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Spin-electronic-rotational frame transformation for photoionization and Rydberg spectra
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The spin-rotational-electronic fine structure of molecular Rydberg and continuum states is considered. The
frame transformation from the laboratory fraftdund’'s casee)] to the molecular framgHund's casea)] is
derived. Symmetry requirements are fully incorporated into the transformation, thus facilitating its practical
use. Expressions for the dipole transition amplitudes in Hund’s @seagain fully symmetrized, are given, as
well as their transformation to Hund’s ca&® appropriate for excitation to discrete Rydberg states and the
ionization continuum. Various examples of the transformation within the framework of collision theory and of
multichannel quantum defect theory are described, and it is shown how the general frame transformation
reduces to the transformations for molecules without electron spin. The present formulation can also be applied
to the photoionization of aligned and oriented molecules, as well as to “complete” experiments.
[S1050-294®@8)02803-0

PACS numbes): 32.70.Cs, 31.56-w, 32.80.Fb, 34.60:z

I. INTRODUCTION Until about 1990, and with the exception of,Hotational
resolution was only rarely attained in photoionization experi-
The famous coupling cases of Hund classify various waysnents. The recent dramatic increase in resolution brought
in which the spin-electronic and rotational angular momentaabout by novel threshold ionization techniquiiés/] changes
of a molecule can be coupled togeth&}. The simplest way this situation radically, and has spurred new interest in the
to distinguish them is to consider the appropriate expressiosubject. One aim of the present paper is to clarify the link
for the rotational energy-level pattern for each case. Thushetween the expressions for differential cross sections in-
for Hund’s casega), (b), (d), and(e) coupling the rotational cluding rotation and spin such as given by RC, and the vari-
levels are arranged, respectively, accordingBt@(J+ 1), ous angular coupling cases considered by Hund as they are
BN(N+1), BN;(N:.+1), andBJ.(J.+1), whereB is the customarily used in the spectroscopy of discrete states. The
rotational constant and, N, N, andJ, are the total angular transformation between various coupling cases is a standard
momentum of the molecul@xclusive of nuclear spinsthe  practice in Rydberg spectroscopy. By contrast, in the theory
total angular momentum without electron spin, the total an-of photoionization, the cross section is expressed in a cou-
gular momentum of the cation without electron spin, and thepling scheme appropriate for the separated fragméots
total angular momentum of the cation including electronplus electroin which corresponds to cage), while the rel-
spin. Case(c) behaves like caséa), but, owing to strong evant transition amplitudes are built up inside or near the ion
spin-orbit coupling, the spin quantum numigis no longer core where Hund’s casda) or (c) provide a better descrip-
sharply defined. tion. The frame transformation between the various coupling
In 1990 three papers appeared, which dealt with the rolschemes is thus implicit in the cross-section expressions, but
of electron spin and molecular rotation in the photoionizationit has only rarely been spelled out in detail.
and Rydberg excitation of diatomic molecules. First, Xie and Another link between spectroscopy and scattering theory
Zare (XZ) [2] presented a compilation of spin-electronic- arises through the occurrence of discrete autoionizing states
rotational dipole selection rules connecting initial molecularwhich are embedded in the electronic continua, and autoion-
and final ion states of diatomic or linear molecules, wherebyze through discrete-continuum channel interactions. In the
these states were assumed to belong to any of Hund’'s cotheory the discrete wave-function components correspond to
pling cases(a), (b), or (c). Almost simultaneously, Raseev closed-channel asymptotic boundary conditions. The en-
and Cherepkoy3] (RC) gave a general expression for the semble of asymptotic conditions for closed and open chan-
total and differential photoionization cross sections includingnels (continuum statgs can be enforced simultaneously
molecular rotation and electron-spin polarization in mol-through a method such as multichannel quantum defect
ecules. Third, Lefebvre-Brio(LB) [4] gave a transformation theory (MQDT) [8,9], where the electron-core interactions
between Hund’s coupling casés) and (e), appropriate for may includeN, open as well afN. closed channels. The
the description of Rydberg series converging toward a spinealculational procedure of MQDT involves the “elimina-
orbit-split ion ground state. More recently Nikitin and Zare tion” of the N. closed channels, yielding a scattering matrix
[5] presented correlation diagrams connecting variousvhose dimension corresponds to the correct nunieof
Hund'’s cases in the limit where the total angular momentunopen channels. Doing this yields resonant anomalies in the
is much larger than the electronic orbital angular momentunopen channels at energies corresponding to the discrete au-
and electron spin. toionizing states. The open ionization channels are always
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best described in Hund’'s caé®. However, the closed chan- ¥, (analyzey=; u
nels may often correspond to an intermediate coupling case, ' ¢

and the MQDT is Ideally SUiteq for handling SUCh-SituationS.WhereXmSi represents the normalized Spin state of the pho-
In the pres.ent paper we derive the transformation bet‘Neefbelectron,Jci and M, are the total angular momentum
Hund'’s coupling case&) and(e). We show how the result- quantum numbers of the core in stateand ( 1)Pei is the

ing spin-electronic-rotational frame transformation relates tq.gre parity. The plane wave in E€L) may be expanded into
the general framework of spin-resolved molecular photoionspherica| partial waves in the usual way as

ization and of molecular multichannel quantum defect

(MQDT) and frame transformation theory. Unlike LB we ¥y (analyzey= iy m_p Xm,

choose casén) rather than casg) as the starting point in the

molecule-fixed coordinate frame, because this case is usually 2 o
considered to be the basic coupling case for diatomic mol- XZ mz_,_ [i 'Y'im|i(0k’¢k)]
eculeq10], and it appears to be the one which is best defined .

X, (2m) 3%, (1)

ciPci

with respect to the various phase conventions involMed. <Y p <z 21

Particular attention is given to paritynot explicitly taken Iimli( ®) w  2ikir

into account by LB and to electric dipole transition@ot i ik ik
considered by XZ and LB The resulting expressions are X() e —(=1le . (2

more compact than those of RC, and they contain the spin- . . . .

less transformations such as given by Chang and Fa2p The asymptotic form of an energy normalized incoming-
as special cases. While several of the expressions and prociave scattering wave function can be expressed in terms of
dures discussed in the present paper are basically known, afftf Scattering matri§ as

can be found scattered throughout the literature, we draw

them together here in an attempt to provide a unified view of \Pt)(uncoupled= DR
scattering, spectroscopy, and photoionization of molecules : oo
carrying an electron spin.

