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Assessing optimality and robustness of control over quantum dynamics

Metin Demiralp* and Herschel Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009

~Received 6 October 1997!

This work presents a general framework for assessing the quality and robustness of control over quantum
dynamics induced by an optical fieldE(t). The control process is expressed in terms of a cost functional,
including the physical objectives, penalties, and constraints. The first variations of such cost functionals have
traditionally been utilized to create designs for the controlling electric fields. Here, the second variation of the
cost functional is analyzed to explore~i! whether such solutions are locally optimal, and~ii ! their degree of
robustness. Both issues may be assessed from the eigenvalues of the stability operatorS whose kernelK(t,t)
is related todE(t)/dE(t)uc for 0,t, t<T, whereT is the target control time. Herec denotes the constraint
that the field satisfies the optimal control dynamical equations. The eigenvaluess of S satisfyings,1 assure
local optimality of the control solution, withs51 being the critical value separating optimal solutions from
false solutions~i.e., those with negative second variational curvature of the cost functional!. In turn, the
maximally robust control solutions with the least sensitivity to field errors also correspond tos51. Thus,
sufficiently high sensitivity of the field at one timet to the field at another timet ~i.e.,s.1! will lead to a loss
of local optimality. An expression is obtained for a bound on the stability operator, and this result is employed
to qualitatively analyze control behavior. From this bound, the inclusion of an auxiliary operator~i.e., other
than the target operator! is shown to act as a stabilizer of the control process. It is also shown that robust
solutions are expected to exist in both the strong- and weak-field regimes.@S1050-2947~98!07203-5#

PACS number~s!: 32.90.1a
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I. INTRODUCTION

In recent years, there has been considerable activity in
domain of designing controls to actively manipulate quant
dynamics phenomena@1–3#. There are many potential appl
cations in chemistry, physics, and nanoscale engineer
Most attention has been focused on designing optical ele
fields for dynamical manipulation, and the design techniq
have ranged from perturbation theory@2# to the exploitation
of fully nonlinear techniques@4#. It has been shown@5# that
the most general approach is through optimal control the
@6#, and numerous theoretical efforts have explored con
designs for manipulating various rotational, vibrational, a
electronic processes. Throughout this research, the prim
focus has been on obtaining reliable control field desig
and little attention has been paid to the robustness of th
designs. The present paper considers general criteria fo
tablishing robustness and the optimality of the control so
tions. Control field design within optimal control theor
@1,3,4,7,8# is based on first prescribing a physically mo
vated cost functionalJ, which contains all of the information
about the physical objectives and any penalties or constra
imposed on the dynamical evolution. It is generally und
stood that there can be multiple extremadJ /dE(t)50, with
respect to the field, for any particular control problem. T
physically acceptable solutions correspond to a minimiza
of J, and the first variation criteriondJ /dE(t)50 does not
guarantee whether the solution is a local minimum or ma
mum ofJ. This circumstance can only be assessed by c
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sidering the second variationd2J /dE(t)dE(t), and deter-
mining its positive or negative definite character at ea
solution determined from the first variational equation
Even if solutions are determined to be physically accepta
as minima, it is also highly desirable that they be robust
arbitrary incremental variationsdE(t) in the control field, as
might arise due to errors or uncertainties in the laboratory
this context, robustness corresponds to a solution assoc
with minimal positive curvature of the cost functional. A
sessment of these matters involves functional analysis,
we may qualitatively understand the situation by consider
the reduced problem of a single control parametera for il-
lustration. This situation is depicted in Fig. 1. All of th
critical pointsa i , i 51, . . . ,4correspond to solutions of th
first variational equations]J /]a i50, but the casesa1 and
a3 are not acceptable, as they do not minimizeJ. The solu-
tionsa2 anda4 are both locally optimal, and the case ofa2

gives the best solution, in the sense thatJ (a2),J (a4).
However, from a robustness point of view, the solutiona4 is
better, as]2J /]a4

