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Security of quantum cryptography against individual attacks

Boris A. Slutsky,* Ramesh Rao, Pang-Chen Sun, and Y. Fainman
Department of Electrical and Computer Engineering, University of California, San Diego, Mail Code 0407, 9500 Gilman Driv

La Jolla, California 92093-0407
~Received 16 July 1997!

An attempt to eavesdrop on a quantum cryptographic channel reveals itself through errors it inevitably
introduces into the transmission. We investigate the relationship between the induced error rate and the
maximum amount of information the eavesdropper can extract, in both the two-state B92@B92 refers to the
work of C. H. Bennett, Phys. Rev. Lett.68, 3121~1992!# and the four-state BB84@BB84 refers to the work of
C. H. Bennett and G. Brassard, inProceedings of the IEEE International Conference on Computers, Systems,
and Signal Processing, Bangalore, India~IEEE, New York, 1984!, pp. 175–179# quantum cryptographic
protocols. In each case, the optimal eavesdropping method that on average yields the most information for a
given error rate is explicitly constructed. Analysis is limited to eavesdropping strategies where each bit of the
quantum transmission is attacked individually and independently from other bits. Subject to this restriction,
however, we believe that all attacks not forbidden by physical laws are covered. Unlike previous work, the
eavesdropper’s advantage is measured in terms of Renyi~rather than Shannon! information, and with respect
only to bits received error-free by Bob~rather than all bits!. This alters both the maximum extractable infor-
mation and the optimal eavesdropping attack. The result can be used directly at the privacy amplification stage
of the protocol to accomplish secure communication over a noisy channel.@S1050-2947~98!06304-5#

PACS number~s!: 03.67.Dd
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I. INTRODUCTION

Quantum cryptography is a technique which permits t
parties, who share no secret information initially, to comm
nicate over an open channel and establish between th
selves a shared secret sequence of bits. Each bit of da
encoded using an alphabet of nonorthogonal states of a q
tum particle, and therefore cannot be duplicated or meas
in transit without inducing a disturbance that would ul
mately be revealed through transmission errors. It is belie
that no eavesdropping attack consistent with the laws
quantum mechanics can compromise the secret data unk
ingly to the legitimate users of the channel. Principles a
procedures of quantum cryptography have been describe
the literature@1–5#.

In practice, however, a communication is not complet
free of errors even when no eavesdropping is present.
implement an unconditionally secure key exchange des
channel defects, the legitimate users, referred to as Alice
Bob, adopt the worst-case assumption thatall of their errors
are eavesdrop induced, and attempt to upper bound the
formation that may in such a case have fallen into the ha
of their adversary, the eavesdropper Eve. If this upper bo
is correctly estimated, a method known as~so-called ‘‘clas-
sical’’ ! privacy amplificationpermits Alice and Bob to distill
from their transmission a shorter key that is unconditiona
secure@4,6,7#. To establish a secret key in a noisy enviro
ment, therefore, the basic fact that no distinguishing inf
mation can be extracted from a pair of nonorthogonal sta
without perturbing them is no longer sufficient. Rather,
becomes necessary to relate the nonzeroextentof the in-
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flicted perturbation to the nonzeroamountof the information
that may be obtained.

Finding this relationship in the general case is a diffic
quantum-theoretical problem, which takes somewhat vary
forms depending on the particular perturbation and inform
tion measures that may be adopted@8#. In the context of
quantum cryptography, early work was limited to speci
classes of eavesdropping strategies, which broadened
time as the theory matured@4,9–14#. Until recently, only
so-calledindividual attacks were considered, wherein ea
data-carrying particle is treated by the eavesdropper inde
dently from other particles. In the most general such atta
the eavesdropper involves the carrier particle in an inter
tion with her own quantum system, referred to asprobe, so
that the particle and the probe are left in an entangled s
and a subsequent measurement of the probe yields info
tion about the particle. Some investigators are now turn
their attention tocollectiveattacks, where the eavesdropp
entangles a separate probe with each particle but meas
all probes as a single quantum system, and to even m
generaljoint attacks, where a single probe is entangled w
the entire set of particles@15–17#. Such attacks are espe
cially difficult to analyze, because they can take advantag
the various parity-type relationships between data bits,
closed by Alice and Bob subsequently in the protoc
Eavesdropping can therefore no longer be considered s
rately from error correction and privacy amplification. A
though collective and joint attacks have stimulated a gr
deal of interest, at present they seem impractical due to t
complexity@12,14#, and their theory is still at an early stag
of development. No specific joint attacks have yet been s
gested@16#.

The most general treatments yet of individual attac
which appear to include all strategies not forbidden by
laws of physics, are due to Fuchs and Peres@13# ~hereafter
2383 © 1998 The American Physical Society
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FIG. 1. Distillation of secret key from a quantum transmission. Alice and Bob arrive at privacy amplification compression levs by
summing estimates of possible information leakage at various stages of the protocol, together with an arbitrary safety margin.
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‘‘FP96’’ !, and Fuchs, Gisin, Griffiths, Niu, and Peres@14#
~hereafter ‘‘FGGNP97’’!. Both works investigate the
tradeoff between the information learned from a quant
test, and the disturbance induced by the test. FGGNP97
mally find the maximum obtainable information for a give
disturbance under conditions closely mirroring the so-ca
four-state, or BB84, quantum cryptographic protocol@1#; for
the so-called two-state, or B92, protocol@5#, FP96 construct
a suspected maximum and confirm it by numerical simu
tion.

The problems posed in FP96 and FGGNP97, however
their authors point out, were not designed to precisely re
cate those arising in a quantum cryptographic commun
tion. The latter can be illustrated with reference to Fig.
which sketches a procedure Alice and Bob might use to
fend their secret key against individual eavesdropping
tacks@4,7,18#. Starting fromraw dataobtained in the course
of quantum transmission, Alice and Bob first discard s
called inconclusivebits.1 They then exchange a series
block checksums, and where the checksums do not ma
use bisective search within the block to identify and disc
the error. The resultingcorrected dataare input into the
privacy amplification algorithm@6#, which produces a
shorter but more secure key. This last step requires, howe
an upper bound estimate of Eve’sRenyi informationon the
corrected data@6#. Eve’s information may come from bloc
checksums disclosed during error correction, from the r
but unavoidable instances when Alice’s device emits m
tiple photons in a single bit cell@4,18,19#, and, most impor-
tantly for the purposes of the present work, from individu
attacks on the carrier particles in the quantum channel.

Alice and Bob are thus in need of a theorem that rela
carrier particle disturbance, as expressed in terms of av
able parameters such as the error rate of a particular com
nication system, to Renyi information accrued to Eve w
respect to corrected data only. It can be shown that suc
result permits Alice and Bob to construct the so-calledde-

1Inconclusive bits are those whose value is not revealed with
tainty by Bob’s measurement, for example, those measured in
wrong BB84 basis by Bob. Inconclusive bits are an integral feat
of quantum cryptographic protocols even in the absence of cha
and detector imperfections.
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fense frontier, and ultimately to secure their data, at lea
against individual attacks, in the sense that Eve is expon
tially unlikely to end up with more than token knowledge
the final key @7#. Both FP96 and FGGNP97, on the oth
hand, assert bounds on Eve’sShannoninformation averaged
over all bits of the transmission, including those eventua
discarded because they are not received or received in
rectly by Bob. More precisely, with reference to Fig. 1, FP
relatesraw dataerror rateeT /m to Eve’sShannoninforma-
tion on raw data, and FGGNP97 relatessifted dataerror rate
eT /n to Eve’sShannoninformation onsifted data. Although
the FP96 and FGGNP97 results are of fundamental imp
tance, from the perspective of quantum cryptography it
necessary to consider Eve’sRenyi information oncorrected
data. Focusing only on the corrected data, i.e., only on
bits that are error-free to Bob, alters, as we shall see, both
upper bound of Eve’s information, and her optimal strate

The results reported in this manuscript apply to the sa
general class of individual eavesdropping attacks as F
and FGGNP97. However, we adopt as the measure of in
mation gain the conditional average appropriate for quan
cryptographical application. Starting with the FP96 eav
dropping interaction model, we formally solve for Eve
maximum Renyi information gainI max

R on bits not in error, as
a function of the error rateE observed by Alice and Bob, in
both B92 and BB84 contexts. The optimal attack that lea
to I max

R is also explicitly constructed, and is shown to b
superior~in the sense of Eve’s Renyi information on bits n
in error! to some of the most powerful attacks previous
known, including those from FP96 and FGGNP97 works

This paper is organized as follows. Section II reviews t
FP96 eavesdropping model, with the generalization nec
sary to cover BB84, and to use Renyi information instead
Shannon. The model defines the eavesdropper’s prob
terms of four independent parametersl, m, u, f. Sections III
and IV, dealing, respectively, with B92 and BB84, relatel,
m, u, f to the error rateE and to information gainI R on bits
not in error, and use the method of Lagrange multipliers
tunel, m, u, f for the maximum ofI R at any givenE. Our
main result is the relationship between the error rate and
maximum information gain, which can serve as input for t
construction of the so-calleddefense frontier, used by Alice
and Bob to secure their communication against individ
attacks@7#. Finally, Sec. V discusses application and som
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limitations of our theorem. The bulk of the algebraic m
nipulation is removed into Appendixes A–E.

