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Assessing optimality and robustness of control over quantum dynamics
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This work presents a general framework for assessing the quality and robustness of control over quantum
dynamics induced by an optical fielf(t). The control process is expressed in terms of a cost functional,
including the physical objectives, penalties, and constraints. The first variations of such cost functionals have
traditionally been utilized to create designs for the controlling electric fields. Here, the second variation of the
cost functional is analyzed to explog whether such solutions are locally optimal, afiij their degree of
robustness. Both issues may be assessed from the eigenvalues of the stability opetaise kerneK(t,7)
is related tos&(t)/ 8E( )| for 0<t, 7<T, whereT is the target control time. Here denotes the constraint
that the field satisfies the optimal control dynamical equations. The eigenvahfeS satisfyingo<1 assure
local optimality of the control solution, witl-=1 being the critical value separating optimal solutions from
false solutions(i.e., those with negative second variational curvature of the cost functidnaturn, the
maximally robust control solutions with the least sensitivity to field errors also correspoad-fio Thus,
sufficiently high sensitivity of the field at one timeo the field at another time(i.e., o> 1) will lead to a loss
of local optimality. An expression is obtained for a bound on the stability operator, and this result is employed
to qualitatively analyze control behavior. From this bound, the inclusion of an auxiliary opératoother
than the target operafois shown to act as a stabilizer of the control process. It is also shown that robust
solutions are expected to exist in both the strong- and weak-field rediBE350-294{@8)07203-3

PACS numbsgs): 32.90+a

. INTRODUCTION sidering the second variatiod? 7/ &(t) 8£(7), and deter-
mining its positive or negative definite character at each
In recent years, there has been considerable activity in theolution determined from the first variational equations.
domain of designing controls to actively manipulate quantungven if solutions are determined to be physically acceptable
dynamics phenomerfd—3]. There are many potential appli- as minima, it is also highly desirable that they be robust to
cations in chemistry, physics, and nanoscale engineeringybitrary incremental variations£(t) in the control field, as
Most attention has been focused on designing optical electrigignt arise due to errors or uncertainties in the laboratory. In
fields for dynamical manipulation, and the design techniquegs context, robustness corresponds to a solution associated
have rangec_JI from pertL_eratlon thedB to the exploitation with minimal positive curvature of the cost functional. As-
of fully nonlinear technlque§4]. It has beer_1 showfb] that sessment of these matters involves functional analysis, but
the most general approach_ is through optimal contral thear e may qualitatively understand the situation by considering
[6], and numerous theoretical efforts have explored contro ) .
designs for manipulating various rotational, vibrational, and he regiuced prob!em .Of a smgle_ contr_ol pgrametefor -
electronic processes. Throughout this research, the primaJé}Tc‘Frat'on'. This ;ltuat|on Is depicted in Fig. 1'. All-of the
focus has been on obtaining reliable control field designs _r|t|cal F_’O'_ntsai 1= 1{ . - - /4 correspond to solutions of the
and little attention has been paid to the robustness of thedifst variational equations.7/da; =0, but the cases, and
designs. The present paper considers general criteria for e@s are not acceptable, as they do not minimizeThe solu-
tablishing robustness and the optimality of the control solutions @, anda, are both locally optimal, and the case ®f
tions. Control field design within optimal control theory gives the best solution, in the sense tifata;) <J(ay).
[1,3,4,7,8 is based on first prescribing a physically moti- However, from a robustness point of view, the solutionis
vated cost functional7, which contains all of the information better, ass?.7/das<3?Jlda3. The solution ata, is more
about the physical objectives and any penalties or constraint®bust than that at,, since, for a given arbitrary small
imposed on the dynamical evolution. It is generally under-variation & of «, we find that| 7(as+ 6) — J(a4)| <|T (a2
stood that there can be multiple extred\d/ sE(t) =0, with  + 8)— J(ay)|. In general, we may identify the best control
respect to the field, for any particular control problem. Thesolution as the one that simultaneously minimizésvhile
physically acceptable solutions correspond to a minimizatiornaving the smallest curvature. As is found in Fig. 1, it may
of 7, and the first variation criteriod. 7/ 6£(t)=0 does not happen that a tradeoff exists between the absolute quality of
guarantee whether the solution is a local minimum or maxithe achieved solution and its robustness. This is a problem
mum of 7. This circumstance can only be assessed by conthat is only likely to be identifiable on a problem-by-problem
basis, and the present paper is concerned with more general
considerations.
*Permanent address: Engineering Sciences Department, Faculty In this work, we show that eigenvalues of the stability
of Sciences and Lettersstanbul Technical University, Ayazag operatorS, whose kernelC(t,7) is related to the dynami-
Campus, Maslak, 80626tanbul, Turkey. cally constrainedd) functional derivatives&(t)/ 8&( 7). for
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The penalty termjfjl) aims to suppress the expectation
value of a given “undesirable” operat@®’,