The paper is organized as follows: Section Il reviews the XY, (0 ¢)<_)
connection between momentum eigenstates and uncoupled i wki
and coupled angular momentum eigenstates in spin-resolved et o ik ey o
photoionization without specific reference to molecules. The X[ —e NS, 3
coupled angular momentum representation is then used in
the rest of the paper. Section Il gives the transformationvhere we assume the energy to be in Rydberg units,&.e.,
between Hund'’s casés) and(a) for diatomic molecules. In = kiz, and the factor 1/corresponds to normalization of the
Sec. IV a relationship is established between scatteringadial function according td ¢* ¢ r?dr. The channel indi-
theory in general and quantum defect theory in particularces indicated by capital letteris, andl denote the core state
and the frame transformation. Section V deals with electriGas well as the partial wave, e.g{.l,_’}={i’,li, m;.}. The
dipole transitions, while Sec. VI is the conclusion. The mainpars on the indices denote the uncoupled representation, and
expressions of this paper are the following. the added exponerit-) indicates the incoming wave nor-

(@) Equations(1)—(6) connect the standard scattering for- malization[14],
mulation with the coupled angular momentum approach cor- Equations(2) and (3) are connected by the requirement
responding to Hund’s cade). that the coefficients of the outgoing-wave componeaits

(b) Equation (12) gives the transformation between myst match. This is achieved by a superposition of the func-

Hund's casege) and(a). tions \If(f)(uncou ;
i . . pled) of Eq.(3), corresponding to the
|
(c) The dipole transition moment expressions, E@€) S_giveni of Eq. (1):

and (21b), provide the amplitude to be introduced in cros
section expressions. The transition moments are related to

ci’pci'Xmsi’

1/2 1

2ir

Egs.(29a and (29b), which exp_licitly contain the radial in- E Yﬁm“(9k,¢k)‘1’i<,Ti),mli(UnCOUp|ed- 4
tegrals to be evaluated numerically. limy;
Equation(4) corresponds to the inclusion of an extra factor
Il. COUPLED AND UNCOUPLED ANGULAR MOMENTUM Vvki/2, and results in energy-normalized forms of the plane
REPRESENTATIONS IN THE LABORATORY ERAME wave of Egs(1) and(2), plus scattered incoming-wave com-

ponents. The incoming-wave components formally represent

Several treatments of of photoionization have been prethe state of the electron-ion system before the scattering
sented, including those of RG], Dill and Dehmef13], and  event(cf., e.g., the discussion given by Stardtd]). In the
Starace[14]. Here we follow that of Fano and R4u5] photoionization processes of interest here they replace, as it
(including much of their notation and thus consider a were, the photon and the molecule in its initial state—the
“complete” photoionization experiment in which a photo- required information concerning the latter is included in the
electron with momentunk; emerging from a core in state  dipole transition amplitudes, as discussed in Sec. V.
is observed, and its spin state as well as the internal istste An alternative way of constructing a wave function
the core is determined. THenormalized wave function at equivalent to Eq(3) is to consider scattering states that have
the particle analyzer corresponding to this situation is well-defined values of the total angular momentdnand
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parity p. An incoming-wave energy-normalized scattering2=Q—A are good quantum numbers. Taking account of

wave function of this type has the asymptotic form the inversion symmetry we must add the total parity index
(cf. Sec. I). We must also take account of the electronic
1\ 1 f the moleculgreflection at a pl taini
w(“)(coupled= pIMP) 1 symmetryq of the moleculgreflection at a plane containing
I P = 1 k. 2ir the nuclei, defined wheA =0); we shall see below that it is

sufficient to introduce an electronic parity index for the iso-
x[ekim s, —e kiTSIMP* ] (5)  lated coreq, (calleds® by XZ and defined beloy Thus so

far we have to consider seven independent spin-rotational-
We refer to Eq.(5) as a “coupled” wave function because electronic quantum numbers describing a c#se state.
the angulad; and spins parts of the photoelectron are now Nuclear spins are disregarded here, and symmetric molecules
coupled to the ionic core and included in the functionsare not treated separately since they differ only in a trivial
(I),(fMp) which represent eigenstates of the total angular moway.
mentum of the core plus photoelectrds J.; +j;, and of Considering molecular Rydberg states, we may assume
the total angular momentum of the photoelectjpn=1;,  that the electronic orbital momentum componénts actu-
+s. Theq)l(;]Mp) have definite total parity ¢ 1)°. The ra- ally the sum of two contributions, one from the molecular

dial part of the wave function of the continuum electron is'on coreAg, and one from the Rydberg electran so that

separated and written explicitly in EG). M is the projec- we haveA=A_.+\. Similarly the total spinS arises from
tion of the total moleculard in the laboratory frame. the coupling of the core spi§, and the Rydberg electron

SOMP)(E) is thus the scattering matrix defined for a given spins. Finally, in a channel formulation the Rydberg elec-

IMp. The channel indices indicated by capital lettéfsand tronic wave function is conveniently expanded in spherical

. ) artial wavesl, even though the Rydberg orbital angular
I, now denote the partial wave an(_j spin of the photoelectror{?nomentum quantum numbérmay not be well defined in
as well as the core state, e.fl.}={i,l;,ji}.

Equations(2) and (5) are again connected by the require- any actually observable state. In all, then, we have 11 quan-
ment that the coefficients of the outgoing-wave componenttum numbers characterizing a casg coupled Rydberg or

ikor ; " fonization channel corresponding to the excitation of a single
™" must match. The appropriate superposition analogous Q..o outside a molecular core

i (=)
Eq. (4) of the functionsW;’(coupled) of Eq.(5) corre- Mulliken [1] was apparently the first to make reference to

sponding to the given of Eq. (1) is Hund's case(e) (which Hund himself had not consideped
For Rydberg states this coupling case is characterized by the
D Yﬁm“(ﬁk,¢>k)(21i+1)1/2(23+1)1/2 fact the Rydberg electron including its spin is decoupled

from the molecular ion core. Thusands couple to yield a
resultantj, whereas the core rotates independently and is
172 |, Ji characterized by rotational quantum numb&rand ., as
well as by the electronic quantum numbérs, g., andS..
I By contrast the molecule-fixed componefsand A involv-
i Jei J (=) ing the outer electron are no longer defined, nor is the total
X mi Mg —M Wi/ j;(coupled. 6)  spinS. In all we again have 11 quantum numbers to con-
sider, with the difference that, S, and() must be replaced
The superposition Eq6) of the wave functions Ed5) again by Q., J. andj. This state of affairs is summarized in Table
yields the energy-normalized form of the plane wave of Eql where minimal sets of Rydberg quantum numbers for
(1) plus scattered incoming-wave components. Hund'’s coupling case@) and(e) are collected and classified
The uncoupled and coupled forms of the scattering matrijaccording to their “goodness.” In addition, “redundant”
S andSUMP)| are linked through the alternative expansionsgquantum numbers are also indicated, namely, those which
of Egs.(4) and(6), while the latter is linked to the reactance can be expressed in terms of the minimal sets for cémes
matrix K of MQDT, as we see in Sec. IV below. In the and(e), respectively. We see in particular that out of the 11
specific case of molecular photoionization the wave functiorquantum numbers forming each minimal set, eight are com-
Ww{)(coupled) of Eq.(5) corresponds to Hund's cage)  Mon to both coupling cases, while only three are different.
coupling. In Sec. Il we consider the transformation to Therefore the transformation between the two coupling cases
Hund's casda), which provides a more appropriate descrip-iS conveniently denoted by
tion of the short-range electron-ion collision process.

limyijim;iIM

X (— 1)—(1/2)+Ii—mji—ji+Jci—M(
Msi My —mj

IMPp,A .S | .
( |( CJS, cScdcls) <Qc]cJ|S~A Q>(JMp,ACSCqC,Is)_ (7)
I1l. TRANSFORMATION BETWEEN HUND’S CASES (a)

AND (e . I . .
© In a well-specified context it will often be possible to omit

Usually when one refers to Hund'’s coupling céagitis  some or all of the eight superscripts of the transformation
implied [10] that the following quantum numbers are good elements of Eq(7).
ones: the total angular momentuhof the molecule and its In view of the foregoing remarks we can now specify
componentsM and ) with respect to the laboratory and symmetrized casée) and casga) Rydberg wave functions
molecular axes, respectively. Further, the electronic orbitaas follows. Omitting the core indeixoccurring in Egqs(1)—
angular momentum componefton the molecular axis and (6), for case(e) we write a vector-coupled product of elec-
the total electron spi® as well as its molecular component tron stategjm) and symmetrized core statehQ M),
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TABLE I. Quantum numbers in Hund's casés and (e).