2,]2J /]a2
2. The solution ata4 is more

robust than that ata2 , since, for a given arbitrary sma
variation d of a, we find thatuJ (a41d)2J (a4)u,uJ (a2
1d)2J (a2)u. In general, we may identify the best contr
solution as the one that simultaneously minimizesJ while
having the smallest curvature. As is found in Fig. 1, it m
happen that a tradeoff exists between the absolute qualit
the achieved solution and its robustness. This is a prob
that is only likely to be identifiable on a problem-by-proble
basis, and the present paper is concerned with more gen
considerations.

In this work, we show that eigenvalues of the stabil
operatorS, whose kernelK(t,t) is related to the dynami-
cally constrained (c) functional derivativedE(t)/dE(t)uc for

lty
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57 2421ASSESSING OPTIMALITY AND ROBUSTNESS OF . . .
0,t, t<T, dictates both the optimality and robustness
potential control solutions for manipulating quantum dynam
ics. A formal expression for this operator will be identified
with bounds placed on its spectrum. Some qualitative co
clusions on the nature of robustness will be drawn from th
bounding relationship.

The paper is organized as follows: Section II presents t
formal analysis leading to the expression for the stabili
operator; Sec. III places a bound on this operator which p
mits a qualitative robustness and optimality analysis. Som
brief concluding remarks are presented in Sec. IV.

II. IDENTIFICATION OF THE STABILITY OPERATOR

Consider quantum motion under the influence of an ext
nal field E(t) described by the following Hamiltonian:

H5H01E~ t !D, ~2.1!

whereH0 , D, andE(t) respectively denote the Hamiltonian
for the free motion, the dipole operator projected along t
direction of the external field, and the amplitude of the e
ternal field. The following cost functional prescribes the op
timal control of this system@1,3,4#:

J5Jo1Jp
~1!1J p

~2!1Jc,d . ~2.2!

Here,Jo is the objective term that measures the differen
between the expectation value of a given objective opera
Ô and its target valueÕ,

Jo5 1
2 @^c~T!uÔuc~T!&2Õ#2. ~2.3!

Control through application ofE(t) is affected over the time
interval 0,t<T, with T being the target time.

FIG. 1. A cost functional is schematically shown to depend o
an optimal control parametera as an illustration of optimality and
robustness circumstances. Each of the pointsa i , i 51, . . . ,4satis-
fies dJ50; however, only the casesa2 anda4 are physically ac-
ceptable locally optimal solutions. One of these two casesa2 gives
better control, whilea4 gives better robustness. The circumstanc
for all four critical values ofa have a functional extension to the
general control fieldE(t).
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The penalty termJ p
(1) aims to suppress the expectatio

value of a given ‘‘undesirable’’ operatorÔ8,

J p
~1!5 1

2 E
0

T

dt Wp~ t !^c~ t !uÔ8uc~ t !&2,

Wp~ t !.0, tP@0,T#. ~2.4!

The second penalty term allows for the possibility of min
mizing the field fluence,

J p
~2!5 1

2 E
0

T

dt WE~ t !E~ t !2,

WE~ t !.0, tP@0,T#. ~2.5!

The term denoted byJc,d includes the dynamical constrain
that Schro¨dinger’s equation must be satisfied. This is assu
through the introduction of a Lagrange multiplierl, as given
by

Jc,d52 ReS E
0

T

dtK l~ t !U i\ ]

]t
2HUc~ t !L D . ~2.6!

Additional terms may be added to the cost functional in E
~2.2!, but the present form covers most applications.

A control solution is attained by considering the fir
variation of the cost functional

dJ5E
0

T

dt WE~ t !dE~ t !E~ t !

22E
0

T

dt dE~ t !Rê l~ t !uDuc~ t !&. ~2.7!

