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Analog analogue of a digital quantum computation
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We solve a problem, which while not fitting into the usual paradigm, can be viewed as a quantum compu-
tation. Suppose we are given a quantum system with a Hamiltonian of theEbmn(w| where|w) is an
unknown(normalized state. The problem is to produp&) by adding a Hamiltoniatindependent ofw)) and
evolving the system. Ifw) is chosen uniformly at random we céwith high probability produce|w) in a
time proportional toNYZE. If |w) is instead chosen from a fixed, known orthonormal basis we can also
produce|w) in a time proportional tdN*%E and we show that this time is optimally short. This restricted
problem is an analog analogue to Grover’s algorithm, a computation on a convelttjomantum computer
that locates a marked item from an unsorted list\ofitems in a number of steps proportional K2
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PACS numbd(s): 03.67.Lx

Although a quantum computer, beyond certain elementary d
gates, has not yet been constructed, a paragligifor quan- i§| P =HO[¥), (1)
tum computation is in place. A quantum computer is envis-
aged as acting on a collection of spin 1/2 particles sitting atvhere the Hamiltonian is designed to solve a specified prob-
specified sites. Each elementary operation is a unitary tranéem. We illustrate this with an example. Suppose we are
formation that acts on the spins at one or two sites. A quangiven a Hamiltonian in arN-dimensional vector space and
tum computer program, or algorithm, is a definite sequencave are told that the Hamiltonian has one eigenvdhie0
of such unitary transformations. For a given initial spin stateand all the others are 0. The task is to find the eigenvector
the output of the program is the spin state after the sequend®) that has eigenvalu&. We consider this task accom-
of transformations has acted. The length of the algorithm ilished when the system is known to be in the sfate We
equal to the number of elementary unitary transformation§loW describe a solution to two versions of this problem and
that make up the algorithm. then. discuss in what sense it is optimal.
This framework for quantum computation is general FIrSt, suppose we are given

enough that any ordinary digital computer program can be _
. Hw=E|w)(w| 2
implemented on a quantum computer. Quantum computers
can go beyond ordinary computers when they act on supewith |w) chosen uniformly at random from the unit sphere in
positions of states and take advantage of interference effects-dimensional complex space. In some convenient fashion
An example of a quantum algorithm that outperforms anyselect a normalized vectds), which of course does not
classical algorithm designed to solve the same problem is théepend onw) since we don’'t yet know whaw) is. (We
Grover algorithm[2]. There we are given a functiof(a) will have more to say about choosifg) shortly) Now add
defined on the integers from 1 to N. The function has the to H,, the “driving” Hamiltonian
property that it takes the value 1 on just a single element of
its domain,w, and it has the value 0 for al#w. With only
the ability to call the functiorf, the task is to findv. On a
classical computer this requires, on averdgl calls of the
function f. However, Grover showed that with a quantum H=H,+Hp. 4
computerw can be found with of ordeN'? function calls. _ .
This remarkable speedup illustrates the power of quantunfVé now calculate the time evolution of the statg, ,t),
computation.(In the Appendix we explain how the Grover Which att=0 is|s), that is,
algorithm works) o

gIn this paper we consider quantum computation differ- | )= ]s). ®)
ently, as controlled Hamiltonian time evolution of a system,
obeying the Schringer equation

Hp=E[s)(s| 3

so that the full Hamiltonian is

It suffices to confine our attention to the two-dimensional
subspace spanned by) and|w). The vectorgs) and|w)
are(generally not orthogonal and we call their inner product

X!
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wherex can be taken to be real and positive since any phasand we wish to add some Hamiltoniathy(t) to it which

in (s|w) can ultimately be absorbed |s). We will discuss
how big x is shortly. Now the vectors

1
|r>=ﬁ(|3>—x|w>) 7

and |w) are orthonormal. In théw),|r) basis the Hamil-
tonian(4) is

1+x%  xy1—-x2
N xJ1-x2  1-x? ®
and
X
|s)= Niped ) C)
Now a simple calculation gives
| x cogExt)—i sin(Ext)
[ )= V1—x%cog Ext) (10

Thus we see that at tintethe probability of finding the state
|w) is

P(t)=sir?(Ext) + x?cog(Ext) (112)

and that at a timeé,,, given by
_— 12
tn=5Ex (12

the probability is one.