Case(a) Case(e) Remark

J,M,p,s JM,p,s “strictly” good quantum numbers in field-
free spaces:% for the electron; ses=0
if spins are disregarded.

A¢,Se el A¢,Se 0l electronic channel quantum numbers.
“Badness” is accounted for by electronic channel
interactions.

S,AQ L0 o spin-roronic  basis channel quantum numbers

defining short-rangéa) and asymptoti¢e) channels.
“Badness” is tantamount to
a departure toward the opposite limit.

“redundant” quantum numbers:

A=A—-A 2.=0— A,
3=0Q-A
el 1\ (even total parity quantum number; include
f} if P—J( + 5)[ odd term (+3) whenJ is a half-integer.
e . 1\ (even core parity quantum number; include
f if p+1=Jc| + 31 o4d term (+3) whenJ, is a half-integer.
+\ . even core parity quantum number.
(_)C if p+|=pc[ odd
| Jcj YOMPACSec 1s) that the core has parity{1)P"'=(—1)Pc, as assumed in

Eq. (1). Note that apart from the symmetrization the angular
momentum coupling in Eq8) is the inverse to that given in

i Jde :
M, —M ) [im) Eq. (6). For cas€a we write

_ 2 (2J+l)l/2(_1)7j+chM
mM, m

|SAQ>(JMF’:ACSC% 1s)

1
Xg WL [[Ac)ScZc)I QM) 1 1

+ ( - 1)p_q°_S°+J°+I| _Ac>|sc_2c>|*]c_QcMc>]a

1
E (1+A2)1/2 (1+A3)1/2 {[|AJ||7\>|SE>|JQM)

(8a) +(=1)PT % ST — A1 =N)[S=3)|I-QM)]
with +A3(=1PTITSIA[IN)[S-3)[I- QM)
A1(Ae,Q0) =84 00.0- 8b) +(=1)P%TS— A= N)[SEHIOM)]}, (98
where

In Eqg. (8) the quantum numbers of the outer electronlare

andj, and|jm), quantized in the laboratory frame, is under- As(Ae, A Q)=6) 000000 (9b)
stood to be formed by vector addition ladinds as in Eq.(6). ¢

The ketdA ), |Sc2¢), [IcQcMc) and|jm) are, respectively, and

the electronic, spin, and rotational functions of the ionic core

and the angular part of the function of the outer electron, A3(AC,A,Q)=(1—aACO)éAO(l—b‘QO) (90
where 3 .=Q.—A.. The electronic core parity indeg,

equals 1, when the core is in3 state and it is zero other- equals 1 whem\ #0, A=0, andQ+#0, and 0 otherwise.
wise [2,16]. The ket Eq.(8) corresponds to the function Note thatA,A; is always zero. In Eq(9) q=0 must be
®MP) [Eq, (5)] for a diatomic molecule where the indéx taken forS>0 andg=1 for $<0. The angular part of the
was defined in Sec. Il &8} ={i,l;,j;}, and the radial part of function of the outer electrofl\) (with A=A —A,), is now
the wave function of the electron is not included. Equationquantized in the molecular frame. The spin functi@X.)

(8) refers to a given electronic core stateand the core (also quantized in the molecular frame wh=Q —A.—\)
index i is replaced by the core quantum numbérs, J., is understood to be the result of the vector additio®oénd
M., S¢, andg. characterizing this state. The molecule-fixeds. |[JQOM) describes the rotational motion of the molecule as
projectionsA ., 2., and(. and the core electronic symme- a whole. Note that the third and fourth terms in the bracket
try index g, which appear here are unspecified in the more{- - -} of Eq. (9) (as well as the corresponding third factor
general Eq(5). We shall also see beloilable ) that the preceding it, which yield the somewhat complicated appear-
exponent of & 1) in the core part of Eq8) is defined such ance of Eq.(9), are actually present only in the particular
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case whereA =0, A.#0, andQ#0. They ensure that for E*|JQ|\/|>=(_1)J—9|J_Q|\/|>, (109
A =0 the electronic orbital wave function always has a defi-
nite symmetry>* or 3. This, and the significance of the E*[INy=(—1)"MI—=)\), (10b)
electronic symmetry indeg, is explained in Appendix A.

It appears worthwhile to specify which values can be E*|SE>=(—1)S‘E|S—E>, (100
taken by the various angular momentum components appear-
ing in Egs.(8) and(9) and in the frame transformation of Eq. E*[A)=(—1)% Ac|—A.) (100

(12) below. Since the basis functions in E¢8) and(9) are

symmetrized with respect to the molecule-fixed angular mofwhere, in Eq.(10d) q,=0 except forS; cores for which

mentum components, we must ensure that a g_iven combin%‘-c: 1], and taking note of Appendix A, we establish easily
tion is obtained only once. To this end we restrict one of thgy, 4

components to b@ositive or zera We thus defineA .=0.
For A . different from zero,\ then takes all values-|,...,
—1I, which means that\ takes all values\.+1,...,A.—1.
Note that forl= A this prescription yields positive as well
as negative values of\ which correspond todifferent
electronic  states. Similarly, 3=0Q—-A takes all
values +S,...,—S, and 2.=Q.— A, takes all values
+S;,...,—S; (with the additional convention thaj=0 for
spin projections>>0 and q=1 for 3<0, cf. Appen-

E*|Qc‘]cj >(JMp,AcSCqC Is) — ( _ 1)p|Qchj >(JMp,/\CSCqc ,Is)’

(113

E*|SAQ>(JMvacchc JIs) — ( — 1)p|SAQ>(‘]Mp’ACSCqC ,Is).
(11b

This result confirms thap=even or odd relates directly to
the total parity,+ or —, respectively, and thus the frame

dix A). The maximum number of states thus obtained istransformation of Eq(12) below is diagonal irp. From Egs.

