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Spin-electronic-rotational frame transformation for photoionization and Rydberg spectra
of diatomic molecules

Ch. Jungen
Laboratoire Aime´-Cotton du CNRS, Universite´ de Paris–Sud, 91405 Orsay, France

G. Raseev
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~Received 26 June 1997!

The spin-rotational-electronic fine structure of molecular Rydberg and continuum states is considered. The
frame transformation from the laboratory frame@Hund’s case~e!# to the molecular frame@Hund’s case~a!# is
derived. Symmetry requirements are fully incorporated into the transformation, thus facilitating its practical
use. Expressions for the dipole transition amplitudes in Hund’s case~a!, again fully symmetrized, are given, as
well as their transformation to Hund’s case~e! appropriate for excitation to discrete Rydberg states and the
ionization continuum. Various examples of the transformation within the framework of collision theory and of
multichannel quantum defect theory are described, and it is shown how the general frame transformation
reduces to the transformations for molecules without electron spin. The present formulation can also be applied
to the photoionization of aligned and oriented molecules, as well as to ‘‘complete’’ experiments.
@S1050-2947~98!02803-0#

PACS number~s!: 32.70.Cs, 31.50.1w, 32.80.Fb, 34.60.1z
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I. INTRODUCTION

The famous coupling cases of Hund classify various w
in which the spin-electronic and rotational angular mome
of a molecule can be coupled together@1#. The simplest way
to distinguish them is to consider the appropriate expres
for the rotational energy-level pattern for each case. Th
for Hund’s cases~a!, ~b!, ~d!, and~e! coupling the rotational
levels are arranged, respectively, according toBJ(J11),
BN(N11), BNc(Nc11), andBJc(Jc11), whereB is the
rotational constant andJ, N, Nc , andJc are the total angula
momentum of the molecule~exclusive of nuclear spins!, the
total angular momentum without electron spin, the total
gular momentum of the cation without electron spin, and
total angular momentum of the cation including electr
spin. Case~c! behaves like case~a!, but, owing to strong
spin-orbit coupling, the spin quantum numberS is no longer
sharply defined.

In 1990 three papers appeared, which dealt with the
of electron spin and molecular rotation in the photoionizat
and Rydberg excitation of diatomic molecules. First, Xie a
Zare ~XZ! @2# presented a compilation of spin-electroni
rotational dipole selection rules connecting initial molecu
and final ion states of diatomic or linear molecules, where
these states were assumed to belong to any of Hund’s
pling cases~a!, ~b!, or ~c!. Almost simultaneously, Rasee
and Cherepkov@3# ~RC! gave a general expression for th
total and differential photoionization cross sections includ
molecular rotation and electron-spin polarization in m
ecules. Third, Lefebvre-Brion~LB! @4# gave a transformation
between Hund’s coupling cases~c! and ~e!, appropriate for
the description of Rydberg series converging toward a s
orbit-split ion ground state. More recently Nikitin and Za
@5# presented correlation diagrams connecting vari
Hund’s cases in the limit where the total angular moment
is much larger than the electronic orbital angular moment
and electron spin.
571050-2947/98/57~4!/2407~13!/$15.00
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Until about 1990, and with the exception of H2, rotational
resolution was only rarely attained in photoionization expe
ments. The recent dramatic increase in resolution brou
about by novel threshold ionization techniques@6,7# changes
this situation radically, and has spurred new interest in
subject. One aim of the present paper is to clarify the l
between the expressions for differential cross sections
cluding rotation and spin such as given by RC, and the v
ous angular coupling cases considered by Hund as they
customarily used in the spectroscopy of discrete states.
transformation between various coupling cases is a stan
practice in Rydberg spectroscopy. By contrast, in the the
of photoionization, the cross section is expressed in a c
pling scheme appropriate for the separated fragments~ion
plus electron! which corresponds to case~e!, while the rel-
evant transition amplitudes are built up inside or near the
core where Hund’s cases~a! or ~c! provide a better descrip
tion. The frame transformation between the various coupl
schemes is thus implicit in the cross-section expressions,
it has only rarely been spelled out in detail.

Another link between spectroscopy and scattering the
arises through the occurrence of discrete autoionizing st
which are embedded in the electronic continua, and auto
ize through discrete-continuum channel interactions. In
theory the discrete wave-function components correspon
closed-channel asymptotic boundary conditions. The
semble of asymptotic conditions for closed and open ch
nels ~continuum states! can be enforced simultaneous
through a method such as multichannel quantum de
theory ~MQDT! @8,9#, where the electron-core interaction
may includeNo open as well asNc closed channels. The
calculational procedure of MQDT involves the ‘‘elimina
tion’’ of the Nc closed channels, yielding a scattering mat
whose dimension corresponds to the correct numberNo of
open channels. Doing this yields resonant anomalies in
open channels at energies corresponding to the discrete
toionizing states. The open ionization channels are alw
2407 © 1998 The American Physical Society
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2408 57CH. JUNGEN AND G. RASEEV
best described in Hund’s case~e!. However, the closed chan
nels may often correspond to an intermediate coupling c
and the MQDT is ideally suited for handling such situation

In the present paper we derive the transformation betw
Hund’s coupling cases~a! and~e!. We show how the result
ing spin-electronic-rotational frame transformation relates
the general framework of spin-resolved molecular photoi
ization and of molecular multichannel quantum defe
~MQDT! and frame transformation theory. Unlike LB w
choose case~a! rather than case~c! as the starting point in the
molecule-fixed coordinate frame, because this case is usu
considered to be the basic coupling case for diatomic m
ecules@10#, and it appears to be the one which is best defin
with respect to the various phase conventions involved@11#.
Particular attention is given to parity~not explicitly taken
into account by LB! and to electric dipole transitions~not
considered by XZ and LB!. The resulting expressions ar
more compact than those of RC, and they contain the s
less transformations such as given by Chang and Fano@12#
as special cases. While several of the expressions and p
dures discussed in the present paper are basically known
can be found scattered throughout the literature, we d
them together here in an attempt to provide a unified view
scattering, spectroscopy, and photoionization of molecu
carrying an electron spin.

The paper is organized as follows: Section II reviews
connection between momentum eigenstates and uncou
and coupled angular momentum eigenstates in spin-reso
photoionization without specific reference to molecules. T
coupled angular momentum representation is then use
the rest of the paper. Section III gives the transformat
between Hund’s cases~e! and~a! for diatomic molecules. In
Sec. IV a relationship is established between scatte
theory in general and quantum defect theory in particu
and the frame transformation. Section V deals with elec
dipole transitions, while Sec. VI is the conclusion. The ma
expressions of this paper are the following.

~a! Equations~1!–~6! connect the standard scattering fo
mulation with the coupled angular momentum approach c
responding to Hund’s case~e!.

~b! Equation ~12! gives the transformation betwee
Hund’s cases~e! and ~a!.

~c! The dipole transition moment expressions, Eqs.~20!
and ~21b!, provide the amplitude to be introduced in cros
section expressions. The transition moments are relate
Eqs.~29a! and ~29b!, which explicitly contain the radial in-
tegrals to be evaluated numerically.

II. COUPLED AND UNCOUPLED ANGULAR MOMENTUM
REPRESENTATIONS IN THE LABORATORY FRAME

Several treatments of of photoionization have been p
sented, including those of RC@3#, Dill and Dehmer@13#, and
Starace@14#. Here we follow that of Fano and Rau@15#
~including much of their notation!, and thus consider a
‘‘complete’’ photoionization experiment in which a photo
electron with momentumk i emerging from a core in statei
is observed, and its spin state as well as the internal statei of
the core is determined. Thek-normalized wave function a
the particle analyzer corresponding to this situation is
e,
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Cki
~analyzer!5cJciMcipci

xmsi
~2p!23/2eiki r, ~1!

wherexmsi
represents the normalized spin state of the p

toelectron,Jci and Mci are the total angular momentum
quantum numbers of the core in statei , and (21)pci is the
core parity. The plane wave in Eq.~1! may be expanded into
spherical partial waves in the usual way as

Cki
~analyzer!5cJciMcipci

xmsi

3(
l i

(
mli 52 l i

1 l i

@ i l iYl imli
* ~uk ,fk!#

3Yl imli
~u,f!S 2

p D 1/2 1

2ik i r

3~ i !2 l i@eiki r2~21! l ie2 iki r #. ~2!

