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Security of quantum cryptography against individual attacks
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An attempt to eavesdrop on a quantum cryptographic channel reveals itself through errors it inevitably
introduces into the transmission. We investigate the relationship between the induced error rate and the
maximum amount of information the eavesdropper can extract, in both the two-staflB8®2efers to the
work of C. H. Bennett, Phys. Rev. Le@i8, 3121(1992] and the four-state BB8/BB84 refers to the work of
C. H. Bennett and G. Brassard, lroceedings of the IEEE International Conference on Computers, Systems,
and Signal Processing, Bangalore, INd{#EEE, New York, 1984, pp. 175-179 quantum cryptographic
protocols. In each case, the optimal eavesdropping method that on average yields the most information for a
given error rate is explicitly constructed. Analysis is limited to eavesdropping strategies where each bit of the
guantum transmission is attacked individually and independently from other bits. Subject to this restriction,
however, we believe that all attacks not forbidden by physical laws are covered. Unlike previous work, the
eavesdropper's advantage is measured in terms of Reathier than Shanngmnformation, and with respect
only to bits received error-free by Bdbather than all bits This alters both the maximum extractable infor-
mation and the optimal eavesdropping attack. The result can be used directly at the privacy amplification stage
of the protocol to accomplish secure communication over a noisy chdi®1€150-29478)06304-3

PACS numbd(s): 03.67.Dd

[. INTRODUCTION flicted perturbation to the nonzeemnountof the information
that may be obtained.

Quantum cryptography is a technique which permits two Finding this relationship in the general case is a difficult
parties, who share no secret information initially, to commu-quantum-theoretical problem, which takes somewhat varying
nicate over an open channel and establish between therferms depending on the particular perturbation and informa-
selves a shared secret sequence of bits. Each bit of datatisn measures that may be adopt&. In the context of
encoded using an alphabet of nonorthogonal states of a quaguantum cryptography, early work was limited to specific
tum particle, and therefore cannot be duplicated or measuregdasses of eavesdropping strategies, which broadened over
in transit without inducing a disturbance that would ulti- ime as the theory matureldt,9—14. Until recently, only
mately be revealed through transmission errors. It is believego-calledindividual attacks were considered, wherein each
that no eavesdropping attack consistent with the laws oflata-carrying particle is treated by the eavesdropper indepen-
guantum mechanics can compromise the secret data unknofently from other particles. In the most general such attack,
ingly to the legitimate users of the channel. Principles andhe eavesdropper involves the carrier particle in an interac-

procedures of quantum cryptography have been described fiPn With her own quantum system, referred topaebg so
the literature[1—5]. that the particle and the probe are left in an entangled state,

In practice, however, a communication is not completel and a subsequent measurement of the probe yields informa-

free of errors even when no eavesdropping is present. T o about _the part|cle._ Some investigators are now turning

. . . their attention tocollective attacks, where the eavesdropper
implement an unconditionally secure key exchange despng tangles a separate probe with each particle but measures
channel defects, the legitimate users, referred to as Alice a

Bob. ad h ion #ibbf thei | probes as a single quantum system, and to even more
0Db, adopt the worst-case assumption &abt their errors eneraljoint attacks, where a single probe is entangled with

are eayesdrop indu.ced, and attempt to upper bound the itha entire set of particlefl5-17. Such attacks are espe-
formation that may in such a case have fallen into the handgja)ly difficult to analyze, because they can take advantage of
of their adversary, the eavesdropper Eve. If this upper bounghe various parity-type relationships between data bits, dis-
is correctly estimated, a method known (as-called ‘tlas-  closed by Alice and Bob subsequently in the protocol.
sical”) privacy amplificatiorpermits Alice and Bob to distill  Eavesdropping can therefore no longer be considered sepa-
from their transmission a shorter key that is unconditionallyrately from error correction and privacy amplification. Al-
securef4,6,7]. To establish a secret key in a noisy environ-though collective and joint attacks have stimulated a great
ment, therefore, the basic fact that no distinguishing infordeal of interest, at present they seem impractical due to their
mation can be extracted from a pair of nonorthogonal statesomplexity[12,14], and their theory is still at an early stage
without perturbing them is no longer sufficient. Rather, itof development. No specific joint attacks have yet been sug-
becomes necessary to relate the nonzextentof the in-  gested16].
The most general treatments yet of individual attacks,
which appear to include all strategies not forbidden by the
*Electronic address: bslutsky@ucsd.edu laws of physics, are due to Fuchs and P4t (hereafter
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FIG. 1. Distillation of secret key from a quantum transmission. Alice and Bob arrive at privacy amplification compressianbigvel
summing estimates of possible information leakage at various stages of the protocol, together with an arbitrary safety margin.

“FP96”), and Fuchs, Gisin, Griffiths, Niu, and Pergist] fense frontier and ultimately to secure their data, at least
(hereafter “FGGNP97). Both works investigate the against individual attacks, in the sense that Eve is exponen-
tradeoff between the information learned from a quantuntially unlikely to end up with more than token knowledge of
test, and the disturbance induced by the test. FGGNP97 fothe final key[7]. Both FP96 and FGGNP97, on the other
mally find the maximum obtainable information for a given hand, assert bounds on Ev&8sannorinformation averaged
disturbance under conditions closely mirroring the so-calledver all bits of the transmission, including those eventually
four-state, or BB84, quantum cryptographic protoddt for  discarded because they are not received or received incor-
the so-called two-state, or B92, proto¢sl, FP96 construct rectly by Bob. More precisely, with reference to Fig. 1, FP96
a suspected maximum and confirm it by numerical simulatelatesraw dataerror ratee;/m to Eve’s Shannorinforma-
tion. tion onraw data and FGGNP97 relatesfted dataerror rate
The problems posed in FP96 and FGGNP97, however, as;/n to Eve’'sShannorinformation onsifted data Although
their authors point out, were not designed to precisely replithe FP96 and FGGNP97 results are of fundamental impor-
cate those arising in a quantum cryptographic communicatance, from the perspective of quantum cryptography it is
tion. The latter can be illustrated with reference to Fig. 1,necessary to consider EveRenyiinformation oncorrected
which sketches a procedure Alice and Bob might use to dedata Focusing only on the corrected data, i.e., only on the
fend their secret key against individual eavesdropping atbits that are error-free to Bob, alters, as we shall see, both the
tacks[4,7,18. Starting fromraw dataobtained in the course upper bound of Eve’s information, and her optimal strategy.
of quantum transmission, Alice and Bob first discard so- The results reported in this manuscript apply to the same
called inconclusivebits! They then exchange a series of general class of individual eavesdropping attacks as FP96
block checksums, and where the checksums do not matchnd FGGNP97. However, we adopt as the measure of infor-
use bisective search within the block to identify and discardnation gain the conditional average appropriate for quantum
the error. The resultingorrected dataare input into the cryptographical application. Starting with the FP96 eaves-
privacy amplification algorithm[6], which produces a dropping interaction model, we formally solve for Eve's
shorter but more secure key. This last step requires, howevanaximum Renyi information gairﬁmon bits not in error, as
an upper bound estimate of EveRenyi informationon the  a function of the error rat& observed by Alice and Bob, in
corrected dat§6]. Eve’s information may come from block both B92 and BB84 contexts. The optimal attack that leads
checksums disclosed during error correction, from the rareg |§1ax is also explicitly constructed, and is shown to be
but unavoidable instances when Alice’s device emits mulsuperior(in the sense of Eve’s Renyi information on bits not
tiple photons in a single bit cel#,18,19, and, most impor-  in erron to some of the most powerful attacks previously
tantly for the purposes of the present work, from individualknown, including those from FP96 and FGGNP97 works.
attacks on the carrier particles in the quantum channel. This paper is organized as follows. Section Il reviews the
Alice and Bob are thus in need of a theorem that relate$p96 eavesdropping model, with the generalization neces-
carrier particle disturbance, as expressed in terms of avaikary to cover BB84, and to use Renyi information instead of
able parameters such as the error rate of a particular commghannon. The model defines the eavesdropper's probe in
nication system, to Renyi information accrued to Eve withterms of four independent parametarsu, 6, ¢. Sections I
respect to corrected data only. It can be shown that such gnd IV, dealing, respectively, with B92 and BB84, relate
result permits Alice and Bob to construct the so-caliied g, ¢ to the error raté&€ and to information gain® on bits
not in error, and use the method of Lagrange multipliers to
tune\, u, 6, ¢ for the maximum ofiR at any givenE. Our
Yinconclusive bits are those whose value is not revealed with cerMain result is the relationship between the error rate and the
tainty by Bob’s measurement, for example, those measured in th@aximum information gain, which can serve as input for the
wrong BB84 basis by Bob. Inconclusive bits are an integral featurconstruction of the so-calledefense frontierused by Alice
of quantum cryptographic protocols even in the absence of channéind Bob to secure their communication against individual
and detector imperfections. attacks[7]. Finally, Sec. V discusses application and some-
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FIG. 2. Quantum states used in BB84 and B92.

limitations of our theorem. The bulk of the algebraic ma-

nipulation is removed into Appendixes A—E.