II. THE EAVESDROPPING MODEL

Quantum cryptographic protocols BB84@4# and B92@5#
each involve a quantum particle in a pure state, prepared
the sender Alice and transmitted towards the recipient B
B92 employs two pure statesuu& and uv&, while BB84 addi-
tionally uses two statesuū&,uv̄& in the same Hilbert plane, an
respectively orthogonal to the first pair~Fig. 2!. In B92, Al-
ice sends towards Bob the stateuu& to communicate bit value
1, and the stateuv& to communicate 0. In BB84, she sen
either uu& for 1, uū& for 0, or uv& for 1, uv̄& for 0, and it is
subsequently disclosed which of the two alphabets was u
to encode each particular bit. The states for a BB84 tra
mission are normally chosen so thatz^uuv& z5 z^ūuv& z
5 z^uuv̄& z5 z^ūuv̄& z51/&.

We shall select basis vectorsue0&,ue1& in the plane of
uu&,uv&, in such a way that

uu&5ue0&cosa1ue1&sin a, uū&52ue0&sina1ue1&cosa,

uv&5ue0&sin a1ue1&cosa, uv̄&5ue0&cosa2ue1&sin a

~1!

for some 0,a,p/4. An orthonormal basisue0&,ue1& in
which the two equations in the left column of Eq.~1! hold,
can be found for any pair of unit vectorsuu&,uv& with real
inner product̂ uuv&5sin 2a; and where the inner product i
complex, it can be made real by adjusting the otherwise
bitrary phases ofuu& anduv&. A similar adjustment inuū&,uv̄& is
sufficient to ensure the validity of the remaining two equ
tions in Eq.~1!, because any companion vectors respectiv
orthogonal touu&,uv& in the same Hilbert plane can only diffe
by a phase factor from theuū&,uv̄& given by Eq.~1!.

Consider now a generic eavesdropping attack, as
scribed by FP96. The information-carrying particle prepa
by Alice in one of the statesuu&,uv&,uū&,uv̄& collides en route to
Bob with Eve’s probe~Fig. 3!. There is no loss of generalit
in assuming the probe to be initially in a pure stateuw&, for
a mixed state can be thought of as a partial trace over
extra degrees of freedom of a larger probe. The particle
the probe undergo joint unitary evolution represented by
operatorU, defined in relevant part by relations

FIG. 2. Quantum states used in BB84 and B92.
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uem^ w&→Uuem^ w&5(
n

uen& ^ uFmn&,

uFmn&5̂^enuUuem^ w&, m,n50,1 ~2!

where vectorsuFmn& in the Hilbert space of the probe are
general neither normalized nor orthogonal. Following t
evolution, the probe and the particle become correlated
manner determined by the operatorU, known to Eve. Sub-
sequent measurement of the probe can therefore reve
Eve partial~or even complete! information about the particle

Both B92 and BB84 protocols provide for random a
equiprobable selection between the statesuu& and uv&.
~Variations that favor one state over the other will not
considered.! The eavesdropper thus finds herself in an en
ronment manifestly symmetric with respect to the reflect
R that interchangese0↔e1 , $u,ū%↔$v; v̄%. For reasons se
forth in greater detail in Appendix A, the eavesdropping d
vice may be assumed without loss of generality to be
dowed with the same symmetry: more precisely, reflectionR
may be assumed extendable into the space of the prob
such a way that both the evolution operatorU and the initial
probe stateuw& are invariant underR. It then follows thatR
interchangesuF00& with uF11&, and uF01& with uF10&, and
inner products of these vectors therefore obey symmet
^F00uF01&5^F11uF10&, ^F00uF10&5^F11uF01&, as well as
iF00i5iF11i , iF01i5iF10i . Similarly, again with refer-
ence to Appendix A, sinceuu&,uū&,uv&,uv̄& all have real projec-
tions onto basis$e0 ,e1%, U and w may also be assumed t
have real elements~and uFmn& to have real projections! in
some orthonormal basisW that includes$e0 ,e1%.

Let us now pick in the space of the probe the particu
orthonormal basis$wb% to be used throughout the remaind
of this paper. Taking the real-valued representation ofuFmn&
in basisW as a starting point, the following steps can
carried out without introducing any complex numbers.~One
can think of the entire procedure as being implemented in
corresponding Euclidian space.! First, select orthonormal ba
sis vectorsuw1&,uw2& in the plane ofuF01&,uF10& in such a
way that2

uF01&5X5uw1&1X6uw2&, uF10&5X6uw1&1X5uw2&.
~3a!

~The notationXk is chosen here for consistency with FP96!
Note thatuw1&,uw2& are themselves interchanged by the
flection R, so that the projections X15̂^F00uw1&
5^F11uw2&, and similarly X25̂^F00uw2&5^F11uw1&. Two

2If uF01&56uF10&, basis$w1 ,w2% is chosen in the plane contain
ing uF01& and orthogonal to the mirror plane of the reflectionR.

FIG. 3. Eavesdropping attack.
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2386 57SLUTSKY, RAO, SUN, AND FAINMAN
more basis vectors,uw0& and uw3&, are selected in the plan
defined by the componentsuF̃00&,uF̃11& of uF00& and uF11&
orthogonal to bothuw1&,uw2&. By applying the reflectionR it
is found thatiF̃00i5iF̃11i , anduw0& anduw3& can be picked
symmetrically, to obtain

uF00&5X0uw0&1X1uw1&1X2uw2&1X3uw3&,
~3b!

uF11&5X3uw0&1X2uw1&1X1uw2&1X0uw3&.

Any other degrees of freedom of the probe are immater
because all four vectors of interestuFmn& are already con-
tained within the four-dimensional space spanned
$w0 ,w1 ,w2 ,w3%. As stated earlier, all the coefficientsXk ap-
pearing in Eqs.~3a! and ~3b! are real valued.

For the evolution in Eq.~2! to be unitary@or, more pre-
cisely, for a unitary operatorU to exist that is consistent with
Eq. ~2!#, it is necessary and sufficient that orthonormal ve
tors uem^ w&, m50,1, transform into orthonormal vectors:

^em8^ wuU†Uuem^ w&5 (
n50,1

^Fm8nuFmn&5dm8m ,

m8,m50,1

which expands into constraints

iF00i21iF01i25iF10i21iF11i2

5X5
21X6

21X0
21X3

21X1
21X2

251,

^F10uF00&1^F11uF01&52~X1X61X2X5!50.

These constraints can be satisfied by means of the follow
parametrization with four independent variablesl,m,u,f:

X05sin l cosm, X15cosl cosu cosf,

X25cosl cosu sin f, X35sin l sin m,

X55cosl sin u cosf, X652cosl sin u sin f.

~4!

Relations~4! also appear in the FP96 work.
The joint evolution described by Eq.~2! leaves the par-

ticle and the probe in an entangled quantum state, causi
correlation between Eve’s and Bob’s measurements. M
ematically, every outcomei observed by Bob is associate
with its own ‘‘projected state’’r ( i ) of the probe. Eve thus
faces a task that can be described in the following way: T
probe, now known to be in one of a set of quantum sta
$r ( i )% with correspondinga priori probabilitiespi , must be
analyzed to determine, insofar as possible, its particular s
r ( i ).

Let us assume that Eve employs a so-called positive
erator valued measure~POVM! @20#, believed to be the mos
general test to which a quantum system may be subje
@21#. A POVM is constructed around a set of non-negat
operatorsEm , which add up to the unit matrix. The POVM
has as many possible outcomes as there are operators
set$Em%, and, when applied to an input state represented
density matrixr, produces each outcomem with probability
l,

y

-

g

a
h-

e
s

te

p-

ed
e

the
y

Prob@mur#5Tr~Emr!.

Having obtained a particular outcomem, Eve uses Bayes’s
rule to computea posterioriprobabilities

qim5̂Prob@r~ i !um#5
Prob@mur~ i !#Prob@r~ i !#

Prob@m#

5
Tr~Emr~ i !!pi

Pm
,

where Pm5̂Prob@m#5Tr(Em(pir
( i )) is the a priori prob-

ability of outcome m. Eve’s information gain from the
POVM is reflected in the reduction of her Shannon entro
regarding the probe state, from its initial levelH0
52(pi log2 pi to the a posteriori value Hm
52(qimlog2 qim following the outcomem. The expected
value of the gain is expressed as

I H5(
m

Pm~H02Hm!

5(
m

PmS 2(
i

pi log2 pi1(
i

qim log2 qimD . ~5!

An alternative metric of Eve’s success is the reduction
Renyi entropy from its initial levelR052 log2 (pi

2. The ex-
pected gain in terms of Renyi information is

I R5(
m

Pm~R02Rm!

5(
m

PmS 2 log2 (
i

pi
21 log2 (

i
qim

2 D . ~6!

Finding the measurement with the greatest expected in
mation gain is a difficult problem, which, except for the sim
plest special cases, remains unsolved. Fortunately, the
situation encountered in Secs. III and IV is one where the
$r ( i )% consists of only two pure statesr (1)5uc1&^c1u, r (2)

5uc2&^c2u, with equal a priori probabilities p15p25 1
2 .