Equation~2.7! has already exploited the vanishing of the fir
variations with respect touc(t)& and ul(t)&, to respectively
give Schro¨dinger’s equation where

i\
]uc̄~ t !&

]t
5@H01 Ē~ t !D#uc̄~ t !&, ~2.8a!

uc̄~0!&5u f &, ~2.8b!

where u f & is the initial state, and the equation for th
Lagrange multiplier

i\
]ul̄~ t !&

]t
5@H01 Ē~ t !D#ul̄~ t !&2Wp~ t !

3^c̄~ t !uÔ8uc̄~ t !&Ô8c̄~ t !, ~2.9a!

ul̄~T!&5
i

\
hÔuc̄~T!&, ~2.9b!

h5^c̄~T!uÔuc̄~T!&2Õ. ~2.9c!

Here the overbars label the functions that satisfy the fi
variation of the cost functional as zero. Finally, consideri
the variation with respect to the field in Eq.~2.7!, we obtain
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Ē~ t !5
2

WE~ t !
Re@^l̄~ t !uDuc̄~ t !&#. ~2.10!

Equations~2.8!–~2.10! will typically have multiple solu-
tions @7#. Without further analysis one can not be sure th
the solutions truly minimize the cost functionalJ and
whether they are robust to variations in the control fie
These considerations can be investigated by examining
second-order variation of the cost functional

d2J5E
0

T

dt WE~ t !dE~ t !2

22E
0

T

dt dE~ t !Re@^dl~ t !uDuc~ t !&

1^l~ t !uDudc~ t !&#, ~2.11!

whereudl& and udc&, respectively, stand for the first varia
tions of the wave function and the Lagrange multiplier fun
tion, which are evaluated at the optimal values of the wa
function, uc̄(t)&, Lagrange multiplier function,ul̄(t)&, and
the field amplitudeĒ(t). To utilize Eq. ~2.11! we need to
evaluateudl(t)& andudc(t)& in terms ofuc̄(t)&, ul̄(t)&, and
Ē(t). For this purpose, we will employ Eqs.~2.8a! and~2.8b!
and~2.9a! and~2.9b!. The Eqs.~2.8a! and~2.8b! describe the
forward quantum dynamics of the optimally controlled sy
tem under consideration. Although they are written for s
cific optimal values of the field amplitudeĒ(t), they remain
valid for any arbitraryE(t). If we denote the correspondin
wave function byuc(t)& in this general case, then we ca
rewrite the Eqs.~2.8a! and ~2.8b! by removing the overbars
from the relevant entities as follows:

i\
]uc~ t !&

]t
5@H01E~ t !D#uc~ t !&, ~2.12a!

uc~0!&5u f &. ~2.12b!

Now we can take the first variation of this dynamical equ
tion to arrive at the following equation after insertion of th
optimal values of each entry:

i\
]udc~ t !&

]t
5@H01 Ē~ t !D#udc~ t !&1dE~ t !Duc̄~ t !&,

~2.13a!

udc~0!&50, ~2.13b!

wheredE(t) is considered completely arbitrary.
A similar derivation also holds for evaluation ofudl(t)&

to yield

i\
]udl~ t !&

]t
5@H01 Ē~ t !D#udl~ t !&1dE~ t !Dul̄~ t !&2Wp~ t !

3^c̄~ t !uÔ8uc̄~ t !&Ô8udc~ t !&

22Wp~ t !Re@^dc~ t !uÔ8u c̄~ t !&#Ô8u c̄~ t !&,
~2.14a!
t
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udl~T!&5
2i

\
Re@^dc~T!uÔuc̄~T!&#Ôuc̄~T!&

1
i

\
hÔudc~T!&. ~2.14b!

