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Two-stage strategy for high-precision variational calculations

Alexei M. Frolov
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 15 October 1997!

The problem of high-precision, variational, bound-state calculations in few-body systems is discussed. The
simple and very effective variational procedure developed below makes possible numerical, bound-state com-
putations in few-body systems with extremely high accuracy. This procedure is based on the proposed two-
stage strategy, which is used to construct the approximate wave function. The highly accurate numerical
results, which include both energetical and geometrical properties, for various three-body systems
@Ps2,`H2,`He, and (ppe)1# are presented.@S1050-2947~98!01704-1#

PACS number~s!: 31.25.2v, 36.10.Dr
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In the present communication we discuss the problem
high-precision variational calculations to determine t
bound states in few-body systems. Our main goal is to
prove significantly the methods that are used so far for s
calculations. The key to this problem is the use of the tw
stage procedure to construct extremely accurate trial w
functions. Let us consider the variational expansion for
trial wave functionC, which containsN terms or basis func-
tions. Presently, we shall assume that each of these b
functions~1! contains the same number of nonlinear para
etersk, and~2! has the correct asymptotic behavior in ea
of the system’s decay channels. Actually, this means tha
consider the so-called fast convergent variational expansi
and furthermore, such a convergence is observed not onl
the total energies, but also for all other properties@1#.

In the proposed two-stage procedure the trial wave fu
tion C is represented by the sum of the very well optimize
short-term functionC1 and roughly optimized~or even non-
optimized!, long-term functionC2. If the total number of
terms equalsN, then we may write C(N)5C1(N0)
1C2(N2N0), whereN0!N. In terms of the first assump
tion made above, theC1(N0) function includeskN0 nonlin-
ear parameters, while theC2(N2N0) function contains
k(N2N0) such parameters. Correspondingly, the first st
of the procedure is to optimize quite well only thekN0 non-
linear parameters, which is significantly smaller than the
tal number of these parameters (kN) in the trial wave func-
tion C. In the second stage the total number of nonlin
parameters grows extensively, but they can be chosen w
roughly, optimization or even without optimization, e.g., in
regular@2# or quasirandom manner~see, e.g.,@3# and refer-
ences therein!. As is shown below, the first stage produces
very compact and highly accurate wave functionC1. The
appropriate energy contains approximately 10–12 cor
decimal figures~in the atomic units!. The second stage give
as a rule 2–3 additional correct decimal figures to the to
energy, and generates the extremely accurate wave func
which can be used to compute the various properties in
considered system.

In order to make the discussion clearer and more conc
we restrict ourselves in this study to consideration of
Coulomb three-body systems only. Moreover, only the ex
nential variational expansion in the relative coordinates
used below. In the general case it takes the form@3#
571050-2947/98/57~4!/2436~4!/$15.00
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l 1 ,l 2~r31,r32!exp~2a i r 32

2b i r 312g i r 21!exp~ ıd i r 321ıei r 311ı f i r 21!, ~1!

whereCi are the linear~or variational! parameters,a i , b i ,
g i , d i , ei , and f i are the nonlinear parameters. The fun
tionsYLM

l 1 ,l 2(r31,r32) are the so-called Schwartz@4# or bipo-
lar harmonics. The operatorP21 is the permutation of the
identical particles in the symmetric systems, wherek511
~or 21), otherwisek50. Actually, in the present study w
consider the symmetric systems withk511, and with the
zero value of the total angular momentumL50, i.e., the1S
states. The ground states in these systems are of spe
interest, since they were intensively studied previously, an
large number of quite accurate results have been reporte
them ~see, e.g.,@3,5–12#!.

It should be mentioned here that the exponential va
tional expansion Eq.~1! was used successfully to solve
wide number of complicated problems. The present form
~1! corresponds to the universal variational expansion
three-body systems@3#. This means that Eq.~1! can be ap-
plied directly for highly accurate bound-state calculations
arbitrary three-body systems, including the so-called ad
batic case when min(m1,m2)@m3 andq1q2.0 ~for more de-
tail see@3#!. Presently, we consider the four following sy
tems: the Ps2(e2e1e2) and `H2 ions, the `He atom and
the (ppe)1 molecular ion. The last system is certainly adi
batic, sincemp51836.152701me@me @13#. The wave func-
tion is taken to be real (d i5ei5 f i50, for i 51, . . . ,N) for
all the systems except the almost-adiabatic case1H2

1 ~or
ppe1), where all the nonlinear parameters are retained.

Now, the principal problem is to find an optimal strateg
how to choose the nonlinear parameters in Eq.~1!. In many
previous works the nonlinear parametersa i ,b i ,g i or
a i ,b i ,g i ,d i ,ei , f i , where i 51,2, . . . ,N, in Eq. ~1! were
generated in a quasirandom manner~for details and refer-
ences see, e.g.,@3#! from the three or six real intervals, re
spectively. In particular, this approach was intensively us
in our previous studies~see, e.g.,@3,14# and references
therein!. It works quite well, but the competing approac
improved recently@5,6# provides a better accuracy. The two
stage procedure stated in this work eliminates completely
2436 © 1998 The American Physical Society



22825
92823
68858
11207
25299
29722
30813
30895
31031

gy.