Il. THE EAVESDROPPING MODEL
Quantum cryptographic protocols BB84] and B92[5]

|® ) = (&y|U[en®@w), m,n=0,1 @)
where vector$® ,,) in the Hilbert space of the probe are in
general neither normalized nor orthogonal. Following the
evolution, the probe and the particle become correlated in a
manner determined by the operatdy known to Eve. Sub-
sequent measurement of the probe can therefore reveal to
Eve partial(or even completeinformation about the particle.
Both B92 and BB84 protocols provide for random and
equiprobable selection between the stafay and |v).

each involve a quantum particle in a pure state, prepared bariations that favor one state over the other will not be
the sender Alice and transmitted towards the recipient Bobconsidered. The eavesdropper thus finds herself in an envi-

B92 employs two pure stateés) and |v), while BB84 addi-

ronment manifestly symmetric with respect to the reflection

tionally uses two statdsi),[v) in the same Hilbert plane, and R that interchangesy—e;, {u,ul<{v;V}. For reasons set

respectively orthogonal to the first pdFig. 2). In B92, Al-

forth in greater detail in Appendix A, the eavesdropping de-

ice sends towards Bob the std;q)e to communicate bit value vice may be assumed without loss of generality to be en-
1, and the statév) to communicate 0. In BB84, she sends dowed with the same symmetry: more precisely, refledion

either |u) for 1, |u) for O, or |v) for 1, |v) for O, and it is

may be assumed extendable into the space of the probe in

subsequently disclosed which of the two alphabets was useglich a way that both the evolution operatband the initial
to encode each particular bit. The states for a BB84 transprobe statéw) are invariant undeR. It then follows thatR

mission are normally chosen so thdtu|v)|=|ulv)|
= [ulv)|=Kulv)|=1#72.

We shall select basis vectofs),|e;) in the plane of
|uy,lv), in such a way that
|uy=|ep)cos+|e)sin @, |u)y=—|ey)sina+]|e;)cosa,
[V)=|eg)sin a+|e)cosa, |v)=|g)cosa—|e)sin a

D

for some G<a<m/4. An orthonormal basigey),|e;) in
which the two equations in the left column of Ed,) hold,
can be found for any pair of unit vectofs),|v) with real

interchangeg®yq) with |®,5), and|®g,) with |®,g), and
inner products of these vectors therefore obey symmetries
(@ Do) =(P11| P10}, (Pod P10)=(P11Poy), as well as
IPool =[P aall, [Podl=]P1d. Similarly, again with refer-
ence to Appendix A, sinc),|u),|v),|v) all have real projec-
tions onto basigey,e;}, U andw may also be assumed to
have real elementéand |®,,) to have real projectionsn
some orthonormal basig/ that includese;,e;}.

Let us now pick in the space of the probe the particular
orthonormal basigw,} to be used throughout the remainder
of this paper. Taking the real-valued representatiofiigf )
in basisW as a starting point, the following steps can be
carried out without introducing any complex numbe&@ne

inner produck u|v)=sin 2o; and where the inner product is can think of the entire procedure as being implemented in the
complex, it can be made real by adjusting the otherwise arcorresponding Euclidian spagéirst, select orthonormal ba-
bitrary phases dfi) and|v). A similar adjustment ifuy,[vyis  SiS vectorgwy),|w,) in the plane off®qy),|®4g) in such a
sufficient to ensure the validity of the remaining two equa-way tha

tions in Eq.(1), because any companion vectors respectively
orthogonal tdu),|v) in the same Hilbert plane can only differ
by a phase factor from the),|v) given by Eq.(1).

Consider now a generic eavesdropping attack, as de- _ ) _ )
scribed by FP96. The information-carrying particle prepared I N€ notationX is chosen here for consistency with FP96.
by Alice in one of the statels),v),[ub, [V} collides en route to  NOte that|wy),[w;) are themselves interchanged by the re-
Bob with Eve’s probgFig. 3). There is no loss of generality fléction R, so that the projections X1 5 (Doglwy)
in assuming the probe to be initially in a pure stptg, for =(P1gW,), and similarly X,= (P ogwp) =(P4lw;). Two
a mixed state can be thought of as a partial trace over the
extra degrees of freedom of a larger probe. The particle and
the probe undergo joint unitary evolution represented by an 2f |®q,)=+|®,), basis{w; ,w,} is chosen in the plane contain-
operatorU, defined in relevant part by relations ing |®4,) and orthogonal to the mirror plane of the reflectien

| Do) =Xs|wy)+Xg|Wp), [D10)=Xg|Wq)+ X5|W2>-(3
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more basis vectorsw,) and|ws), are selected in the plane Prolj u|p]=Tr(E,p).
defined by the component®yy),|®,;) of [Oyg) and|D,q)
orthogonal to bothw),|w,). By applying the reflectio it
is found that| @y =|| P44/, and|wy) and|ws) can be picked
symmetrically, to obtain . Protj u|p1Prolf p(']
Gip=Protf p")| u]= Proff ]

Having obtained a particular outcome Eve uses Bayes’s
rule to computea posterioriprobabilities

| Do) =Xo|Wo) + Xq|wq) + X5|Wp) + Xz ws), (3b)
_ Tr(Ep")p;

P. '

| D 11) = Xa| o)+ Xa| W) + X1 | W) + Xo|ws).

Any other degrees of freedom of the probe are immaterial, “ _ Oy i o
because all four vectors of interdsb,,) are already con- Where P,=Proli u]=Tr(E,2p;p™™) is thea priori prob-

. S : ; bility of outcome u. Eve’s information gain from the
tained within the four-dimensional space spanned b)fl : / .
[Wo, W1 ,W,,Ws}. As stated earlier, all the coefficierXs ap- POVM is reflected in the reduction of her Shannon entropy

pearing in Egs(3a) and(3b) are real valued. regarding the probe state, from its initial levell,

For the evolution in Eq(2) to be unitary[or, more pre- — _~Pil0%pi to the a posteriori value H,
cisely, for a unitary operatdy to exist that is consistent with —Zq;,log; g, following the outcomew. The expected
Eq. (2)], it is necessary and sufficient that orthonormal vec-Valué of the gain is expressed as
tors |e,®w), m=0,1, transform into orthonormal vectors:

M= PL(Ho—H,)
y73
(em @W|U'UJen@W) = 2 (| Proe) = Sy,
=2, P, — 2 pilogz i+ di, 10g; Gy |- (5)
y73

m’,m=0,1
. . ) An alternative metric of Eve’s success is the reduction of
which expands into constraints Renyi entropy from its initial leveR,= —log, =p? The ex-
1 o2+ [ Dog|2= D 12+ | @ 2 pected gain in terms of Renyi information is
=X2+ X2+ X2+ X2+ X2+ X2=1, IR=> P,(Ro—R,)
M

(P10l Pog) + (P11 Por) = 2(X1 X+ X2Xs5) = 0. 5 S S ¢
=2, P, —log p; +log ai, |- (6)
These constraints can be satisfied by means of the following v 2 2 e

parametrization with four independent variableg., 6, ¢: o ) .
Finding the measurement with the greatest expected infor-

Xo=sin\ cos u, X1=COS\ COS @ COS ¢, mation gain is a difficult problem, which, except for the sim-
_ _ _ plest special cases, remains unsolved. Fortunately, the only
X,=Ccos\ cos @ sin¢, Xz=sin\ sin u, situation encountered in Secs. Il and IV is one where the set

{pW} consists of only two pure statgsV)=|y;){4|, p?
=), with equala priori probabilities p;=p,=3.
4 The Shannon informatiom” from Eq. (5) is in this case

Relations(4) also appear in the FP96 work. maximized by a simple two-dimensional von Neumann test

The joint evolution described by Eq2) leaves the par- Symmetrically arranged around the vectpyg),|y,) in the
ticle and the probe in an entangled quantum state, causingdibert plane spanned bl ),|#) [22]. This optimal test
correlation between Eve’s and Bob’s measurements. MatH€Sults ina posterioriprobabilities
ematically, every outcome observed by Bob is associated — Qoo COL — Qo= SiT?
with its own “projected state”p() of the probe. Eve thus 9117922 £ Oiz=0a=sim ¢
faces a task that can be described in the following way: Thgng in Shannon and Renyi information gain
probe, now known to be in one of a set of quantum states
{p®M} with corresponding priori probabilitiesp;, must be lop= 1+ sir? ¢ log, sir? {+cog ¢ log, cog {
analyzed to determine, insofar as possible, its particular state
p®. =1(1—cos Z)log,(1—cos Z)+ 3(1+cos Z)
Let us assume that Eve employs a so-called positive op-
erator valued measuf®OVM) [20], believed to be the most

eneral test to which a quantum system may be subjected R :
?21]. A POVM is construgted arounZi a set ofynon—negfative |opi=1+logy(sirf" £+ cost ) =logy(1+ cos 2), (78)
operatorsE,,, which add up to the unit matrix. The POVM
has as many possible outcomes as there are operators in tifiere the angl¢ is defined by
set{E,}, and, when applied to an input state represented by
density matrixp, produces each outcomewith probability Q=sin 2= (| o)) (7b)

X5=COSN\ sin # cos¢, Xg=—COS\ Sin 4 sSin ¢.

