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Analog analogue of a digital quantum computation
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We solve a problem, which while not fitting into the usual paradigm, can be viewed as a quantum compu-
tation. Suppose we are given a quantum system with a Hamiltonian of the formEuw&^wu where uw& is an
unknown~normalized! state. The problem is to produceuw& by adding a Hamiltonian~independent ofuw&) and
evolving the system. Ifuw& is chosen uniformly at random we can~with high probability! produceuw& in a
time proportional toN1/2/E. If uw& is instead chosen from a fixed, known orthonormal basis we can also
produceuw& in a time proportional toN1/2/E and we show that this time is optimally short. This restricted
problem is an analog analogue to Grover’s algorithm, a computation on a conventional~!! quantum computer
that locates a marked item from an unsorted list ofN items in a number of steps proportional toN1/2.
@S1050-2947~98!09004-0#
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Although a quantum computer, beyond certain elemen
gates, has not yet been constructed, a paradigm@1# for quan-
tum computation is in place. A quantum computer is env
aged as acting on a collection of spin 1/2 particles sitting
specified sites. Each elementary operation is a unitary tr
formation that acts on the spins at one or two sites. A qu
tum computer program, or algorithm, is a definite seque
of such unitary transformations. For a given initial spin sta
the output of the program is the spin state after the seque
of transformations has acted. The length of the algorithm
equal to the number of elementary unitary transformati
that make up the algorithm.

This framework for quantum computation is gene
enough that any ordinary digital computer program can
implemented on a quantum computer. Quantum compu
can go beyond ordinary computers when they act on su
positions of states and take advantage of interference eff
An example of a quantum algorithm that outperforms a
classical algorithm designed to solve the same problem is
Grover algorithm@2#. There we are given a functionf (a)
defined on the integersa from 1 to N. The function has the
property that it takes the value 1 on just a single elemen
its domain,w, and it has the value 0 for allaÞw. With only
the ability to call the functionf , the task is to findw. On a
classical computer this requires, on average,N/2 calls of the
function f . However, Grover showed that with a quantu
computerw can be found with of orderN1/2 function calls.
This remarkable speedup illustrates the power of quan
computation.~In the Appendix we explain how the Grove
algorithm works.!

In this paper we consider quantum computation diff
ently, as controlled Hamiltonian time evolution of a syste
obeying the Schro¨dinger equation
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uc&5H~ t !uc&, ~1!

where the Hamiltonian is designed to solve a specified pr
lem. We illustrate this with an example. Suppose we
given a Hamiltonian in anN-dimensional vector space an
we are told that the Hamiltonian has one eigenvalueEÞ0
and all the others are 0. The task is to find the eigenve
uw& that has eigenvalueE. We consider this task accom
plished when the system is known to be in the stateuw&. We
now describe a solution to two versions of this problem a
then discuss in what sense it is optimal.

First, suppose we are given

Hw5Euw&^wu ~2!

with uw& chosen uniformly at random from the unit sphere
N-dimensional complex space. In some convenient fash
select a normalized vectorus&, which of course does no
depend onuw& since we don’t yet know whatuw& is. ~We
will have more to say about choosingus& shortly.! Now add
to Hw the ‘‘driving’’ Hamiltonian

HD5Eus&^su ~3!

so that the full Hamiltonian is

H5Hw1HD . ~4!

We now calculate the time evolution of the stateucw ,t&,
which at t50 is us&, that is,

ucw ,t&5e2 iHt us&. ~5!

It suffices to confine our attention to the two-dimension
subspace spanned byus& and uw&. The vectorsus& and uw&
are~generally! not orthogonal and we call their inner produ
x,

^suw&5x, ~6!
2403 © 1998 The American Physical Society
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wherex can be taken to be real and positive since any ph
in ^suw& can ultimately be absorbed inus&. We will discuss
how big x is shortly. Now the vectors

ur &5
1

A12x2
~ us&2xuw&) ~7!

and uw& are orthonormal. In theuw&,ur & basis the Hamil-
tonian ~4! is

H5EF 11x2 xA12x2

xA12x2 12x2 G ~8!

and

us&5F x

A12x2G . ~9!