T ~
! Tp'=3 f dt Wo(t)(s(1)]O’[%(1))?,

0
W,()>0, te[0,T]. (2.4

The second penalty term allows for the possibility of mini-
mizing the field fluence,

.
73=4 [ atwavew?

W(t)>0, te[0T]. (2.5

e %2 s & a The term denoted by, 4 includes the dynamical constraint

that Schrdinger’s equation must be satisfied. This is assured

FIG. 1. A cost functional is schematically shown to depend onthrough the introduction of a Lagrange multiplieras given
an optimal control parameter as an illustration of optimality and by

robustness circumstances. Each of the paintsi=1, . . . ,4satis-
fies §7=0; however, only the cases, and «, are physically ac- T
ceptable locally optimal solutions. One of these two casgegives Jed=2 Rﬁ( j dt< A(t)
better control, whilen, gives better robustness. The circumstances 0

for all four critical values ofa have a functional extension to the
general control field(t).

9
i E—H¢(t)>). (2.6)

Additional terms may be added to the cost functional in Eq.
(2.2), but the present form covers most applications.

0<t, 7=<T, dictates both the optimality and robustness of _“ control solution is attained by considering the first
variation of the cost functional

potential control solutions for manipulating quantum dynam-
ics. A formal expression for this operator will be identified, T
with bounds placed on its spectrum. Some qualitative con- 5j=f dt We(t) 5E(t)E(t)
clusions on the nature of robustness will be drawn from this 0
bounding relationship. T

The paper is organized as follows: Section Il presents the —Zf dt SE(H)Re(N(1)| D] ¢(1)). (2.7
formal analysis leading to the expression for the stability 0

operator; Sec. lll places a bound on this operator which per- . . L .
mits a qualitative robustness and optimality analysis. Som&duation(2.7) has already exploited the vanishing of the first

brief concluding remarks are presented in Sec. IV. variations with respect thy(t)) and|\(t)), to respectively
give Schralinger’s equation where
II. IDENTIFICATION OF THE STABILITY OPERATOR 8|&t)> . .
Consider quantum motion under the influence of an exter- i% ot =[Hot+at)DI[§1), (2.83
nal field £(t) described by the following Hamiltonian: B
H=Ho+&()D (2.1 [UO)=1P), (280

where |f) is the initial state, and the equation for the

whereH,, D, and&(t) respectively denote the Hamiltonian eLagrange multiplier

for the free motion, the dipole operator projected along th
direction of the external field, and the amplitude of the ex-

ternal field. The following cost functional prescribes the op- i% 9IND) =[H0+Et)D]|;(t))—Wp(t)
timal control of this systenpl,3,4]: ot
T=Tot TN+ TP+ To .- 2.2 X(UD[O'|U1)O" L),  (2.9a
Here, 7, is the objective term that measures the difference ST '_ T
between the expectation value of a given objective operator M) h 70lUT)). (2.9
O and its target valu®, L _
7=(UT)|O|UT))-O. (2.99

Jo=3L(#(T)|Oly(T)) - O 2.3 , , ,
Here the overbars label the functions that satisfy the first
Control through application of(t) is affected over the time variation of the cost functional as zero. Finally, considering
interval 0<t<T, with T being the target time. the variation with respect to the field in E@®.7), we obtain
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_ 2 _ _ o i o - -
&= RENDIDIU). 210 [3N(T)= 2 R (50(T)|O[UT)IOUT)
&