Xlog,(1+cos Z),
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TABLE I. Interpretation of events in a B92 transmission.

Alice transmits u v

Bob measures {uu? v {uu? vV}

Bob detects u u v v u u v v
Interpretation inconclusive error inconclusive 1 inconclusive inconclusiye error

mann test just described maximizes Eve’s Renyi information

as well as her Shannon information. We will henceforth as-

sume that Eve employs this symmetrical test. and leaves the probe in the corresponding projected state
The results of this section will now be applied in the |1//i,,-> (or, more precisely, the normalized version theyeof

context of B92 and BB84 protocols. In each case, parametegiven by Eq.(8). The error rate between Alice and Bob is the

N, 0, from Eq. (4) will be related to Bob’s error ratg, frequency of events identified as errors in Table |, relative to

and to the overlaf® of the two-state vectors which, as will error and correct reception events combinéddconclusive

be shown, Eve needs to distinguish. Equati@n confirms outcome events are not included in the couince both

the intuitive understanding that Eve’s advantage is increasedlice’s and Bob’s choices are random and symmetric, the

as the two states move closer to orthogonality. When therror rate is expressed as

parametera,u,6,¢ are tuned to minimize the overlap for

It is proven in Appendix B that the symmetrical von Neu- P, =Prolfjli;{j ,i_}]=||1//i,j||2, where [ )= (j|U]i@w)
8)

a fixedE, an eavesdropping apparatus results that yields Eve E= PuatPvy _ Puu
the most Reny{and Shannoninformation consistent with a PuvtPuutPvutPvy PuvtPui
given error rate between Alice and Bob. Il
u,u
= 50 9
IIl. INFORMATION LEAKAGE g, all 4[| o l1* ©

AND ERROR RATE IN B92
where simplification follows from the symmetry properties
A. Eavesdropping in B92 of Pi,j 3

Nonorthogonal statels1) and|v), which make up the al- Next consider the eavesdropper Eve, who seeks to distin-
phabet of a B92 transmission, cannot be reliably separate@uish statesy; ;) from one another in order to infer Alice’s
on every occasion. Rather, the protocol calls for a detectoand Bob’s data. It can be observed from Table | that Eve
that can identify the particle state with certainty some of theneed in fact only distinguish betwedwo pure states, )
time, and at other times indicate an “inconclusive” out- and|#, ), for all other events appear as errors or inconclu-
come, later to be discarded. The simplest implementation ofive results to Alice and Bob, and as such are announced and
such a device, and the first one proposed, is based on a p&fmoved subsequently in the protocol. The problem of opti-
of von Neumann measuremeiifd. Although the number of mally distinguishing between two pure states has already
inconclusive results can be somewhat reduced with a POVNpeen discussed in Sec. Il, where it was concluded that Eve
design[23], it will be assumed here that Bob has chosen thénust minimize the overlap
less efficient von Neumann method. This assumption not
only makes the optimization problem in Sec. Ill B below Q= (ol Y. _ K it g, 0| (10)
more tractable, but also recognizes that Bob, unlike the hy- | ol v [l fl?
pothetical Eve, is constrained by technological reality, and ] . .
therefore might well be interested in the simplest, rather tharl his she does by manipulating the four independent param-
the most efficient, type of receiver. etersi,u,6,¢, which control the matrix elements, in Eq.

Operation of B92 in its von Neumann variant is illustrated (4), and through them® ;) in Eq. (3), the projection vec-
in Table I. The carrier particle, transmitted by Alice in one of tors |¢; j), and ultimately the error ratg, Eg.(9), and the
the two state$u),|v), is measured by Bob in one of the two overlapQ, Eq.(10). The conditional minimun®,,(E) of Q
orthonormal base@’u_}, {V,V_} (see Fig. 2, chosen at ran- subject toE = const leads via E(7) to the expression for the
dom. Bob’s detection ofv) rules out the input state), and maximum Renyi information on error-free bit§,(E) Eve
therefore indicates with certainty stapg), and hence bit can obtain for a given error rate.
value 1; and vice vers#) indicates|v) and hence bit value In what follows, we shall drop the modulus sign in Eg.
0. Measurement outcom¢8> and|v>, which are each con- (10). This simplification is possible because the conditional
sistent with both inputéu) and|v), are discarded as incon- minimum of Q (without the modulug will turn out to be
clusive. positive for low error rate§, and decrease with. Analysis

Let us denote asi{j) the event in which Alice transmits
stateli), and, following the joint evolutiotJ of |i) with the
eaves_droﬂp'nq probp, BOb. detects outcorg, b 3The “disturbance”D adopted as the measure of eavesdropping
e{u,u,v,v}. Given Alice’s choice of and Bob's choice of jntrusiveness in Ref(13], in our notation becomes simpR, -
basis{j,j}, quantum mechanics dictates that the evérjf)(  This is equivalent to the inclusion of inconclusive outcomes in the
occurs with probability denominator of.
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may safely end whe®,,(E) reaches zero, for at that error ¢ peg=sr=p
rate the eavesdropper already has complete information
about the transmissiolR=1. Consideration will also be
limited to error ratefEE <%, because only a perverse eaves- s
dropper would use a strategy with an error rate higher than
chance.

02 =

B. Optimization of eavesdropping in B92 ! o ' am

In searching for the conditional minimu®@,;,(E), the (a) {b)
first step is to obtain explicit expressions terandQ. This o _ )
is accomplished through direct substitution of carrier states FI(.B' 4' (8 Realizations off and Q for various SUbopF'mal
from Eq.(1), and the unitary evolution from E¢Q), into Eq co_mbnnatpns _of parameteﬂsu,q,cﬁ_(boxes), and the condltlon_al

! . Lo ! iy minimum implied by Eq(13) (solid line), for the case when carrier
(8), to obtain the required projection vectqig ;) for use in

. . . . statesu, v make anglex= /5 with basise,, €. (b) The error rate
Egs. (9) and (10). Simple algebraic manipulations repro- Eax at which the eavesdropper can obtain complete knowledge of

duced in Appendix C lead to the transmissionQ min(Emad =0, as a function of angle.
H’r/’uu2 1( ”‘/’uvz_”':buu2 PR i ; ;
E= . =_ (1= _ﬁ) cated toQ=0. Validity of the optimization algebra carried
lpaall*+ Il 2 (1720 el 9% out in Appendix D is indirectly confirmed by the fact that the
1 d co2 2a ) various realizable poin_tSE;Q} all lie abpve and to the right
=|1- - _ , of the curveQ,,(E). Figure 4b), obtained by solving nu-
2 1-a sir 2a—c sin 2 merically for E in Q,,;i,(E)=0, shows, as a function of angle
. . a, the smallest error rate that permits the eavesdropper com-
Q= <"//”'#‘//"2'_> = (a+b)—(1+ b)3|r.12 2atc S'r_] 2 ' plete knowledge of the transmission.
[l ol (1+d)+(—d—a)sin* 2a—c sin 2« The eavesdropper's Renyi information on error-free bits
1D R (), computed fromQ,,(E) via Eq. (7), is depicted by
solid line in Fig. 5. For error rateE =0, we haveQ,,;,=1 and
IR.=0, confirming that no information can be extracted
a= Oy D+ P ® 0= 2X X3+ 2X 1 X5+ 2X5Xg without inducing a disturbance. Higher error rates, reflecting
) _ i progressively more intrusive eavesdropping activities, are ac-
=sir? A sin 2u+cos \ cos X sin 2, companied by greater information gain to Eve, until the point
E=E . is reached where Eve has complete information.
The dotted line in Fig. 5 illustrates the same information

where

b= (I)OOCD 11— (I)Olq) 10— 2X0X3+ 2X1X2_ 2X5X6

=sir? \ sin 2u+cog \ sin 20, gain vs error rate tradeoff for a family of eavesdropping
strategies described by Ekeet al. [10] as “translucent
CZ 2P oo Doy P 1) = 2P 14(D 0= D) eavesdropping with entanglemgnivhich in our present no-