2X(2s+1)(2S:;+1)(21+1). When, on the other hand,
is zero, A in case(a) and (). in case(e) are restricted to

(17) it is straightforward to obtain the relationship between
and thee/f total parity quantum numbers on the one hand,

positive or zero values, and in general only half as manyand thee./f. core parity quantum numbers on the other

states are obtained. Finally, X;=A =0 in case(a), Q is
also restricted to be positive or zero.
Using the known effectfl0,16 of the space-fixed inver-

hand, as given in Table I. Remember that in césethe
parity is that of the core times<1)'.
Standard angular momentum coupling techniques vyield

sion operatoE* on the various factors of the basis functions, the frame transformation, i.e., the projection of cégeonto

namely,

case(a) states. We obtain

. (2S+1)(2j+1)(23.+1)]*2
(IMp,AcSchc.ls) — 1)\Se— QeI +HA+I+Q
(Qedef|SAQ) (I+A)(A+8,)(1+4y] Y
s S S I s i (Jc i J
X
Q-A+A—Qc Qc—A; —Q+AJ\A=A; Q-A+A.-Q, —Q+0./Q, Q-0Q, —-Q
+ 6]\00( _ 1)p*QCfscf‘]c+|
s S S [ s j )( Je j J )
X
Q-A+AA+Q, —Qc—A; —Q+AJ\A-A;, Q-A+AA+Q, —0-0./)\-Q, Q+Q, —0Q
+Ag(—1)Pa7Sd
s S S I S j N i J
X
—Q-A+A—Q; Q.—A; Q+AJIA-A, —Q-A+A.—-Q, Q+0Q./\0Q, -Q-Q, Q) (12

with the additional convention that=0 for 3=Q0—-A>0
andq=1 for % =Q— A <0 (cf. Appendix A. From Eqs(8)
and(9), we see that for\ ,=0 we have the following addi-
tional requirements:

Ae=Q.=0—-p—Q.—S;+J.+I=even, (133

A;=A=Q=0—-p—qg.—S+J=even (13b

which ensure that only the combination occurs for states
with zero angular momentum components. Both these re-
quirements have been taken into account in deriving Eq.
(12), and when not satisfied E¢L2) gives a transformation
element of zero. Thus, in practice, for given valuesgpf

S, Je, andl (or g., S, andJ), these conditions tell us
which value of the parity indep yields a nonzero transfor-
mation element. Note that the second and third terms in the
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bracket[- - -] containing § symbols in Eq.(12) take ac- N
count of the special cases whetg=0 or A=0, and one of Ky = 2 UlBKBB,(U”)B,,, . (14
them at most is nonzero in any given situatich Appendix BB =1

A). Note also that the second and third triple products jof 3

symbols are obtained from the first by the simple substitutiorHere U,z are the frame transformation matrix elements of
Q.——Q, and Q— —Q, respectively. Recall, finally, that Ed.(12), Kz =tanmugs are short-range or body-frame re-
the quantum number components in Etp) take the values actance matrix elementg, are quantum defects, anth are
and signs specified in the paragraph preceding(Eg), thus ~ related phase shifts. The channglscorrespond to Hund's
determining the dimension of the matrix formed by the ele-case(@ coupling as specified by E¢9). As in Eq. (5) the

ments of Eq.(12). The frame transformation matrix is uni- channelindicegl}={i.l;,j;} stand for the core state wheire
tary, and it is diagonal in the electronic core state reflects the electronic core state as well as the associated core

The frame transformation for a spinless molecule is obduantum nl_meers specified in the ce(s)afu_nction of Eq.
tained by setting=S=S,=0 in Eq.(12). The resulting ex- (8). The indiced; andj; are the electron partial-wave expan-
pressions for Hund's ccaséd) are given in Appendix B sion index and spin. The same is true for the Greek indites

. T et I — . in Eq. (14), which represent the partial-wave indexand the
where the special casé:=0 ("> or "% corg is also core statd with associated core quantum numbers common

considered. to caseqe) and(a) [upper indices in Eq(7)], as well as the
case(a) quantum numbers§, A, and(). The greek indices
here and later refer to the body-frame character of these
IV. USE OF THE FRAME TRANSFORMATION IN quantities—we avoid the usual eigenchannel notatidrere
SCATTERING AND QUANTUM DEFECT CALCULATIONS sinceK g4/ in Eq. (14) is only block diagonal for each core

statei, but may have nonzero elements connecting channels

In this section we present an outline of how the spin->.""~"" == C
electronic-rotational frame transformation derived in Sec. Illd'ffe,fIng |n | or li. We thus dl_stmgulsh the chann&?sfrpm
the “true” eigenchannelsy which correspond to full diago-

may be used in the framework of scattering and quanturTllnalization of K. This type of “partial” eigenchannel was

defect theories, and how it enters the calculation of phomexémployed previously by Ross and Junge].

citation and photoionization cross sections. The reader is re- . . .
. : . Equation(14) reduces the problem of constructing a spin-
ferred to Refs[8] and[9] for a detailed discussion of quan- : g
electronic-rotational reactance matKy;. to that of evaluat-

tum defect theory in atoms and molecules, and to Ref] ) . . L

for a review of the application of scattering theory to photo—Ing a matrixK g in the molecular frame, which is the frame

ionization processes. customarily used mb initio calcul_atlons. The' 'Iaboratory
frame channels satisfy case) coupling as specified by Eq.

(8) [case(d) in the absence or neglect of spjn€hannel-

coupling matrix elements between channkland I’ can

arise in two ways: from the nondiagonality of either (#au)

In the following we discuss the structure of or of the frame transformation matrly. The basic assump-
¥{~)(coupled of Eq. (5), and relate it to the frame transfor- tion here is that the cas@) quantum numbers, A, andQ
mation derived in the Sec. IV. In the framework of MQDT are preserved during the electron-ion-scattering process, and
the electron-core interactions are embodied in a real symmegonsequently the matrix has only elementsmiag, diago-
ric nondiagonal reactance mati™P, which consists of nal in these quantum numbeféf the spin-orbit coupling is
open K°°), closed K°°), and interaction K “°=K°), sub-  very strong,S and A may lose their meanings, such that
matrices. The QDT calculational procedures involve theultimately only () is conserved in the body-frame represen-
elimination of theN, closed channels, yielding the physical tation. This situation corresponds to Hund’s cése which
reactance matrik (E)”™P) whose dimension is restricted to we do not consider in detail hefeBy contrast, tamusg
the numbeiN, of open channels, i.e., to the degree of degenmay have elements that are nondiagondl in., orS;. The
eracy of the continuum, and which is connected to the scateouplings between different channggsmay have different
tering matrix appearing in E@5) by the well-known relation  physical origins of the type discussed by Lefebvre-Brion and
K(E)=—i[S(E)—1][S(E)+1] 1. K(E) andK distinguish  Field[18] in their book on spectral perturbations in diatomic
the N, XN, and NXN reactance matrice& (E) has poles molecules.
near the energiels corresponding to bound states associated We illustrate this with a few examples of nondiagonal
with closed channels, whereas the fdlk N reactance ma- body-frame reactance matrices. First of all, coupling between
trix K(N=N.+N,) will generally be a smoother function of channels differing i only occurs because of the nonspheri-
energy. Frame transformation theory uses the fact that theal nature of the molecular electronic Hamiltonian at short
scattered electron experiences two different coupling situarange. A well-known example is the NO molecule where the
tions depending on whether it is far from the ion core, closeobserved nominal 8"’ o and ‘‘d’’ ¢ Rydberg series associ-
to it or inside it. These correspond, respectively, to theated with the NO XS " core have strongly mixetdcharac-
asymptotic or to the eigenchannel coupling scheme, wherebyer [19]. In this example we have=3, A=0, Q =13,
the electron is appropriately described in the laboratory or in
the molecular coordinate frame. The actual scattering off the
core takes place while the electron is coupled into the mo-
lecular or body frame. The reactance matrix can therefore be
written in the form and

A. Structure of reactance matrices in MQDT

B=(X2")so, ie., A,=0, S,=0, q.=0, 1=0,



57 SPIN-ELECTRONIC-ROTATIONAL FRAME . .. 2413

B=(X'2")do, ie, A;=0, $=0, q.=0, =2 I=(XIp)j, e, Q=3 A;=1 S=3,

where X!3 ") represents the electronic wave function of the q.=0, I, s=1.