Since we considerdE(t) as an arbitrary variation we ca
write

udc~ t !&[E
0

T

dt Sc~ t,t!dE~t!, ~2.15a!

udl~ t !&[E
0

T

dt Sl~ t,t!dE~t!, ~2.15b!

where Sc(t,t)5udc(t)&/dE(t) and Sl(t,t)5udl(t)&/
dE(t) are functional derivatives with respect to the fiel
Insertion of these definitions into Eqs.~2.13a! and ~2.13b!
and~2.14a! and~2.14b! produces the necessary equations
the determination of these sensitivity coefficients. The ex
tence of these equations and their solutions is sufficient
the analysis here.

If we define the unit operatorI as an integral operato
over the Diracd function

If ~ t ![E
0

T

dt d~ t2t! f ~t!, ~2.16!

where f (t) is an arbitrary integrable function over the d
main tP@0,T#, then we can reexpress the first part of t
right-hand side of Eq.~2.11! as

~d2J!1[E
0

T

dt WE~ t !dE~ t !2

5E
0

T

dt WE~ t !1/2dE~ t !IWE~ t !1/2dE~ t !. ~2.17!

Separating the simple integral in Eq.~2.17! in this way will
be useful below. The rightmost term of Eq.~2.11! can be
rewritten by using Eqs.~2.15a! and ~2.15b! as follows:

~d2J!2[2E
0

T

dt dE~ t !Re@^dl~ t !uDuc̄~ t !&

1^l̄~ t !uDudc~ t !&#

52E
0

T

dtE
0

T

dt dE~ t !Re@^Sl~ t,t!uDuc̄~ t !&

1^l̄~ t !uDuSc~ t,t!&#dE~t!, ~2.18!

where t and t are dummy integration variables. Hence, t
value of the double integral above remains unchanged w
t andt are interchanged. By using this fact we can write

~d2J!25E
0

T

dt WE~ t !1/2dE~ t !SWE~ t !1/2dE~ t !. ~2.19!

The stability operatorS is defined over an arbitrary inte
grable functionf (t) as
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Sf ~ t ![E
0

T

dt K~ t,t! f ~t!, ~2.20!

where the kernel of the stability operatorK(t,t) is explicitly
given below as

K~ t,t![WE~ t !21/2WE~t!21/2Re@^Sl~ t,t!uDuc̄~ t !&

1^Sl~t,t !uDuc̄~t!&1^l̄~ t !uDuSc~ t,t!&

1^l̄~t!uDuSc~t,t !&#. ~2.21!

This kernel function can be interpreted as thet, t symme-
trized value of the functional derivativedE(t)/dE(t)uc , for
0,t, t,1 where the indexc denotes the constraint that th
field follow the controlled dynamics. Since control impos
specific structural constraints on the field, this functional
rivative deviates fromd(t2t), which is its explicit value
when the field is considered as completely arbitrary. T
conclusion comes from the fact that Eq.~2.10! is valid only
under the condition of system control.

Finally we can write the following equation for the se
ond variation of the cost functional:

d2J5E
0

T

dtWE~ t !1/2dE~ t !@I2S#WE~ t !1/2dE~ t !.

~2.22!

As long as the integral in Eq.~2.22! remains positive, the
corresponding optimal solution is a local minimum in t
cost functional. Smaller values ofd2J correspond to more
robust solutions. The eigenvalues of the stability operatoS
determine the optimality and robustness. The spectrum oS
lies on the real axis, as the kernelK(t,t) is real symmetric.

If the stability operatorS has its largest eigenvalue les
than 1, then a local minimum for the cost functional is gu
anteed at the optimal solution value. For any particular o
mal solution, as this largest eigenvalue gets closer to 1,
robustness of the solution increases. The correspon
eigenvectors ofS dictate the temporal variations of the co
trol field dE(t) that produce an associated response for
cost functionalJ. If the largest eigenvalue ofS exceeds 1,
the solution is no longer locally optimal as a minimum of t
cost functional. The full analysis of the spectrum ofS will be
system dependent and it calls for an elaborate functio
analysis. In the following section we will derive a bound o
the second variation of the cost functional that can give u
ful physical insight into optimality and robustness.