The asymptotic form of an energy normalized incomin
wave scattering wave function can be expressed in term
the scattering matrixS as

C
Ī

~2 !
~uncoupled!5(

Ī 8
cJci8Mci8pci8

xmsi8

3Yl i 8mli 8
~u,f!S 1

pki 8
D 1/2 1

2ir

3@eiki 8rd Ī 8 Ī 2e2 iki 8rS
Ī 8 Ī
* #, ~3!

where we assume the energy to be in Rydberg units, i.ee i

5ki
2, and the factor 1/r corresponds to normalization of th

radial function according to*f* f r 2dr. The channel indi-
ces indicated by capital letters,Ī 8 and Ī denote the core stat
as well as the partial wave, e.g.,$ Ī 8%5$ i 8,l i 8 ,mli 8%. The
bars on the indices denote the uncoupled representation
the added exponent~2! indicates the incoming wave nor
malization@14#,

Equations~2! and ~3! are connected by the requireme
that the coefficients of the outgoing-wave componentseiki r

must match. This is achieved by a superposition of the fu
tions C

Ī

(2)
(uncoupled) of Eq.~3!, corresponding to the

given i of Eq. ~1!:

(
l imli

Yl imli
* ~uk ,fk!C i ,l i ,mli

~2 ! ~uncoupled!. ~4!

Equation~4! corresponds to the inclusion of an extra fact
Aki /2, and results in energy-normalized forms of the pla
wave of Eqs.~1! and~2!, plus scattered incoming-wave com
ponents. The incoming-wave components formally repres
the state of the electron-ion system before the scatte
event~cf., e.g., the discussion given by Starace@14#!. In the
photoionization processes of interest here they replace,
were, the photon and the molecule in its initial state—t
required information concerning the latter is included in t
dipole transition amplitudes, as discussed in Sec. V.

An alternative way of constructing a wave functio
equivalent to Eq.~3! is to consider scattering states that ha
well-defined values of the total angular momentumJ and
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57 2409SPIN-ELECTRONIC-ROTATIONAL FRAME . . .
parity p. An incoming-wave energy-normalized scatteri
wave function of this type has the asymptotic form

C I
~2 !~coupled!5(

I 8
F I 8

~JMp!S 1

pki 8
D 1/2 1

2ir

3@eiki 8rd I 8I2e2 iki 8rSI 8I
~JMp!* #. ~5!

We refer to Eq.~5! as a ‘‘coupled’’ wave function becaus
the angularl i and spinsi parts of the photoelectron are no
coupled to the ionic core and included in the functio
F I 8

(JMp) which represent eigenstates of the total angular m
mentum of the core plus photoelectronJ5Jci81 j i 8 and of
the total angular momentum of the photoelectronj i 85 l i 8
1si 8 . The F I 8

(JMp) have definite total parity (21)p. The ra-
dial part of the wave function of the continuum electron
separated and written explicitly in Eq.~5!. M is the projec-
tion of the total molecularJ in the laboratory frame.
S(JMp)(E) is thus the scattering matrix defined for a giv
JMp. The channel indices indicated by capital letters,I 8 and
I , now denote the partial wave and spin of the photoelect
as well as the core state, e.g.,$I %5$ i ,l i , j i%.

Equations~2! and~5! are again connected by the requir
ment that the coefficients of the outgoing-wave compone
eiki r must match. The appropriate superposition analogou
Eq. ~4! of the functionsC I

(2)(coupled) of Eq.~5! corre-
sponding to the giveni of Eq. ~1! is

(
l imli j imji JM

Yl imli
* ~uk ,fk!~2 j i11!1/2~2J11!1/2

3~21!2~1/2!1 l i2mji 2 j i1Jci2MS 1/2 l i j i

msi mli 2mji
D

3S j i

mji

Jci

Mci

J
2M DC i ,l i , j i

~2 ! ~coupled!. ~6!

The superposition Eq.~6! of the wave functions Eq.~5! again
yields the energy-normalized form of the plane wave of E
~1! plus scattered incoming-wave components.

The uncoupled and coupled forms of the scattering ma
S and S(JMp), are linked through the alternative expansio
of Eqs.~4! and~6!, while the latter is linked to the reactanc
matrix K of MQDT, as we see in Sec. IV below. In th
specific case of molecular photoionization the wave funct
C I

(2)(coupled) of Eq.~5! corresponds to Hund’s case~e!
coupling. In Sec. III we consider the transformation
Hund’s case~a!, which provides a more appropriate descr
tion of the short-range electron-ion collision process.

III. TRANSFORMATION BETWEEN HUND’S CASES „a…

AND „e…

Usually when one refers to Hund’s coupling case~a!, it is
implied @10# that the following quantum numbers are go
ones: the total angular momentumJ of the molecule and its
componentsM and V with respect to the laboratory an
molecular axes, respectively. Further, the electronic orb
angular momentum componentL on the molecular axis and
the total electron spinS as well as its molecular compone
-

n,

ts
to

.

ix
s

n

-

al

S5V2L are good quantum numbers. Taking account
the inversion symmetry we must add the total parity indexp
~cf. Sec. II!. We must also take account of the electron
symmetryq of the molecule~reflection at a plane containin
the nuclei, defined whenL50!; we shall see below that it is
sufficient to introduce an electronic parity index for the is
lated coreqc ~calleds1 by XZ and defined below!. Thus so
far we have to consider seven independent spin-rotatio
electronic quantum numbers describing a case~a! state.
Nuclear spins are disregarded here, and symmetric molec
are not treated separately since they differ only in a triv
way.

Considering molecular Rydberg states, we may assu
that the electronic orbital momentum componentL is actu-
ally the sum of two contributions, one from the molecul
ion coreLc , and one from the Rydberg electronl, so that
we haveL5Lc1l. Similarly the total spinS arises from
the coupling of the core spinSc and the Rydberg electron
spin s. Finally, in a channel formulation the Rydberg ele
tronic wave function is conveniently expanded in spheri
partial wavesl , even though the Rydberg orbital angul
momentum quantum numberl may not be well defined in
any actually observable state. In all, then, we have 11 qu
tum numbers characterizing a case~a! coupled Rydberg or
ionization channel corresponding to the excitation of a sin
electron outside a molecular core.

Mulliken @1# was apparently the first to make reference
Hund’s case~e! ~which Hund himself had not considered!.
For Rydberg states this coupling case is characterized by
fact the Rydberg electron including its spin is decoup
from the molecular ion core. Thusl ands couple to yield a
resultant j , whereas the core rotates independently and
characterized by rotational quantum numbersJc andVc , as
well as by the electronic quantum numbersLc , qc , andSc .
By contrast the molecule-fixed componentsV andL involv-
ing the outer electron are no longer defined, nor is the to
spin S. In all we again have 11 quantum numbers to co
sider, with the difference thatL, S, andV must be replaced
by Vc , Jc and j . This state of affairs is summarized in Tab
I where minimal sets of Rydberg quantum numbers
Hund’s coupling cases~a! and~e! are collected and classifie
according to their ‘‘goodness.’’ In addition, ‘‘redundant
quantum numbers are also indicated, namely, those w
can be expressed in terms of the minimal sets for cases~a!
and ~e!, respectively. We see in particular that out of the
quantum numbers forming each minimal set, eight are co
mon to both coupling cases, while only three are differe
Therefore the transformation between the two coupling ca
is conveniently denoted by

UVcJcj ,SLV
~JMp,LcScqc ,ls!

