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Two-stage strategy for high-precision variational calculations
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The problem of high-precision, variational, bound-state calculations in few-body systems is discussed. The
simple and very effective variational procedure developed below makes possible numerical, bound-state com-
putations in few-body systems with extremely high accuracy. This procedure is based on the proposed two-
stage strategy, which is used to construct the approximate wave function. The highly accurate numerical
results, which include both energetical and geometrical properties, for various three-body systems
[Ps,”H™,”He, and ppe)*] are presented S1050-294708)01704-1

PACS numbes): 31.25-v, 36.10.Dr

In the present communication we discuss the problem of N L /
high-precision variational calculations to determine the W y=>(1+ kPo) > 2 GV L Arar re)exd — aif 3
bound states in few-body systems. Our main goal is to im- 1=17/=¢
prove significantly the methods that are used so far for such A , , i
calculations. The key to this problem is the use of the two- Airar™ yir2) X1 6T gt 18y il ), @
stage procedure to construct extremely accurate trial wave i .
functions. Let us consider the variational expansion for theVhereCi are the lineaxor variational parameterse , B;,
trial wave function¥, which containsN terms or basis func- i % €, andf; are the nonlinear parameters. The func-
tions. Presently, we shall assume that each of these badigns " ?(rs1,rsy) are the so-called Schwarfta] or bipo-
functions(1) contains the same number of nonlinear param{ar harmonics. The operatd?,; is the permutation of the
etersk, and(2) has the correct asymptotic behavior in eachidentical particles in the symmetric systems, where+1
of the system’s decay channels. Actually, this means that wér — 1), otherwisex=0. Actually, in the present study we
consider the so-called fast convergent variational expansionspnsider the symmetric systems wik+ + 1, and with the
and furthermore, such a convergence is observed not only faero value of the total angular momentrs0, i.e., thelS
the total energies, but also for all other properfies states. The ground states in these systems are of specific
In the proposed two-stage procedure the trial wave funcinterest, since they were intensively studied previously, and a
tion ¥ is represented by the sum of the very well optimized,large number of quite accurate results have been reported for
short-term function?'; and roughly optimizedor even non- them(see, e.g.[3,5-13).
optimized, long-term functionW,. If the total number of It should be mentioned here that the exponential varia-
terms equalsN, then we may write W(N)=W¥,;(N,) tional expansion Eq(1) was used successfully to solve a
+W¥,(N—Ng), whereNy<N. In terms of the first assump- Wwide number of complicated problems. The present form Eq.
tion made above, th#;(N,) function includeskN, nonlin- (1) corresponds to the universal variational expansion for
ear parameters, while th&,(N—N,) function contains three-body systemi3]. This means that Eq1) can be ap-
k(N—N,) such parameters. Correspondingly, the first stag#lied directly for highly accurate bound-state calculations in
of the procedure is to optimize quite well only tk#l, non-  arbitrary three-body systems, including the so-called adia-
linear parameters, which is significantly smaller than the tobatic case when ming,m,)>m; andq;q,>0 (for more de-
tal number of these parameteteN) in the trial wave func- tail see[3]). Presently, we consider the four following sys-
tion ¥. In the second stage the total number of nonlineatems: the Ps(e"e"e™) and “H™ ions, the “He atom and
parameters grows extensively, but they can be chosen witfihe (pp€) ™ molecular ion. The last system is certainly adia-
roughly, optimization or even without optimization, e.g., in a batic, sincem,=1836.15270t,>m, [13]. The wave func-
regular[2] or quasirandom mannésee, e.g.[3] and refer- tion is taken to be reald=¢;=f;=0, fori=1,... N) for
ences therein As is shown below, the first stage produces aall the systems except the almost-adiabatic cisg (or
very compact and highly accurate wave functiéy. The  ppe’), where all the nonlinear parameters are retained.
appropriate energy contains approximately 10—-12 correct Now, the principal problem is to find an optimal strategy
decimal figure<in the atomic units The second stage gives how to choose the nonlinear parameters in @g. In many
as a rule 2—3 additional correct decimal figures to the totaprevious works the nonlinear parametetg,B;,y; or
energy, and generates the extremely accurate wave functioa; ,8;,7i,d;.€,f;, wherei=1,2,... N, in Eq. (1) were
which can be used to compute the various properties in thgenerated in a quasirandom manitfar details and refer-
considered system. ences see, e.d.3]) from the three or six real intervals, re-
In order to make the discussion clearer and more concretgpectively. In particular, this approach was intensively used
we restrict ourselves in this study to consideration of thein our previous studiegsee, e.g.,[3,14] and references
Coulomb three-body systems only. Moreover, only the expotherein. It works quite well, but the competing approach
nential variational expansion in the relative coordinates ismproved recently5,6] provides a better accuracy. The two-
used below. In the general case it takes the fp8in stage procedure stated in this work eliminates completely the
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TABLE I. The total energiesE) in atomic units (n,=1/4=1,e=1) for the ground states of some three-body systé&irdesignates the
number of basis functions used.