The Shannon informationI H from Eq. ~5! is in this case
maximized by a simple two-dimensional von Neumann t
symmetrically arranged around the vectorsuc1&,uc2& in the
Hilbert plane spanned byuc1&,uc2& @22#. This optimal test
results ina posterioriprobabilities

q115q225cos2 z, q125q215sin2 z

and in Shannon and Renyi information gain

I opt
H 511sin2 z log2 sin2 z1cos2 z log2 cos2 z

5 1
2 ~12cos 2z!log2~12cos 2z!1 1

2 ~11cos 2z!

3 log2~11cos 2z!,

I opt
R 511 log2~sin4 z1cos4 z!5 log2~11cos2 2z!,

~7a!

where the anglez is defined by

Q5̂sin 2z5̂ z^c1uc2& z. ~7b!
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TABLE I. Interpretation of events in a B92 transmission.

Alice transmits u v

Bob measures $u,ū% $v,v̄% $u,ū% $v,v̄%

Bob detects u ū v v̄ u ū v v̄

Interpretation inconclusive error inconclusive 1 inconclusive 0 inconclusive e
u-
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It is proven in Appendix B that the symmetrical von Ne
mann test just described maximizes Eve’s Renyi informat
as well as her Shannon information. We will henceforth
sume that Eve employs this symmetrical test.

The results of this section will now be applied in th
context of B92 and BB84 protocols. In each case, parame
l,m,u,f from Eq. ~4! will be related to Bob’s error rateE,
and to the overlapQ of the two-state vectors which, as wi
be shown, Eve needs to distinguish. Equation~7! confirms
the intuitive understanding that Eve’s advantage is increa
as the two states move closer to orthogonality. When
parametersl,m,u,f are tuned to minimize the overlapQ for
a fixedE, an eavesdropping apparatus results that yields
the most Renyi~and Shannon! information consistent with a
given error rate between Alice and Bob.

III. INFORMATION LEAKAGE
AND ERROR RATE IN B92

A. Eavesdropping in B92

Nonorthogonal statesuu& and uv&, which make up the al-
phabet of a B92 transmission, cannot be reliably separ
on every occasion. Rather, the protocol calls for a dete
that can identify the particle state with certainty some of
time, and at other times indicate an ‘‘inconclusive’’ ou
come, later to be discarded. The simplest implementatio
such a device, and the first one proposed, is based on a
of von Neumann measurements@5#. Although the number of
inconclusive results can be somewhat reduced with a PO
design@23#, it will be assumed here that Bob has chosen
less efficient von Neumann method. This assumption
only makes the optimization problem in Sec. III B belo
more tractable, but also recognizes that Bob, unlike the
pothetical Eve, is constrained by technological reality, a
therefore might well be interested in the simplest, rather t
the most efficient, type of receiver.

Operation of B92 in its von Neumann variant is illustrat
in Table I. The carrier particle, transmitted by Alice in one
the two statesuu&,uv&, is measured by Bob in one of the tw
orthonormal bases$u,ū%, $v,v̄% ~see Fig. 2!, chosen at ran-
dom. Bob’s detection ofuv̄& rules out the input stateuv&, and
therefore indicates with certainty stateuu&, and hence bit
value 1; and vice versa,uū& indicatesuv& and hence bit value
0. Measurement outcomesuu& and uv&, which are each con
sistent with both inputsuu& and uv&, are discarded as incon
clusive.

Let us denote as (i ; j ) the event in which Alice transmits
stateu i &, and, following the joint evolutionU of u i & with the
eavesdropping probe, Bob detects outcomeu j &, i , j
P$u,ū,v,v̄%. Given Alice’s choice ofi and Bob’s choice of
basis$ j , j̄ %, quantum mechanics dictates that the event (i ; j )
occurs with probability
n
-

rs

ed
e

ve

ed
or
e

of
air

M
e
ot

y-
d
n

Pi , j5̂Prob@ j u i ;$ j , j̄ %#5ic i , j i2, where uc i , j&5̂^ j uUu i ^ w&
~8!

and leaves the probe in the corresponding projected s
uc i , j& ~or, more precisely, the normalized version there!
given by Eq.~8!. The error rate between Alice and Bob is th
frequency of events identified as errors in Table I, relative
error and correct reception events combined.~Inconclusive
outcome events are not included in the count.! Since both
Alice’s and Bob’s choices are random and symmetric,
error rate is expressed as

E5
Pu,ū1Pv,v̄

Pu,v̄1Pu,ū1Pv,ū1Pv,v̄
5

Pu,ū

Pu,v̄1Pu,ū

5
icu,ūi2

icu,v̄i21icu,ūi2 , ~9!

where simplification follows from the symmetry propertie
of Pi , j .3

Next consider the eavesdropper Eve, who seeks to dis
guish statesuc i , j& from one another in order to infer Alice’s
and Bob’s data. It can be observed from Table I that E
need in fact only distinguish betweentwo pure states,ucu,v̄&
and ucv,ū&, for all other events appear as errors or inconc
sive results to Alice and Bob, and as such are announced
removed subsequently in the protocol. The problem of o
mally distinguishing between two pure states has alre
been discussed in Sec. II, where it was concluded that
must minimize the overlap

Q5
z^cu,v̄ucv,ū& z
icu,v̄iicv,ūi 5

z^cu,v̄ucv,ū& z
icu,v̄i2 . ~10!

This she does by manipulating the four independent par
etersl,m,u,f, which control the matrix elementsXk in Eq.
~4!, and through themuFmn& in Eq. ~3!, the projection vec-
tors uc i , j&, and ultimately the error rateE, Eq. ~9!, and the
overlapQ, Eq. ~10!. The conditional minimumQmin(E) of Q
subject toE5const leads via Eq.~7! to the expression for the
maximum Renyi information on error-free bitsI max

R (E) Eve
can obtain for a given error rate.

In what follows, we shall drop the modulus sign in E
~10!. This simplification is possible because the condition
minimum of Q ~without the modulus! will turn out to be
positive for low error ratesE, and decrease withE. Analysis

3The ‘‘disturbance’’D adopted as the measure of eavesdropp
intrusiveness in Ref.@13#, in our notation becomes simplyPu,ū .
This is equivalent to the inclusion of inconclusive outcomes in
denominator ofE.



r
tio

s
ha

te

-

D

t

s
n

d
e

t

e
om-

its

d
ing
ac-
int
.
on
ng

r

e of

2388 57SLUTSKY, RAO, SUN, AND FAINMAN
may safely end whenQmin(E) reaches zero, for at that erro
rate the eavesdropper already has complete informa
about the transmission,I R51. Consideration will also be
limited to error ratesE, 1

2 , because only a perverse eave
dropper would use a strategy with an error rate higher t
chance.

B. Optimization of eavesdropping in B92

In searching for the conditional minimumQmin(E), the
first step is to obtain explicit expressions forE andQ. This
is accomplished through direct substitution of carrier sta
from Eq.~1!, and the unitary evolution from Eq.~2!, into Eq.
~8!, to obtain the required projection vectorsuc i , j& for use in
Eqs. ~9! and ~10!. Simple algebraic manipulations repro
duced in Appendix C lead to

E5
icu,ūi2

icu,ūi21icu,v̄i2 5
1

2 S 12
icu,v̄i22icu,ūi2

icu,ūi21icu,v̄i2D
5

1

2 S 12
d cos2 2a

12a sin2 2a2c sin 2a D ,

Q5
^cu,v̄ucv,ū&

icu,v̄i2 5
~a1b!2~11b!sin2 2a1c sin 2a

~11d!1~2d2a!sin2 2a2c sin 2a
,

~11!

where

a5̂F00F111F01F1052X0X312X1X212X5X6

5sin2 l sin 2m1cos2 l cos 2u sin 2f,

b5̂F00F112F01F1052X0X312X1X222X5X6

5sin2 l sin 2m1cos2 l sin 2f,

c5̂2F00~F016F10!52F11~F106F01!

52~X16X2!~X56X6!5cos2 l sin 2u cos 2f,

d5̂F00
2 2F01

2 5X0
21X1

21X2
21X3

22X5
22X6

2

5sin2 l1cos2 l cos 2u. ~12!

The conditional minimumQmin(E) is then found using the
method of Lagrange multipliers, as described in Appendix
The desired solution for$l,m,u,f% is defined parametrically
on an auxiliary variableg by relations

l5m50, sin 2f5
sin g

sin d
, cos 2u5

cosd

cosg
,

2d<g<d, ~13!

where sind5̂sin 2a/A11sin2 2a, cosd5̂1/A11sin2 2a, 0
,d,p/4, and where anglesf and u are chosen so tha
cos 2f>0 and sin 2u>0. The quantitiesE andQmin(E), and
the unitary evolutionU, are computed from Eq.~13! by
means, respectively, of Eq.~11!, and of Eqs.~4!, ~3!, ~2!.

The relationshipQmin(E) implied by Eqs.~11! and ~13!
for a particulara5p/5 is plotted in Fig. 4~a!, together with
points$E;Q% resulting from other, suboptimal combination
of l,m,u,f. For reasons already explained, the plot is tru
n

-
n

s

.

-

cated toQ>0. Validity of the optimization algebra carrie
out in Appendix D is indirectly confirmed by the fact that th
various realizable points$E;Q% all lie above and to the righ
of the curveQmin(E). Figure 4~b!, obtained by solving nu-
merically for E in Qmin(E)50, shows, as a function of angl
a, the smallest error rate that permits the eavesdropper c
plete knowledge of the transmission.