[^VcJcj uSLV&~JMp,LcScqc ,ls!. ~7!

In a well-specified context it will often be possible to om
some or all of the eight superscripts of the transformat
elements of Eq.~7!.

In view of the foregoing remarks we can now spec
symmetrized case~e! and case~a! Rydberg wave functions
as follows. Omitting the core indexi occurring in Eqs.~1!–
~6!, for case~e! we write a vector-coupled product of elec
tron statesu jm& and symmetrized core statesuJcVcMc&,



el

rs

2410 57CH. JUNGEN AND G. RASEEV
TABLE I. Quantum numbers in Hund’s cases~a! and ~e!.

Case~a! Case~e! Remark

J,M ,p,s J,M ,p,s ‘‘strictly’’ good quantum numbers in field-
free space.s5

1
2 for the electron; sets50

if spins are disregarded.
Lc ,Sc ,qc ,l Lc ,Sc ,qc ,l electronic channel quantum numbers.

‘‘Badness’’ is accounted for by electronic chann
interactions.

S,L,V Vc ,Jc , j spin-roronic basis channel quantum numbe
defining short-range~a! and asymptotic~e! channels.
‘‘Badness’’ is tantamount to
a departure toward the opposite limit.

‘‘redundant’’ quantum numbers:
l5L2Lc Sc5Vc2Lc

S5V2L

e
fJ if p2JS 1

1

2D Heven
odd

total parity quantum number; include
term (1 1

2 ) whenJ is a half-integer.

ec

fc
J if p1 l 2JcS 1

1

2D Heven
odd

core parity quantum number; include
term (1 1

2 ) whenJc is a half-integer.

S12D
c

if p1 l[pcHeven
odd

core parity quantum number.
r-

or
on

-
n

io

ed
-

or

lar

as
ket
or
r-
r

uVcJcj &~JMp,LcScqc ,ls!

5 (
m,Mc

~2J11!1/2~21!2 j 1Jc2MS j
m

Jc

Mc

J
2M D u jm&

3
1

&

1

~11D1!1/2 @ uLc&uScSc&uJcVcMc&

1~21!p2qc2Sc1Jc1 l u2Lc&uSc2Sc&uJc2VcMc&],

~8a!

with

D1~Lc ,Vc!5dLc0dVc0 . ~8b!

In Eq. ~8! the quantum numbers of the outer electron arel , s
and j , andu jm&, quantized in the laboratory frame, is unde
stood to be formed by vector addition ofl ands as in Eq.~6!.
The ketsuLc&, uScSc&, uJcVcMc& andu jm& are, respectively,
the electronic, spin, and rotational functions of the ionic c
and the angular part of the function of the outer electr
where Sc5Vc2Lc . The electronic core parity indexqc
equals 1, when the core is in aS2 state and it is zero other
wise @2,16#. The ket Eq.~8! corresponds to the functio
F I

(JMp) @Eq. ~5!# for a diatomic molecule where the indexI
was defined in Sec. II as$I %5$ i ,l i , j i%, and the radial part of
the wave function of the electron is not included. Equat
~8! refers to a given electronic core statei , and the core
index i is replaced by the core quantum numbersVc , Jc ,
Mc , Sc , andqc characterizing this state. The molecule-fix
projectionsLc , Sc , andVc and the core electronic symme
try index qc which appear here are unspecified in the m
general Eq.~5!. We shall also see below~Table I! that the
exponent of (21) in the core part of Eq.~8! is defined such
e
,

n

e

that the core has parity (21)p1 l[(21)pc, as assumed in
Eq. ~1!. Note that apart from the symmetrization the angu
momentum coupling in Eq.~8! is the inverse to that given in
Eq. ~6!. For case~a! we write

uSLV&~JMp,LcScqc ,ls!

5
1

&

1

~11D2!1/2

1

~11D3!1/2 $@ uLc&u ll&uSS&uJVM &

1~21!p2qc2S1Ju2Lc&u l 2l&uS2S&uJ2VM &]

1D3~21!p2q2S1J@ uLc&u ll&uS2S&uJ2VM &

1~21!p2qc2S1Ju2Lc&u l 2l&uSS&uJVM &] %, ~9a!

where

D2~Lc ,L,V!5dLc0dL0dV0 ~9b!

and

D3~Lc ,L,V!5~12dLc0!dL0~12dV0! ~9c!

equals 1 whenLcÞ0, L50, and VÞ0, and 0 otherwise.
Note thatD2D3 is always zero. In Eq.~9! q50 must be
taken forS.0 andq51 for S,0. The angular part of the
function of the outer electron,u ll& ~with l5L2Lc!, is now
quantized in the molecular frame. The spin functionuSS&
~also quantized in the molecular frame withS5V2Lc2l!
is understood to be the result of the vector addition ofSc and
s. uJVM & describes the rotational motion of the molecule
a whole. Note that the third and fourth terms in the brac
$• • •% of Eq. ~9! ~as well as the corresponding third fact
preceding it!, which yield the somewhat complicated appea
ance of Eq.~9!, are actually present only in the particula
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case whereL50, LcÞ0, andVÞ0. They ensure that fo
L50 the electronic orbital wave function always has a de
nite symmetryS1 or S2. This, and the significance of th
electronic symmetry indexq, is explained in Appendix A.

It appears worthwhile to specify which values can
taken by the various angular momentum components app
ing in Eqs.~8! and~9! and in the frame transformation of Eq
~12! below. Since the basis functions in Eqs.~8! and~9! are
symmetrized with respect to the molecule-fixed angular m
mentum components, we must ensure that a given comb
tion is obtained only once. To this end we restrict one of
components to bepositive or zero. We thus defineLc>0.
For Lc different from zero,l then takes all values1 l ,...,
2 l , which means thatL takes all valuesLc1 l ,...,Lc2 l .
Note that forl>Lc this prescription yields positive as we
as negative values ofL which correspond todifferent
electronic states. Similarly, S5V2L takes all
values 1S,...,2S, and Sc5Vc2Lc takes all values
1Sc ,...,2Sc ~with the additional convention thatq50 for
spin projectionsS.0 and q51 for S,0, cf. Appen-
dix A!. The maximum number of states thus obtained
23(2s11)(2Sc11)(2l 11). When, on the other handLc
is zero,L in case~a! and Vc in case~e! are restricted to
positive or zero values, and in general only half as ma
states are obtained. Finally, ifLc5L50 in case~a!, V is
also restricted to be positive or zero.

Using the known effects@10,16# of the space-fixed inver
sion operatorE! on the various factors of the basis function
namely,
-

ar-

-
a-
e

s

y

,

E!uJVM &5~21!J2VuJ2VM &, ~10a!

E!u ll&5~21!2lu l 2l&, ~10b!

E!uSS&5~21!S2SuS2S&, ~10c!

E!uLc&5~21!qc2Lcu2Lc& ~10d!

@where, in Eq.~10d! qc50 except forSc
2 cores for which

qc51#, and taking note of Appendix A, we establish eas
that

E!uVcJcj &~JMp,LcScqc ,ls!5~21!puVcJcj &~JMp,LcScqc ,ls!,
~11a!

E!uSLV&~JMp,LcScqc ,ls!5~21!puSLV&~JMp,LcScqc ,ls!.
~11b!

This result confirms thatp5even or odd relates directly to
the total parity,1 or 2, respectively, and thus the fram
transformation of Eq.~12! below is diagonal inp. From Eqs.
~11! it is straightforward to obtain the relationship betweenp
and thee/ f total parity quantum numbers on the one han
and theec / f c core parity quantum numbers on the oth
hand, as given in Table I. Remember that in case~e! the
parity is that of the core times (21)l .

Standard angular momentum coupling techniques y
the frame transformation, i.e., the projection of case~e! onto
case~a! states. We obtain
^VcJcj uSLV&~JMp,LcScqc ,ls!5F ~2S11!~2 j 11!~2Jc11!