) tation take the form
=2(X1*X5)(X5*Xg)=C0S \ Sin 20 cos 2p,
luew)— Ulugw)=xX|u®w,) +Yy|vaw,),
d2 02— 02 = X2+ X2+ X2+ X2— X2— X2 ’ !
=sir® A+cod \ cos . (12) [vow)—Ulvew)=yluew,) +x|lvow,),
The conditional minimumQ ,;,(E) is then found using the Where
method of Lagrange multipliers, as described in Appendix D.
The desired solution fofA,u,6,¢} is defined parametrically
on an auxiliary variabley by relations

|wy,) = cos y|wq) +sin y|w,),

|wy) = sin y|wy) + cos y|w,), (14
\ 0 ) sin vy » Ccoséd
=p=0, snB=grr5, cos ~ cosy’ I® B I®

— O y<§$, (13 B
0.5 — 0.5

where sins=sin 2a/\1+sir 2a, cosé=1/\/1+sir? 2, 0 =T -
<é6<wl4, and where angleg and 6 are chosen so that [
cos 2p=0 and sin #=0. The quantitie€ andQ,,,(E), and ) 01 0.2 £
the unitary evolutionU, are computed from Eq(13) by
means, respectively, of EqL1), and of Eqs(4), (3), (2). @ ®

The relationshipQ,,(E) implied by Egs.(11) and (13) FIG. 5. Eavesdropper's informatidft on error-free bits versus
for a particulara= 7/5 is plotted in Fig. 4a), together with  the error rateE in B92: the attack based on EG.3) (solid); “trans-
points{E;Q} resulting from other, suboptimal combinations lucent eavesdropping with entanglemeritt0] (dotted; the FP96
of \,u,0,¢. For reasons already explained, the plot is trun-attack[13] (dashed
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TABLE Il. Interpretation of events in a BB84 transmission.
Alice transmits u u v v
Bob measures| {u,u} vV} {u,u} {vv} {uu} v {u,u} {vv}
Bob detects | u | u v v u |u| v v u u |v| v u u v |v
Interpretation 1| errof incont incon- | error| O| incon-| incon- | incon- | incon- | 1 | error| incon-| incon- | error| O
clusive | clusive clusive | clusive | clusive | clusive clusive | clusive

and where x=cos(+w)/cos v, y=sin(a—w)/cos v,
sin 2w =sin 2« sin 2y. The single independent parameter

used for each bit, and bits where the transmitting alphabet
did not match the receiving one are discarded as inconclu-

0< y< /4, controls the intrusiveness of the strategy: lowersive. The operation of BB84 is illustrated in Table II.

values ofy produce higher error rates, but also higher infor-
mation yields to Eve. It follows immediately from E¢L4)
that

|5 =(VUluew)=x cos Z|w,),
|, 3)= (U[U[vew)=x cos 2w,),

|4y, =(ulUluew) =y cos 2v|w,),

and with the aid of Eqs(9) and (10), E=y?/(y?+x?),
Q=(w/w,)=sin 2y, which is the result plotted in Fig. 5.
Finally, Fig. 5 also shows information gain from the
eavesdropping strategy of FP98ee Eq.(52) in FP9q
(dashed ling As noted in the Introduction, this strategy is

believed to be the strongest in the sense of Eve’s knowledge

averaged overll transmitted bits. However, it is Eve's
knowledge of bits receivedrror-free rather than of all bits

on average, that is material to Alice and Bob if they want to

secure their transmission by privacy amplificat[@h When

It shall be assumed that Eve is capable of preserving the
projection state ; ;) of her probe until the alphabets are
disclosed. Thereafter, as Table Il makes clear, Eve must only
distinguish betweenwo pure states associated with error-
free transmission between Alice and Bob. With the notation
of Eq. (8), the pair of states to be distinguished is either
| buw) | Paw, or [¢y).|¥vy), depending on which alphabet
had been used for the bit. In the same manner as for B92, and
similarly taking advantage of the anticipated symmetry be-
tweenu andv, we find the BB84 analogs of Eq§9) and
(10):

_ Puyu*-l- PEu"’ Pv,T" PV,V

Puot Puut PvvtPovtPuutPootPuvtPov
i il + Il

o, + -+ b, P+ Hpaall*”

E

_ Wuslvam _ (ol v
[l ~ Tl

Q

the figure of merit for eavesdropping attacks is changed ac-

cordingly, one can observe from Fig. 5 that the FP96 strategy
from the strongest becomes the weakest of those plotted,

while the attack represented by Ed.9) is seen to be the
most powerful.

IV. INFORMATION LEAKAGE
AND ERROR RATE IN BB84

A. Eavesdropping in BB84

Our analysis of BB84 follows the same general path as

that of the B92 protocol in Sec. Ill. In BB84, Alice transmits
one of the two state),|i), which Bob subjects to one of

the two von Neumann measuremefits}, i,j e {u,v}. The
parties subsequently announce which alphdbetr v) was

i(a+b)+(d—a)3 sir? 2«

B. Optimization of eavesdropping in BB84

As in Sec. lll,Q needs to be minimized over all combi-
nations{\,u,6,¢}, subject to constrainE = const. Algebraic
manipulation given in Appendix C, with the same notation
a,b,c,d as before, see E¢12), yields explicit expressions

(1-d)+(d—a)sir’ 2«

E= (1—d)+(d—a)sir? 2a+ (1+d)+ (—d+a)sir? 2«

1-1(d+a)
BT

i(d+a)+b

o= Vi(1+d)+(—d+a)l si? 2a+ct sin 22+/L(1+d)+(—d+a)} sir? 2a—ck sin % V[1+i(d+a)]2-

1-2E+b

V[2—2E]2—}c?

1

2
5C

(15
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I® T

= For another comparison, the dotted line in Fig. 6 illus-

e trates the so-called “measurement of intensity attack
7l [12], based on the unitary transformation
05 2B .
o Ty [y
: luew)—|u)® |W1>COS(Z—§ +|W2>sm(z— E”
0 | 1 | §
[ 0.1 0.2 0.3 0.4 E o . o 'y - ’y
FIG. 6. Eavesdropper’s informatidi¥ on error-free bits versus ugw)—|ue |W1>COE(Z * E) * |W2>S'”(Z+ 2/
the error rateE in BB84: the attack based on E@L6) (solid);
Breidbart basis attadl®] (box); “measurement of intensity” [12] T
(dotted; the FGGNP97 attackl4] (dashel Osvys 5

where, as is normally the case in the context of BB84, we le{yhen Alice transmits in the basi{s,u], Eve inflicts no dis-
a=m/8. The conditional minimum ofQ subject t0 E  t,rhance and learns the bit to the extent that she can distin-
=const results when guish the two vectors in square brackets, whose ove@ap
. =cosvy. Conversely, if Alice has chosejv,v}, Eve learns
A=wp=0, cosP=1, —1<sin2p=1, nothing and intrg/duces an error with probability (1
—C0sy)/2.
Finally, we turn to the FGGNP97 eavesdropping attack,
illustrated by the dashed line in Fig. 6, which was proven to

a=b=sin2¢, c¢=0, d=1,

E=1(1-sin2¢), Qmmzmz _ 2 be the strongest from the point of view of Eve’s Shannon
2-2E 1-E information averaged oveall intercepted bit{14]. As in
(16) Sec. lll, however, focusing only on bits received error-free

by Bob materially alters the situation, making the attack rep-
resented by Eqq16), rather than the FGGNP97 attack, the
greatest threat to Alice and Bob, especially at high error
rates.

(see Appendix E As in the case of B92y,u,6,¢ from Eq.
(16) can be substituted into Eq®&l), (3), (2) to find explicitly
the evolutionU associated with the optimal eavesdropping
strategy’

The solid line in Fig. 6 shows Renyi information on error-
free bitslr'ﬁa,(E), computed fromQ,,,(E) by means of Eq. V. CONCLUSIONS AND DISCUSSION