The eavesdropper’s Renyi information on error-free b
I max

R (E), computed fromQmin(E) via Eq. ~7!, is depicted by
solid line in Fig. 5. For error rateE50, we haveQmin51 and
I max

R 50, confirming that no information can be extracte
without inducing a disturbance. Higher error rates, reflect
progressively more intrusive eavesdropping activities, are
companied by greater information gain to Eve, until the po
E5Emax is reached where Eve has complete information

The dotted line in Fig. 5 illustrates the same informati
gain vs error rate tradeoff for a family of eavesdroppi
strategies described by Ekertet al. @10# as ‘‘translucent
eavesdropping with entanglement,’’ which in our present no-
tation take the form

uu^ w&→Uuu^ w&5xuu^ wu&1yuv^ wv&,

uv^ w&→Uuv^ w&5yuu^ wu&1xuv^ wv&,

where

uwu&5̂cosguw1&1sin guw2&,

uwv&5̂sin guw1&1cosguw2&, ~14!

FIG. 4. ~a! Realizations ofE and Q for various suboptimal
combinations of parametersl,m,u,f ~boxes!, and the conditional
minimum implied by Eq.~13! ~solid line!, for the case when carrie
statesu, v make anglea5p/5 with basise0 , e1 . ~b! The error rate
Emax at which the eavesdropper can obtain complete knowledg
the transmission,Qmin(Emax)50, as a function of anglea.

FIG. 5. Eavesdropper’s informationI R on error-free bits versus
the error rateE in B92: the attack based on Eq.~13! ~solid!; ‘‘trans-
lucent eavesdropping with entanglement’’@10# ~dotted!; the FP96
attack@13# ~dashed!.
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TABLE II. Interpretation of events in a BB84 transmission.

Alice transmits u ū v v̄

Bob measures $u,ū% $v,v̄% $u,ū% $v,v̄% $u,ū% $v,v̄% $u,ū% $v,v̄%

Bob detects u ū v v̄ u ū v v̄ u ū v v̄ u ū v v̄

Interpretation 1 error incon-
clusive

incon-
clusive

error 0 incon-
clusive

incon-
clusive

incon-
clusive

incon-
clusive

1 error incon-
clusive

incon-
clusive

error 0
e
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e
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to
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and where x5cos(a1v)/cos 2v, y5sin(a2v)/cos 2v,
sin 2v5sin 2a sin 2g. The single independent parameterg,
0,g,p/4, controls the intrusiveness of the strategy: low
values ofg produce higher error rates, but also higher info
mation yields to Eve. It follows immediately from Eq.~14!
that

ucu,v̄&5^v̄uUuu^ w&5x cos 2auwu&,

ucv,ū&5^ūuUuv^ w&5x cos 2auwv&,

ucu,ū&5^ūuUuu^ w&5y cos 2auwv&,

and with the aid of Eqs.~9! and ~10!, E5y2/(y21x2),
Q5^wuuwv&5sin 2g, which is the result plotted in Fig. 5.

Finally, Fig. 5 also shows information gain from th
eavesdropping strategy of FP96@see Eq. ~52! in FP96#
~dashed line!. As noted in the Introduction, this strategy
believed to be the strongest in the sense of Eve’s knowle
averaged overall transmitted bits. However, it is Eve’
knowledge of bits receivederror-free, rather than of all bits
on average, that is material to Alice and Bob if they want
secure their transmission by privacy amplification@7#. When
the figure of merit for eavesdropping attacks is changed
cordingly, one can observe from Fig. 5 that the FP96 strat
from the strongest becomes the weakest of those plo
while the attack represented by Eq.~13! is seen to be the
most powerful.

IV. INFORMATION LEAKAGE
AND ERROR RATE IN BB84

A. Eavesdropping in BB84

Our analysis of BB84 follows the same general path
that of the B92 protocol in Sec. III. In BB84, Alice transmi
one of the two statesu i &,u ī &, which Bob subjects to one o
the two von Neumann measurements$ j , j̄ %, i , j P$u,v%. The
parties subsequently announce which alphabet~u or v! was
r
-

ge

c-
y
d,

s

used for each bit, and bits where the transmitting alpha
did not match the receiving one are discarded as incon
sive. The operation of BB84 is illustrated in Table II.

It shall be assumed that Eve is capable of preserving
projection stateuc i , j& of her probe until the alphabets ar
disclosed. Thereafter, as Table II makes clear, Eve must o
distinguish betweentwo pure states associated with erro
free transmission between Alice and Bob. With the notat
of Eq. ~8!, the pair of states to be distinguished is eith
ucu,u&,uc ū,ū&, or ucv,v&,uc v̄,v̄&, depending on which alphabe
had been used for the bit. In the same manner as for B92,
similarly taking advantage of the anticipated symmetry b
tweenu and v, we find the BB84 analogs of Eqs.~9! and
~10!:

E5
Pu,ū1Pū,u1Pv,v̄1Pv̄,v

Pu,ū1Pū,u1Pv,v̄1Pv̄,v1Pu,u1Pū,ū1Pv,v1Pv̄,v̄

5
icu,ūi21ic ū,ui2

icu,ūi21ic ū,ui21icu,ui21ic ū,ūi2 ,

Q5
^cu,uuc ū,ū&

icu,uiic ū,ūi 5
^cv,vuc v̄,v̄&

icv,viic v̄,v̄i .

B. Optimization of eavesdropping in BB84

As in Sec. III,Q needs to be minimized over all comb
nations$l,m,u,f%, subject to constraintE5const. Algebraic
manipulation given in Appendix C, with the same notati
a,b,c,d as before, see Eq.~12!, yields explicit expressions

E5
~12d!1~d2a!sin2 2a

~12d!1~d2a!sin2 2a1~11d!1~2d1a!sin2 2a

5
12 1

2 ~d1a!

2
,

Q5

1
2 ~a1b!1~d2a! 1

2 sin2 2a

A 1
2 ~11d!1~2d1a! 1

2 sin2 2a1c 1
2 sin 2aA 1

2 ~11d!1~2d1a! 1
2 sin2 2a2c 1

2 sin 2a
5

1
2 ~d1a!1b

A@11 1
2 ~d1a!#22 1

2 c2

5
122E1b

A@222E#22 1
2 c2

, ~15!
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where, as is normally the case in the context of BB84, we
a5p/8. The conditional minimum ofQ subject to E
5const results when

l5m50, cos 2u51, 21,sin 2f<1,

a5b5sin 2f, c50, d51,

E5 1
4 ~12sin 2f!, Qmin5

122E1sin 2f

222E
532

2

12E
~16!

~see Appendix E!. As in the case of B92,l,m,u,f from Eq.
~16! can be substituted into Eqs.~4!, ~3!, ~2! to find explicitly
the evolutionU associated with the optimal eavesdroppi
strategy.4

The solid line in Fig. 6 shows Renyi information on erro
free bits I max

R (E), computed fromQmin(E) by means of Eq.
~7!. It can be seen that Eve can learn nothing without ind
ing a disturbance, and has complete knowledge of~the error-
free part of! the transmission at error rateE5 1

3 .
The result from Eq.~16! can be compared to the eave

dropping strategy described by Huttner and Ekert@9#. These
authors consider a situation where the eavesdropper in
cepts, measures, and retransmits particles in some bas
termediate between Alice’sB15̂$u,ū% andB25̂$v,v̄%. It is
shown that all such strategies induce the same error raE
5 1

4 , and that the so-called Breidbart basis ‘‘half way in b
tween’’ B1 andB2 yields the eavesdropper the most info
mation. It can now be seen that this Breidbart basis atta
marked by a box in Fig. 6, dominates all eavesdropping st
egies with 25% error rates, and not just those considere
@9#. On the other hand, if the eavesdropper wishes to red
the error rate fromE5 1

4 to, say,E5 1
8 , she could do bette

than simply apply the Breidbart measurement to half the
and let the other half proceed undisturbed to Bob. The la
method would place her on a straight line connecting the
in Fig. 6 with the origin, which lies below the curveI max

R (E).

4It is interesting to note that the solution given by Eq.~16! can
also be obtained by slightly altering the FGGNP97 derivation. S
cifically, it is obtained if the information gain under the error-fr
condition @the first of Eqs.~72! in the FGGNP97 work# is maxi-
mized instead of the overall information gain@Eq. ~73!#. Together
with the link between Shannon and Renyi information establis
in our Appendix B, this offers an alternative proof of the results
this section.

FIG. 6. Eavesdropper’s informationI R on error-free bits versus
the error rateE in BB84: the attack based on Eq.~16! ~solid!;
Breidbart basis attack@9# ~box!; ‘‘measurement of intensityg’’ @12#
~dotted!; the FGGNP97 attack@14# ~dashed!.
t
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For another comparison, the dotted line in Fig. 6 illu
trates the so-called ‘‘measurement of intensityg’’ attack
@12#, based on the unitary transformation

uu^ w&→uu& ^ F uw1&cosS p

4
2

g

2D1uw2&sinS p

4
2

g

2D G ,
uū^ w&→uū& ^ F uw1&cosS p

4
1

g

2D1uw2&sinS p

4
1

g

2D G ,
0<g<

p

2
.