Next consider a restricted version of the problem, in

which we are given an orthonormal basf$a)} with
a=1,... N, and we know thajw) is one of thesé\ basis
vectors. In this case it is most convenient to let

13

9= 3 o

and it then follows thatx=N~"Y2 The initial state|s)
evolves to|w) in a time (wNY?/2E). This is directly analo-
gous to Grover’s problem.

Note that the eigenvalues of the Hamiltonia8) are
E(1=x). Thus the difference in eigenvalues isx@), which
is 2E/NY2 for |s) given by Eq.(13). By the time-energy

drives the system tpw). Becaus€g|w)} is a basis we have

%‘, HW:EE\N: |w)(w|=E. (14)

Now start with some initia)w)-independent staté) and
evolve it with the Hamiltonian

H=H,,+Hp(t). (15
We want to find a lower bound on the ting required for
the statdi) to evolve with the Hamiltoniai,, + Hp(t) into
|w). (The timet, is assumed independent of the stpte.)
Let

d
i&|'r/fw’t>:[Hw+HD(t)]|¢th> (16)
with
|, 0y =1i).
Let |,t) evolve withHp(t), that is,
d
iallﬂ,ﬂ:HD(t)lw,D 17)

with

1,0y =i).

At ty, we have| ¢, ,to) =|w). Therefore

%‘, I t/fW,to>—|¢,to>||2=§ llw) =, to)lI?

=2N—§ (W[, to) + (¥, tolW))

=2N-2N=N (18)

for N=4. Now consider

d , d
gilltw O = :0°= =2 Reg (g tlpt), (19

which upon using Eqg.16) and (17) gives

d
il O = 1. 01P=2 1My t Hu )

uncertainty principle, the time required to evolve substan-

tially [3], that is, from|s) to |w), must be of ordeN"7E,

which is the time we found. You might think that by increas-
example by using
Hp=E’|s)(s| with E’>E, you could speed up the proce-

the energy difference, for

ing

<2[(w t{Hul o 1) (20

<2|Huly.0)l.

dure for producingw). However, the next result shows that We now sum onw and (again use the fact that if

this is not the case.
We now show that our procedure for producimg, when

=N |a|?=1 then=\ ,|a]|<N¥2 along with Eq.(14) to ob-
tain

|w) is an unknown member of a given orthonormal basis, is
optimally short. The proof we give here is the analog ana-
logue of the oracle prod#] that can be used to show that the
Grover algorithm is optimal for the problem it sets out to
solve. Again we are given the Hamiltoniat,=E|w)(w|

d
Gi2 Il 0=l 0)2<2EN2 (21)

Since|,,0)=|#,0) we have
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) " algorithm that outperforms the one described above for this
%: [T ) — |, t)]I>< 2EN"2. (22)  continuous version of the probim.
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This shows that thed, we chose in Eq(3) allows us to

produce|w) in a time that is within a constant factor of the
best possible. APPENDIX: GROVER’'S ALGORITHM