~11D1!~11D2!~11D3! G
1/2

~21!Sc2Vc1 l 1L1J1V

3F S s Sc S

V2L1Lc2Vc Vc2Lc 2V1L
D S l s j

L2Lc V2L1Lc2Vc 2V1Vc
D S Jc j J

Vc V2Vc 2V
D

1dLc0~21!p2qc2Sc2Jc1 l

3S s Sc S

V2L1Lc1Vc 2Vc2Lc 2V1L
D S l s j

L2Lc V2L1Lc1Vc 2V2Vc
D S Jc j J

2Vc V1Vc 2V
D

1D3~21!p2q2S2J

3S s Sc S

2V2L1Lc2Vc Vc2Lc V1L
D S l s j

L2Lc 2V2L1Lc2Vc V1Vc
D S Jc j J

Vc 2V2Vc V
D G , ~12!
s
re-

Eq.

-
the
with the additional convention thatq50 for S5V2L.0
andq51 for S5V2L,0 ~cf. Appendix A!. From Eqs.~8!
and ~9!, we see that forLc50 we have the following addi-
tional requirements:

Lc5Vc50→p2qc2Sc1Jc1 l 5even, ~13a!

Lc5L5V50→p2qc2S1J5even ~13b!
which ensure that only the1 combination occurs for state
with zero angular momentum components. Both these
quirements have been taken into account in deriving
~12!, and when not satisfied Eq.~12! gives a transformation
element of zero. Thus, in practice, for given values ofqc ,
Sc , Jc , and l ~or qc , S, and J!, these conditions tell us
which value of the parity indexp yields a nonzero transfor
mation element. Note that the second and third terms in
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bracket @• • •# containing 3j symbols in Eq.~12! take ac-
count of the special cases whereLc50 or L50, and one of
them at most is nonzero in any given situation~cf. Appendix
A!. Note also that the second and third triple products ofj
symbols are obtained from the first by the simple substitut
Vc→2Vc and V→2V, respectively. Recall, finally, tha
the quantum number components in Eq.~12! take the values
and signs specified in the paragraph preceding Eq.~10!, thus
determining the dimension of the matrix formed by the e
ments of Eq.~12!. The frame transformation matrix is un
tary, and it is diagonal in the electronic core statei .

The frame transformation for a spinless molecule is
tained by settings5S5Sc50 in Eq. ~12!. The resulting ex-
pressions for Hund’s case~d! are given in Appendix B,
where the special caseLc50 ~ 1S1 or 1S2 core! is also
considered.

IV. USE OF THE FRAME TRANSFORMATION IN
SCATTERING AND QUANTUM DEFECT CALCULATIONS

In this section we present an outline of how the sp
electronic-rotational frame transformation derived in Sec.
may be used in the framework of scattering and quan
defect theories, and how it enters the calculation of photo
citation and photoionization cross sections. The reader is
ferred to Refs.@8# and@9# for a detailed discussion of quan
tum defect theory in atoms and molecules, and to Ref.@14#
for a review of the application of scattering theory to pho
ionization processes.

A. Structure of reactance matrices in MQDT

In the following we discuss the structure o
C I

(2)~coupled! of Eq. ~5!, and relate it to the frame transfo
mation derived in the Sec. IV. In the framework of MQD
the electron-core interactions are embodied in a real symm
ric nondiagonal reactance matrixK (JMp), which consists of
open (Koo), closed (K cc), and interaction (K co5Koc), sub-
matrices. The QDT calculational procedures involve
elimination of theNc closed channels, yielding the physic
reactance matrixK (E)(JMp) whose dimension is restricted t
the numberNo of open channels, i.e., to the degree of deg
eracy of the continuum, and which is connected to the s
tering matrix appearing in Eq.~5! by the well-known relation
K (E)52 i @S(E)21#@S(E)11#21. K (E) andK distinguish
the No3No and N3N reactance matrices.K (E) has poles
near the energiesE corresponding to bound states associa
with closed channels, whereas the fullN3N reactance ma-
trix K (N5Nc1No) will generally be a smoother function o
energy. Frame transformation theory uses the fact that
scattered electron experiences two different coupling si
tions depending on whether it is far from the ion core, clo
to it or inside it. These correspond, respectively, to
asymptotic or to the eigenchannel coupling scheme, wher
the electron is appropriately described in the laboratory o
the molecular coordinate frame. The actual scattering off
core takes place while the electron is coupled into the m
lecular or body frame. The reactance matrix can therefore
written in the form
n
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KII 85 (
b,b851

N

UIbKbb8~U tr!b8I 8 . ~14!

Here UIb are the frame transformation matrix elements
Eq. ~12!, Kbb85tanpmbb8 are short-range or body-frame re
actance matrix elements,m are quantum defects, andpm are
related phase shifts. The channelsb correspond to Hund’s
case~a! coupling as specified by Eq.~9!. As in Eq. ~5! the
channel indices$I %5$ i ,l i , j i% stand for the core state wherei
reflects the electronic core state as well as the associated
quantum numbers specified in the case~e! function of Eq.
~8!. The indicesl i and j i are the electron partial-wave expa
sion index and spin. The same is true for the Greek indiceb
in Eq. ~14!, which represent the partial-wave indexl i and the
core statei with associated core quantum numbers comm
to cases~e! and~a! @upper indices in Eq.~7!#, as well as the
case~a! quantum numbersS, L, andV. The greek indices
here and later refer to the body-frame character of th
quantities—we avoid the usual eigenchannel notationa here
sinceKbb8 in Eq. ~14! is only block diagonal for each cor
statei , but may have nonzero elements connecting chan
differing in i or l i . We thus distinguish the channelsb from
the ‘‘true’’ eigenchannelsa which correspond to full diago-
nalization of K . This type of ‘‘partial’’ eigenchannel was
employed previously by Ross and Jungen@17#.

Equation~14! reduces the problem of constructing a sp
electronic-rotational reactance matrixKII 8 to that of evaluat-
ing a matrixKbb8 in the molecular frame, which is the fram
customarily used inab initio calculations. The laboratory
frame channels satisfy case~e! coupling as specified by Eq
~8! @case~d! in the absence or neglect of spins#. Channel-
coupling matrix elements between channelsI and I 8 can
arise in two ways: from the nondiagonality of either (tanpm)
or of the frame transformation matrixU. The basic assump
tion here is that the case~a! quantum numbersS, L, andV
are preserved during the electron-ion-scattering process,
consequently the matrix has only elements tanpmbb8 diago-
nal in these quantum numbers.@If the spin-orbit coupling is
very strong,S and L may lose their meanings, such th
ultimately onlyV is conserved in the body-frame represe
tation. This situation corresponds to Hund’s case~c!, which
we do not consider in detail here.# By contrast, tanpmbb8
may have elements that are nondiagonal inl , Lc , or Sc . The
couplings between different channelsb may have different
physical origins of the type discussed by Lefebvre-Brion a
Field @18# in their book on spectral perturbations in diatom
molecules.

We illustrate this with a few examples of nondiagon
body-frame reactance matrices. First of all, coupling betw
channels differing inl only occurs because of the nonsphe
cal nature of the molecular electronic Hamiltonian at sh
range. A well-known example is the NO molecule where t
observed nominal ‘ ‘s’ ’ s and ‘‘d’ ’ s Rydberg series assoc
ated with the NO1X1S1 core have strongly mixedl charac-
ter @19#. In this example we haveS5 1

2 , L50, V5 1
2 ,

b5~X1S1!ss, i.e., Lc50, Sc50, qc50, l 50,

and
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b5~X1S1!ds, i.e., Lc50, Sc50, qc50, l 52,

where (X1S1) represents the electronic wave function of t
core, andll represents the outer electron. Second, chan
differing in the electronic core stateLc are coupled as a
consequence of electron correlation effects which simu
neously change either thel and/or thel value of the Rydberg
electron. A well-known example is afforded by the Hopfie
series of N2 @20#. Here one hasS5L5V50 ~ 1Su

1 symme-
try!,

b5~B2Su
1!ssg , i.e., Lc50, Sc5 1

2 , qc50, l 50,

and

b5~B2Su
1!dsg , i.e., Lc50, Sc5 1

2 , qc50, l 52.