core, and \ represents the outer electron. Second, channels

differing in the electronic core statd, are coupled as a They are preionized by the open channels
consequence of electron correlation effects which simulta-

neously change either theand/or thex value of the Rydberg I=(X2I,y)j, ie., Q=2 A.=1, S.=1%,
electron. A well-known example is afforded by the Hopfield

series of N [20]. Here one ha8=A=Q=0 (13} symme- 9.=0, I, s=1.

try),

- i L The coupling arises through the fact that the das¢o case
B=(B"%)soy, ie., A;=0, S=3, q.=0, =0, (a) transformation is nondiagonal, and the singlet and triplet
body-frame quantum defects are not equal. Spin-orbit auto-
ionization and was initially discussed in R¢22]. More re-

_(R2% + : _ _1 _ _ cently, several MQDT studies have been made of the photo-
p=(B°2y)dog, ie, Ac=0, S=z, =0, 1=2. ionization from the ground state of neutral HI, or of double-
The Rydberg series corresponding to these channels are pfé&sonance ionization via t2'11 state in HCI/DCI or via the
ionized by the additional open channels FA state in HBr[23—26. The main purpose of these stud-
ies was the analysis of the evolution of the angular momen-
,8=(A2Hu)d7-rg, ie., Ac=1, S;=3, Q.=0, =2 tum coupling from Hund's casé) toward casge) as the
principal quantum numbaer increases.
and A further potential source of channel interaction would be
- , N the presence of nonadiabatic coupling within the core. For
B=(X%g)poy, ie, A;=0, S=3z, =0, I=L instance, in the @example mentioned abovéy and 3

Electron correlation can also lead to strong channel intera follow case(b) rather than casé) due to the uncoupling of

tions between channels that correspond to different multi-he SpinS, from the core, and similarly in the \example

plicity of the core(different S;). An example of this type there.ls a t.ransmon+frogn cad@) toward caseb) with in-
! . z . creasingJ. in the N,™ A“II core state. In such a case each
involving channels of*s ~ overall symmetry is known for

= -~ - ___ core state no longer corresponds to a singlg kg2 M) as
0, (5=1, A._O' (1=0, £1) [21]. Here the Rydberg series indicated in Eq.(8), but rather is a superposition of several
corresponding to

such functions with differenf).. The frame transformation
BZ(BZEJ)DUU, e, A;=0, S,=% q.=1, I=1 matdrix :Jw to be used in Eq(14) is therefore the matrix
produc

and

is preionized by the open channel

B=(b*Sy)po,, ie, A=0, Si=% Q=1 I-1, Uis= 2 Ureaeas, (19

where the Rydbergo, electrons are different, since they are where the matrix with elementd, ., gives the decomposi-
associated with different core states; in other words, the intion of the spin-rotational core leveisof the core into pure
teracting channels differ in two spin orbitals as in the pre-case(a) core stategbut case(e) for the electron plus core
ceding example. systenj as assumed in E8), andU, 4 corresponds to the

We now turn to the discussion of channel interactionscase(e) — case(a) transformation of Eq(12). An analogous
which are taken into account through the frame transformasituation is encountered in the rotational frame transforma-
tion matricesU in Eq. (14). We first consider the situation tion for asymmetric top molecules where the cé&beto case
when the core obeys pure cas coupling[case(b) in the  (b) transformation connects pure symmetric top functions,
absence or neglect of electron spilnteractions between but each core level is represented by a superposition of sev-
channels differing i}, J., andj arise through the frame eral symmetric top functiong27].
transformation. When the energy is very low such that the
Rydberg electron is confined to the zone near the core, these B. Resonant behavior of the scattering matrix
interactions lead to a transition toward cdag Conversely,
to the extent that the low-energy Rydberg electron has some
amplitude outside the inner region, states characterized
different values ofS, A, and() become coupled.

In addition to the rotational-electronic channel interac- ) ) x i
tions (I uncoupling the so-called spin-orbit autoionization @Nd in particular to the scattering matrices ozﬁe)c. .
belongs to this class of channel couplings. Several papers N the eigenchannel approach the ma8{(E) P of Eq.
appeared recently dealing with the photoionization of the®) iS €xpressed in terms of its eigenvectdis and the ei-
halogen halides HCI, HBr, and HI. The cations of all these9€nvalues z 7, of the open-channel interaction as
molecules have strong spin-orbit coupling and large rota- No
tional constants. 'Omlttlng the rotatlo'nal quantum numbers SUMPI* _ =iy E T, . 27%(T") |e”im, (16)
we can characterize the Rydberg series as: 1l =P P

The preceding discussion focussed on the structure of the
I NXN MQDT reactance matrices disregarding whether a
iven channel was open or closed. In the following we con-
nect these to the asymptotic behavior of the wave function,
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where 5, and 7,, are the phase shifts due to the asymptotic In Sec. Il and IV we discussed several alternative forms
Coulomb field in channels and|’. The indicesp thus de- of the wave function representing a highly excited molecule
note the eigenstates of the interaction between the Gmem  fragmenting into a single electron and a molecular core.
tinuum) channels for giveldMp, andN, is the number of These are

open channels at the given energy as in the preceding sec-

tion. The multichannel wave functioW , corresponding to ‘I’ki(anawze} [Eq. (2), compleX,
eigenstatep of the open-channel interaction is an expansion -
over closed as well as open channels, \Iff )(uncoupled [Eqg. (3), compleX,

N N -
wp:zl E (Df‘,]Mp)[fw(r)Q'|_g|'(r)$|'|] Bip, \PE )(COUpled [Eq. (5, complex,

I'=1 17 v, [Eq. (17), real.

wheref,(r) andg,.(r) are regular and irregular radial Cou- T0 each form of the wave function there corresponds a tran-
lomb functions, anK =SC~! is theNx N reactance matrix Sition dipole amplitude, e.g.,

of Eq. (14) (here the sine-type matri& is not to be confused 1) )

with the scattering matrix The channel amplitudeB,,, are D4 (coupled [Eq. (20) below, corresponding
determined in a diagonalization procedure in which the to W{)(coupled]

closed channel components ¥, are forced to vanish at ' P ’

large r, and the open-channel components all assume the .
g P b D?, [Eq. (21) below, corresponding tor,],

same phase shiftr7, due to the non-Coulombi@.e., short B’
range forces. That is we requir® , to take the asymptotic
forn%e aur ymp where, for exampleD”?,=(p|r|B"), and 8" represents the

initial (lower) state of the transition which for simplicity we
No 1 \12 assume to follow cas@) coupling(as indicated by the greek
v,— E @ffMp)TW(T) sin(kj/r + mp +77,). index). The generalization of the present formulation to situ-
I'=1 T ations where both the upper and lower states are represented
(18) by a multichannel wave function is straightforward, and will

The resultingN channel amplitudes,, vary rapidly with not b_e_ present_ed here. In the foIIowin_g we will relate the
energy in the vicinity of a bound state associated with dransition amplitudes to the real quantities

closed channdl.. The superposition of eigenchannel func- ,
tions ¥, Dg,, [Egs. (21b and (23) below],

No _ _ which are expressed entirely in the molecular frame and are
\Ifl(’)(coupledz 2 [\pre*'”p(T”)p,]e*"?l, (19 analogous to the dipole transition moments obtained in
p=1 quantum-chemical calculations.

then yields asymptotically the incoming-wave normalized Recalling Sec. IV B, it is an easy matter to establish the
y ymp y 9 amplitude for a dipole transition from an initial lower state

scattering wave function of E¢S) with S°MP” as given by B" to a final state¥()(coupled. Based on Eq(19), we
Eq. (16). Equation(19) links the eigenchannel form of Egs.