(7). It can be seen that Eve can learn nothing without induc- \When Alice and Bob implement a quantum cryptographic
ing a disturbance, and has complete knowledgéhwf error-  key exchange over a noisy channel, they must allow the pos-
free part of the transmission at error raie=3. sibility that channel errors are eavesdrop induced and that
The result from Eq(16) can be compared to the eaves- Eve has obtained a nonzero amount of information about the
dropping strategy described by Huttner and EKBit These  key. Security can be recoverédith a performance logsy
authors consider a situation where the eavesdropper intefgjassical” privacy amplification, if Alice and Bob can use
cepts, measures, and retransmits particles in some basis ifivailable parameters such as error rate to upper-bound Eve’s
termediate between Alice’s;={u,u} and B,={v,v}. Itis  advantage. The appropriate measure of advantage has been
shown that all such strategies induce the same errorEate shown to be Renyi information on bits transmitted error-free
=3, and that the so-called Breidbart basis “half way in be-from Alice to Bob. Previous optimization work, however,
tween” B, and B, yields the eavesdropper the most infor- not being specifically tailored to the quantum cryptographic
mation. It can now be seen that this Breidbart basis attacksontext, considered onighannorinformation averaged over
marked by a box in Fig. 6, dominates all eavesdropping strata|| transmitted bits.
egies with 25% error rates, and not just those considered in |n this paper, we find the requisite upper bound on Eve’s
[9]. On the other hand, if the eavesdropper wishes to reducrenyi information on error-free bits. This bound can be com-
the error rate fromE={ to, say,E=3, she could do better puted from Eq(13) for B92 and Eq(16) for BB84, and is
than simply apply the Breidbart measurement to half the bitglotted against the error rate, respectively, in Figs. 5 and 6
and let the other half proceed undisturbed to Bob. The lattefsolid lineg. The switch from Shannon to Renyi information
method would place her on a straight line connecting the boxhanges the value of the bound, but, thanks to the link be-
in Fig. 6 with the origin, which lies below the cunt§,(E).  tween the two measures established in Appendix B, does not
affect the choice of eavesdropping strategy. Focusing exclu-
sively on bits received error-free by Bob, on the other hand,
“It is interesting to note that the solution given by E#6) can al_ters both the bound and _the optimal strategy. As Seen in
also be obtained by slightly altering the FGGNP97 derivation. Spefi9S- 5 and 6, eavesdropping attacks that are or might be
cifically, it is obtained if the information gain under the error-free OPtimal in the sense of Eve’s knowledge of all bits are no
condition [the first of Eqs.(72) in the FGGNP97 workis maxi-  longer so when the figure of merit reflects her knowledge of
mized instead of the overall information gdifiq. (73)]. Together ~ the error-free part of the transmission. This is particularly
with the link between Shannon and Renyi information establishedioticeable at higher error rates, where the set of error-free
in our Appendix B, this offers an alternative proof of the results of bits significantly differs from the set of all bits. To correctly
this section. determine the degree of compression required at the privacy
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amplification stage, Alice and Bob must concentrate theitomplacent Alice and Bob might have thought impossible. In
attention on the former set. this example, security theorems fail because Eve is transmit-
The treatment we have presented appears to cover all iiing to Bob a particle staténamely, the vacuum stgtehat

dividual eavesdropping attacks not forbidden by physicadoes not lie in the same Hilbert plane with the states he
laws. Subject to the limitations discussed below, no permis€Xpects, and Bob does not register this condition as an error.
sible device can provide Eve with greater knowledge for gCounting each nondetection as an error would resolve the
given error rate than indicated by the uppermost curves iflifficulty, but is generally impractical because of “natural”
Figs. 5 and 6, at least so long as Alice and Bob use théSSes in the channel. An alternative approach is to design
versions of B92 and BB84 protocols described in the begint€ System so that no particle state can be transmitted by Eve
ning of Secs. Il A and IV A.(In particular, Bob must be yvlthout the 'I’ISk'Of causing an error; one such design, mvolv.-
using von Neumann detection in B9ZArmed with Eqs(13 N9 & combination of a strong and a weak pulse, appears in
and (16), Alice and Bob can be confident that after privacy Ref. [5]. Safety of this and similar co_untermeasures, how-
amplification their key is secure, in the sense that Eve i€Vel, does not follow from the analysis we have presented,

exponentially unlikely to have more than token knowledge®nd must be proven separately.
of it. Finally, let us mention a possible enhancement to known

It is important, however, to point out known limitations of duantum cryptographic protocols that is suggested by the
our result. First, it has been assumed throughout that EvBresent work. At the core of quantum cryptography is the
subjects each of Alice’s bits to identical and independenf€lationship between the maximum information the eaves-
individual attacks. In the alternative, Eve could direct each ofifOPPer can extract, and the disturbance she necessarily in-
Alice’s particles into a separate probe, and subsequentl oduces into the transm|§3|cﬁ&]. The error rate need not be.
make a single quantum measurement of all probes at oncH!€ Sole measure of this disturbance. Any other quantity
Even more generally, Eve could entangle all particles with 2vailable to Alice and Bob, for example, the rate of incon-
single probe. Mathematical analyses of such attacks, whicflUSIveé outcomes, can serve the same purpose, so long as
have been respectively termedllectiveand joint, only re- firm connection is demonstrated between deviation of this
cently started appearing in the literature. Although collectivequ"’}m!ty from Its mtgrference-free level, and th_e eavesdrop-
and joint attacks at present seem impractical, they are a suBE"S information gain. Indeed, se\(eral glternatlve metrics of
ject of intensive investigation. However, such attacks are bedisturbance have already been investigai8l but their
yond the scope of this paper. eavesdrop-detecting power in the context of quantum cryp-

Secondly, it has of course been assumed that carrier stati9raphy is yetto be explored. It seems likely that the use of
|uy,V),[uy,[v) all lie in the same Hilbert plane, and that Bob additional indicators, along with t.h(_a error rate, Woulq make
makes von Neumann measurements in that plane. Let us ndfa® €avesdropper’s task more difficult, and hence improve
that a quantum cryptographic implementation may someSystem th_roughput by allowing AI_|(_:e_ and Bob to secure the
times violate these assumptions in ways not immediately apt_ransmlssmn at the cost of sacrificing less data. Expected

parent to Alice and Bob. For example, a single photon po_values for many such indicators can be constructed with ref-

larized vertically,|1,), and one polarized diagonallji ), erence to Table | in the same manner as the error rate in Eq.

are nonorthogonal states that satisfy the requirements &) and used along with E¢9) as an additional constraint in
quantum cryptographic protocols asand v. However, a optimizing information gain on_the eavesdroppers behalf:
slight optical misalignment in space, or a slight difference inEffectiveness of the various disturbance metrics and their

spectral profile, could reduce the overlap sinletween the combinations as estimators of information gain must remain

two states, or even render them orthogonal, and leave tHfé Subiect for future investigation.

system vulnerable to eavesdropping. Similarly, the overlap

betweenn-photon state$n;), |n ) is smaller than between ACKNOWLEDGMENTS

likewise polarized single photoriand tends to zero for large . . .

n), so that multiphoton states, if occasionally emitted by Al-  This research is supported in part by the Focused Re-

ment, the transmission becomes vulnerable if Alice and Botice of Scientific Research, and the National Science Foun-

use a carrier particle that, unbeknown to them, possesses &ation.

internal structure Eve can propeOne possible attack on

multiphoton states is'described.in detail in REI9]; ONe  APPENDIX A: SYMMETRIES OF THE EAVESDROPPING

possible defense available to Alice and Bob is to adopt the APPARATUS

worst-case assumption that all multiphoton bits have been

intercepted, and use extra compression at the privacy ampli- In this appendix we prove that the eavesdropping probe

fication stagd 18]. may be assumed, without loss of generality, to have some of
For an example of another kind, consider a B92 eavesthe same symmetries as Alice’s transmitter and Bob’s re-

dropping strategy wherein Eve intercepts each passing paceiver.

ticle and measures it in the same manner as Bob would. The first symmetry to be considered is a reflectiyin

Whenever Eve obtains a conclusive result, she learns the datae carrier particle space that interchanggs e, . An eaves-

bit for certain and retransmits the particle error-free; anddropping probe will be calle@&k-symmetridf there exists an

when Eve’s result is inconclusive, she blocks the particle s@xtensionR=R® R, of R into the space of the probe, un-

Bob receives nothing. Ultimately, the entire transmission isder which both the evolution operatorand the initial probe

error-free, and Eve has complete knowledge of it—a result atate|w) are invariant. Although Eve is under no obligation
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to employ anR-symmetric device, we shall argue that, for lead to an eavesdropping device at least as effective as one

any probe lacking such symmetry, there exists Rn  based orlJ or U’. This completes the proof.

symmetric variant at least as effective for eavesdropping pur- Consider next another symmetry, represented by the

poses. transformationz,, in the Hilbert space that consists of re-
Recall that our model views the transmission as a series gilacing all vector projections and operator matrix elements

independent events, in which Alice emits a particle in statédn some orthonormal basig’ with their complex conjugates,

xe{u,v,u,v}, Bob detects it asye{u,v,u,v,i} (wherei  and call an eavesdropping devigesymmetridf there exists

stands for an inconclusive resyland Eve obtains an out- a basis)V such that both the evolution operatdrand the

comez from the measurement of her probe. The joint prob-initial probe statdw) are invariant undeg,,. As before, we

ability distribution PyxyAX,y,z), known to Eve, implies sta- shall construct an equally effectiv&symmetric alternative

tistical dependence betweenand {x,y}, from which Eve for any probe lackingz-symmetry.

derives her knowledge of the key. It also implies statistical Since probabilities of events in quantum mechanics are

dependence betweenandy, which Alice and Bob estimate given by moduli squared of vector inner products, two physi-

through public discussion and scrutinize for evidence of poseal systems related to one another V&g, yield the same

sible eavesdropping. event probability distributiofPyy AX,y,2), and are therefore
Since the state paifsi,u},{v,v} play symmetrical roles in substantially equivalent to all parties. Let us now selétio

the protocol, a statistical connection betweeand an event include vectorgey),|e;), and|w), and letU’ be the image of

involving u has the same worth to Eve as a similar connecU underZ,,. Since carrier statds),|u),|v),[v) have real pro-

tion involving v. In mathematical terms, if two physical sys- jections and are hence invariant undgy,, transformation

tems give rise, respectively, to event probability distributionsz,,, of the entire Hilbert space is reduced to repladihgith

Pxyz and P4y such that they can be obtained from oneU’. It follows thatU andU’ represent substantially equiva-

another by interchangingu and v [i.e., PxyAu,v,z) lent eavesdropping apparata. Defining

=P{yAV,u,2), etc], then Eve can expect to learn the same

amount of information from these two physical systems. i

(This amount is explicitly computed in Secs. Il and )V.