III. A QUALITATIVE ROBUSTNESS
AND OPTIMALITY ANALYSIS

Considerable physical insight into robustness and o
mality can be obtained from the qualitative analysis of
second-order variational relation in Eq.~2.11!. We will carry
out this analysis by identifying a lower bound of the righ
hand side of the equation.

First consider the weight function for the fieldWE(t). It
must always be positive, except possibly at a finite num
of points where it may vanish. This behavior enables us
define the following minimum average value for the weig
WE(t):
-
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W̄E5min
f ~ t !

X*0
Tdt WE~ t ! f 2~ t !

*0
Tdt f2~ t !

C, ~3.1!

and therefore we have the bound on the first term of
~2.11! as*0

Tdt dE2(t)WE(t)>W̄E*0
Tdt d2E(t). If we use this

definition and follow a careful norm analysis for the seco
term in Eq.~2.11!, we can write the following lower bound
for the overall second variation of the cost functional as

d2J>XE
0

T

dt@dE~ t !#2C1/2FW̄EXE
0

T

dt@dE~ t !#2C1/2

2E
0

T

dt@ idl̄~ t !i iDc̄~ t !i1idc̄~ t !i iDl̄~ t !i #G .
~3.2!

Here the norm on a state vector is defined as

i f ~ t !i[^ f u f &1/2. ~3.3!

We assume that the dipole operator is bounded by a cons
M ,

iDi<M , ~3.4!

over the domain sampled by the dynamics, and then we
write

iDc̄~ t !i<M ~3.5!

and

iDl̄~ t !i<M i l̄~ t !i . ~3.6!

A bound can also be constructed for the Lagrange mu
plier. To this end, we can project both sides of Eq.~2.9a! and
its complex conjugate upon2 i /\^l̄(t)u and i /\ul̄(t)&, re-
spectively, and add the resulting equations to yield

]i l̄~ t !i2

]t
5

2i

\
Wp~ t !^c̄~ t !uÔ8uc̄~ t !&Im@^l̄~ t !uÔ8uc̄~ t !&#,

~3.7!

where we used the self-adjointness of the operatorÔ8.
If we integrate both sides of the last equation over tim

from t to T, then we can write

i l̄~ t !i25
1

\2 [ ^c̄~T!uÔuc̄~T!&2Õ] 2^c̄~T!uÔ2uc̄~T!&

2
2i

\ E
t

T

dt Wp~ t !^c̄~ t !uÔ8uc̄~ t !&

3Im@^l̄~ t !uÔ8uc̄~ t !&#. ~3.8!

We will assume that the operatorsÔ andÔ8 are bounded for
simplification of the subsequent analysis. Their bounds
given by

BU5 max
tP@0,T#, f

^ f ~ t !uÔu f ~ t !&, BL5 min
tP@0,T#, f

^ f ~ t !uÔu f ~ t !&,

~3.9a!
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B85 max
tP@0,T#, f

^ f ~ t !uÔ8u f ~ t !&, ~3.9b!

where^ f (t)u and u f (t)& stand for an arbitrary state vector o
unit norm. These definitions make it possible to write

@^c̄~T!uÔuc̄~T!&2Õ#2<BO5max$~BU2Õ!2,~BL2Õ!2%.
~3.9c!

We further assume that the operatorÔ is positive definite,
which permits writing the following inequality after som
intermediate steps:

i l̄~ t !i<
B82

\
Ip1FBU

2 BO
2

\2 1
B84

\2 Ip
2G1/2

, ~3.10!

where

Ip[E
0

T

dt Wp~ t ! ~3.11!

A similar treatment of Eq.~2.12a! gives the equation,

]idc~ t !i2

]t
5

2i

\
dE~ t !Im@^dc~ t !uDuc̄~ t !&#. ~3.12!

Integration of both sides of this equation over time from 0
t enables us to conclude that

idc~ t !i<
2

\
M S E

0

T

dt@dE~ t !#2D 1/2

. ~3.13!