. . . write
(17) and(14) to the asymptotic scattering expression of Eq.
(5), and the influence of the closed channels is now implic- No _ _
itly included within the¥ , of Eq. (17). D}, '(coupled = 21 [D5e (T le '™, (20)
=
V. DIPOLE TRANSITION AMPLITUDES where, from Eq(17),
A. General framework N
In the present section we turn to the discussion of dipole DZFZl D'B,/B”). (219

transition amplitudes involved in the photoionization pro-
cess. The physical picture of a photoionization process is . _ | .
follows. The optical transition occurs preferentially while thea.?he re:"il dipole amP“t“‘_"e'?ﬁ" correspond to the transitions
electron is in the inner zone, where its kinetic and potentiaffm A" to the function inside the brackgt - -} in Eq.(17),
energies are comparable to the photon enézgyFano[28)). and are not to be confused with the complex quantities

This means that the absorption process itself is adequatel?jg(f)(COUp'EBd) of Eq.(20). Superposing the dipole ampli-

described by a dipole transition momedf, (3’ andg” are  tudes of Eq.(20) in the same way as the’(~)(coupled)

the upper and lower states, respectiyaiythe casea) for-  functions are superposed in E@) yields the amplitude in
mulation appropriate at short range. Once excited, the eled® directionk corresponding to Eq1) with added incoming
tron may roam to larger distances from the core, where ifomponentsDy, in Eq. (20) replaces, as it were, half of the
undergoes a transformation to the laboratory frgfg. (5)]  scattering process described by the scattering matrix Eq.
before actually departing toward the apparatus which is set t6L6), namely, the produa™'"'T;, ,e™'""» describing the in-
detect a specific asymptotic channdgkee Sec. )l coming wave components. The effective amplittlm%, is a
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coherent sum over alM channelsN, open andN, closed, T1,=Uig, (259
with the channel-mixing amplitudes, , and theD',, .
The dipole amplitude®',, in turn can be resolved into To= Mps (25b

products of frame transformation matrix elemehts; and

the real short-range dipole amplitud@% as follows: We
replace the channel amplitudBs, by an alternative frame- The photoionization amplitudéEg. (20)] for forming the

B|IB/:U|B/ . (250)

transformed sef\ ;. , according to system in the final channélreduces to the simple expression
N N
B|p: Z U|BIABIP . (22) Dg;)(coupled: 2 [Dg/”eiiﬂ-luﬁ,(Utr)B’I]eiiﬂ“
o o (26)

We further use the well-known fa¢see, e.g., Ref8]) that . . T L

the energy dependence of the Coulomb functions related t§"ich describes the so-called "direct” photoionization pro-
the fine-structure quantum numbeifsere )., J., andj) cess as asequence"of foejr successive stagmotoabsorp—
becomes negligible in the region near the core such that whOn @t short rangeg”— g’ (ii) half_-scat/tenng off the core
can replacef;,(r) by fi.1.(r) andg,.(r) by g.(r). Thus ~ With phase shiftmug ; (iii) recoupling” —1 at larger dis-
using the fact that) is diagonal ini’ andl’, we obtain for tance; and(iv) half-scattering in the asymptotic Coulomb

values not too far from the core field with phase shifty, and, finally, transformation to the
' uncoupled particle representation of Kty by means of Eq.
(6).
‘PP“E ’2 > q)f\r]Mp)Ul’,B) The above type of expression is well known. We recall it
gAY here since it permits us to relate our expressions to those of

other authors. For instance, the quantidyQ.,lj|T(J)|Q")
Ag, in Eq. (10b) of RC [to be entered into their Eq19) for the
angular distribution of photoelectrons with defined spin po-
N larization], corresponds to the amplitudb'ﬁ?,,_) of Eq. (20),
EE, (% X(B p)[fi,(r)CBB,—g”(r)Sﬁﬁr]]Aﬁ,p, while their Eq.(6) corresponds to 'Ehe'present coupled super-
k position Eg. (6). The producth,,e"WB’ represents the
(23 incoming-wave normalized molecule-f\i/xed partial-wave di-
whee th funcions?"9, obiained fom thab(("9 by P9S STBIe, The quanieh and i [Egs (6.1 ang
transformmg.to the moleculgr _frame, are equwalent to theOy McKoy and co-workers correspond to expressi¢2@
case(@) functions of Eq.(9). Similarly, the cosine- and sine- anq (26) of the present paper, with two differences. First,
type matrix element€ andsS of Eq. (23) yield themolecule-  hese authors used a uncoupled representation, and, second,
fixedreactance matrix according ko=SC™* [with elements  these authors do not give the details of the expansion of the

Kgpr cf. Eq.(14)]. The reader is reminded that th_e matric_esvectork_ However, the relation to the present E¢0) and
with elementsCgz5 andSgr are assumed to be diagonal in (26) is obvious.

the casdga) quantum numberS, A, and(). We thus obtain

X[fi(r)Cgpr — Qi (r)Sgp ]

. B . . _ . _
the alternative form of Eq214, . Fmally,- Dy is th.e standmg wave n.orm.allzed molecule
fixed partial-wave dipole amplitude which is used frequently
N , in applications of molecular quantum defect theory. Here we
D= > Dg’/Aﬁ’p! (21D |imit ourselves to spelling OIJDg,, for transitions in diatomic
B'=1

molecules. Equation®0) and(21b), or Eq.(26), can then be
used together with the frame transformation Ec) to con-

" . R struct the desired full dipole amplitude. Here we do not give
sition from the lower statgs” to the function inside the ihe formulas for the photoionization cross section in terms of
bracket{- - -} in Eq.(23), and represents the desired cé®e  ginole amplitudes. The corresponding expressions are known
to case(d) dipole amplitude. Further, [e.g., Eqs(7.69 and(2.9) of Ref.[15], or Egs.(17)—(20) of

RC].

WhereDg,’, corresponds to the dipole amplitude for the tran-

N
I B’
D,= > UzD%,. (24)
A g =1 P B. Hund's case(a) dipole transition amplitudes
We now briefly consider the particular case where reso- In the present context of spin-electronic-rotational chan-

nance phenomena are absent or may be neglected; that is, ﬁﬂl interactions, the asymptotic channélare the casge)

the channels are open, or the closed channels are physicaffy2tes Of EQ(8), while the short-range eigenchanngisre
irrelevant. This is the situation usually considered in scatterthe case(@) states of Eq(9). The dipole amplitUdeﬁu of
ing theory. In this castl, equalsN, and the eigenstatgsof ~ Eq. (21b) corresponds to this situation. Here we consider a
the scattering matrix coincide with the eigenchanngls photoexcitation process from the ground state or a transition
(see, e.g., Refl29]). These quantities then take the simple between Rydberg states. For simplicity, we again assume

forms that the lower state follows Hund's cage) strictly, and
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moreover that electronic channel interactions &ndixing  and should be suppressed, and the explicit lower state radial
occur only in the upper state. In practice, if the lower state igunction in Eq.(29) must be replaced accordingly. The elec-
itself a Rydberg state, one will have to sum over the relevantfic dipole transition leaves the spin quantum numtSrand
lower state channel indices exactly as outlined here for thé (and of courses) unchanged. The labelS; and s are
upper-state channel&gs.(20) and(21) above, and E¢(28) therefore omitted from the following expres:smns. The
below]. If, on the other hand, the lower state is a non-molecule-fixed standing-wave dipole amplituﬂtg,, of Eq.
Rydberg state the label§A{qcl” have no strict meaning (21b) takes the form