The Rydberg series corresponding to these channels are
ionized by the additional open channels

b5~A2Pu!dpg , i.e., Lc51, Sc5 1
2 , qc50, l 52

and

b5~X2Sg
1!psu , i.e., Lc50, Sc5 1

2 , qc50, l 51.

Electron correlation can also lead to strong channel inte
tions between channels that correspond to different mu
plicity of the core~different Sc!. An example of this type
involving channels of3S2 overall symmetry is known for
O2 ~S51, L50, V50, 61! @21#. Here the Rydberg serie
corresponding to

b5~B2Sg
2!psu , i.e., Lc50, Sc5 1

2 , qc51, l 51

is preionized by the open channel

b5~b4Sg
2!psu , i.e., Lc50, Sc5 3

2 , qc51, l 51,

where the Rydbergpsu electrons are different, since they a
associated with different core states; in other words, the
teracting channels differ in two spin orbitals as in the p
ceding example.

We now turn to the discussion of channel interactio
which are taken into account through the frame transform
tion matricesU in Eq. ~14!. We first consider the situation
when the core obeys pure case~a! coupling @case~b! in the
absence or neglect of electron spin#. Interactions between
channels differing inVc , Jc , and j arise through the frame
transformation. When the energy is very low such that
Rydberg electron is confined to the zone near the core, th
interactions lead to a transition toward case~a!. Conversely,
to the extent that the low-energy Rydberg electron has s
amplitude outside the inner region, states characterized
different values ofS, L, andV become coupled.

In addition to the rotational-electronic channel intera
tions ~l uncoupling! the so-called spin-orbit autoionizatio
belongs to this class of channel couplings. Several pa
appeared recently dealing with the photoionization of
halogen halides HCl, HBr, and HI. The cations of all the
molecules have strong spin-orbit coupling and large ro
tional constants. Omitting the rotational quantum numb
we can characterize the Rydberg series as:
ls
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I 5~X2P1/2! j , i.e., Vc5 1
2 , Lc51, Sc5 1

2 ,

qc50, l , s5 1
2 .

They are preionized by the open channels

I 5~X2P3/2! j , i.e., Vc5 3
2 , Lc51, Sc5 1

2 ,

qc50, l , s5 1
2 .

The coupling arises through the fact that the case~e! to case
~a! transformation is nondiagonal, and the singlet and trip
body-frame quantum defects are not equal. Spin-orbit au
ionization and was initially discussed in Ref.@22#. More re-
cently, several MQDT studies have been made of the ph
ionization from the ground state of neutral HI, or of doubl
resonance ionization via theD1P state in HCl/DCl or via the
F1D state in HBr@23–26#. The main purpose of these stud
ies was the analysis of the evolution of the angular mom
tum coupling from Hund’s case~a! toward case~e! as the
principal quantum numbern increases.

A further potential source of channel interaction would
the presence of nonadiabatic coupling within the core.
instance, in the O2 example mentioned above,2S and 4S
follow case~b! rather than case~a! due to the uncoupling of
the spinSc from the core, and similarly in the N2 example
there is a transition from case~a! toward case~b! with in-
creasingJc in the N2

1 A2P core state. In such a case ea
core state no longer corresponds to a single ketuJcVcMc& as
indicated in Eq.~8!, but rather is a superposition of sever
such functions with differentVc . The frame transformation
matrix UIb to be used in Eq.~14! is therefore the matrix
product

UIb5( UI ,caUca,b , ~15!

where the matrix with elementsUI ,ca gives the decomposi
tion of the spin-rotational core levelsi of the core into pure
case~a! core states@but case~e! for the electron plus core
system# as assumed in Eq.~8!, andUca,b corresponds to the
case~e!→case~a! transformation of Eq.~12!. An analogous
situation is encountered in the rotational frame transform
tion for asymmetric top molecules where the case~d! to case
~b! transformation connects pure symmetric top functio
but each core level is represented by a superposition of
eral symmetric top functions@27#.

B. Resonant behavior of the scattering matrix

The preceding discussion focussed on the structure of
full N3N MQDT reactance matrices disregarding whethe
given channel was open or closed. In the following we co
nect these to the asymptotic behavior of the wave functi
and in particular to the scattering matrices of Sec. II.

In the eigenchannel approach the matrixS(E)(JMp) of Eq.
~5! is expressed in terms of its eigenvectorsTIr and the ei-
genvalues 2ptr of the open-channel interaction as

SI 8I
~JMp!* 5e2 ih I 8F (

r51

No

TI 8re22iptr~Ttr!rI Ge2 ih I, ~16!
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whereh I andh I 8 are the phase shifts due to the asympto
Coulomb field in channelsI and I 8. The indicesr thus de-
note the eigenstates of the interaction between the open~con-
tinuum! channels for givenJMp, andNo is the number of
open channels at the given energy as in the preceding
tion. The multichannel wave functionCr corresponding to
eigenstatesr of the open-channel interaction is an expans
over closed as well as open channels,

Cr5(
I 51

N H (
I 851

N

F I 8
~JMp!

@ f I 8~r !CI 8I2gI 8~r !SI 8I #J BIr ,

~17!

wheref I 8(r ) andgI 8(r ) are regular and irregular radial Cou
lomb functions, andK5SC21 is theN3N reactance matrix
of Eq. ~14! ~here the sine-type matrixS is not to be confused
with the scattering matrix!. The channel amplitudesBIr are
determined in a diagonalization procedure in which
closed channel components ofCr are forced to vanish a
large r , and the open-channel components all assume
same phase shiftptr due to the non-Coulombic~i.e., short
range! forces. That is we requireCr to take the asymptotic
form

Cr→(
I 851

No

F I 8
~JMp!TI 8rS 1

pki 8
D 1/2

sin~ki 8r 1h I 81ptr!.

~18!

The resultingN channel amplitudesBIr vary rapidly with
energy in the vicinity of a bound state associated with
closed channelNc . The superposition of eigenchannel fun
tions Cr ,

C I
~2 !~coupled!5 (

r51

No

@Cre2 iptr~Ttr!rI #e
2 ih I, ~19!

then yields asymptotically the incoming-wave normaliz
scattering wave function of Eq.~5! with S(JMp)* as given by
Eq. ~16!. Equation~19! links the eigenchannel form of Eqs
~17! and ~14! to the asymptotic scattering expression of E
~5!, and the influence of the closed channels is now imp
itly included within theCr of Eq. ~17!.

V. DIPOLE TRANSITION AMPLITUDES

A. General framework

In the present section we turn to the discussion of dip
transition amplitudes involved in the photoionization pr
cess. The physical picture of a photoionization process i
follows. The optical transition occurs preferentially while th
electron is in the inner zone, where its kinetic and poten
energies are comparable to the photon energy~cf. Fano@28#!.
This means that the absorption process itself is adequa

described by a dipole transition momentDb9
b8 ~b8 andb9 are

the upper and lower states, respectively! in the case~a! for-
mulation appropriate at short range. Once excited, the e
tron may roam to larger distances from the core, wher
undergoes a transformation to the laboratory frame@Eq. ~5!#
before actually departing toward the apparatus which is se
detect a specific asymptotic channeli ~see Sec. II!.
c

c-

n

e

he

a

.
-

e

as

l

ly

c-
it

to

In Sec. II and IV we discussed several alternative for
of the wave function representing a highly excited molec
fragmenting into a single electron and a molecular co
These are

Cki
~analyzer! @Eq. ~2!, complex#,

C
Ī

~2 !
~uncoupled! @Eq. ~3!, complex#,

C I
~2 !~coupled! @Eq. ~5!, complex#,

Cr @Eq. ~17!, real#.

