‘eI ations arellntg uaed.
4 ~10.2573 —~10.2573 in(;:’]ugdz;jcon Iguration approximation. Core-valence correlations are
S —1.6035 —1.6035 ‘Standard Cl metho¢4). Only valence-valence correlations are in-
6 —0.1631 —0.1631 cluded
! 0.0044 0.0043 dC1+MBPT method(8). Core-valence and valence-valence correla-
8 0.0176 0.0174 tions are included.
9 0.0391 0.0388 €This is the sum of the ionization potentials of Ba and"BRef.
10 0.0685 0.0681 [19].
11 0.1059 0.1054
12 0.1493 0.1487 the table, forn<6 the energies coincide precisely. For
13 0.2778 0.1992 =7 the energies oB-spline states start to deviate from the
14 0.3383 0.2565 accurate values, and for> 13 they differ significantly. This
15 0.6548 0.3205 means that a set of 40 splines is incomplete for the highly
16 1.6740 0.3912 excited rapidly oscillating states. However, it is complete
17 4.6333 0.4684 with very high precision for the lowest states.
18 13.6900 0.5523 It is interesting to note that if the eigenstates of ELf)
19 42.4656 0.6428 are used in the CI calculatiof€gs. (4) or (8)], then the
20 131.7190 0.7398 number of basis states which contribute significantly to the
21 165.9604 0.8433 many-electron wave functiofl) is considerably smaller than
22 381.4315 0.9534 the number of splines. Indeed, if configuration mixing is
23 1003.1873 1.0700 treated perturbatively, then the mixing of two basis states
24 2382.6952 1.1930 would be inversely proportional to the energy interval be-
25 5122.8775 1.3226 tween them. But, as can be seen from Table I, the higher
26 10 048.0796 1.4596 B-spline eigenstates have very large energies, which means
27 18 197.4531 1.6010 that _thelr admixture tp the Iovyer states is negligible. Note
28 30 907.3301 1.7499 that !f accurate numerical solutions of the Hartret_a-Fock prob-
lem in a cavity(next column of Table)lare used instead as
29 50 016.4662 1.9052 . . .
basis functions for the CI calculations, then the number of
30 78 228.4827 2.0669 . . -
the mixed components would be considerably larger. This
31 119 575.1598 2.2350 . " .
means that the convergence improves significantlyB if
32 180 321.4070 2.4095 . P . . o
33 270 192 1563 2 5904 splines are used. This improvement is achieved by sacrificing
34 405 671'8233 2'7777 the completeness of the basis for higher states. Since lower
' : states are always of most interest, one can sayBtstlines
35 614 983.5032 2.9713 provide a very effective and natural way to adopt the basis to
36 957203.1898 3.1713 the problem of interest. Moreover, it is still possible to con-
37 1563 072.3099 3.3776 sider the higher states if appropriate adjustments of the
38 2892 240.5288 3.5903 B-spline parameters, k, andR are made.
39 7 107 212.9123 3.8093
40 48 924 980.8393 4.0346

lIl. RESULTS

Using the technique described above, we have calculated
72 the energies of the 24 lowest states of Ba. To illustrate the
H"F(r)=cap+(B8—1)mZ— —+VN(r). (11 role of different terms in Eq(8), in Table Il we present the
r two-electron energieg&,, of the barium ground state ob-
tained in different approximations and compare them with
Note that unlike forV,. in Eg. (5), 6s electrons also con- the experiment. The relativistic Hartree-Fd@HF) value in
tribute to theVN. Eigenstates of Eq(10) are variational the first column is just the matrix element
finite-basis solutions of the atomic Hartree-Fock problem in
the cavity of radiusR. In Table | we compare the energy (6s2J=0,M=0|H®|6s2J=0M =0)=2¢eg,— F(6s,65).
spectrum of Eq(10) for the s states with the actual spectrum (12
of the problem which was obtained by accurate numerical
solution of the Hartree-Fock equatidtt™(r)¢(r)=E¢(r)  ess=—0.16318 a.u. is the Hartree-Fock energy of the 6s
with the boundary conditiog/(R) =0. The energies must be state, and-(6s,6s) =0.17766 a.u. is the direct Coulomb in-
the same if theB-spline basis set is complete. As seen fromtegral of zero multipolarity. Neither the core-valence nor the
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TABLE lll. Excitation energies of Ba (ct).