Similar steps can also be taken to conclude the follow
bound for the first variation of the Lagrange multiplier:

idl~ t !i<
AM

\ S E
0

T

dt@dE~ t !#2D 1/2

, ~3.14!

where

A[A11FA1
21

4BU
2 @4BU

2 1BO
2 #

\2 G1/2

, ~3.15!

and

A1[
7B82

\
Ip1FBU

2 BO
2

\2 1
B84

\2 I p
2G1/2

. ~3.16!

Exploitation of these relations in Eq.~2.17! yields the fol-
lowing lower bound for the second variation of the cost fun
tional:

d2J>~12Er !W̄ES E
0

T

dt@dE~ t !#2D , ~3.17!

where

Er[
2TM2

\2W̄E
S \A

2
1B82Ip1@BU

2 BO
2 1B84I p

2#1/2D .

~3.18!
g

-

These equations imply thatEr,1 suffices for the exis-
tence of a locally optimal control. This result, however,
not a necessary condition. The quality of the bound may
rough, but it does indicate the qualitative relationship of t
physical variables dictating optimality and robustne
Within the domain 0,Er,1 those values ofEr approaching
1 correspond to more robust solutions asd2J is reduced.

Some interesting qualitative conclusions may be dra
from the structure of Eqs.~3.17! and~3.18!. To do so we will
assume thatEr,1 and the issue of interest is how the phy
cal variables act to increase the robustness byEr→1; an
extension of this behavior eventually results in an unacce
able physical solutionEr.1 with d2J,0, as illustrated in
Fig. 1. With these comments in mind we may draw the f
lowing conclusions from Eqs.~3.17! and ~3.18!.

~i! Objective operator.Increasing values ofBO , which
depends on the objective operator, will enhance the rob
ness. However, as the control objective is approached,BU

'Õ, a decrease in robustness may be encountered, with
control being accordingly more sensitive to the field var
tions.

~ii ! Penalty operator.Increasing the contribution ofB82Ip
from the penalty operator will enhance the robustness.

~iii ! Dipole moment operator.Enhanced robustness oc
curs with increasing magnitude of the dipole moment ope
tor, apparently, arising due to more effective control rega
less of the field strength.

~iv! Fluence weight.A decrease of the fluence weigh
corresponds to an enhancement of robustness. This beh
is associated with a corresponding increase of the field a
hence, stronger control in this regime.

~v! Control time interval.Increasing the control time in
terval enhances robustness. This situation corresponds t
weak-field regime in contrast to point~iv! above.

These observations are physically reasonable, and the
havior in item~ii ! is perhaps the most interesting. Enhanc
robustness through the introduction of a penalty operato
analogous to the presence of viscous drag acting to stab
motion of an object moving through a fluid~i.e., a certain
degree of drag in the system can be helpful at times!. Once
again, all of the circumstances in points~i!–~v! when taken
beyond a critical limit lead to a nonoptimal control solutio
Additional subtleties might arise from the full analysis of th
eigenvalues of the stability operatorS rather than the bound
ing behavior examined here.

IV. CONCLUDING REMARKS

This paper presented a general framework for analyz
the optimality and robustness of any particular quantum c
trol solution. It is shown that both of these issues are dicta
by the eigenvalue spectrum of the stability operatorS whose
kernelK(t,t) is related to the dynamically constrained fun
tional derivativedE(t)/dE(t)uc for 0,t, t,T. No attempt
was made to conduct a full functional analysis of this pro
lem in the present paper. Here a bound on the spectrum
to an interesting set of qualitative conditions regarding
bustness and optimality. These conditions may serve
qualitatively guide future robust design efforts for the cont
of quantum systems. In general, the functional analog of
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situation in Fig. 1 may arise with the degree of robustn
and the quality of the achieved control in competition w
each other. In such a case a judgment would need to be m
regarding which factor is more important for the particu
system.
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