N E&(Ps) E&("H") E?("He) N E((ppe™)

200 -0.262005070222620 200 -0.527751016541252 200 -2.903724377031417 100 -0.5971390322825
400 -0.262005070231129 300 -0.527751016541986 300 -2.903724377032210 200 -0.5971390492823
500 -0.262005070232527 400 -0.527751016543162 400 -2.903724377033432 250 -0.5971390568858
600 -0.262005070232785 500 -0.527751016543794 500 -2.903724377033841 300 -0.5971390611207
700 -0.262005070232898 600 -0.527751016544057 600 -2.903724377033992 350 -0.5971390625299
800 -0.262005070232942 700 -0.527751016544195 700 -2.903724377034051 400 -0.5971390629722
900 -0.262005070232957 750 -0.527751016544233 800 -2.903724377034080 450 -0.5971390630813
950 -0.262005070232961 775 -0.527751016544243 825 -2.903724377034086 475 -0.5971390630895
1000 -0.262005070232965 800 -0.527751016544253 850 -2.903724377034091 500 -0.5971390631031
®The best variational results for these systems are).26200507023296538 a.u.—0.52775101654425325 a.u., and

—2.9037243770340913 a.u., respectively. In Table | only 15 significant decimal figures after the comma are given for each energy.

accuracy problem from bound-state calculations, since it can
be made, in principle, arbitrarily high. Our present results
show how this strategy works for the four systems mentioned

above. The two following values dfl; and N have been
used in the present studi,= 200 in all cases antl=800

mimj
Viquiqjmiij

()

whereq; andq; are the charges and, andm; the masses of
the particles.

—1000. Note that the actual numbers of basis functions used The expectation values of the two interparticiesine

in the (ppe) " calculations were twice less in each case, i.e.functions are determined traditionally:
Ng=100 andN=500, respectively.

The found variational energies are presented in Table I. In
both Tables | and Il only atomic units are used,=1, e

=1, anda=1. The results foN=200(=N,) correspond to
the highly accurate short-term wave functioh,. These
functions and their improved versions can be found else
where[15] and everyone may use them in his own calcula-
tions. Note only, that the Ps”H™ and “He wave functions

¥, contains 600 nonlinear parameters each, while the
(ppe* wave function includes 1200 such parame{ds).

The choice of the nonlinear parameters corresponds to the
wave function represented explicitly in the form Ed). As
follows from Table | the final accuracy for the total energies
E achieved by using the proposed two-stage approach is ) )
higher than known from the previous works. But it is prob- The value(f) can be calculated directly or by applying .
ably more important to note that such an accuracy can b&he equalities
increased significantly by performing better optimization for

the short-term¥; function[15].

The numerical values for some of the properiies., ex-
pectation valugsare presented in Table Il. The physical hold for arbitrary three-body nonsymmetric and symmetric
meaning for almost all of these expectation values is quitd1<2) systems, respectively. The virial factgris deter-
clear from the notations used, and here we can make only ained as follows:
few following remarks. In all the formulas given below the
notations 1 and 2 mean the two identical particles, while the
notation 3 designates the different on#,, 55, and 35

stand for the two- and three-particle Diracfunctions, re-
spectively. The two-body cusp ratios are determined in

traditional manner:

<f>=<¢

7ij = (cogr X rjk)>:<

Up Uz Us

F32r31 21

g

ik Tk

ikl jk

)

where {,j,k)=(1,2,3). The quantity(f) is expressed in
terms of the relative coordinatessf,r3,,r»1) Or perimetric
coordinates ;,u,,u3) [where ui=%(rij+rik—rjk), and
(i,j,k)=(1,2,3)] as follows:

4

:f f f |(uy,Uyp,Uz)|?usupusdusduydus.  (5)

7'21+ T32+ T31= 1+ 4<f> a.nd

(V)
”:‘”ﬁ

7'21+ 2’7'31: 1+ 4<f>

(6)

(7)

where(T) and(V) are the expectation values of the kinetic
%nd potential energy, respectively. The deviation of the fac-

tor » from zero indicates the quality of the wave function
used. The appropriate binding energiesare given in eV
(1 Ry = 27.2113961 €Y. Note also that in Table Il only

stable figures from calculations with the higher valuesNof
(2 are presented. It follows from Table Il that all previous prob-
lems related with slow convergence for some expectation
values (e.g., for the(r3,) or (V,-V3) values are solved
successfully by applying the highly accurate wave functions.
However, analogous problems for thé,,),{ 83,1), and v,

Jd
<5(rij)m>
ij

<5(rij)> '

Vij:

where 6;;= 6(r;;) is the appropriate Dira@ function and
(ij)=(21) and (31). The exact value of; equals[17]
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TABLE II. The expectation valueéX;;) in atomic units (ne=14=1,e=1) of some properties for the
ground states in some three-body systems.