When Alice transmits in the basis$u,ū%, Eve inflicts no dis-
turbance and learns the bit to the extent that she can di
guish the two vectors in square brackets, whose overlaQ
5cosg. Conversely, if Alice has chosen$v,v̄%, Eve learns
nothing and introduces an error with probability (
2cosg)/2.

Finally, we turn to the FGGNP97 eavesdropping atta
illustrated by the dashed line in Fig. 6, which was proven
be the strongest from the point of view of Eve’s Shann
information averaged overall intercepted bits@14#. As in
Sec. III, however, focusing only on bits received error-fr
by Bob materially alters the situation, making the attack re
resented by Eqs.~16!, rather than the FGGNP97 attack, th
greatest threat to Alice and Bob, especially at high er
rates.

V. CONCLUSIONS AND DISCUSSION

When Alice and Bob implement a quantum cryptograp
key exchange over a noisy channel, they must allow the p
sibility that channel errors are eavesdrop induced and
Eve has obtained a nonzero amount of information about
key. Security can be recovered~with a performance loss! by
‘‘classical’’ privacy amplification, if Alice and Bob can us
available parameters such as error rate to upper-bound E
advantage. The appropriate measure of advantage has
shown to be Renyi information on bits transmitted error-fr
from Alice to Bob. Previous optimization work, howeve
not being specifically tailored to the quantum cryptograp
context, considered onlyShannoninformation averaged ove
all transmitted bits.

In this paper, we find the requisite upper bound on Ev
Renyi information on error-free bits. This bound can be co
puted from Eq.~13! for B92 and Eq.~16! for BB84, and is
plotted against the error rate, respectively, in Figs. 5 an
~solid lines!. The switch from Shannon to Renyi informatio
changes the value of the bound, but, thanks to the link
tween the two measures established in Appendix B, does
affect the choice of eavesdropping strategy. Focusing ex
sively on bits received error-free by Bob, on the other ha
alters both the bound and the optimal strategy. As see
Figs. 5 and 6, eavesdropping attacks that are or migh
optimal in the sense of Eve’s knowledge of all bits are
longer so when the figure of merit reflects her knowledge
the error-free part of the transmission. This is particula
noticeable at higher error rates, where the set of error-
bits significantly differs from the set of all bits. To correct
determine the degree of compression required at the priv

-

d
f
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amplification stage, Alice and Bob must concentrate th
attention on the former set.

The treatment we have presented appears to cover a
dividual eavesdropping attacks not forbidden by physi
laws. Subject to the limitations discussed below, no perm
sible device can provide Eve with greater knowledge fo
given error rate than indicated by the uppermost curves
Figs. 5 and 6, at least so long as Alice and Bob use
versions of B92 and BB84 protocols described in the beg
ning of Secs. III A and IV A.~In particular, Bob must be
using von Neumann detection in B92.! Armed with Eqs.~13!
and ~16!, Alice and Bob can be confident that after priva
amplification their key is secure, in the sense that Eve
exponentially unlikely to have more than token knowled
of it.

It is important, however, to point out known limitations o
our result. First, it has been assumed throughout that
subjects each of Alice’s bits to identical and independ
individual attacks. In the alternative, Eve could direct each
Alice’s particles into a separate probe, and subseque
make a single quantum measurement of all probes at o
Even more generally, Eve could entangle all particles wit
single probe. Mathematical analyses of such attacks, w
have been respectively termedcollectiveand joint, only re-
cently started appearing in the literature. Although collect
and joint attacks at present seem impractical, they are a
ject of intensive investigation. However, such attacks are
yond the scope of this paper.

Secondly, it has of course been assumed that carrier s
uu&,uv&,uū&,uv̄& all lie in the same Hilbert plane, and that Bo
makes von Neumann measurements in that plane. Let us
that a quantum cryptographic implementation may som
times violate these assumptions in ways not immediately
parent to Alice and Bob. For example, a single photon
larized vertically,u1↑&, and one polarized diagonally,u1↗&,
are nonorthogonal states that satisfy the requirement
quantum cryptographic protocols asu and v. However, a
slight optical misalignment in space, or a slight difference
spectral profile, could reduce the overlap sin 2a between the
two states, or even render them orthogonal, and leave
system vulnerable to eavesdropping. Similarly, the over
betweenn-photon statesun↑&, un↗& is smaller than between
likewise polarized single photons~and tends to zero for larg
n!, so that multiphoton states, if occasionally emitted by A
ice’s source, require special handling.~By the same argu-
ment, the transmission becomes vulnerable if Alice and B
use a carrier particle that, unbeknown to them, possesse
internal structure Eve can probe.! One possible attack on
multiphoton states is described in detail in Ref.@19#; one
possible defense available to Alice and Bob is to adopt
worst-case assumption that all multiphoton bits have b
intercepted, and use extra compression at the privacy am
fication stage@18#.

For an example of another kind, consider a B92 eav
dropping strategy wherein Eve intercepts each passing
ticle and measures it in the same manner as Bob wo
Whenever Eve obtains a conclusive result, she learns the
bit for certain and retransmits the particle error-free; a
when Eve’s result is inconclusive, she blocks the particle
Bob receives nothing. Ultimately, the entire transmission
error-free, and Eve has complete knowledge of it—a resu
ir

in-
l
-

a
in
e
-

is

ve
t
f

tly
e.
a
h

e
b-

e-

tes

ote
-

p-
-

of

he
p

-

b
an

e
n
li-

s-
r-

d.
ata
d
o
s
a

complacent Alice and Bob might have thought impossible
this example, security theorems fail because Eve is trans
ting to Bob a particle state~namely, the vacuum state! that
does not lie in the same Hilbert plane with the states
expects, and Bob does not register this condition as an e
Counting each nondetection as an error would resolve
difficulty, but is generally impractical because of ‘‘natural
losses in the channel. An alternative approach is to des
the system so that no particle state can be transmitted by
without the risk of causing an error; one such design, invo
ing a combination of a strong and a weak pulse, appear
Ref. @5#. Safety of this and similar countermeasures, ho
ever, does not follow from the analysis we have presen
and must be proven separately.

Finally, let us mention a possible enhancement to kno
quantum cryptographic protocols that is suggested by
present work. At the core of quantum cryptography is t
relationship between the maximum information the eav
dropper can extract, and the disturbance she necessaril
troduces into the transmission@8#. The error rate need not b
the sole measure of this disturbance. Any other quan
available to Alice and Bob, for example, the rate of inco
clusive outcomes, can serve the same purpose, so lon
firm connection is demonstrated between deviation of t
quantity from its interference-free level, and the eavesdr
per’s information gain. Indeed, several alternative metrics
disturbance have already been investigated@8#, but their
eavesdrop-detecting power in the context of quantum cr
tography is yet to be explored. It seems likely that the use
additional indicators, along with the error rate, would ma
the eavesdropper’s task more difficult, and hence impr
system throughput by allowing Alice and Bob to secure
transmission at the cost of sacrificing less data. Expec
values for many such indicators can be constructed with
erence to Table I in the same manner as the error rate in
~9!, and used along with Eq.~9! as an additional constraint in
optimizing information gain on the eavesdropper’s beha
Effectiveness of the various disturbance metrics and th
combinations as estimators of information gain must rem
a subject for future investigation.
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APPENDIX A: SYMMETRIES OF THE EAVESDROPPING
APPARATUS

In this appendix we prove that the eavesdropping pro
may be assumed, without loss of generality, to have som
the same symmetries as Alice’s transmitter and Bob’s
ceiver.

The first symmetry to be considered is a reflectionRe in
the carrier particle space that interchangese0↔e1 . An eaves-
dropping probe will be calledR-symmetricif there exists an
extensionR5Re^ Rw of Re into the space of the probe, un
der which both the evolution operatorU and the initial probe
stateuw& are invariant. Although Eve is under no obligatio
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to employ anR-symmetric device, we shall argue that, f
any probe lacking such symmetry, there exists anR-
symmetric variant at least as effective for eavesdropping p
poses.

Recall that our model views the transmission as a serie
independent events, in which Alice emits a particle in st
xP$u,v,ū,v̄%, Bob detects it asyP$u,v,ū,v̄,i% ~where i
stands for an inconclusive result!, and Eve obtains an out
comez from the measurement of her probe. The joint pro
ability distributionPXYZ(x,y,z), known to Eve, implies sta
tistical dependence betweenz and $x,y%, from which Eve
derives her knowledge of the key. It also implies statisti
dependence betweenx andy, which Alice and Bob estimate
through public discussion and scrutinize for evidence of p
sible eavesdropping.

Since the state pairs$u,ū%,$v,v̄% play symmetrical roles in
the protocol, a statistical connection betweenz and an event
involving u has the same worth to Eve as a similar conn
tion involving v. In mathematical terms, if two physical sy
tems give rise, respectively, to event probability distributio
PXYZ and PXYZ8 such that they can be obtained from o
another by interchangingu and v @i.e., PXYZ(u,v̄,z)
5PXYZ8 (v,ū,z), etc.#, then Eve can expect to learn the sam
amount of information from these two physical system
~This amount is explicitly computed in Secs. III and IV!
Alice and Bob’s analysis ofPXYZ andPXYZ8 for evidence of
eavesdropping would also yield identical conclusions,
long as Alice and Bob employ symmetrical indicators su
as the error rate, which are themselves invariant under
interchange ofu andv. Consequently, the two physical sy
tems corresponding toPXYZ and PXYZ8 are substantially
equivalent to all parties.

