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We establish the best possible approximation to a perfect quantum cloning machine that produces two clones
out of a single input. We analyze both universal and state-dependent cloners. The maximal fidelity of cloning
is shown to be 5/6 for universal cloners. It can be achieved either by a special unitary evolution or by a
teleportation scheme. We construct the optimal state-dependent cloners operating on any prescribed two non-
orthogonal states and discuss their fidelities and the use of auxiliary physical resources in the process of
cloning. The optimal universal cloners permit us to derive an upper bound on the quantum capacity of the
depolarizing quantum channel.@S1050-2947~98!03303-4#
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I. INTRODUCTION

A 1→2 quantum cloneris a quantum-mechanical ma
chine that transforms a system described by some given
stateuc& together with some prescribed state into two s
tems, each with a state as ‘‘close’’ as possible to the gi
one. Specifically, a quantum cloner for quantum bits~qubits!
is defined by an input qubituc&, a blank qubitu0&, an ancil-
lary systemA in a stateuX& ~if necessary!, and a unitary
transformationU acting on all three of these, such that

uc&u0&uX& → uC&5Uuc&u0&uX& ~1!

and, after the interaction, the reduced density operators
the two qubits are identical, i.e., ifr15 Tr2,A(uC&^Cu) and
r25 Tr1,A(uC&^Cu), thenr15r2. In general, ideal quantum
cloners~i.e., ones for whichr15r25uc&^cu) do not exist:
Only if uc& is ensured to be drawn from a fixed orthogon
set can such a quantum cloner be constructed@1–4#. This
situation, however, leads naturally to the question, ‘‘Ho
close to ideal can a cloner be?’’ This can be explored both
a function of the sets from which the unknown state can
drawn and as a function of various notions of ‘‘closeness’’
ideality. In this paper, we explore two such sets and optim
ity criteria.

We define auniversal1→2 quantum cloner as a quantu
machine that takes as an input one qubit in a comple
unknown quantum stateuc& and generates at the output tw
qubits such that each of them is in a state described by
reduced density operator of the formr5huc&^cu1(1

2h) 1
2 1. The parameterh describes the shrinking of th

original Bloch vectorsW corresponding to the density operat
uc&^cu, i.e., if uc&^cu5 1

2 (11sW•sW ) then r5 1
2 (11hsW•sW ),

where1 is the 232 identity matrix andsW represents the se
of Pauli matrices. In this case, we shall be interested in
best possible cloner with respect to the criterion of maxim
h, that is, maximal ‘‘local’’ fidelity F5^curuc&5 1

2 (11h)
between input and output. This case is important becau
571050-2947/98/57~4!/2368~11!/$15.00
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reveals the overall effectiveness with which purely quant
information, embodied in a completely unknown quantu
state, can be copied.

In some cases the original qubit may be prepared i
state that is selected from a known ensemble of states
such cases we can design astate-dependentcloner that is
optimal with respect to a given ensemble; here we will co
sider ensembles composed of only two nonorthogonal qu
tum statesua& andub&. Here the criterion of optimality is tha
of optimizing the ‘‘global fidelity’’ between input and out
put, i.e., to make the stateuC& given in Eq. ~1! have the
largest inner product possible withua&ua& or ub&ub&, depend-
ing upon the input state. This case is of some importance
instance, because of the way it compares and contrasts
optimal eavesdropping schemes on two-state quantum c
tographic protocols@5#.

The paper is organized as follows. In Sec. II A we discu
the performance of a universal quantum cloner, analyzing
role of the symmetry and isotropy conditions imposed on
system. The cloning transformation with the optimal loc
fidelity is derived by aconstructiveproof and is shown to
coincide~modulo some phase factors! with the cloning ma-
chine proposed by Buzˇek and Hillery@6#. We then demon-
strate in Sec. II B that universal quantum cloners can also
implemented via quantum-state teleportation@7#. This
method results in the creation of two imperfect clones at t
different locations by a combination of a shared thre
particle entanglement and public broadcasting. In Sec. III
relax the universality requirement and study state-depen
cloners. We derive the optimal cloning transformations w
respect to two-state input ensembles. We also commen
the role of state-dependent cloners in quantum cryptogra
and show that the ‘‘local’’ and ‘‘global’’ fidelity criteria lead
to distinct notions of cloning in the state-dependent ca
Finally, in Sec. IV, as an application of these results,
relate the optimality of universal cloners to quantum chan
capacity. All technical details of the optimality proofs a
included in Appendix A~universal cloners! and Appendix B
~state-dependent cloners!. Appendix C details the calcula
2368 © 1998 The American Physical Society
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57 2369OPTIMAL UNIVERSAL AND STATE-DEPENDENT . . .
tions required to compare the optimal state-dependent cl
to optimal eavesdropping in quantum cryptography@8,9#.