Now a simple calculation gives

ucw ,t&5e2 iEtFx cos~Ext!2 i sin~Ext!

A12x2cos~Ext!
G . ~10!

Thus we see that at timet the probability of finding the state
uw& is

P~ t !5sin2~Ext!1x2cos2~Ext! ~11!

and that at a timetm given by

tm5
p

2Ex
~12!

the probability is one.
Next consider a restricted version of the problem,

which we are given an orthonormal basis$ua&% with
a51, . . . ,N, and we know thatuw& is one of theseN basis
vectors. In this case it is most convenient to let

us&5
1

AN
(
a51

N

ua& ~13!

and it then follows thatx5N21/2. The initial state us&
evolves touw& in a time (pN1/2/2E). This is directly analo-
gous to Grover’s problem.

Note that the eigenvalues of the Hamiltonian~8! are
E(16x). Thus the difference in eigenvalues is (2xE), which
is 2E/N1/2 for us& given by Eq.~13!. By the time-energy
uncertainty principle, the time required to evolve subst
tially @3#, that is, fromus& to uw&, must be of orderN1/2/E,
which is the time we found. You might think that by increa
ing the energy difference, for example by usin
HD5E8us&^su with E8@E, you could speed up the proce
dure for producinguw&. However, the next result shows th
this is not the case.

We now show that our procedure for producinguw&, when
uw& is an unknown member of a given orthonormal basis
optimally short. The proof we give here is the analog a
logue of the oracle proof@4# that can be used to show that th
Grover algorithm is optimal for the problem it sets out
solve. Again we are given the HamiltonianHw5Euw&^wu
se

-

s
-

and we wish to add some HamiltonianHD(t) to it which
drives the system touw&. Because$uw&% is a basis we have

(
w

Hw5E(
w

uw&^wu5E. ~14!

Now start with some initialuw&-independent stateu i & and
evolve it with the Hamiltonian

H5Hw1HD~ t !. ~15!

We want to find a lower bound on the timet0 required for
the stateu i & to evolve with the HamiltonianHw1HD(t) into
uw&. ~The timet0 is assumed independent of the stateuw&.!
Let

i
d

dt
ucw ,t&5@Hw1HD~ t !#ucw ,t& ~16!

with

ucw,0&5u i &.

Let uc,t& evolve withHD(t), that is,

i
d

dt
uc,t&5HD~ t !uc,t& ~17!

with

uc,0&5u i &.

At t0 we haveucw ,t0&5uw&. Therefore

(
w

iucw ,t0&2uc,t0&i25(
w

iuw&2uc,t0&i2

52N2(
w

~^wuc,t0&1^c,t0uw&!

>2N22AN>N ~18!

for N>4. Now consider

d

dt
iucw ,t&2uc,t&i2522 Re

d

dt
^cw ,tuc,t&, ~19!

which upon using Eqs.~16! and ~17! gives

d

dt
iucw ,t&2uc,t&i252 Im^cw ,tuHwuc,t&

<2u^cw ,tuHwuc,t&u ~20!

<2iHwuc,t&i .

We now sum onw and ~again! use the fact that if
( i 51

N uai u251 then( i 51
N uai u<N1/2 along with Eq.~14! to ob-

tain

d

dt(w iucw ,t&2uc,t&i2<2EN1/2. ~21!

Sinceucw,0&5uc,0& we have
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(
w

iucw ,t&2uc,t&i2<2EN1/2t. ~22!

Applying Eq. ~22! at time t0 and using Eq.~18! we have

t0>
N1/2

2E
. ~23!

This shows that theHD we chose in Eq.~3! allows us to
produceuw& in a time that is within a constant factor of th
best possible.