Alice and Bob’s analysis oPyy, and Py for evidence of

eavesdropping would also yield identical conclusions, so N-W@[(l/ﬁ)'i

1 0

_"_I
00U®

V2 )

V2
—-1WV2

0 0o _
0 1)1 |W>:|W>®(1/‘f2
long as Alice and Bob employ symmetrical indicators such V2 ]
as the error rate, which are themselves invariant under the ~ -
interchange ofi andv. Consequently, the two physical sys- it is found, as before, thad is unitary; that the probgJ;[w)}
tems corresponding t®yy; and P}y, are substantially IS Z-symmetric pecause both and |w) are invariant und_e_r
equivalent to all parties. Z;V;.and | that, with the proper measurement of the auxﬂ@ry
Let U and |w) be the evolution operator and the initial Particle,U reduces to a coin toss and equiprobable applica-
state of an asymmetric probe, and let the associated evelpn of eitherU or U’. The invariance ol and [w) under
distribution bePyy,. The physical system associated with £ means, of course, that in basig all matrix elements of
the companion distributio. , can be obtained by every- U and all projections ofw) are real numbers.
where interchanging andv. However, since both the trans-
mitter and the receiver are invariant with respect to this in- APPENDIX B: RENYI AND SHANNON INFORMATION
terchang€in that they generate statistically the same events

before and after Jt it is sufficient to interchange andv 50 15 distinguish between tveopriori equiprobable states,

only in t,he eavescljrorfping probe, b}/l replaciigwith its  then the test that yields on average the most Shannon infor-
image U’ underR,: U'=(Re®1)U(Re "®1). For the rea-  mation, also yields on average the most Renyi information.

Here we prove the following statement: If a POVM test is

sons just statedU and U’ yield substantially equivalent In the case of twa priori equiprobable states, Eq&)
eavesdropping systems. Now define and (6) reduce to
~ 1 0 0 0 y
Uu=uUe +U'® , | =E P.[1+0y, log, q;,+0,, l0g; 45,1
00 0 1 m
= 0 = 12 = P i[(1+1,)lo - -
2 2 = Ox(1+r,)+(1—r, )logy,(1—r,)],
RER®1® 1 O)’ |W) = |wy® 1/‘/2). T2 w1092 w n) 1092 n
It is immediately evident that is unitary; thatR is a [R= P [1+lo 2 12 )= P log.(1+r2
reflection(it is accomplished by an interchange of basis vec- % ul 9291, +02,) ] % w 1002( )
torg; and that the probe represented By;[w)} is R- (B1)

symmetric, since botRUR™1=U andR|W)=|W) hold. The
rightmost factor in the tensor product can be interpreted a
the Hilbert space of an auxiliary spiparticle. If Eve sub-
sequently measures the auxiliary particle in the basis f(X)Z (1+VX)IN(1+ VX)+ (1= VX)In(1— VX),
{(0,1);(1,0}, the evolutionU reduces to a coin toss, followed (0=( Vx (

by equiprobable application of eith&ét or U’. ThusU can g(x)=In(1+x)

where r,=q;,—0y,, SO thatqy,=3(1+r,), gz, =3(1
=r,). Define on the interval &x<1 functions



and evaluate their derivatives
g’(x)=(1+x)‘1>0,
g"(x)=—(1+x) 2<0,

f’(X) = [|n(1+xl/2) _ |n(1_X1/2)]%X_1/2>0,

1 1
_ 1y—1/21—1/2
f7(x)= —F1+X12+ 1 xI2|2% T2X

+[In(1+x"%) = In(1-x"9)]3(—-3x3?
+X1/2
2x¥2= (1=x)In T— 17| >0.

- 4x§77( 1-x)
(B2)

To prove the last of the four inequaliti€B2), consider

h(z)£2z—(1-2%)I 1tz
(2)=2z—( Z)nl_z,

which is positive on 8z<<1 becausé(0)=0 and

1 N 1
1+z 1-z

1+z
h'(z)=2+2zIn E—(l—zz)

1+z
=2z1In E>O (0<z<l).

Sincef”(x)>0 on the interval of interest, it follows that
f(x) is a convex function, with the property=\;f(5;)
=f(2\; ) for any set{\;} that sums up to 1. Applying this
in Eqg. (B1), we have for an arbitrary POVM test

2In(2)1"=>] PMf(ri)zf(E Pﬂri).
1 12

On the other hand, the quantilyZ'pt given by Eq.(7a) is

known to be the greatest Shannon information gain possible,

and therefore
21In(2)1 5= f(cos 20)=2In(2)1".
Noting from Eq.(B2) thatf’(x)>0, it can now be concluded
that for any POVM test
cos 2§>% P2

Consider next the functiog(x), which according to Eg.
(B2) is positively sloped,g’(x)>0, and concave g”(x)
< 0. With the aid of the inequality immediately above, con-
cavity of g(x) leads to

In(2)IR=>, P#g(ri)sg(z Pﬂri><g(co§ 20)
M n

R

=In(2)I%,,

Wherelffpt is the quantity given in Eq(7a). This completes
the proof.
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APPENDIX C: EXPLICIT EXPRESSIONS
FOR PROJECTION VECTORS 4 ;

Expressions forly; ;), i,j e{u,u,v,v}, are obtained by
direct substitution of carrier states from Ed), and the uni-
tary evolution from Eq(2), into Eq.(8):

| thuv) = (vIU[u®w) = (cos a(e,| +sin a(ey|)U
X (cos aley®@W) +sin ale;@w))
=|Do)cod a+|Pg)sir? a+(|Pyy)

+|®gg))sin a cos e,

|y =|Pog)cod a+|D;y)sirfa

+(|®10) +|Ppy))Sin @ cos @,

|u9)=|Pooycos a—|Pyp)sin? o

+(|® 1) — |Poy))sin @ cos @,

|¢uu_> = |(I)01>COS2 a— |(I)1o>5in2 a

| =|P11)cog a—|Dy)sir? @
—(|®10)— |Poy))sin @ cos e,

| g =|P10)c0S a—|PoySit «

+(|®17) — |Pgg))sin @ cos a,

|¢EU>:|@1000§ a+|(I)OO>Sin2 o
—(|®10)+|Poy))sin @ cos a.

Taking advantage of symmetrigisbod =[P 4% [P 14>
=[®o)?, (P11 P10)=(Pod Por), (P13 Por)=(Pod P10

(recall also that both these inner products are)reldh |2
+]|®oil|?=|D 14>+ P1d|?=1, and the identity cdsx
+sin* a=1—1 sir? 2a,
lu?=[Poal? cos” a+[|®yq? sir® a

+([| @14+ [ @od|*+2(P 14| Pog)) i @ coS @

+2(® | P p)SiM? @ coF a

+2((®gycos’ a+(Dysin’ a)(|Pyy)

+|®Dgg))sin a cosa

=[Poil?(1- 7 sir* 2a)
+([[Poo] ?+ (P 12| Poo) +(Pos P10)) 3 SINF 2ax
+ (P oy P19 +(P1d P1g))sin 2

=1(1-d)+(d+a)} sir? 2a+ct sin 2,
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[ul?=3(1+d)+(—d+a)3 sir? 2a+c3 sin 2,
[ ofi>=3(1+d)+(—d—a)3sir? 2a—c} sin 2a,
[, afi?=3(1—d)+(d—a)3 sir? 2a—c3 sin 2z,
l4aul?=3(1—d)+(d—a)3 sir 2a+c3 sin 2,

ladl?=3(1+d)+(—d+a)3 sir® 2a—c} sin 2a,
with the notationa,b,c,d of Eq. (12). (The result for| g5y
can be obtained fromy, ) by replacing a—a+3m, and

|#g,) can be obtained from interchanging indicds,,
—® ) Finally, evaluate the inner products