S'A'QN M P’ i ALyl

1+ (—1)P +PFL
S'AQ "M ”p”,i”qugI” - A

2

(my)=[<2J'+1><2J"+1)]1’2{ L V|

+1
J1 3 garairAlgll

_ - ' cle

><( 1) V:E—]_ [(Q/ v _Q/I gS"A"Q”,i”AZqZ"’(V)
J 1 J" ) s-A—a i -ALdl

_1)p -S04 7 Aol

+( 1) ¢ _Q’ v _Q” gS”A”Q”i”A”q”I” (V) ' (27)
! c’'c

where the quantitieg are symmetrized electronic dipole transition moments:

gS’A/Q”i,Aéqél/(VF > ! VA 1+ 4505 - 1) A’,iAcqcl:A’,i’Aéqél’(V)
STATQ A" i(Ag,qg),! (1+A2)(1+Ag) /1+_A3\/1+—Ag AN
1/2| "o q+q" N o
+(—1)%+d 1 Az+A5(—-1) —A"i=Aad AT ALl (. 8
(1+A5)(1+A% VI+Ag1+AY | AniTAL"

These are in turn expressed in terms of unsymmetrized dipole transition amptitsdesified in Eqs(29) below. In Eqs(27)
and(28), we explicitly indicate the quantum numbers associated with chathes, and 3”.

The quantum numben,, in Eq. (27) is the photon polarization in the laboratory frame, ire,,=0 or =1 depending on
whether the space-fixed componé&nor (X*iY)/v2 is consideredcf., e.g., expressiond 7)—(20) of RC]. v is the polariza-
tion in the molecular frame. The rotational factors multiplying the first electronic transition moment 2 Bgorrespond
precisely to the direction cosine matrix elemeats, ,(2)71/2(ax’qiiay‘q) (g=x,y,z) with phases as given by Houggt0]
in his Tables 6 and 7. For unpolarized light the third bradket -] on the right-hand side of Eq27) containing the
dependence oM” andM’ is to be replaced10] by =+ 1/3 where the minus sign is taken for molecules possessing an odd
number of electrondThe complex factor resulting in the latter case is compensated for by a corresponding complex factor
arising from the half-integral exponent of-(L1) %" in Eq. (27).]

Turning to Eq.(28) we note that th&. 4 in the second line of E¢23) reappears as the sum over core stat@sd associated
partial wave componentsin Eq. (28). Correspondingly the unsymmetrized dipole amplitudesx<hibit a double dependence
on excited state channel indices whose origin are the double indices of the elélyerasd S,/ in Eq. (23). Notice further
how all the factors arising from symmetrization and expressed in terdig(a.,A,Q), As(A.,A,Q), andq [defined in Egs.
(9b) and (9¢) and Appendix A are condensed in the brackets- -] multiplying the unsymmetrized electronic transition
momentsd in Eq. (28). We see in particular that ih;=A%=1, g+q” must be even, i.e., the well-known selection rule
ST, 3737, 343 is recovered.

The unsymmetrized electronic transition momaﬂﬁsﬂr for excitation of the outer electron have the form

ATA A AL . 12, A,,_Agl I [ 1 |”
A AT (m=[E+HE"+DIA-1) (o 0 o/lA=A; v —AT+A!
><5”"5/\01\25chg<fki|(r)C,3'3,—gki|(r)8/3,3/|I’|fki,,w(l’)Cﬁuﬁu—gki”w(r)Sﬁuﬁu}. (29@

On the left-hand side of Eq293, and below in Eq(29b), we used the expanded form of the labelingsodnd 8’ with all

guantum numbers given explicitly, while on the right-hand side we use the shorthand notation. The last fact¢29a) Es).

the energy-dependent purely radial transition integral. Each bra and ket involved in the integral is understood to stand for the
radial part of Eq.(23) for given 8,8, as well as its continuation inside the cokeis the electron wave number in channel



57 SPIN-ELECTRONIC-ROTATIONAL FRAME . .. 2417

i as in Eqs(2) and(3), with kj=i/v; for bound states and, the effective principal quantum number. There is the alternative

possibility that thecore rather than the outer electron is excited. In this event the electronic transition moment will be given
by
ATiA AT TA LGl . .
A i"/(\://;/q” e (V):<|Acqc|rV||”qulc,> 5”775/\!_AC’Arr_Ag<fki|(r)Cﬁﬁr_gki|(r)SBIBr|fki”w(r)CBrrﬁu_gki”|rr(r)8ﬁuﬁu>,
! c’c

(29b

where the shorthand notatio is as used before. In Eq. first time as far as we are aware.
(29b) r, stands for the molecule-fixed componeatsr (x Our hope is that the present work clarifies and unifies the
*+iy)/v2 of the dipole moment operator, respectively. Thevarious formulations of the angular momentum coupling and

dipole amp”tudajg;ﬁ'(v) relates to the asymptotic standing transition moment amplitudes fou_nd ?n the literature. Far
wave functions associated with thematrix, and therefore is  from the core, Hund'’s cas@) coupling is common to both
always real. The transition moments Eq89a and (29b) the spin-resolved photoionization and discrete-discrete Ryd-
have the dimension of lengthif discrete-discrete transitions berg spectroscopy. The dipole transition amplitude builds up
are considered, and normalization to unity is used. Their diin the inner region close to the core where cas®r case(c)
mension is lengti[energy Y2 if a photoionization process coupling prevails. Correspondingly, the transition moment is
is considered with the initial state normalized to unity andtransformed to Hund's case), appropriate in the asymptotic
the continuum normalized to the energy. Finally, in thesituation of two distinct fragments. When an excited state is
framework of MQDT, both the initial and final states may be embedded in the electronic continuum the effective coupling
normalized to the energy irrespective of their discrete or consituation may strongly vary with energy, a complication that
tinuous character, so that the dimension of the transition mois naturally accounted for through the use of MQDT. The
ments will be(length x[energy ™. frame transformation and dipole transition moment expres-
In summary then, Eq927)—(29) relate the body-frame sions given here have been used routinely and extensively by
case(a) to casg(a) rotational-electronic dipole transition mo- the authors for several years, albeit mostly in situations
ments to the purely radial electronic amplitudeswhere the electron spins can be neglected. These applications
(1 (1)Cppr — gkil(r)SBB’“|fki~I"(r)CB”B" — Ok17(r)Sprgr)  include electronic single-channel situatiofesase (d)—case
for excitation of the outer electron, or alternatively to the (d) highd transitiong 32]], electronic multichannel situations
dipole amplitudes for core excitatiofi A|r,[i”A%), and  involving | mixing [33] or interactions between channels

the radial Rydberg overlap integral(f,(r)Csps corresponding to different core statg34] as well as the
: calculation of rotationally resolved cross sections including
_gkll(r)SﬁBI|fkl,,lll(r)CBNﬁN_gkINIII(r)SﬁIIﬁII> The Some_

f : spin polarizatior{ 35].