We now return to the question of findinguw& when it is an
arbitrary normalized vector in anN-dimensional vector
space, not just one of a list ofN possible orthonormal vec
tors. In this case we assumeuw& is picked at random from a
uniform distribution on the (2N21)-dimensional unit
sphere. We now chooseus& to be some fixed unit vector. W
can selectus& based on some criterion such as the ease
constructing the driving HamiltonianHD5Eus&^su. For a
fixed us& how big do we expectx5 z^suw& z to be? Sinceuw&
is uniformly distributed on the (2N21)-dimensional unit
sphere we can, without loss of generality, pickus& to be at
the north pole. Using spherical coordinates we find

Prob~x<x0!5
*cos21~x0!

p/2
~sinu!2N22du

*0
p/2~sinu!2N22du

. ~24!

This implies that forN large enough,

Prob~x>e/N1/2!>122e ~25!

and in fact, asN→`, A2Nx converges in distribution to the
absolute value of a unit-variance Gaussian random varia

For the case ofuw& chosen as a random unit vector, w
see that the timetm @see Eq.~12!# for our system to evolve
from us& to uw& is typically of orderN1/2/E. In fact, by re-
peated measurements, we can determinetm exactly. ~Here
we are assuming that we can repeatedly access the qua
system with the fixedHw .) We run the system, starting i
us& with H5Hs1Hw , for a sequence of times of orde
N1/2/E. At the end of each run we measure the opera
us&^su. Since the probability of finding the system inus& is
the periodic function 12(12x2)sin2(pt/2tm) we can deter-
mine tm . The number of measurements required to produc
desired accuracy fortm does not depend onN. After deter-
mining tm if we run the system starting inus& for a time tm
we are guaranteed to be in the stateuw& @see Eq.~11!#.

The strategy outlined above will not succeed ifx is
smaller than of orderN21/2. If we view uw& as being uni-
formly distributed on the unit sphere, then as a conseque
of Eq. ~24!, for anyd.0,

ProbS x<
1

N1/21dD <
2

Nd
, ~26!

which is very small forN large enough.~In the unlikely
event thatx is too small, it is natural to try again with a ne
us&.! It would be interesting to find out if there exists a
of
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algorithm that outperforms the one described above for
continuous version of the problm.
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APPENDIX: GROVER’S ALGORITHM

We are given a functionf (a) with a51, . . . ,N such that
f (w)51 and f (a)50 for aÞw. We assume that the func
tion f (a) can be calculated using ordinary~reversible! com-
puter code. The goal is to findw. Classically this requires, on
average,N/2 evaluations of the functionf .

We now explain how the Grover algorithm solves th
problem; see also@5#. The quantum computer acts on a ve
tor space that has an orthonormal basisua& with
a51, . . . ,N. It is possible to write a quantum computer a
gorithm that implements the unitary transformation

U f ua&5~21! f ~a!ua&. ~A1!

Equivalently we can write

U f5122uw&^wu. ~A2!

The quantum computer algorithm that implementsU f re-
quires two evaluations of the functionf because it is neces
sary to erase certain work bits, which we have suppress

Now consider the vector

us&5
1

N1/2(a
ua&. ~A3!

It is also possible to write quantum computer code t
implements the unitary operator

Us52us&^su21. ~A4!

The number of two bit operations required to implementUs
grows more slowly thanN to any positive power.

The Grover algorithm consists of letting the opera
UsU f actk times on the vectorus&. To see what happens w
can restrict our attention to the two-dimensional subsp
spanned byus& and uw&. Let

ur &5
1

AN21
(
aÞw

ua& ~A5!

so thatuw& and ur & form an orthonormal basis for the re
evant subspace. In theuw&,ur & basis the operatorUsU f takes
the form

UsU f5Fcosu 2sin u

sin u cosu G , ~A6!
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where cosu5122/N. This implies that

~UsU f !
k5Fcos~ku! 2sin~ku!

sin~ku! cos~ku!
G . ~A7!

Now for N largeu;2N21/2 so each application ofUsU f is a
rotation by an angle;2N21/2. In theuw&,ur & basis, the initial
stateus& is
ne
or
us&5F N21/2

S 12
1

ND 1/2G , ~A8!

which is very close tour &. However, afterk steps where
ku'p/2 the algorithm has rotated the initial state to lie~al-
most! along uw&. This requiresk;pN1/2/4 steps. Each step
actually requires two evaluations off so the number of
evaluations off required to findw grows likeN1/2.
-
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