(it = (Pod P11)(cOS' a+sin' a)
+[—[[Pod®— @11l = (| P 1d*+ [ P
—2(® P y))]sir? @ cog «a
+(— (Do cod a+(Dqsir? a+ (P, cog a
— (Do Sir? @) (|P10)—|Pop))sin @ cosa

= (Do P17)(1— 3 sir? 2a)
+(—1+ (D Poy))3 SiM? 2a+ (D
—(@oo) (| 100~ |Po1)) 5 sin 2

=i(a+b)—(1+b)} sir? 2a+ci sin 2a,

(Yuul ) = (Pod P11 (cos a+sin' @)

+ 1 Pool >+ @ 12— (| P 1 >+ P4
+2(P 1 Py))]Si? @ cog a
+(—(®ggcog a— (D sir? a+(Pd,,/cos a
+(DoSi? a)(| P10+ |Poy))sin a cosa

= (Do P11)(1— 3 sir? 2a)
+(|Podl >~ | Posll*—(P1d Poy)) 7 SiM 2a
+((P 13| = (Pool)cOS 2e(|P 1)
+|®o)): sin 2

=3(a+b)+(d—a)3 sir? 2.
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APPENDIX D: CONDITIONAL MINIMIZATION FOR B92

The task of this appendix is to find conditional minimum
Qmin(E) of the quantityQ subject toE= const, over all com-
binations{\,u,6,¢}, whereQ andE are given by Eqgs(11)
and (12). Cases of interest are those where bB#i 3 and
Qmin(E)=0. Note that the denominator in the first of equa-
tions (11) is strictly positive, SOE<3 implies d>0. It is
convenient to introduce new variables

1—a sir? 2a—c sin 2 . atb+1
d » Q d )
(D1)

cog 2a
1-2E

>

E/

Minimization of Q subject toE= const is equivalent to mini-
mization of Q" subject toE’ =const, becausg’ is one-to-
one related td&e, andQ grows withQ' for any fixedE':

_ (atb)cos 2a+(1—dE') —sir’ 2a
h d co€ 2a+dE’
=)

(Recall thata is a fixed system parameter outside the scope
of the minimization problem.The interval of interest &E
<31 maps co$2a<E’'<+x.

Since the independent variableappears in Eq(12) only
through co$\, it is sufficient to consider &\ < /2. Most
of the following discussion deals with the special case
=0. It will be shown later in this appendix that the solution
associated withh=0 is also the desired global conditional
minimum over all values of.

In the case\ =0, Egs.(D1) and(12) reduce to

1
- cog 2a+E’

a+b+1

co¥ 2 ]

, (cos P+ 1)sin2¢p+1
Q= cos ¥

£ 1—cos X sin 2¢ sir? 2a—sin 20 cos 2p sin 2

cos ¥ '
(D2)

with only two surviving independent variablegand ¢. The
Lagrange multipliers theorem states that at any pind}
whereQ’ may be reaching extremum subjectEd= const,

at least one of the following two conditions must hold: either
(i) all partial derivatives oE’ on the independent variables
0, ¢ simultaneously vanish; dii) there exists a valuésuch
that all partial derivatives on the independent varialsles

of the Lagrange function

[cos P(1— ¢ sir? 2a)+ 1]sin 2¢— ¢ sin 26 sin 2o cos 2p+(1+)

F2Q'+(E'=

cos X (B3)
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Note that Eq.(D2) implies

1 E'+sin2¢ sif2a E'+1
cos2d 1—sin26 cos2psin2a  1—sin2a

and therefore each constraint cont@lir=const is contained
within the interior of some closed regiofl-1<sin2¢<1,
0<escos¥<1} where bothQ’ and E’ are differentiable.
This guarantees th&@’ would indeed reach its conditional
extrema at some of its Lagrange points.

The condition constraining partial derivatives Bf will
be addressed first. Observe that as a functiosg, &’ in Eq.
(D2) has the form

E,:AEd) Sin 2¢+ BE¢ COSs 2l,f)+ CE(}S’

where the  coefficients Ag,=—sif2a, Bg,=
—tan 29 sin 2o, Cg 4= (cos ») ! do not depend owp. The
roots ¢gq Of the partial derivative)E'/d¢ therefore satisfy

. AE¢ BEqS
SiN 2pgg= = ————===, CO0S Y= Ft——7——.
VAZ,+BE, VAZ,+BE,

(D4)

The other partial derivativéE’/d6 vanishes simultaneously
with dE’/d¢ when
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With change of variableg= (cos %) !, the above condi-
tion transforms into

J
= {*sin 2a\sir? 2a+(Z—1)+2}

% *7 sin 2a+ \Sir 2a+ (22— 1)=0 = z2=1

(D3

to which must be added any rootsad/d 6. The latter yields
only one relevant root cost2,= 1, as does Eq.D5) [recall
thatd=cos 2 is restricted to positive values to ensuge:
1in Eq. (12)]. The first alternative of the Lagrange theorem
is thus only satisfied with cost2=1 and [via Eq. (D4)]
sin 2¢=+1.

Turn now to the second possibility, that all partial deriva-
tives of the Lagrange function vanish. The Lagrange function
F can be analyzed in the same general mannek 'asal-
though the required algebraic manipulation is more exten-
sive. In particular, Eq.(D3) has the familiar formF
=Ay sin 26+ B, cos 26+ C,, with roots ¢, of the partial
derivativedF/d¢ given by

A B
JE'(6,¢) JE' (6, g0l 6)) Sin 2bg= = ———2— | COS Ypp= +
_— = __— e 2 2! 0 2 '
00 | < 95 a9 Ayt By VA By
é=go(0) (D6)
J
= — {*=AE,+BE,+Cg4}=0. . . "
g9 1= VAT BEy Ceg}=0 which reduce the simultaneous condition @ 6 to
J J
- {+ \/A2¢+ BZ¢+ Cyl= = {=(1=¢ sir? 2a+2)%+ (32— 1)sir? 2a+ (14 )z} =0,
wherez= (cos X) ! as before. Next rewrite the above relation as
J
= {+(1+ 22 sir? 2a)Z2+2(1— ¢ sir? 2a)z+[(1— ¢ sir? 2a)?— {2 sir? 2a]+(1+ )z}
J
== {A,z+ \B,z>+2Cyz+ Dy} xAy\Byz°+2Cyz+D 4+ (Byz+C,)=0 (D7)
and solve the resulting quadratic,
A%(Byz?+2C4z+ D) =B22%+ 2B,Cyz+C2% & (A2—B)Byz?+2(A2—B,)Cyz+ (A%D,—C%)=0 08)

Cy, [Ch AP—C)

Z,=— —=
ju 80

where

Co_ _) RN (@) e
B By(A5—By) ’

By, By | AS-B,

(c?,—BeD(,) 172
A2-B,

((1—5 Sir? 2a)?— (1+ ¢? sir? 2a)[(1— ¢ sir? 2a)?— {2 sir? 2a])1’2
(14 )%= (1+ 2 sir? 2a)

so that finally

((1—g sir? 2a)?(— 2 sirf 2a) + (1+ ¢2 sir? 2a)¢? sir? 2a
20+ 2= 2 sirf 2a

1/2
) =|¢|sir? 2«
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Cy
Z.=— o

—1+¢ sir? 2a=*(1+0)|{|sir? 2a
= Bg .

1+ ¢ sirf 2«

A

+ 2\ 7|sir? 2a= (D9)
By

Note that only the choice of positive sign in E@P9), together with{=0, can produce a roa=1, as required for the

existence of a valid value fof and to satisfyd>0, E< 3. Substitution of Eq(D8) back into Eq.(D7) demonstrates that,
solves for the negative sign in Eq®6) and (D7) and also yields the identity

VB,Z% +2Cyz, +D,=

BgZ++C0 Cg_Bng 12 .
A, —( AZ"B, =|{|sir? 2a,

which, together with Eqs(D9) and (D6), leads to explicit expressions for the first set of suspected extremum points

{ 00a ' ¢Oa}1
({2 sir? 2a—1)+2{ sir? 2a

-1_
(C0s Foa) "=2 1+ 2 Si 2a '
_ —-A, A, [sif2a—1-z, ({%sif2a—1)—2¢
VAS+B3  \ByZi+2C,z,+D, { sint 2a +{° sinf 2a

The above result is simplified by a change of variables: specifically, the identity
(COS Wp,) ~ 2+ Sir? 2¢o, SIN? 2a=(1+ 2 sir? 2a)) [ (£ sirf 2a—1)2+ 4,2 sin® 2a+4¢ sir? 2a({? sir? 2a—1)]
+ (14 &2 sir? 2a) [ ({2 sirf 2a—1)%+ 42— 4L(¢? sir? 2a—1)]sir? 2a

=(1+ 2 sir? 2a) " 2(1+sir? 2a)[ ({2 sir? 2a—1)2+4{2 sir? 2a]=1+sir? 2«

permits us to introduce a new paramejerefined by 1+sir2a 1 2 sin2a
%" 1—sif2a c0s24,.’ Bsc=1 sit2a

tan26..