Equations(2.8)—(2.10 will typically have multiple solu- n r (5|5_ T
tions[7]. Without further analysis one can not be sure that 77 ().
the solutions truly minimize the cost functiongl and
whether they are robust to variations in the control field. Since we consides&(t) as an arbitrary variation we can
These considerations can be investigated by examining thearite
second-order variation of the cost functional

(2.14b

- T
g |5¢(t))zf dt Sy(t,m) 6&(), (2.153
82J= fo dt We(t) 5&(t)2 0

T _ ﬁ(t))zfdt S\(t,7)8E(7), (2.15h
—zfo dt SE(t)RE (SN (1)| D] e(t)) 0

_ where S,(t,7)=|8y(t))/8(r) and S,(t,7)=|n(t))/
+(MO[D]s(D)) ], (219 O&(7) arew functional derivatives with respect to the >field.
— — . ) . Insertion of these definitions into Eq&2.139 and (2.13h
where|5\) and|y), respectively, stand for the first varia- and(2.143 and(2.14b produces the necessary equations for
tions of the wave function and the Lagrange multiplier func-e getermination of these sensitivity coefficients. The exis-
tion, which are evaluated at the optimal values of the Wavggnce of these equations and their solutions is sufficient for
function, |(t)), Lagrange multiplier function|\(t)), and  the analysis here.
the field amplitudedt). To utilize Eq.(2.11) we need to If we define the unit operatdf as an integral operator
evaluatg S\ (t)) and|Sy(t)) in terms of|(t)), N(t)), and  over the Diracé function
4t). For this purpose, we will employ Eg&.8a and(2.8b -
and(2.93 and(2.9b. The Egs(2.89 and(2.8b describe the If(t)Ej dr 8(t—7)f(7), (2.16
forward quantum dynamics of the optimally controlled sys- 0
tem under consideration. Although they are written for spe- . ) ) )
cific optimal values of the field amplitudgt), they remain ~ Wheref(t) is an arbitrary integrable function over the do-
valid for any arbitrary(t). If we denote the corresponding M&in te[0,T], then we can reexpress the first part of the
wave function by|#(t)) in this general case, then we can fght-hand side of Eq(2.11) as
rewrite the Eqs(2.89 and (2.8b by removing the overbars L -
from the relevant entities as follows: (52m15f dt We(t) 6E(1)2
0

| y(t))
ot

it :[HO+g(t)D]| ¢(t)>! (lea — det Wg(t)1/255(t)ZWg(t)1/25(€(t). (217)
0

=|f). 212
[w(0))=If) ( b Separating the simple integral in E®.17) in this way will
Now we can take the first variation of this dynamical equa-Pe useful below. The rightmost term of E.11) can be
tion to arrive at the following equation after insertion of the rewritten by using Eqs(2.153 and(2.15D as follows:
optimal values of each entry:

- T . _
(FD.=2 at sera (G (vID[AD)

. dloy(t)) N p— _
ih —— = =[Ho+&OD]|6y(1)) + SED| 1)), °
(2.133 +(ND|D[sy(1))]

- T T —
|5(0))=0, (2.13b =2f0 dtfo dr SE(t)RE[(S\(t, 7)| D] 1))

where 6&(t) is considered completely arbitrary.

A similar derivation also holds for evaluation bﬁ(t))
to yield wheret and 7 are dummy integration variables. Hence, the
value of the double integral above remains unchanged when
t and r are interchanged. By using this fact we can write

+(N1)|D|S,(t, 7)) ]8E(7), (2.18

3| ON(1))
ot

i%

=[Ho+&1)D][ 6N (1)) + SE(H) DIN1) — Wi(1)
- T
S (D10 U0 [ 39(1)) (523)2=f0dt W(1)Y26E(1) SWe(1)Y28E(1). (2.19