We now return to the question of findihg) when it is an We are given a functiofi(a) with a=1, . .. N such that
arbitrary normalized vector in am-dimensional vector f(w)=1 andf(a)=0 for a#w. We assume that the func-
space, not just one of a list &f possible orthonormal vec-  iqn't(a) can be calculated using ordinafyeversiblé com-
tors. In this case we assur) is picked at random from a  ter code. The goal is to finl. Classically this requires, on
uniform distribution on the (R—1)-dimensional unit averageN/2 evaluations of the functiof.
sphere. We now chooss) to be some fixed unit vector. We — \yia now explain how the Grover algorithm solves this
can selects) based on some criterion such as the ease OE)robIem; see alsf5]. The quantum computer acts on a vec-
constructing the driving Hamiltoniat,=E[s)(s|. For a {4, space that has an orthonormal baga) with
fixed|s) how big do we expect=|(s|w)| to be? Sincéw)  4—1 N Itis possible to write a quantum computer al-

is uniformly distributed on the (8—1)-dimensional unit  gorithm that implements the unitary transformation
sphere we can, without loss of generality, pisk to be at

the north pole. Using spherical coordinates we find

Ufa)=(-1)"®a). (A1)
al . —
ProbiX=x0) fco§—1<xo)(5'“9)2N ’dg 0 Equivalently we can write
rol( x<xg) =
0 fg/Z(Sine)ZN—Zda 0 L 2| >< | (Az)
= L= 2|W)(W|.

This implies that forN | h . .
's implies that for large enough, The quantum computer algorithm that implemetits re-

N quires two evaluations of the functidnbecause it is neces-
Probix=¢/N"?)=1-2e¢ (25 sary to erase certain work bits, which we have suppressed.
Now consider the vector

and in fact, alN—o, y2Nx converges in distribution to the

absolute value of a unit-variance Gaussian random variable. 1 2 A3

For the case ofw) chosen as a random unit vector, we |s)= NY2% ). (A3)
see that the time,, [see Eq.(12)] for our system to evolve
from |s) to |w) is typically of orderNVZE. In fact, by re- It is also possible to write quantum computer code that

peated measurements, we can deterntipexactly. (Here  jmplements the unitary operator

we are assuming that we can repeatedly access the quantum

system with the fixedH,,.) We run the system, starting in _ _

|s) with H=H.+H,, for a sequence of times of order Us=2ls){sl 1. (A4)
NY%E. At the end of each run we measure the operator ) i ) i

|s)(s|. Since the probability of finding the system |is) is The number of two bit operations re.q'uwed to implemét
the periodic function * (1—x2)sir(wt/2t,) we can deter- 9r0wWs more slowly tham to any positive power.

minet,,. The number of measurements required to produce a The Gro_ver algorithm consists of letting the operator

desired accuracy far,, does not depend oN. After deter- UsUy actk times on th? vectofs). To see what. happens we

mining t,, if we run the system starting ifs) for a timet can restrict our attention to the two-dimensional subspace
m m

we are guaranteed to be in the stpte [see Eq.(11)]. spanned bys) and|w). Let
The strategy outlined above will not succeedxifis

smaller than of ordeN™ Y2 If we view |w) as being uni- Ir)=

formly distributed on the unit sphere, then as a consequence

of Eq. (24), for any 6>0,

! > | (A5)
VN—1la#w a>

so that|w) and|r) form an orthonormal basis for the rel-
evant subspace. In tha),|r) basis the operatdd U; takes

2
= NG (26)  the form

1
Prol{ X< —N1/2+5

which is very small forN large enough(ln the unlikely
event that is too small, it is natural to try again with a new
[s).) It would be interesting to find out if there exists an

cosfd —siné
\ (A6)

USUf:

sinf® cosé
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where co¥9=1-2/N. This implies that

B cog ko)
| sin(k#)

—sin(k)

cogkd) |’ (A7)

(UsUf)k

Now for N large 6~ 2N~ %2 so each application df U is a
rotation by an angle-2N Y2, In the|w),|r) basis, the initial
state|s) is

EDWARD FARHI AND SAM GUTMANN

N—l/2

-]

which is very close tdr). However, afterk steps where
ko~ /2 the algorithm has rotated the initial state to (&
mosy along|w). This requiresk~ 7N¥%4 steps. Each step
actually requires two evaluations df so the number of
evaluations off required to findw grows like N2,

1

N

(A8)
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