what unwieldy form of Eq(28) is more apparent than real, | this paper we have expressed the final-state wave func-
sinceA, andA; are zero in most cases and they never differiion in a total angular momentum-coupling scheme. An al-
from zero simultaneously. In addition, if there are no elecgrnative approach based on the “transferred” angular mo-
trpnic channel interactions as well hsmixing.(as, e.g., in mentumj, was introduced in Refd36] and[37], and was
high orbital angular momentum statebere will be no off- 4150 ysed as one of two alternative coupling schemes by RC.
diagonal matrix element§ss and Sggr in Eq. (29), and  Thjs alternative approach explicitly introduces the photon
hence withg=p’ the awkward(but necessajydouble de-  angular momentum into the coupling scheme, and has pro-
pendence of thel’s on excited state channel indicgsand  vided particular insight into the photoionization process it-

B’ disappears as does the sum in Ezf). self. However, this approach has found only limited use in
molecules, possibly because the connection to the spectros-
VI. CONCLUSION copy is not as easily established as in the total angular mo-

) . . mentum coupling scheme.

In this paper we have discussed molecular electronic pho- \ye  stress finally that the transiton moments
toexcitation processes, putting discrete and continuum transi(-) : . )
sitions on an equal footing. We combined the scattering thel,:ll-:; fn”s (v(\:/ﬁili;alehda\?; E\?).t(tz)(e))er?acnor?;;esree?jIi?]?dt\a/?arille;ig plrr102ach
oretical formulation for the final-state wave function with :

, - : uch case it is sufficient to establish the relevant cross-
Hundsa_ngular momentum coupling sc_hemes WhICh are USLF-ection exDressions. in terms. of tf[é'(_)(cou led). We
ally restricted to the spectroscopy of discrete-discrete transR€CUC pressions : g~ (coupled).
tions. We have taken account of the electron spins, and odpention photoionization of aligned and oriented molecules
derivation takes full account of the symmetry requirementd38] prepared in the initial state throughphoton excitation
in the initial and final states, which in previous work were and ionized by an additional phot¢&9] or in the final state
either only partially included, or only in the context of sim- by measuring the polarization of the fluorescence of the ion
pler coupling situations. One consequence of this is that pat40]. “Complete” experiments have also been carried out

ity selection rules such as derived by XZ are replaced by thavith moleculeq41]. Referenc¢41] deals with the inversion
simple requirement thap” +p.+! must be odd in a one- Of experimental data with the aim of extracting the module
photon transition. The proper symmetry®f andX~ elec- of the complex quantitie@',f,f’(coupled) as well as their
tronic states has been fully taken into account here—for theelative phases. This is achieved by measuring the difference
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between the rotationally resolved cross sections obtainetbr hasX, ™ or 3~ character depending on whettees 0 or 1.

with left and right circularly polarized light. Therefore it ap-

In order to avoid double occurrences of the same spin-

pears that the transformations derived in the present papeetational wave fL.mCtiOI’E=QiA in Eqg. (A3) should in
are useful in the spectroscopy of excited states and othgrinciple be restricted to positive values as this was done

contexts.
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APPENDIX A: SYMMETRY PROPERTIES OF THE CASE
(@) BASIS EQ. (9) FOR A=0

The casga) spin-roronic basis of Eq9) is defined such
that for A=0 the electronic orbital part can be factored out
and has definite* or %~ symmetry. We verify this by
checking all possible cases in turn.

(@ A=0,A.=0, anyQ: A;=0 in Eq.(9¢), and only the
first bracket[- - -] is present in Eq(9); A\=0 and the elec-
tronic orbital part|A.=0)|l,A\=0) can be factored out.
Equations(10b) and(10d give

E*[Ac=0)[ILA=0)=(-1)%|A.=0)[l.A=0), (A1)

i.e., gc=0 (1) yields 53 (52,) electronic symmetry, re-
spectively.

(b) A=0, A.#0, O=0: A3;=0 in Eq. (9¢), and again
only the first brackef- - -] is present in Eq(9), and\ =
—A. andX =Q—-A=0. Equation(9) takes the form

1
[SA=00=0)=—[|Ag)l, = Ag)+(~1)P %5

X|= Al +A][S 2 =0)|3,0=0M).
(A2)

convention here.

APPENDIX B: FRAME TRANSFORMATION FOR
SPINLESS MOLECULES

Whens=S=S.=0, Hund’s casda) is replaced by case
(b), and casde) is replaced by casgd). We then have

J—N, J.—N., Q—A, Q.—A,

The first and third symbols in each ket of E¢R). and(9) are
now redundant, and can be omitted. In all there are now
seven instead of 11 quantum numbers in the minimal set, of
which six are common to both coupling cases. The frame
transformation elements thus take the form

1 1
(1+ 60004 0% (146, 0)*

j—l.

<NC|A>(NMp Aclch) =

X (2Ng+ 1)Y= 1N-A
X[1+ 68, o( = 1)P~ % Ne™]

Ne |

X Ay A—A, (B1)

_A .
Note that, according to the remarks made after B
above, A takes valuesA.—1,...,A.+| when A.=0. [For
example, in a molecule with i@ ionic core and an excited
electron there will be two types of moleculasstates, arising
from A=—1 (dé electronA\=—2) andA=+1 (do elec-
tron, A=0), respectivelyl. As pointed out previously27],
Eq. (B1) differs from that given by Chang and Fahb2],

Application of the space-fixed inversion operation to thewhich takes incorrect account of factov® arising from

electronic orbital factor yields E*[- - -]=
(—1)P~SH[-.-], i.e., levels withp—S+J even (odd) be-
long to aS3§ (53,) electronic state, respectively.

(c) A=0, A;#0, Q#0: A3=1 in Eqg. (9¢), and both
brackets[---] in Eqg. (9) are present with=—A_; and 3,
=Q—A#0. The terms of Eq(9) can be rearranged as

IS A=00#0)=3[|Ac)|l,—Ag)+(—1)97%
X|_Ac>||v+Ac>]
X[|SENIQAM) + (—1)P~a=SH]

X|S—3)I-aM)], (A3)

symmetrization. We finally consider the special case where
A.=0. The symbolA. can now also be omitted, and Eq.
(B1) reduces further to

1/2

(N[ A)(NMP-ach = (2N +1)%2

(1+640)
1+ (—1)P % Net!
_1\N-A
X(~1) :
Ne | N
X 0 A —Al (B2)

Note that here\ is again restricted to values 0. . ,+1. The
above expression is very well known, and has been widely

where the electronic-orbital and the electron-spin-rotationaiised in applications of molecular multichannel quantum de-

factors of the cas¢a) wave function are now symmetrized
separately. With Eq410) we verify easily thaE* applied to
the electronic orbital factor yield&*[- - -]=(—21)9- - -]
andE* applied to the spin-rotational factor yiel&|[- - -]
=(—1)P"9. - -], with the result that the total wave func-
tion has total parity 1), while the electronic orbital fac-

fect theory. Notice, however, how in the form given here full
account has been taken of the parity requirements: In the
case, e.g., of @>" core (@.=0) with given| and total
parity p, Eq. (B2) tells us right away thap— N.+1 must be
even which means that only core levels with eitterenor

odd N, are coupled together.
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