Present work

Experiment
State [19,20 A2 BP Other calculations
Even states
6s5d D, 9034 9366 9061 9241 9423 11 164
D, 9216 9552 9246 9459 9637,11 286,12 126
3D, 9597 9946 9643 98£80 065, 11 492
6s5d D, 11 395 11 871 11 527 11 8413 164, 13 677
5d? °F, 20934 22 021 21474 213%4 23576
5F, 21250 22 348 21 800 21 663 23716
°F, 21 624 22742 22194 22 080 23894
5d? p, 23062 24151 23608 24 2%6 25427
5d? 3P, 23209 24311 23765 24298 24 43%
3p, 23480 24 637 24090 24 497 24708
3p, 23919 25072 24526 24943 24 86T
5d? G, 24 304300 26 145 25 597 25585 29 43%
5d? s, 26 444 26 034 29 167
6s7s 3s, 26 160 26 277 26 104
35, 28230 28 634 28 327
Odd states
6s6p 3P, 12 266 12573 12 300 12 563 12 22f
3p, 12 637 12 936 12 661 12 8322 583, 11 902
sp, 13515 13821 13 548 13792 13 444
6s6p P, 18 060 18 347 18031 18 4557 740, 17 393
5d6p 3F, 22 065 22 662 22117 22 765
3F, 22 947 23513 22 968 23632
3F, 23757 24 336 23791 24 491
5d6p D, 23074 23730 23183 23823

8Pureab initio results.

PHigher-order core-valence correlations are included semiempirically by decreasing a second-order term in
the s channel by 7.6%.

‘Relativistic coupled-cluster methdai].

dCI+MBPT (relativistic) [22].

®Multiconfiguration Dirac-Fock methof23].

*Multiconfiguration Dirac-Fock methofR4].

valence-valence correlations are included in EiR). The case of TI[14], the core-valence correlations dominate over
value in the second column is the matrix element the valence-valence ones. However, both types of correla-
tions are very important, and must be included in accurate
) calculations. The accuracy of the final resufi,,=
6sJ=0M=0/, —0.56065 a.u. is 0.3%, compared with the experimental
(13) value of —0.55915 a.u.

The argument used above to determine the role of the
where|K) represents all possible configurations correspondcorrelations for the ground state of barium is not applicable
ing to single and double core-valence excitatipgee Eq. t0 the excited states, at least as far as valence-valence corre-
(4)]. This value includes core-valence correlations in alations are concerned. Indeed, the correlation energy is de-
single-configuration approximation. The values in columns Jined as the difference between the actual energy of the
and 4 are the lowest solutions of the matrix eigenvalue probatomic state and its value in the Hartree-Fock approximation.
lems (4) and (8), respectively. Both values include correla- However, the latter is not well defined for an open-shell sys-
tions between valence electrons, but the latter value also ifem. Moreover, the application of MBPT dictates the use of
cludes correlations between the valence and core electronghe same potential for all basis states. Since we us&/the

From the values presented in this table, one can see thabtential, we have no bound valence states abose/d-
the correlation correction constitutes about 10% of the totathough the continuous spectrum is discretized by putting the
two-electron energy of the barium ground state. About 60%atom into a box of finite size, thesy 6p, 5d, etc. functions
of this correlation energy can be attributed to the core-obtained in this way are very different from what they are
valence correlations, while the remaining 40% arises fronsupposed to be in thesBs, 6s5d, 6s6p, etc. excited states
correlations between the valence electrons. Thus, as in thef Ba. This leads to a strong configuration mixing for excited