Sin y=sin 2o, Sin 8, cosy=(cos X,,) * cos s, (D110

—-8<y=<s4, (D11a _ _

The points{6,¢} given by Eqgs.(D113 through (D119
where sind=sin 2a/+\/1+ sir? 2«, cosé=1/\/1+sir? 2«, 0 meet the preconditions for extremum according to the
< §<ml4. Equation (D113 covers the entire range-1 Lagrange multipliers theorem, in the case0. To deter-
<sin2¢<1 generated(with sin"22a<¢<+%) by Eq. mine which of them realize the desired conditional minimum
(D10). Equation(D113 covers as well the remaining point Of Q. evaluate the dependent variable§ Q" at the sus-
sin 2¢=1, which is also an extremum candidate by virtue ofPected extremum points. EquatiaiD?) yields with Eg.
the first Lagrange condition, see E@5). To each value of (D113
sin 2¢, corresponds exactly one positive value of cég.2 ) _

i ian i i sin sin y cos cos
Note th_at the negative sign in E@D6) gives cos 2, the Qb2 Q| o on= Y . Y 24 24
same sign as sindg. It can be freely assumed that both are a x=0 sind sindcosdé cosd
positive, since only the product siZos 2 appears in the

problem[see Eq(D2)]. _sin(y+ 8)+3 sin2y
Additional solutions result from E¢D8) in the degener- - Sin & cos o :
ate caseA2=B,, which is realized iff=0 or {=-2(1
—sirnf2a) 1. The first root, (=0, identically satisfies Eq. cosy siny
(D7) with negative sign chosen in Eq®6) and (D7), and  E{,=E’|%a %= — —— sirf 2«
A=0 cosé sinéd
leads to
sir? y\
Sin 2¢gp=—1, 0<cos Hp,<1, (D11b) —| 1= g5/sin 2¢
while the second root requires positive sign in E@6) and cog y+ 8)+sir? y 2 cog y+ 8)—3 cos 2y
(D7) and = coZ o —Sin® 2a= cod §
SiN2eoc=Agel VAG+B5.,  0<C0S2Wp.<1, +3 cos 2a, (D129

where and with Eq.(D11b



Qop=Q"| s v =—1,

Eo=E’ |§§6¢0b= Sir? 2a+(cos Fy,) "%, (D12b)

where in evaluation oEg, use was made of identities tah
=sin 2« and

tan 20p,= +/(cos 290a)*7— 1

= (1+sir? 2a—sir? 2¢g, Sirf 2a)—1

=CO0S 2pg, SiN 2.

It is evident that Eq.(D12b) parametrically defines a
single-valued functiorQ,.;,(E’) on the interval 1 sir? 2«
<E’<+. The same is true of EqD12g and the interval
1—sir? 2a<E’'<1+sir? 2«, with y=+§ generating the

end points of the interval; this follows from the signs of first

derivatives

!
Oa

dy

«cog y+ &) +cos 2y>0,

dE}

a . .
dy o« —sin(y+ 8) + sin 2y<<0,

|y| <8< ml4.

Furthermore, at the sole point of overl& =1+ sir? 2a,
both Eq.(D123 and Eq.(D12b) yield the same valu®’ =
—1, as can be seen by letting=— & in Eq. (D123. Taken
together, Eqs(D123 and(D12b) thus define a single-valued
functionQ/,,(E’) on 1—sir? 2a<E' <+, which is the en-
tire domain ofE’, see Eq.D1). The functionQ/,,(E’) is
illustrated in Fig. 7 by the curvé,.

The signs of the derivativedQg,/dy anddE;,/dy also
establish thaQ,,(E’) is a nonincreasing function d&’, so
that

Qr’nin(E,)gQr’nin(l_Sinzza) =3.

On the other hand, the quantiy,.= Q’|ﬁ<ic~:¢;0c that results
from substitution of Eq(D119 into Eq. (D2), is seen to be
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+3 A

-l
EI

1=sin?2 & 1+sin22 ¢

FIG. 7. Sketch illustrating relative position of conditional mini-
mum curvesQ'(E') for \=/2 (£, dasheg and forn=0 (L,
solid).

It now only remains to show th&/,,;,(E’), derived for the
special casa =0, still yields the lowest possible value Qf
when\ is allowed to vary between 0 andl/2. First let\
= /2 in Eq. (D1), which then becomes

E'=1-—sin2u sirf 2a, Q'=2sin2u+1. (D13
With 0< u <, relations(D13) parametrically define in the
plane{E’,Q’} a straight line segment, whose end points
lie on the curvely, see Fig. 7. Apart from the end point3,
lies everywhere above and to the right 6§, because, as
confirmed by the sign of the second derivative

széa_ d dQ(,)a 1 _ d dQ(,)a/dV 1
dEy2  dy |dEQ,| dEL/dy dy|dEj/dy| dE,/dy
d | cogy+d)+cos 2y 1
oL ——
dy | —sin(y+ ) +sin 2y| dEy,/dy
—1-—coq3y+ ) 1

>0

" [—sin(y+ 8)+sin 2y]2 dEj /dy

Ly has positive curvature.

Finally, consider the general case expression€Efo’,
Eq. (D1) with some fixedu, 6, ¢, and with varying\. With
substitution from Eq(12), E’ andQ’ have the form of bi-

everywhere not less than 3. Apart from the special caséinear fractions in cos\:

cos¥.=1, which leads identically t®Q/.=3, the ratio
A e _
Byl

decreases with sin2 for any fixed 6,.. Consequently,
sin2¢q. in Eq. (D11g and Q' in Eq. (D2) also reach their
lowest values when sinRis close to 1, hence

1+sirf2a+ (1—sif2a)(cos2y.) ~*
2 sin2a|tan26,, '

Q6c2Q6c|sin2a:1:COS2000+1+ =3.

C0S20,

Since, as already observed, all conditional extrem® of
occur at its Lagrange point§,,,(E’) given indirectly by
Egs. (D123 and (D12b) must be the desired conditional
minimum, andQ;,. must be the conditional maximum.

, AtBy co§)\_A,+ B,
“1-C,cofN M 1-C,co€\’

,_GA+H)\0052)\_G,+ H, 014
~ 1-C,co$\N * 1-C,cos\’ (D14)

where the indexed parameters are all independent tfis
evident that, withw, 6, and ¢ held constant, there is a linear
relationship betweelt’ and Q’. Equation(D14) therefore
defines a straight line segmedy, 5, (in general, a different
one for each combination ¢f, 6, ¢) in the planelE',Q’}.
One end point of the segment, corresponding\te 7/2,
necessarily lies on the ling;, by construction ofZ,. The
other end point, corresponding Xe=0, lies above and to the
right of the curvely, or, at most, orCq, by construction of
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Ly as the conditional minimum curv®/ (E’) for A\=0. ject to b=const instead. The inversion is permissible
Since L, has been shown to have everywhere positive curbecause, as will be shown, the conditional minimig),(b)
vature, the entire line segment, ,, must lie above and to is a monotonically decreasing functiontofin the domain of
the left of £,. The curvel,, derived from Eqs(D118 and  interest GsE<3.

(D11b), therefore represents the global conditional minimum  This last problem can be solved by inspection without

Q/in(E') over all values of\. This completes the proof. resorting to Lagrange multipliers. It is clear from
APPENDIX E: CONDITIONAL MINIMIZATION FOR BB84 E=3—3(d+a)=3—[si® N(1+sin 2u)
Here we show that Eq(16) represents the conditional +co \ cos H(1+sin 2p)],

minimum of the quantityQ subject to the constraint

E=const, withQ andE given by Eq.(15), over all combi- ) ) )

nations{\,u,6,¢}. Fortunately, it is sufficient to minimize b=sir’ \ sin 2u+cos’ \ sin 2¢

only the numerator ofQ, for it will be seen that for any ]

givenE the numerator attains its conditional minimum at thethat one can freely let cos92=1 to reduceE without affect-
same point where the denominator reaches its conditiondld the constraint variablé. But cos =1 immediately
maximum, i.e..c=0. The latter task is equivalent to mini- '€ads toE=3—3(1+b)=7(1-b), resolving the minimiza-
mizing b subject toE=const. Further simplification is ob- tion problem. A realizatior{\,u,6,¢} exists for every &E

tained by inverting the problem, so thatis minimized sub- <3, as Eq.(16) demonstrates.
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