—2W,(ORE(89(1)| O’ | 1))10’ [ (1)), The stability operatoss is defined over an arbitrary inte-
(2.143 grable functionf(t) as
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T — sdt We(t)F3(t)
Sf(t)EJ dr K(t,7)f(7), (2.20 w =min(°— , 3.1
0 w0\ Jodt (1) @9
where the kernel of the stability operatig(t, 7) is explicitty  and therefore we have the_bound on the first term of Eq.
given below as (2.11) asfTdt SEX(1)We(t)=W,STdt 52£(t). If we use this
_ _ — definition and follow a careful norm analysis for the second
— 1/ 1/2,
K(t, 7) =We(t) "YW () "V RE(S, (1, 7)| DI 1)) term in Eq.(2.11), we can write the following lower bound
+(S\ (70| D[ 7))+ (ND)|D|Sy(t, 7)) for the overall second variation of the cost functional as
— - T v T 12
0 0
This kernel function can be interpreted as ther symme-
trized value of the functional derivative&(t)/ 8&(7)|., for B JT = — — —
0<t, 7<1 where the index denotes the constraint that the 0 dif[ MO IDy+ [ 8o IPADIT]-

field follow the controlled dynamics. Since control imposes
specific structural constraints on the field, this functional de-
rivative deviates froms(t—7), which is its explicit value are the norm on a state vector is defined as
when the field is considered as completely arbitrary. This
conclusion comes from the fact that EQ.10 is valid only ||f(t)||z<f|f>1/2_ (3.3
under the condition of system control.

Finally we can write the following equation for the sec- We assume that the dipole operator is bounded by a constant
ond variation of the cost functional: M,

(3.2

2T= f OTdth(t)”Z&S(t)[I— SIW(1)25&(1). D<M, (3.4)

over the domain sampled by the dynamics, and then we can

(222 write
As long as the integral in Eq2.22 remains positive, the —
corresponding optimal solution is a local minimum in the IPg(H]<M (3.9

cost functional. Smaller values @7 correspond to more
robust solutions. The eigenvalues of the stability oper&tor
determine the optimality and robustness. The spectrusi of ||D)\_(t)||sM||)\_(t)||. (3.6)
lies on the real axis, as the kerrn€(t, ) is real symmetric.
If the stability operatokS has its largest eigenvalue less A bound can also be constructed for the Lagrange multi-
than 1, then a local minimum for the cost functional is guar-plier. To this end, we can project both sides of E2j99 and

anteed at the optimal solution value. For any particular optijts complex conjugate upor-i/A(\(t)| andi/Z|\(t)), re-

mal solution, as this largest eigenvalue gets closer to 1, thgpectively, and add the resulting equations to yield

robustness of the solution increases. The corresponding

eigenvectors of dictate the temporal variations of the con-  g||\(t)|? 2i — A= — =

trol field 8&(t) that produce an associated response for the ——— = 2= Wp(t)(¢(D)[O"[ /() IM[(M1)[O|yh(1)) ],

cost functional. If the largest eigenvalue & exceeds 1, (3.7)

the solution is no longer locally optimal as a minimum of the

cost functional. The full analysis of the spectrumfillbe  \where we used the self-adjointness of the operét’or

system dependent and it calls for an elaborate functional |f we integrate both sides of the last equation over time

analysis. In the following section we will derive a bound onfrom t to T, then we can write

the second variation of the cost functional that can give use-

ful physical insight into optimality and robustness. — 1 — .= —_— A

INOI?= 72 {@(DIO[¢(T)) — O1X¢(T)| O (T))

ll. A QUALITATIVE ROBUSTNESS "
| T — P—

| AND OPT'IMAL.IT\'( AN%\LYSIS | -5 fl dt Wp(t)(l,b(t)|0’|¢(t)>

Considerable physical insight into robustness and opti-

mality can be obtained from the qualitative analysis of the ><|m[<)\_(t)|(A)’|J(t)>] 3.9

second-order variational relation in EQ.11). We will carry ’ ‘

out this analysis by identifying a lower bound of the right-

hand side of the equation.

First consider the weight function for the field(t). It
must always be positive, except possibly at a finite numbe
of points where it may vanish. This behavior enables us to By= max (f(t)|6|f(t)) B.= min <f(t)|f)|f(t))
define the following minimum average value for the weight te[0T].f ’ te[0T].f '
We(t): (3.93