57 2437TWO-STAGE STRATEGY FOR HIGH-PRECISION . . .
TABLE I. The total energies (E) in atomic units (me51,\51,e51) for the ground states of some three-body systems.N designates the
number of basis functions used.

N E a (Ps2) N E a (`H2) N E a (`He) N E„(ppe)1
…

200 -0.262005070222620 200 -0.527751016541252 200 -2.903724377031417 100 -0.59713903
400 -0.262005070231129 300 -0.527751016541986 300 -2.903724377032210 200 -0.59713904
500 -0.262005070232527 400 -0.527751016543162 400 -2.903724377033432 250 -0.59713905
600 -0.262005070232785 500 -0.527751016543794 500 -2.903724377033841 300 -0.59713906
700 -0.262005070232898 600 -0.527751016544057 600 -2.903724377033992 350 -0.59713906
800 -0.262005070232942 700 -0.527751016544195 700 -2.903724377034051 400 -0.59713906
900 -0.262005070232957 750 -0.527751016544233 800 -2.903724377034080 450 -0.59713906
950 -0.262005070232961 775 -0.527751016544243 825 -2.903724377034086 475 -0.59713906
1000 -0.262005070232965 800 -0.527751016544253 850 -2.903724377034091 500 -0.59713906

aThe best variational results for these systems are20.26200507023296538 a.u.,20.52775101654425325 a.u., and
22.9037243770340913 a.u., respectively. In Table I only 15 significant decimal figures after the comma are given for each ener
ca
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accuracy problem from bound-state calculations, since it
be made, in principle, arbitrarily high. Our present resu
show how this strategy works for the four systems mentio
above. The two following values ofN0 and N have been
used in the present study:N05200 in all cases andN5800
21000. Note that the actual numbers of basis functions u
in the (ppe)1 calculations were twice less in each case, i
N05100 andN5500, respectively.

The found variational energies are presented in Table
both Tables I and II only atomic units are used:me51, e
51, and\51. The results forN5200(5N0) correspond to
the highly accurate short-term wave functionC1. These
functions and their improved versions can be found e
where@15# and everyone may use them in his own calcu
tions. Note only, that the Ps2,`H2 and `He wave functions
C1 contains 600 nonlinear parameters each, while
(ppe)1 wave function includes 1200 such parameters@16#.
The choice of the nonlinear parameters corresponds to
wave function represented explicitly in the form Eq.~1!. As
follows from Table I the final accuracy for the total energi
E achieved by using the proposed two-stage approac
higher than known from the previous works. But it is pro
ably more important to note that such an accuracy can
increased significantly by performing better optimization
the short-termC1 function @15#.

The numerical values for some of the properties~i.e., ex-
pectation values! are presented in Table II. The physic
meaning for almost all of these expectation values is q
clear from the notations used, and here we can make on
few following remarks. In all the formulas given below th
notations 1 and 2 mean the two identical particles, while
notation 3 designates the different one.d31,d21, and d321
stand for the two- and three-particle Diracd functions, re-
spectively. The two-body cusp ratios are determined i
traditional manner:

n i j 5

K d~r i j !
]

]r i j
L

^d~r i j !&
, ~2!

where d i j 5d(r i j ) is the appropriate Diracd function and
( i j )5(21) and (31). The exact value ofn i j equals@17#
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n i j 5qiqj

mimj

mi1mj
~3!

whereqi andqj are the charges andmi andmj the masses of
the particles.

The expectation values of the two interparticlecosine
functions are determined traditionally:

t i j 5^cos~r ik3r jk!&5 K r ik•r jk

r ikr jk
L , ~4!

where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk), and

( i , j ,k)5(1,2,3)# as follows:

^ f &5 K cU u1

r 32

u2

r 31

u3

r 21
Uc L

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~5!

The value^ f & can be calculated directly or by applyingt i j .
The equalities

t211t321t315114^ f & and t2112t315114^ f &
~6!

hold for arbitrary three-body nonsymmetric and symmet
(1⇔2) systems, respectively. The virial factorh is deter-
mined as follows:

h5U11
^V&
2^T&

U, ~7!

where^T& and ^V& are the expectation values of the kinet
and potential energy, respectively. The deviation of the f
tor h from zero indicates the quality of the wave functio
used. The appropriate binding energies« are given in eV
~1 Ry 5 27.2113961 eV!. Note also that in Table II only
stable figures from calculations with the higher values ofN
are presented. It follows from Table II that all previous pro
lems related with slow convergence for some expecta
values ~e.g., for the^r 21

4 & or ^¹1•¹3& values! are solved
successfully by applying the highly accurate wave functio
However, analogous problems for the^d21&,^d321&, andn21
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TABLE II. The expectation valueŝXi j & in atomic units (me51,\51,e51) of some properties for the
ground states in some three-body systems.