Let U and uw& be the evolution operator and the initi
state of an asymmetric probe, and let the associated e
distribution bePXYZ. The physical system associated wi
the companion distributionPXYZ8 can be obtained by every
where interchangingu andv. However, since both the trans
mitter and the receiver are invariant with respect to this
terchange~in that they generate statistically the same eve
before and after it!, it is sufficient to interchangeu and v
only in the eavesdropping probe, by replacingU with its
image U8 under Re: U85(Re^ 1)U(Re

21
^ 1). For the rea-

sons just stated,U and U8 yield substantially equivalen
eavesdropping systems. Now define

Ũ5̂U^ S 1 0

0 0D 1U8^ S 0 0

0 1D ,

R̃5̂Re^ 1^ S 0 1

1 0D , uw̃&5̂uw& ^ S 1/&
1/& D .

It is immediately evident thatŨ is unitary; thatR̃ is a
reflection~it is accomplished by an interchange of basis v
tors!; and that the probe represented by$Ũ;uw̃&% is R-
symmetric, since bothR̃ŨR̃215Ũ andR̃uw̃&5uw̃& hold. The
rightmost factor in the tensor product can be interpreted
the Hilbert space of an auxiliary spin-1

2 particle. If Eve sub-
sequently measures the auxiliary particle in the ba
$~0,1!;~1,0!%, the evolutionŨ reduces to a coin toss, followe
by equiprobable application of eitherU or U8. Thus Ũ can
r-
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lead to an eavesdropping device at least as effective as
based onU or U8. This completes the proof.

Consider next another symmetry, represented by
transformationZW in the Hilbert space that consists of re
placing all vector projections and operator matrix elemen
in some orthonormal basisW with their complex conjugates,
and call an eavesdropping deviceZ-symmetricif there exists
a basisW such that both the evolution operatorU and the
initial probe stateuw& are invariant underZW. As before, we
shall construct an equally effectiveZ-symmetric alternative
for any probe lackingZ-symmetry.

Since probabilities of events in quantum mechanics a
given by moduli squared of vector inner products, two phys
cal systems related to one another viaZW yield the same
event probability distributionPXYZ(x,y,z), and are therefore
substantially equivalent to all parties. Let us now selectW to
include vectorsue0&,ue1&, anduw&, and letU8 be the image of
U underZW. Since carrier statesuu&,uū&,uv&,uv̄& have real pro-
jections and are hence invariant underZW, transformation
ZW of the entire Hilbert space is reduced to replacingU with
U8. It follows thatU andU8 represent substantially equiva
lent eavesdropping apparata. Defining

Ũ5̂U^ S 1 0

0 0D 1U8^ S 0 0

0 1D , uw̃&5̂uw& ^ S 1/&
1/& D ,

W̃5W^ H S 1/&
1/& D ; i S 1/&

21/& D J
it is found, as before, thatŨ is unitary; that the probe$Ũ;uw̃&%
is Z-symmetric because bothŨ and uw̃& are invariant under
ZW̃; and that, with the proper measurement of the auxilia
particle,Ũ reduces to a coin toss and equiprobable applic
tion of eitherU or U8. The invariance ofŨ and uw̃& under
ZW̃ means, of course, that in basisW̃ all matrix elements of
Ũ and all projections ofuw̃& are real numbers.

APPENDIX B: RENYI AND SHANNON INFORMATION

Here we prove the following statement: If a POVM test
used to distinguish between twoa priori equiprobable states,
then the test that yields on average the most Shannon in
mation, also yields on average the most Renyi informatio

In the case of twoa priori equiprobable states, Eqs.~5!
and ~6! reduce to

I H5(
m

Pm@11q1m log2 q1m1q2m log2 q2m#

5(
m

Pm
1
2 @~11r m!log2~11r m!1~12r m!log2~12r m!#,

I R5(
m

Pm@11 log2~q1m
2 1q2m

2 !#5(
m

Pm log2~11r m
2 !,

~B1!

where r m5̂q1m2q2m , so that q1m5 1
2 (11r m), q2m5 1

2 (1
2r m). Define on the interval 0,x,1 functions

f ~x!5̂~11Ax!ln~11Ax!1~12Ax!ln~12Ax!,

g~x!5̂ ln~11x!
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and evaluate their derivatives

g8~x!5~11x!21.0,

g9~x!52~11x!22,0,

f 8~x!5@ ln~11x1/2!2 ln~12x1/2!# 1
2 x21/2.0,

f 9~x!5F 1

11x1/21
1

12x1/2G 1
2 x21/21

2 x21/2

1@ ln~11x1/2!2 ln~12x1/2!# 1
2 ~2 1

2 x23/2!

5
1

4x3/2~12x! F2x1/22~12x!ln
11x1/2

12x1/2G.0.

~B2!

To prove the last of the four inequalities~B2!, consider

h~z!5̂2z2~12z2!ln
11z

12z
,

which is positive on 0,z,1 becauseh(0)50 and

h8~z!5212z ln
11z

12z
2~12z2!S 1

11z
1

1

12zD
52z ln

11z

12z
.0 ~0,z,1!.

Since f 9(x).0 on the interval of interest, it follows tha
f (x) is a convex function, with the property(l i f (d i)
> f ((l id i) for any set$l i% that sums up to 1. Applying this
in Eq. ~B1!, we have for an arbitrary POVM test

2 ln~2!I H5(
m

Pm f ~r m
2 !> f S (

m
Pmr m

2 D .

On the other hand, the quantityI opt
H given by Eq. ~7a! is

known to be the greatest Shannon information gain poss
and therefore

2 ln~2!I opt
H 5 f ~cos2 2z!>2 ln~2!I H.

Noting from Eq.~B2! that f 8(x).0, it can now be concluded
that for any POVM test

cos2 2z>(
m

Pmr m
2 .

Consider next the functiong(x), which according to Eq.
~B2! is positively sloped,g8(x).0, and concave, g9(x)
,0. With the aid of the inequality immediately above, co
cavity of g(x) leads to

ln~2!I R5(
m

Pmg~r m
2 !<gS (

m
Pmr m

2 D<g~cos2 2z!

5 ln~2!I opt
R ,

whereI opt
R is the quantity given in Eq.~7a!. This completes

the proof.
le,

APPENDIX C: EXPLICIT EXPRESSIONS
FOR PROJECTION VECTORS c i ,j

Expressions foruc i , j&, i , j P$u,ū,v,v̄%, are obtained by
direct substitution of carrier states from Eq.~1!, and the uni-
tary evolution from Eq.~2!, into Eq. ~8!:

ucu,v&5^vuUuu^ w&5~cosa^e1u1sin a^e0u!U

3~cosaue0^ w&1sin aue1^ w&!

5uF01&cos2 a1uF10&sin2 a1~ uF11&

1uF00&)sin a cosa,

ucu,u&5uF00&cos2 a1uF11&sin2a

1~ uF10&1uF01&)sin a cosa,

ucu,v̄&5uF00&cos2 a2uF11&sin2 a

1~ uF10&2uF01&)sin a cosa,

ucu,ū&5uF01&cos2 a2uF10&sin2 a

1~ uF11&2uF00&)sin a cosa,

ucv,ū&5uF11&cos2 a2uF00&sin2 a

2~ uF10&2uF01&)sin a cosa,

uc ū,u&5uF10&cos2 a2uF01&sin2 a

1~ uF11&2uF00&)sin a cosa,

uc ū,ū&5uF11&cos2 a1uF00&sin2 a

2~ uF10&1uF01&)sin a cosa.

Taking advantage of symmetriesiF00i25iF11i2, iF10i2

5iF01i2, ^F11uF10&5^F00uF01&, ^F11uF01&5^F00uF10&
~recall also that both these inner products are real!, iF00i2

1iF01i25iF11i21iF10i251, and the identity cos4 a
1sin4 a5121

2 sin2 2a,

icu,vi25iF01i2 cos4 a1iF10i2 sin4 a

1~ iF11i21iF00i212^F11uF00&!sin2 a cos2 a

12^F01uF10&sin2 a cos2 a

12~^F01ucos2 a1^F10usin2 a!~ uF11&

1uF00&!sin a cosa

5iF01i2~12 1
2 sin2 2a!

1~ iF00i21^F11uF00&1^F01uF10&! 1
2 sin2 2a

1~^F01uF11&1^F10uF11&!sin 2a

5 1
2 ~12d!1~d1a! 1

2 sin2 2a1c 1
2 sin 2a,
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icu,ui25 1
2 ~11d!1~2d1a! 1

2 sin2 2a1c 1
2 sin 2a,

icu,v̄i25 1
2 ~11d!1~2d2a! 1

2 sin2 2a2c 1
2 sin 2a,

icu,ūi25 1
2 ~12d!1~d2a! 1

2 sin2 2a2c 1
2 sin 2a,

ic ū,ui25 1
2 ~12d!1~d2a! 1

2 sin2 2a1c 1
2 sin 2a,

ic ū,ūi25 1
2 ~11d!1~2d1a! 1

2 sin2 2a2c 1
2 sin 2a,

with the notationa,b,c,d of Eq. ~12!. ~The result foruc ū,ū&
can be obtained fromucu,u& by replacinga→a11

2p, and
uc ū,u& can be obtained from interchanging indicesFmn
→Fnm.) Finally, evaluate the inner products

^cu,v̄ucv,ū&5^F00uF11&~cos4 a1sin4 a!