To each form of the wave function there corresponds a tr
sition dipole amplitude, e.g.,

Db9
I ~2 !

~coupled! @Eq. ~20! below, corresponding

to C I
~2 !~coupled!#,

Db9
r

@Eq. ~21! below, corresponding toCr#,

where, for example,Db9
r

5^rur ub9&, and b9 represents the
initial ~lower! state of the transition which for simplicity we
assume to follow case~a! coupling~as indicated by the gree
index!. The generalization of the present formulation to si
ations where both the upper and lower states are represe
by a multichannel wave function is straightforward, and w
not be presented here. In the following we will relate t
transition amplitudes to the real quantities

Db9
r8 @Eqs. ~21b! and ~23! below#,

which are expressed entirely in the molecular frame and
analogous to the dipole transition moments obtained
quantum-chemical calculations.

Recalling Sec. IV B, it is an easy matter to establish
amplitude for a dipole transition from an initial lower sta
b9 to a final stateC I

(2)~coupled!. Based on Eq.~19!, we
write

Db9
I ~2 !

~coupled!5 (
r51

No

@Db9
r e2 iptr~Ttr!rI #e

2 ih I, ~20!

where, from Eq.~17!,

Db9
r

5(
I 51

N

Db9
I BIr . ~21a!

The real dipole amplitudesDb9
I correspond to the transition

from b9 to the function inside the bracket$• • •% in Eq. ~17!,
and are not to be confused with the complex quantit
Db9

I (2)(coupled) of Eq.~20!. Superposing the dipole ampli
tudes of Eq.~20! in the same way as theC I

(2)(coupled)
functions are superposed in Eq.~6! yields the amplitude in
the directionk corresponding to Eq.~1! with added incoming
components.Db9

r in Eq. ~20! replaces, as it were, half of th
scattering process described by the scattering matrix
~16!, namely, the producte2 ih I 8TI 8re2 iptr describing the in-
coming wave components. The effective amplitudeDb9

r is a
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coherent sum over allN channels,No open andNc closed,
with the channel-mixing amplitudesBIr and theDb9

I .
The dipole amplitudesDb9

I in turn can be resolved into
products of frame transformation matrix elementsUIb and

the real short-range dipole amplitudesDb9
b8 as follows: We

replace the channel amplitudesBIr by an alternative frame
transformed setAb8r according to

BIr5 (
b851

N

UIb8Ab8r . ~22!

We further use the well-known fact~see, e.g., Ref.@8#! that
the energy dependence of the Coulomb functions relate
the fine-structure quantum numbers~here Vc , Jc , and j !
becomes negligible in the region near the core such tha
can replacef I 8(r ) by f i 8 l 8(r ) and gI 8(r ) by gi 8 l 8(r ). Thus
using the fact thatU is diagonal ini 8 andl 8, we obtain forr
values not too far from the core,

Cr'(
b8

H(b S (
I 8

F I 8
~JMp!UI 8bD

3@ f i l ~r !Cbb82gil ~r !Sbb8#J Ab8r

[(
b8

H(
b

Xb
~JMp!@ f i l ~r !Cbb82gil ~r !Sbb8#J Ab8r ,

~23!

where the functionsXb
(JMp) , obtained from theF I 8

(JMp) by
transforming to the molecular frame, are equivalent to
case~a! functions of Eq.~9!. Similarly, the cosine- and sine
type matrix elementsC andS of Eq. ~23! yield themolecule-
fixedreactance matrix according toK5SC21 @with elements
Kbb8 ; cf. Eq. ~14!#. The reader is reminded that the matric
with elementsCbb8 andSbb8 are assumed to be diagonal
the case~a! quantum numbersS, L, andV. We thus obtain
the alternative form of Eq.~21a!,

Db9
r

5 (
b851

N

Db9
b8Ab8r , ~21b!

whereDb9
b8 corresponds to the dipole amplitude for the tra

sition from the lower stateb9 to the function inside the
bracket$• • •% in Eq. ~23!, and represents the desired case~a!
to case~a! dipole amplitude. Further,

Db9
I

5 (
b851

N

UIb8Db9
b8 . ~24!

We now briefly consider the particular case where re
nance phenomena are absent or may be neglected; that
the channels are open, or the closed channels are physi
irrelevant. This is the situation usually considered in scat
ing theory. In this caseNo equalsN, and the eigenstatesr of
the scattering matrix coincide with the eigenchannelsb8
~see, e.g., Ref.@29#!. These quantities then take the simp
forms
to

e

e

-

-
, all
lly

r-

TIr5UIb8 , ~25a!

tr5mb8 , ~25b!

BIb85UIb8 . ~25c!

The photoionization amplitude@Eq. ~20!# for forming the
system in the final channelI reduces to the simple expressio

Db9
I ~2 !

~coupled!5 (
b851

N

@Db9
b8e2 ipmb8~U tr!b8I #e

2 ih I,

~26!

which describes the so-called ‘‘direct’’ photoionization pr
cess as a sequence of four successive stages:~i! photoabsorp-
tion at short range,b9→b8; ~ii ! half-scattering off the core
with phase shift,pmb8 ; ~iii ! recouplingb8→I at larger dis-
tance; and~iv! half-scattering in the asymptotic Coulom
field with phase shifth I and, finally, transformation to the
uncoupled particle representation of Eq.~1! by means of Eq.
~6!.

The above type of expression is well known. We recal
here since it permits us to relate our expressions to thos
other authors. For instance, the quantity^JcVc ,l j uT(J)uV9&
in Eq. ~10b! of RC @to be entered into their Eq.~19! for the
angular distribution of photoelectrons with defined spin p
larization#, corresponds to the amplitudeDb9

I (2) of Eq. ~20!,
while their Eq.~6! corresponds to the present coupled sup

position Eq. ~6!. The productDb9
b8e2 ipmb8 represents the

incoming-wave normalized molecule-fixed partial-wave
pole amplitude. The quantitiesI k,n

L and I k,n
V @Eqs. ~4.1! and

~4.2! of Ref. @30#, or Eqs.~37! and~38! of Ref. @31## derived
by McKoy and co-workers correspond to expressions~20!
and ~26! of the present paper, with two differences. Fir
these authors used a uncoupled representation, and, se
these authors do not give the details of the expansion of
vectork. However, the relation to the present Eqs.~20! and
~26! is obvious.

Finally, Db9
b8 is the standing-wave-normalized molecul

fixed partial-wave dipole amplitude which is used frequen
in applications of molecular quantum defect theory. Here

limit ourselves to spelling outDb9
b8 for transitions in diatomic

molecules. Equations~20! and~21b!, or Eq.~26!, can then be
used together with the frame transformation Eq.~12! to con-
struct the desired full dipole amplitude. Here we do not g
the formulas for the photoionization cross section in terms
dipole amplitudes. The corresponding expressions are kn
@e.g., Eqs.~7.69! and~2.9! of Ref. @15#, or Eqs.~17!–~20! of
RC#.

B. Hund’s case„a… dipole transition amplitudes

In the present context of spin-electronic-rotational cha
nel interactions, the asymptotic channelsI are the case~e!
states of Eq.~8!, while the short-range eigenchannelsb are

the case~a! states of Eq.~9!. The dipole amplitudeDb9
b8 of

Eq. ~21b! corresponds to this situation. Here we conside
photoexcitation process from the ground state or a transi
between Rydberg states. For simplicity, we again assu
that the lower state follows Hund’s case~a! strictly, and
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moreover that electronic channel interactions andl mixing
occur only in the upper state. In practice, if the lower state
itself a Rydberg state, one will have to sum over the relev
lower state channel indices exactly as outlined here for
upper-state channels@Eqs.~20! and~21! above, and Eq.~28!
below#. If, on the other hand, the lower state is a no
Rydberg state the labelsi 9Lc9qc9l 9 have no strict meaning
s
nt
e

-

and should be suppressed, and the explicit lower state ra
function in Eq.~29! must be replaced accordingly. The ele
tric dipole transition leaves the spin quantum numbersSc and
S ~and of courses! unchanged. The labelsSc and s are
therefore omitted from the following expressions. T

molecule-fixed standing-wave dipole amplitudeDb9
b8 of Eq.