^Xi j & Ps2 `H2 `He (ppe)1

^r 21
22& 0.03602205849 0.15510415296 1.4677092349 1.425744903

^r 31
22& 0.279326542159 1.1166628242 6.0174088662 0.243923499

^r 21
21& 0.155631905653 0.31102150222 0.945818448800 0.490707798

^r 31
21& 0.339821023059 0.68326176765 1.688316800717 0.842492962

^r 21& 8.54858065512 4.4126944977 1.422070255566 2.063913867

^r 31& 5.48963325237 2.7101782783 0.929472294874 1.692966208

^r 21
2 & 93.178633857 25.202025295 2.516439312836 4.313285944

^r 31
2 & 48.418937230 11.913699680 1.193482995021 3.558797929

^r 21
3 & 1265.5804489 180.6056011 5.30800964084 9.125657555

^r 31
3 & 607.29563013 76.02309752 1.96794810670 8.709881574

^r 21
4 & 21054.45349 1590.094673 12.981271359 19.54234939

^r 31
4 & 9930.638730 645.1445780 3.9735649319 24.034835140

^(r 31•r 32)
21& 0.090935346529 0.382627890321 2.70865547443 0.6076959169

^(r 31•r 21)
21& 0.060697690289 0.253077567089 1.92094392188 0.4162343966

t31 0.591981701149 0.649871581195 0.648017667474 0.5099677719

t21 0.019769632817 -0.105147693565 -0.064202614219 0.2519894927

^ f & 0.0509332587788 0.048648867206 0.0579581801820 0.0679812591

^r31•r32& 1.8296203020 -0.6873129673 -0.064736661397 1.4021549574

^r31•r21& 46.589316928 12.601012647 1.258219656418 2.1566429722

^ 1
2 ¹1

2& 0.0666192945359 0.2638755082723 1.451862188517 2.613370346

^ 1
2 ¹3

2& 0.1287664811612 0.5606307983969 3.062793852119 0.594292491

^¹1•¹2& -0.004472107911 0.032879781851 0.159069475085 b

^¹1•¹3& -0.063265213603 -0.288535344660 -1.571164294831 b

^d31& 0.0207331980 0.164552868 1.81042929 0.206736364

^d21& 0.1709969931023 0.2737994431022 0.106345374 0.44431029

^d321& 0.35868531024 0.50635131022 1.868599 0.30431029

n31 -0.4999997640218 -0.999998969784 -1.99999875493 -0.99945177

n31
a -0.5 -1.0 -2.0 -0.9994556794329

n21 0.499972144320 0.499980229939 0.499999799897 -100.0880

n21
a 0.5 0.5 0.5 918.0763505000

h 4.690310214 3.093310212 2.668310214 2.816310211

« -0.32667472131754 -0.75514390336334 -24.5916019887004 -2.65069538

aThe exact value from Eq.~2!.
bThese values were not computed.
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values still remain, and for the adiabatic system (ppe)1 such
problems take a very complicated form~see Table II!.

By using the expectation values given in Table II one m
calculate a wide number of observable properties for th
systems. For instance, the total and one-photon annihila
rates in the Ps2 ion can be found from the two following
expressions@18,19#:

G52pa4ca0
21F12aS 17

p
2

19p

12 D G^d31&

5100.61748093109^d31& sec21

G1g5
4

9

16p2

3
a8ca0

21^d321&51065.75744̂d321& sec21,

~8!
y
se
n

wherea50.72973530831022 is the fine structure constan
c50.2997924583109 m sec21 is the velocity of light, and
the Bohr radiusa0 equals 0.529177249310210 m @20#. Now,
by applying the expectation values for the appropriate Di
d functions from Table II one finds from the last equalitie
G52.0861221543109 sec21 and G1g53.8227131022

sec21. The other annihilation ratesG2g ,G3g , . . . can be eas-
ily estimated by using thêd31& value and formulas from
@19#.

Thus, in the present work a simple and very effecti
procedure was proposed to perform high-precision, va
tional, bound-state calculations in few-body systems. In p
ticular, the three-body case is studied in detail, and it
shown that the high-precision expansions for the actual w
functions in arbitrary three-body systems can be made
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nificantly more compact than the expansions used so
Furthermore, the developed two-stage strategy to choose
nonlinear parameters in the wave function is quite effect
and can be applied to increase the final accuracy cons
ably @21#.
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@1# This remark is very important, since otherwise, by using
huge number of incorrect basis functions~e.g., ‘‘cutted’’ poly-
nomials, many-dimensional gaussoids, etc.! with a large num-
ber of nonlinear parameters, one may decrease the total en
to very low values. In terms of the variational principle th
means an obvious improvement of the wave function. Bu
general, the quality of such a wave function will remain po
In particular, they are useless, as a rule, in actual calculat
of many properties.
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