1@2iF00i22iF11i22~ iF10i21iF01i2

22^F10uF01&!#sin2 a cos2 a

1~2^F00ucos2 a1^F11usin2 a1^F11ucos2 a

2^F00usin2 a!~ uF10&2uF01&!sin a cosa

5^F00uF11&~12 1
2 sin2 2a!

1~211^F10uF01&! 1
2 sin2 2a1~^F11u

2^F00u!~ uF10&2uF01&! 1
2 sin 2a

5 1
2 ~a1b!2~11b! 1

2 sin2 2a1c 1
2 sin 2a,

^cu,uuc ū,ū&5^F00uF11&~cos4 a1sin4 a!

1@ iF00i21iF11i22~ iF10i21iF01i2

12^F10uF01&!#sin2 a cos2 a

1~2^F00ucos2 a2^F11usin2 a1^F11ucos2 a

1^F00usin2 a!~ uF10&1uF01&!sin a cosa

5^F00uF11&~12 1
2 sin2 2a!

1~ iF00i22iF01i22^F10uF01&! 1
2 sin2 2a

1~^F11u2^F00u!cos 2a~ uF10&

1uF01&! 1
2 sin 2a

5 1
2 ~a1b!1~d2a! 1

2 sin2 2a.
APPENDIX D: CONDITIONAL MINIMIZATION FOR B92

The task of this appendix is to find conditional minimu
Qmin(E) of the quantityQ subject toE5const, over all com-
binations$l,m,u,f%, whereQ and E are given by Eqs.~11!
and ~12!. Cases of interest are those where bothE, 1

2 and
Qmin(E)>0. Note that the denominator in the first of equ
tions ~11! is strictly positive, soE, 1

2 implies d.0. It is
convenient to introduce new variables

E85̂
cos2 2a

122E
5

12a sin2 2a2c sin 2a

d
, Q85̂

a1b11

d
.

~D1!

Minimization of Q subject toE5const is equivalent to mini-
mization ofQ8 subject toE85const, becauseE8 is one-to-
one related toE, andQ grows withQ8 for any fixedE8:

Q5
~a1b!cos2 2a1~12dE8!2sin2 2a

d cos2 2a1dE8

5
1

cos2 2a1E8 S cos2 2aH a1b11

d J 2E8D .

~Recall thata is a fixed system parameter outside the sco
of the minimization problem.! The interval of interest 0<E
, 1

2 maps cos2 2a<E8,1`.
Since the independent variablel appears in Eq.~12! only

through cos2 l, it is sufficient to consider 0<l<p/2. Most
of the following discussion deals with the special casel
50. It will be shown later in this appendix that the solutio
associated withl50 is also the desired global condition
minimum over all values ofl.

In the casel50, Eqs.~D1! and ~12! reduce to

Q85
~cos 2u11!sin 2f11

cos 2u
,

E85
12cos 2u sin 2f sin2 2a2sin 2u cos 2f sin 2a

cos 2u
,

~D2!

with only two surviving independent variables,u andf. The
Lagrange multipliers theorem states that at any point$u,f%
whereQ8 may be reaching extremum subject toE85const,
at least one of the following two conditions must hold: eith
~i! all partial derivatives ofE8 on the independent variable
u, f simultaneously vanish; or~ii ! there exists a valuez such
that all partial derivatives on the independent variablesu, f
of the Lagrange function
F5̂Q81zE85
@cos 2u~12z sin2 2a!11#sin 2f2z sin 2u sin 2a cos 2f1~11z!

cos 2u
~D3!
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Note that Eq.~D2! implies

1

cos2u
5

E81sin2f sin22a

12sin2u cos2fsin2a
,

E811

12sin2a

and therefore each constraint contourE85const is contained
within the interior of some closed region$21<sin2f<1,
0,e<cos2u<1% where bothQ8 and E8 are differentiable.
This guarantees thatQ8 would indeed reach its conditiona
extrema at some of its Lagrange points.

The condition constraining partial derivatives ofE8 will
be addressed first. Observe that as a function off, E8 in Eq.
~D2! has the form

E85AEf sin 2f1BEf cos 2f1CEf ,

where the coefficients AEf5̂2sin2 2a, BEf5̂
2tan 2u sin 2a, CEf5̂(cos 2u)21 do not depend onf. The
rootsfE0 of the partial derivative]E8/]f therefore satisfy

sin 2fE056
AEf

AAEf
2 1BEf

2
, cos 2fE056

BEf

AAEf
2 1BEf

2
.

~D4!

The other partial derivative]E8/]u vanishes simultaneousl
with ]E8/]f when

]E8~u,f!

]u U
f5fE0~u!

50 ⇔ ]E8

du

„u,fE0~u!…

]u

5
]

]u
$6AAEf

2 1BEf
2 1CEf%50.
With change of variablesz5̂(cos 2u)21, the above condi-
tion transforms into

]

]z
$6sin 2aAsin2 2a1~z221!1z%

}6z sin 2a1Asin2 2a1~z221!50 ⇒ z251 ~D5!

to which must be added any roots ofdz/du. The latter yields
only one relevant root cos 2uE051, as does Eq.~D5! @recall
that d5cos 2u is restricted to positive values to ensureE,
1
2 in Eq. ~11!#. The first alternative of the Lagrange theore
is thus only satisfied with cos 2u51 and @via Eq. ~D4!#
sin 2f561.

Turn now to the second possibility, that all partial deriv
tives of the Lagrange function vanish. The Lagrange funct
F can be analyzed in the same general manner asE8, al-
though the required algebraic manipulation is more ext
sive. In particular, Eq.~D3! has the familiar formF
5Af sin 2f1Bf cos 2f1Cf , with rootsf0 of the partial
derivative]F/]f given by

sin 2f056
Af

AAf
2 1Bf

2
, cos 2f056

Bf

AAf
2 1Bf

2
,

~D6!

which reduce the simultaneous condition on]F/]u to
]

]z
$6AAf

2 1Bf
2 1Cf%5

]

]z
$6A~12z sin2 2a1z!21z2~z221!sin2 2a1~11z!z%50,

wherez5̂(cos 2u)21 as before. Next rewrite the above relation as

]

]z
$6A~11z2 sin2 2a!z212~12z sin2 2a!z1@~12z sin2 2a!22z2 sin2 2a#1~11z!z%

5
]

]z
$Auz6ABuz212Cuz1Du%}AuABuz212Cuz1Du6~Buz1Cu!50 ~D7!

and solve the resulting quadratic,

Au
2~Buz212Cuz1Du!5Bu

2z212BuCuz1Cu
2 ⇔ ~Au

22Bu!Buz212~Au
22Bu!Cuz1~Au

2Du2Cu
2!50

~D8!

z652
Cu

Bu
6S Cu

2

Bu
22

Au
2Du2Cu

2

Bu~Au
22Bu!

D 1/2

52
Cu

Bu
6

Au

Bu
S Cu

22BuDu

Au
22Bu

D 1/2

,

where

S Cu
22BuDu

Au
22Bu

D 1/2

5S ~12z sin2 2a!22~11z2 sin2 2a!@~12z sin2 2a!22z2 sin2 2a#

~11z!22~11z2 sin2 2a! D 1/2

5S ~12z sin2 2a!2~2z2 sin2 2a!1~11z2 sin2 2a!z2 sin2 2a

2z1z22z2 sin2 2a D 1/2

5uzusin2 2a

so that finally
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z652
Cu

Bu
6

Au

Bu
uzusin2 2a5

211z sin2 2a6~11z!uzusin2 2a

11z2 sin2 2a
. ~D9!

Note that only the choice of positive sign in Eq.~D9!, together withz>0, can produce a rootz>1, as required for the
existence of a valid value foru and to satisfyd.0, E, 1

2 . Substitution of Eq.~D8! back into Eq.~D7! demonstrates thatz1

solves for the negative sign in Eqs.~D6! and ~D7! and also yields the identity

ABuz1
2 12Cuz11Du5

Buz11Cu

Au
5S Cu

22BuDu

Au
22Bu

D 1/2

5uzusin2 2a,

which, together with Eqs.~D9! and ~D6!, leads to explicit expressions for the first set of suspected extremum p
$u0a ,f0a%,

~cos 2u0a!215z15
~z2 sin2 2a21!12z sin2 2a

11z2 sin2 2a
,

sin 2f0a5
2Af

AAf
2 1Bf

2
5

2Af

ABuz1
2 12Cuz11Du

5
z sin2 2a212z1

z sin2 2a
5

~z2 sin2 2a21!22z

11z2 sin2 2a
. ~D10!