UIK)(K[U

HCI+ A S
; Eval_ EK

<6s23=0,|v| =0
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states. In principle, this mixing can be reduced significantly<100 cm? for all the configurations exceptd3. For the
by an appropriate choice of one-electron basis states. This &d? configuration the discrepancy ranges between 500 and
usually done when the primary aim of the calculations is t0s00 Cm_l_ We do not see any Significant decrease in accu-
assign a specific configuration to a particular atomic stateracy for the excited states in spite of the fact that the finite
Our aim is different—to approximate an atomic wave func-cavity radius R=40a,), and the limited number of splines
tion to a very high level of precision. This is achieved n=40 should put certain limitations on the accuracy of such
through the effective completeness of the basis, even thoughiates.
no particular configuration dominates in the resulting many-  There are many other calculations of the energy levels of
electron wave function. Ba, as can be seen from Table IIl. We would like to mention

As for the role of the core-valence correlations for theparticularly the calculations by Eliav, Kaldor, and Ishikawa
excited states, it can be easily investigated by comparing thg1] and by Kozlov and Porsei22]. The calculations in Ref.
calculations with and without the second-order correlatior22] were done using the method of the present paper, but
term in the expression for the effective Cl Hamiltonie®).  with a different basis set. This probably led to a slower con-
These correlations lower the energies of the barium states %rgence, especially for the excited states. No attempt to in-
4000-9000 cm'. This constitutes about 10% of the total clude higher-order correlations was made in that work. We
two-electron energy, similar to what we find for the groundnote, however, that the results of REZ2] are very close to
state. our second-order resulisee column A of Table 1)l The

In Table Ill, we present the calculated energies of the 24:3|culations in Ref[21] were done using a CC approach
lowest states of Ba in the format similar to that used bywith pair correlations included in all orders, while triple and
Moore[19], i.e., we show energies with respect to the B4 6 higher excitations were neglected. The accuracy of these re-
ground state. The experimental values and results from othejiits are similar to those in the present work, probably be-
calculations are also included. As can be seen from the nuntause the triple correlations are suppressed for Ba; it has only

bers in column A of the table, all theoretical intervals aretwo valence electrons and triple correlations can appear only
slightly overestimated. This is because the correlation interin the core-valence interaction.

action between valence electrons and core is always overes- |n conclusion, we would like to summarize the benefits
timated by second-order MBPT. The actual correlation corgiven by the use oB splines in the C+MBPT method:(1)
rection is usually about 10% smaller; the decrease beinghe same uniform, state-independent, basis set is used for
caused by the higher-order correlatiofi2,16,11. These calculations of the core-valence correlation interaction, and
higher-order correlations can be included semiempirically byfor the construction of the two-electron wave functions for
introducing a factoif <1 into the correlation correctioiihe  the ground and excited state€?) Fast convergence is
second term in Eq9)]. Fitting the energy of the Ba ground achieved in both of these cas¢3) Good accuracy of the Ba

state with a single factofs, which affects only the correla- energy levels was obtained, not only for the lowest states but
tion interaction of thes electrons with the core, givek  for many excited states as well.

=0.924, in a reasonable agreement with the accurate calcu-
lation of the higher-order correlations for other many-
electron atomg12,7,11. New energy intervals found with
the use offg are presented in column B of Table Ill. With One of the authorgV.D.) is grateful to the Physics De-
only one fitting parameter, all energy intervals are improvedoartment of the University of Notre Dame for the warm re-
significantly. This is because the fitting mostly affects theception and hospitality during his visit. We would like to
energy of the ground state. The excited states are less ahank G. Gribakin for reading the manuscript and making
fected; correlation correction is smaller for them due to theuseful comments. The work of W.R.J was supported in part
remoteness of the excited electrons from the core. The resulby Grant No. PHY-95-13179 from the National Sceince
ing absolute discrepancy with the experimental data ig~oundation.
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