(Xij) Ps “H- “He (ppe*

) 0.03602205849 0.15510415296 1.4677092349 1.425744903
(r3f? 0.279326542159 1.1166628242 6.0174088662 0.2439234991
(rot 0.155631905653 0.31102150222 0.945818448800 0.49070779859
(rat) 0.339821023059 0.68326176765 1.688316800717 0.84249296238
(ran) 8.54858065512 4.4126944977 1.422070255566 2.0639138675
(rap) 5.48963325237 2.7101782783 0.929472294874 1.69296620840
(r3) 93.178633857 25.202025295 2.516439312836 4.3132859444
(r3) 48.418937230 11.913699680 1.193482995021 3.5587979296
(r3) 1265.5804489 180.6056011 5.30800964084 9.125657555
(r3) 607.29563013 76.02309752 1.96794810670 8.709881574
(r3) 21054.45349 1590.094673 12.981271359 19.54234939
(r3) 9930.638730 645.1445780 3.9735649319 24.034835140
((rarrs) b 0.090935346529 0.382627890321 2.70865547443 0.607695916941
((rarro)™ Y 0.060697690289 0.253077567089 1.92094392188 0.416234396614
T2 0.591981701149 0.649871581195 0.648017667474 0.509967771935
™o 0.019769632817 -0.105147693565 -0.064202614219 0.251989492715
(f) 0.0509332587788 0.048648867206 0.0579581801820  0.0679812591465
(rar-T30) 1.8296203020 -0.6873129673 -0.064736661397 1.40215495740
(Fa1-To0) 46.589316928 12.601012647 1.258219656418 2.15664297222
(1v) 0.0666192945359 0.2638755082723 1.451862188517 2.6133703465
(1v) 0.1287664811612 0.5606307983969 3.062793852119 0.594292491164
(V1-V5) -0.004472107911 0.032879781851 0.159069475085 b

(V1-V3) -0.063265213603 -0.288535344660 -1.571164294831 b

(831 0.0207331980 0.164552868 1.81042929 0.206736364
(851) 0.1709969% 102  0.27379944 10 2 0.106345374 0.44410°°

(8320) 0.358685 104 0.506351x 102 1.868599 0.30410°°

Va1 -0.4999997640218 -0.999998969784 -1.99999875493 -0.9994517779
V3, -0.5 -1.0 -2.0 -0.9994556794329
o 0.499972144320 0.499980229939 0.499999799897 -100.0880

V3, 0.5 0.5 0.5 918.0763505000

7 4.690< 10 3.093x 10 %2 2.668x 10 2.816x10 %

€ -0.32667472131754  -0.75514390336334 -24.5916019887004  -2.65069538416

&The exact value from Ed2).
These values were not computed.

values still remain, and for the adiabatic systempé)* such  wherea=0.729735308& 10 2 is the fine structure constant,
problems take a very complicated forisee Table . c=0.29979245% 10° m sec ! is the velocity of light, and
By using the expectation values given in Table Il one maythe Bohr radiusy, equals 0.52917724010 °m [20]. Now,

calculate a wi_de number of observable properties fo_r _the_sgy applying the expectation values for the appropriate Dirac
systems. For Instance, the total and one-photon anmhllatlog functions from Table Il one finds from the last equalities:
rates in the Ps ion can be found from the two following

expression$18,19:

17 197
1=a| -1 (9w
=100.617480% 10%( 55,) sec?!

I'=2ma*cay*

4 1672

aBcag 1851 =1065.7574455,;) sec ?,

I'=2.086122154%10° sec! and I';,=3.82271x10 2
sec 1. The other annihilation ratds,, ,I's,, ... can be eas-
ily estimated by using théds;) value and formulas from
[29].

Thus, in the present work a simple and very effective
procedure was proposed to perform high-precision, varia-
tional, bound-state calculations in few-body systems. In par-
ticular, the three-body case is studied in detail, and it is
shown that the high-precision expansions for the actual wave
(8)  functions in arbitrary three-body systems can be made sig-
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