The above result is simplified by a change of variables: specifically, the identity

~cos 2u0a!221sin2 2f0a sin2 2a5~11z2 sin2 2a!22@~z2 sin2 2a21!214z2 sin4 2a14z sin2 2a~z2 sin2 2a21!#

1~11z2 sin2 2a!22@~z2 sin2 2a21!214z224z~z2 sin2 2a21!#sin2 2a

5~11z2 sin2 2a!22~11sin2 2a!@~z2 sin2 2a21!214z2 sin2 2a#511sin2 2a
t
o

re

.

the

m

permits us to introduce a new parameterg, defined by

sin g5sin 2f0a sin d, cosg5~cos 2u0a!21 cosd,

2d<g<d, ~D11a!

where sind5̂sin 2a/A11sin2 2a, cosd5̂1/A11sin2 2a, 0
,d,p/4. Equation ~D11a! covers the entire range21
<sin 2f,1 generated~with sin22 2a<z,1`! by Eq.
~D10!. Equation~D11a! covers as well the remaining poin
sin 2f51, which is also an extremum candidate by virtue
the first Lagrange condition, see Eq.~D5!. To each value of
sin 2f0 corresponds exactly one positive value of cos 2u0 .
Note that the negative sign in Eq.~D6! gives cos 2f0 the
same sign as sin 2u0 . It can be freely assumed that both a
positive, since only the product sin 2u cos 2f appears in the
problem@see Eq.~D2!#.

Additional solutions result from Eq.~D8! in the degener-
ate caseAu

25Bu , which is realized ifz50 or z522(1
2sin22a)21. The first root, z50, identically satisfies Eq
~D7! with negative sign chosen in Eqs.~D6! and ~D7!, and
leads to

sin 2f0b521, 0,cos 2u0b<1, ~D11b!

while the second root requires positive sign in Eqs.~D6! and
~D7! and

sin2f0c5Afc/AAfc
2 1Bfc

2 , 0,cos2u0c<1,

where
f

Afc5
11sin22a

12sin22a
1

1

cos2u0c
, Bfc5

2 sin2a

12sin22a
tan2u0c .

~D11c!

The points$u,f% given by Eqs.~D11a! through ~D11c!
meet the preconditions for extremum according to
Lagrange multipliers theorem, in the casel50. To deter-
mine which of them realize the desired conditional minimu
of Q8, evaluate the dependent variablesE8,Q8 at the sus-
pected extremum points. Equation~D2! yields with Eq.
~D11a!

Q0a8 5̂Q8u
l50

u0a ,f0a5
sin g

sin d
1

sin g cosg

sin d cosd
1

cosg

cosd

5
sin~g1d!1 1

2 sin 2g

sin d cosd
,

E0a8 5̂E8u
l50

u0a ,f0a5
cosg

cosd
2

sin g

sin d
sin2 2a

2S 12
sin2 g

sin2 d D sin2 2a

5
cos~g1d!1sin2 g

cos2 d
2sin2 2a5

cos~g1d!2 1
2 cos 2g

cos2 d

1 1
2 cos2 2a, ~D12a!

and with Eq.~D11b!
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Q0b8 5̂Q8u
l50

u0b ,f0b521,

E0b8 5̂E8u
l50

u0b ,f0b5sin2 2a1~cos 2u0b!21, ~D12b!

where in evaluation ofE0a8 use was made of identities tand
5sin 2a and

tan 2u0a5A~cos 2u0a!2221

5A~11sin2 2a2sin2 2f0a sin2 2a!21

5cos 2f0a sin 2a.

It is evident that Eq.~D12b! parametrically defines a
single-valued functionQmin8 (E8) on the interval 11sin2 2a
<E8,1`. The same is true of Eq.~D12a! and the interval
12sin2 2a<E8<11sin2 2a, with g56d generating the
end points of the interval; this follows from the signs of fir
derivatives

dQ0a8

dg
}cos~g1d!1cos 2g.0,

dE0a8

dg
}2sin~g1d!1sin 2g,0, ugu,d,p/4.

Furthermore, at the sole point of overlapE8511sin2 2a,
both Eq.~D12a! and Eq.~D12b! yield the same valueQ85
21, as can be seen by lettingg52d in Eq. ~D12a!. Taken
together, Eqs.~D12a! and~D12b! thus define a single-value
functionQmin8 (E8) on 12sin2 2a<E8,1`, which is the en-
tire domain ofE8, see Eq.~D1!. The functionQmin8 (E8) is
illustrated in Fig. 7 by the curveL0 .

The signs of the derivativesdQ0a8 /dg anddE0a8 /dg also
establish thatQmin8 (E8) is a nonincreasing function ofE8, so
that

Qmin8 ~E8!<Qmin8 ~12sin22a!53.

On the other hand, the quantityQ0c8 5̂Q8uu0c,f0c
l50

that results

from substitution of Eq.~D11c! into Eq. ~D2!, is seen to be
everywhere not less than 3. Apart from the special c
cos2u0c51, which leads identically toQ0c8 53, the ratio

Afc

uBfcu
5

11sin22a1~12sin22a!~cos2u0c!
21

2 sin2autan2u0c
,

decreases with sin2a for any fixed u0c . Consequently,
sin2f0c in Eq. ~D11c! and Q8 in Eq. ~D2! also reach their
lowest values when sin2a is close to 1, hence

Q0c8 >Q0c8 usin2a515cos2u0c111
1

cos2u0c
>3.

Since, as already observed, all conditional extrema ofQ8
occur at its Lagrange points,Qmin8 (E8) given indirectly by
Eqs. ~D12a! and ~D12b! must be the desired conditiona
minimum, andQ0c8 must be the conditional maximum.
e

It now only remains to show thatQmin8 (E8), derived for the
special casel50, still yields the lowest possible value ofQ8
when l is allowed to vary between 0 andp/2. First let l
5p/2 in Eq. ~D1!, which then becomes

E8512sin 2m sin2 2a, Q852 sin 2m11. ~D13!

With 0<m,p, relations~D13! parametrically define in the
plane$E8,Q8% a straight line segmentL1 whose end points
lie on the curveL0 , see Fig. 7. Apart from the end points,L1
lies everywhere above and to the right ofL0 , because, as
confirmed by the sign of the second derivative

d2Q0a8

dE0a8
2 5

d

dg FdQ0a8

dE0a8
G 1

dE0a8 /dg
5

d

dg FdQ0a8 /dg

dE0a8 /dg G 1

dE0a8 /dg

}
d

dg F cos~g1d!1cos 2g

2sin~g1d!1sin 2gG 1

dE0a8 /dg

5
212cos~3g1d!

@2sin~g1d!1sin 2g#2

1

dE0a8 /dg
.0

L0 has positive curvature.
Finally, consider the general case expressions forE8,Q8,

Eq. ~D1! with some fixedm, u, f, and with varyingl. With
substitution from Eq.~12!, E8 andQ8 have the form of bi-
linear fractions in cos2 l:

E85
Al1Bl cos2 l

12Cl cos2 l
5Al81

Bl8

12Cl cos2 l
,

Q85
Gl1Hl cos2 l

12Cl cos2 l
5Gl81

Hl8

12Cl cos2 l
, ~D14!

where the indexed parameters are all independent ofl. It is
evident that, withm, u, andf held constant, there is a linea
relationship betweenE8 and Q8. Equation~D14! therefore
defines a straight line segmentLmuf ~in general, a different
one for each combination ofm, u, f! in the plane$E8,Q8%.
One end point of the segment, corresponding tol5p/2,
necessarily lies on the lineL1 , by construction ofL1 . The
other end point, corresponding tol50, lies above and to the
right of the curveL0 , or, at most, onL0 , by construction of

FIG. 7. Sketch illustrating relative position of conditional min
mum curvesQ8(E8) for l5p/2 ~L1 , dashed!, and forl50 ~L0 ,
solid!.
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L0 as the conditional minimum curveQmin8 (E8) for l50.
SinceL0 has been shown to have everywhere positive c
vature, the entire line segmentLmuf must lie above and to
the left ofL0 . The curveL0 , derived from Eqs.~D11a! and
~D11b!, therefore represents the global conditional minimu
Qmin8 (E8) over all values ofl. This completes the proof.

APPENDIX E: CONDITIONAL MINIMIZATION FOR BB84

Here we show that Eq.~16! represents the conditiona
minimum of the quantity Q subject to the constrain
E5const, withQ andE given by Eq.~15!, over all combi-
nations $l,m,u,f%. Fortunately, it is sufficient to minimize
only the numerator ofQ, for it will be seen that for any
givenE the numerator attains its conditional minimum at t
same point where the denominator reaches its conditio
maximum, i.e.,c50. The latter task is equivalent to min
mizing b subject toE5const. Further simplification is ob
tained by inverting the problem, so thatE is minimized sub-
gn

ev

m

re

an

ev
r-

al

ject to b5const instead. The inversion is permissib
because, as will be shown, the conditional minimumEmin(b)
is a monotonically decreasing function ofb in the domain of
interest 0<E, 1

2 .
This last problem can be solved by inspection witho

resorting to Lagrange multipliers. It is clear from

E5 1
2 2 1

4 ~d1a!5 1
2 2 1

4 @sin2 l~11sin 2m!

1cos2 l cos 2u~11sin 2w!#,

b5sin2 l sin 2m1cos2 l sin 2f

that one can freely let cos 2u51 to reduceE without affect-
ing the constraint variableb. But cos 2u51 immediately
leads toE5 1

2 2 1
4 (11b)5 1

4 (12b), resolving the minimiza-
tion problem. A realization$l,m,u,f% exists for every 0<E

, 1
2 , as Eq.~16! demonstrates.
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