We will assume that the operatdbsandé’ are bounded for
simplification of the subsequent analysis. Their bounds are
Igiven by
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B'= max <f(t)|6'|f(t)>' (3.9h These equations imply thd&, <1 suffices for the exis-
te[0T],f tence of a locally optimal control. This result, however, is
not a necessary condition. The quality of the bound may be
where(f(t)| and|f(t)) stand for an arbitrary state vector of rough, but it does indicate the qualitative relationship of the

unit norm. These definitions make it possible to write physical variables dictating optimality and robustness.
S ~ ~, ~ Within the domain 6<E, <1 those values dE, approaching
[(UT)|O[AT))—0]*<Bo=max(By—0)*,(BL.~0)%}. 1 correspond to more robust solutions&s/ is reduced.
(3.99 Some interesting qualitative conclusions may be drawn

from the structure of Eq$3.17 and(3.18. To do so we will
assume thdE, <1 and the issue of interest is how the physi-
cal variables act to increase the robustnessEby-1; an
extension of this behavior eventually results in an unaccept-
B2B2 g4 |12 able physical solutiorE,>1 with §°7<0, as illustrated in
#Jr — 12} . (310 Fig. 1. With these comments in mind we may draw the fol-
h he P lowing conclusions from Eq€3.17) and (3.18.
(i) Objective operatorincreasing values oBg, which
depends on the objective operator, will enhance the robust-
- ness. However, as the control objective is approacBed,
Ipzf dt Wy(t) (3.11 ~0, a decrease in robustness may be encountered, with the
0 control being accordingly more sensitive to the field varia-
- . ) tions.
A similar treatment of Eq(2.123 gives the equation, (ii) Penalty operatorincreasing the contribution cB’ZIp
2 . from the penalty operator will enhance the robustness.
dloyv|*  2i — n e _
= - SEMIM[(Sy(t)|D| (1)), (3.12 (iii) Dipole moment operatorEnhanced robustness oc
at h curs with increasing magnitude of the dipole moment opera-

We further assume that the operatﬁris positive definite,
which permits writing the following inequality after some
intermediate steps:

_ B/Z
H)\(t)HSTIp+

where

_ _ _ ) ) tor, apparently, arising due to more effective control regard-
Integration of both sides of this equation over time from O t0|o4q of the field strength.
t enables us to conclude that (iv) Fluence weightA decrease of the fluence weight
5 T 12 corresponds to an enhancement of robustness. This behavior
[ sy(t)|< = M(f di[ 55(»[)]2) _ (3.139  is associated with a corresponding increase of the field and,
fi 0 hence, stronger control in this regime.
(v) Control time interval.Increasing the control time in-
Similar steps can also be taken to conclude the followingerval enhances robustness. This situation corresponds to the

bound for the first variation of the Lagrange multiplier: weak-field regime in contrast to poifiv) above.
; 1 These observations are physically reasonable, and the be-
||5)\(t)||$A—M ( f dt[5€(t)]2> (3.14 havior in item(ii) is perhaps the most interesting. Enhanced
h 0 ' ' robustness through the introduction of a penalty operator is

analogous to the presence of viscous drag acting to stabilize
where motion of an object moving through a fluide., a certain
degree of drag in the system can be helpful at timE&snce
again, all of the circumstances in poiri$—(v) when taken
' 3.15 beyond a critical limit lead to a nonoptimal control solution.
Additional subtleties might arise from the full analysis of the
and eigenvalues of the stability operatSrather than the bound-
ing behavior examined here.

4BZ[4B2+B2]|Y?

A=A+ 72

2
Af+

B3B3 B'*

7B/2 5 1/2

./415 7 Ip‘l'

IV. CONCLUDING REMARKS
Exploitation of these relations in Eq2.17) yields the fol-
lowing lower bound for the second variation of the cost func-
tional:

This paper presented a general framework for analyzing
the optimality and robustness of any particular quantum con-
trol solution. It is shown that both of these issues are dictated
_ T by the eigenvalue spectrum of the stability opera@avhose
82J=(1— Er)Wg( f dtf 55('[)]2), (3.17 kernelC(t, 7) is related to the dynamically constrained func-

0 tional derivatives&(t)/ 8&( )| for 0<t, 7<T. No attempt
was made to conduct a full functional analysis of this prob-
lem in the present paper. Here a bound on the spectrum led
to an interesting set of qualitative conditions regarding ro-

hA o .
— = +B'27,+[B3B3+B'T 3]1/2 _ bustness and optimality. These conditions may serve to
qualitatively guide future robust design efforts for the control
(3.18 of quantum systems. In general, the functional analog of the

2TM?2
h2W;
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