~21b! takes the form
odd
factor

e

n
le

d for the
el
D
S9L9V9,J9M9p9,i 9L

c9q
c9 l 9

S8L8V8,J8M8p8,i 8Lc8qc8 l 8
~mg!5@~2J811!~2J911!#1/2F11~21!p81p911

2
G F ~21!M91mgS J8

M 8
1

2mg

J9
2M 9 D G

3~21!2V9 (
n521

11 H S J8
V8

1
n

J9
2V9 Dg

S9L9V9,i 9L
c9q

c9 l 9

S8L8V8,i 8Lc8qc8 l 8
~n!

1~21!p82S81J81qc8S J8
2V8

1
n

J9
2V9 Dg

S9L9V9,i 9L
c9q

c9 l 9

S82L82V8,i 82Lc8qc8 l 8
~n!J , ~27!

where the quantitiesg are symmetrized electronic dipole transition moments:

g
S9L9V9,i 9L

c9q
c9 l 9

S8L8V8,i 8Lc8qc8 l 8
~n!5 (

i ~Lc ,qc!,l
H F 1

~11D2!~11D29!G
1/2F11D3D39~21!q1q9

A11D3A11D39
Gd

L9,i 9L
c9q

c9 l 9

L8,iLcqcl ;L8,i 8Lc8qc8 l 8
~n!

1~21!qc1qF 1

~11D2!~11D29!G
1/2FD31D39~21!q1q9

A11D3A11D39
Gd

L9,i 9L
c9q

c9 l 9

2L8,i 2Lcqcl 8;L8,i 8Lc8qc8 l 8
~n!J . ~28!

These are in turn expressed in terms of unsymmetrized dipole transition amplitudesd specified in Eqs.~29! below. In Eqs.~27!
and ~28!, we explicitly indicate the quantum numbers associated with channelsb, b8, andb9.

The quantum numbermg in Eq. ~27! is the photon polarization in the laboratory frame, i.e.,mg50 or 61 depending on
whether the space-fixed componentZ or (X6 iY)/& is considered@cf., e.g., expressions~17!–~20! of RC#. n is the polariza-
tion in the molecular frame. The rotational factors multiplying the first electronic transition moment in Eq.~27! correspond
precisely to the direction cosine matrix elementsaZ,q ,(2)21/2(aX,q6 iaY,q) (q5x,y,z) with phases as given by Hougen@10#
in his Tables 6 and 7. For unpolarized light the third bracket@• • •# on the right-hand side of Eq.~27! containing the
dependence onM 9 andM 8 is to be replaced@10# by A61/3 where the minus sign is taken for molecules possessing an
number of electrons.@The complex factori resulting in the latter case is compensated for by a corresponding complex
arising from the half-integral exponent of (21)2V9 in Eq. ~27!.#

Turning to Eq.~28! we note that theSb in the second line of Eq.~23! reappears as the sum over core statesi and associated
partial wave componentsl in Eq. ~28!. Correspondingly the unsymmetrized dipole amplitudesd exhibit a double dependenc
on excited state channel indices whose origin are the double indices of the elementsCbb8 andSbb8 in Eq. ~23!. Notice further
how all the factors arising from symmetrization and expressed in terms ofD2(Lc ,L,V), D3(Lc ,L,V), andq @defined in Eqs.
~9b! and ~9c! and Appendix A# are condensed in the brackets@• • •# multiplying the unsymmetrized electronic transitio
momentsd in Eq. ~28!. We see in particular that ifD35D3951, q1q9 must be even, i.e., the well-known selection ru
S1↔S1, S2↔S2, S1↔” S2 is recovered.

The unsymmetrized electronic transition momentsdb9
b,b8 for excitation of the outer electron have the form

d
L9,i 9L

c9q
c9 l 9

L8,iLcqcl ;L8,i 8Lc8qc8 l 8
~n!5@~2l 11!~2l 911!#1/2~21!L92Lc9S l

0
1
0

l 9
0 D S l

L82Lc

1
n

l 9
2L91Lc9

D
3d i i 9dLcL

c9
dqcq

c9
^ f ki l

~r !Cbb82gki l
~r !Sbb8ur u f ki 9l 9~r !Cb9b92gki 9l 9~r !Sb9b9&. ~29a!

On the left-hand side of Eq.~29a!, and below in Eq.~29b!, we used the expanded form of the labeling ofb andb8 with all
quantum numbers given explicitly, while on the right-hand side we use the shorthand notation. The last factor in Eq.~29a! is
the energy-dependent purely radial transition integral. Each bra and ket involved in the integral is understood to stan
radial part of Eq.~23! for given b,b8, as well as its continuation inside the core.ki is the electron wave number in chann
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i as in Eqs.~2! and~3!, with ki5 i /n i for bound states andn i the effective principal quantum number. There is the alterna
possibility that thecore rather than the outer electron is excited. In this event the electronic transition moment will be
by

d
L9,i 9L

c9q
c9 l 9

L8,iLcqcl ;L8,i 8Lc8qc8 l 8
~n!5^ iLcqcur nu i 9Lc9qc9&d l l 9dL82Lc ,L92L

c9
^ f ki l

~r !Cbb82gki l
~r !Sbb8u f ki 9l 9~r !Cb9b92gki 9l 9~r !Sb9b9&,

~29b!
.
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where the shorthand notationb is as used before. In Eq
~29b! r n stands for the molecule-fixed componentsz or (x
6 iy)/& of the dipole moment operator, respectively. T

dipole amplitudedb9
b,b8(n) relates to the asymptotic standin

wave functions associated with theK matrix, and therefore is
always real. The transition moments Eqs.~29a! and ~29b!
have the dimension of alengthif discrete-discrete transition
are considered, and normalization to unity is used. Their
mension is length3@energy#21/2 if a photoionization process
is considered with the initial state normalized to unity a
the continuum normalized to the energy. Finally, in t
framework of MQDT, both the initial and final states may
normalized to the energy irrespective of their discrete or c
tinuous character, so that the dimension of the transition
ments will be~length!3@energy#21.

In summary then, Eqs.~27!–~29! relate the body-frame
case~a! to case~a! rotational-electronic dipole transition mo
ments to the purely radial electronic amplitud
^ f ki l

(r )Cbb8 2 gki l
(r )Sbb8ur u f ki 9l 9(r )Cb9b9 2 gki 9l 9(r )Sb9b9&

for excitation of the outer electron, or alternatively to t
dipole amplitudes for core excitation,^ iLciur nu i 9Lc9&, and
the radial Rydberg overlap integral ^ f ki l

(r )Cbb8
2gki l

(r )Sbb8u f ki 9l 9(r )Cb9b92gki 9l 9(r )Sb9b9&. The some-
what unwieldy form of Eq.~28! is more apparent than rea
sinceD2 andD3 are zero in most cases and they never dif
from zero simultaneously. In addition, if there are no ele
tronic channel interactions as well asl mixing ~as, e.g., in
high orbital angular momentum states! there will be no off-
diagonal matrix elementsCbb8 and Sbb8 in Eq. ~29!, and
hence withb5b8 the awkward~but necessary! double de-
pendence of thed’s on excited state channel indicesb and
b8 disappears as does the sum in Eq.~28!.

VI. CONCLUSION

In this paper we have discussed molecular electronic p
toexcitation processes, putting discrete and continuum t
sitions on an equal footing. We combined the scattering t
oretical formulation for the final-state wave function wi
Hund’s angular momentum coupling schemes which are u
ally restricted to the spectroscopy of discrete-discrete tra
tions. We have taken account of the electron spins, and
derivation takes full account of the symmetry requireme
in the initial and final states, which in previous work we
either only partially included, or only in the context of sim
pler coupling situations. One consequence of this is that
ity selection rules such as derived by XZ are replaced by
simple requirement thatp91pc1 l must be odd in a one
photon transition. The proper symmetry ofS1 andS2 elec-
tronic states has been fully taken into account here—for
i-

-
o-

r
-

o-
n-
e-

u-
i-
ur
s

r-
e

e

first time as far as we are aware.
Our hope is that the present work clarifies and unifies

various formulations of the angular momentum coupling a
transition moment amplitudes found in the literature. F
from the core, Hund’s case~e! coupling is common to both
the spin-resolved photoionization and discrete-discrete R
berg spectroscopy. The dipole transition amplitude builds
in the inner region close to the core where case~a! or case~c!
coupling prevails. Correspondingly, the transition momen
transformed to Hund’s case~e!, appropriate in the asymptoti
situation of two distinct fragments. When an excited state
embedded in the electronic continuum the effective coupl
situation may strongly vary with energy, a complication th
is naturally accounted for through the use of MQDT. T
frame transformation and dipole transition moment expr
sions given here have been used routinely and extensivel
the authors for several years, albeit mostly in situatio
where the electron spins can be neglected. These applica
include electronic single-channel situations@case ~d!–case
~d! high-l transitions@32##, electronic multichannel situation
involving l mixing @33# or interactions between channe
corresponding to different core states@34# as well as the
calculation of rotationally resolved cross sections includ
spin polarization@35#.

In this paper we have expressed the final-state wave fu
tion in a total angular momentum-coupling scheme. An
ternative approach based on the ‘‘transferred’’ angular m
mentum j t was introduced in Refs.@36# and @37#, and was
also used as one of two alternative coupling schemes by
This alternative approach explicitly introduces the phot
angular momentum into the coupling scheme, and has
vided particular insight into the photoionization process
self. However, this approach has found only limited use
molecules, possibly because the connection to the spec
copy is not as easily established as in the total angular
mentum coupling scheme.

We stress finally that the transition momen
Db9

I (2)~coupled! of Eq. ~20! can be used in a variety of prob
lems which have not been considered in detail here. In e
such case it is sufficient to establish the relevant cro
section expressions in terms of theDb9

I (2)(coupled). We
mention photoionization of aligned and oriented molecu
@38# prepared in the initial state throughn-photon excitation
and ionized by an additional photon@39# or in the final state
by measuring the polarization of the fluorescence of the
@40#. ‘‘Complete’’ experiments have also been carried o
with molecules@41#. Reference@41# deals with the inversion
of experimental data with the aim of extracting the modu
of the complex quantitiesDb9

I (2)(coupled) as well as thei
relative phases. This is achieved by measuring the differe
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between the rotationally resolved cross sections obta
with left and right circularly polarized light. Therefore it ap
pears that the transformations derived in the present p
are useful in the spectroscopy of excited states and o
contexts.
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APPENDIX A: SYMMETRY PROPERTIES OF THE CASE
„a… BASIS EQ. „9… FOR L50

The case~a! spin-roronic basis of Eq.~9! is defined such
that for L50 the electronic orbital part can be factored o
and has definiteS1 or S2 symmetry. We verify this by
checking all possible cases in turn.

~a! L50, Lc50, anyV: D350 in Eq. ~9c!, and only the
first bracket@• • •# is present in Eq.~9!; l50 and the elec-
tronic orbital part uLc50&u l ,l50& can be factored out
Equations~10b! and ~10d! give

E* uLc50&u l ,l50&5~21!qcuLc50&u l ,l50&, ~A1!

i.e., qc50 ~1! yields SSV
1 (SSV

2) electronic symmetry, re-
spectively.

~b! L50, LcÞ0, V50: D350 in Eq. ~9c!, and again
only the first bracket@• • •# is present in Eq.~9!, and l5
2Lc andS5V2L50. Equation~9! takes the form

uS,L50,V50&5
1

&
@ uLc&u l ,2Lc&1~21!p2qc2S1J

3u2Lc&u l ,1Lc&] uS,S50&uJ,V50,M &.

~A2!

Application of the space-fixed inversion operation to t
electronic orbital factor yields E* @• • •#5
(21)p2S1J@•••#, i.e., levels withp2S1J even ~odd! be-
long to a SS0

1 (SS0
2) electronic state, respectively.

~c! L50, LcÞ0, VÞ0: D351 in Eq. ~9c!, and both
brackets@•••# in Eq. ~9! are present withl52Lc and S
5V2LÞ0. The terms of Eq.~9! can be rearranged as

uS,L50,VÞ0&5 1
2 @ uLc&u l ,2Lc&1~21!q2qc

3u2Lc&u l ,1Lc&]

3@ uSS&uJVM &1~21!p2q2S1Ju

3uS2S&uJ2VM &], ~A3!

where the electronic-orbital and the electron-spin-rotatio
factors of the case~a! wave function are now symmetrize
separately. With Eqs.~10! we verify easily thatE* applied to
the electronic orbital factor yieldsE* @• • •#5(21)q@• • •#
andE* applied to the spin-rotational factor yieldsE* @• • •#
5(21)p2q@• • •#, with the result that the total wave func
tion has total parity (21)p, while the electronic orbital fac-
d

er
er

c-

t

l

tor hasS1 or S2 character depending on whetherq50 or 1.
In order to avoid double occurrences of the same sp
rotational wave functionS5V2L in Eq. ~A3! should in
principle be restricted to positive values as this was do
already forLc in Sec. III. At the same time the electron
symmetry index takes the valuesq50 and 1. The same
states are obtained if instead we let the spin componenS
5V2L take positive as well as negative values, in line w
the practice adopted in Sec. III, with the additional provi
that q50 for S.0 andq51 for S,0. We adopt this latter
convention here.

APPENDIX B: FRAME TRANSFORMATION FOR
SPINLESS MOLECULES

When s5S5Sc50, Hund’s case~a! is replaced by case
~b!, and case~e! is replaced by case~d!. We then have

J→N, Jc→Nc , V→L, Vc→Lc , j→ l .

The first and third symbols in each ket of Eqs.~8! and~9! are
now redundant, and can be omitted. In all there are n
seven instead of 11 quantum numbers in the minimal se
which six are common to both coupling cases. The fra
transformation elements thus take the form

^NcuL&~NMp ,Lcqcl !5
1

~11dL0dLc0!1/2

1

~11dLc0!1/2

3~2Nc11!1/2~21!N2L

3@11dLc0~21!p2qc2Nc1 l #

3S Nc

Lc

l
L2Lc

N
2L D . ~B1!

Note that, according to the remarks made after Eq.~13!
above,L takes valuesLc2 l ,...,Lc1 l when Lc>0. @For
example, in a molecule with aII ionic core and an excitedd
electron there will be two types of molecularII states, arising
from L521 ~dd electron,l522! and L511 ~ds elec-
tron, l50!, respectively.# As pointed out previously@27#,
Eq. ~B1! differs from that given by Chang and Fano@12#,
which takes incorrect account of factors& arising from
symmetrization. We finally consider the special case wh
Lc50. The symbolLc can now also be omitted, and Eq
~B1! reduces further to

^NcuL&~NMp,qcl !5F 2

~11dL0!G
1/2

~2Nc11!1/2

3~21!N2LF11~21!p2qc2Nc1 l

2 G
3S Nc

0
l
L

N
2L D . ~B2!

Note that hereL is again restricted to values 0, . . . ,1 l . The
above expression is very well known, and has been wid
used in applications of molecular multichannel quantum
fect theory. Notice, however, how in the form given here f
account has been taken of the parity requirements: In
case, e.g., of a1S1 core (qc50) with given l and total
parity p, Eq. ~B2! tells us right away thatp2Nc1 l must be
even, which means that only core levels with eitherevenor
odd Nc are coupled together.
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