Let us point out again that in this paper we restrict o
discussion only to 1→2 cloners. More general results will b
presented elsewhere.

II. UNIVERSAL QUANTUM CLONER

In Sec. II A we derive the unitary transformation wit
optimum fidelity for a universal 1→2 quantum cloner. We
then show in Sec. II B the possibility of establishing th
cloning transformation via teleportation.

A. Optimal universal quantum cloner

In this subsection we find the optimum fidelity for a qua
tum cloner that is defined as a unitary transformation ac
on two initial qubits~the one to be cloned in stateuc& ~or
rc5uc&^cu) and the second one in a standard stateu0&) and
an auxiliary system, also referred to as ancilla. We will i
pose the following conditions on a universal quantum clon
~I!. r15r2 ~symmetry!, ~II a! sW15hcsWc ~orientation invari-
ance of the Bloch vector!, and ~II b! F5 Tr(rcr1)5 const.
~isotropy!. r1 andr2 represent the reduced density operat
of the two output qubits

r15 Tr2,A@ uC&^Cu#, ~2!

whereuC& is the global state at the output of the cloner a
the partial trace is performed on the second copy and
ancilla’s degrees of freedom, and analogously forr2. F is
the fidelity of the cloner.

Let us comment on these three conditions. The first c
dition demands that the reduced density matrices of the
output states are the same. This is what we mean by s
metric cloning. The second condition requires that the Blo
vector of the original statec does not change its directio
but only its length: It shrinks by a factorhc , indicating that
the clones are not pure states, due to entanglement bet
themselves and the ancilla. The third condition requires
the cloner treats every state in the same way, i.e., the fid
and thus the reduction factorh does not depend on the inpu
vector.

We will see in the following that conditions~II a! and
~II b! are not independent: If conditions~I! and ~II a! are
satisfied~II b! holds automatically, i.e., symmetry plus or
entation invariance implies isotropy. On the other hand,
notice that any transformation on a qubit~i.e., on a Bloch
vector! can be decomposed into a transversal~rotation! and a
longitudinal ~rescaling! part. By demanding that the clone
treats all input states in the same way the Bloch vector of
original qubit can only be rescaled but not rotated, becau
rotation has always two fixed points on the sphere~‘‘hairy
ball’’ theorem!, so at least two states are transformed in
‘‘special’’ way that contradicts the universality requiremen

Thus for a symmetric cloner the second and the third c
dition are equivalent. This is the reason that we called th
~II a! and ~II b!.

We start from a general ansatz for the unitary transform
tion U performed by the cloner and acting on the total H
bert spaceH T5H 2

^ H 2
^H x, wherex is the dimension

of the Hilbert space for the ancilla states:
er
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Uu0&u0&uX&5au00&uA&1b1u01&uB1&

1b2u10&uB2&1cu11&uC&, ~3!

Uu1&u0&uX&5 ã u11&uÃ&1 b̃1u10&uB̃1&

1 b̃2u01&uB̃2&1 c̃ u00&uC̃&. ~4!

HereuX& denotes the initial state of the ancilla. Capital lette
A,Bi ,C, . . . refer to output ancilla states. We have n
specified the dimension of the ancilla and we have not
sumed any orthogonality relation to hold betwe
uA&,uBi&, . . . . The only condition we are imposing on
uA&,uBi&, . . . is that they are normalized. In this way we d
not restrict our argument leading to the optimum cloner t
certain dimension of the Hilbert space of the ancilla. Fro
this general ansatz we can also draw conclusions abou
existence of symmetric and isotropic quantum cloning wi
out ancilla, which are discussed in Sec. III A.

Due to the unitarity of the cloning transformation, th
coefficientsa,bi ,c, . . . , which are in general complex, mus
satisfy the normalization conditions

uau21ub1u21ub2u21ucu251,

u ã u21u b̃1u21u b̃2u21u c̃ u251 ~5!

and the orthogonality condition

a* c̃ ^AuC̃&1b2* b̃1^B2uB̃1&1b1* b̃2^B1uB̃2&1c* ã^CuÃ&50.
~6!

We now impose the constraints~I! and ~II ! to satisfy the
symmetry and the isotropy properties. We define the f
phases for the coefficients asa5uaueida, ã5u ã ueid ã and
analogously for the other coefficients. From imposing t
symmetry condition we find that our ansatz~3! and~4! has to
fulfill the relations

ub1u5ub2u, u b̃1u5u b̃2u,

z^B1uB̃2& z5 z^B2uB̃1& z, z^B1uB̃1& z5 z^B2uB̃2& z ~7!

and

ab1* ^B1uA&1c* b2^CuB2&5ab2* ^B2uA&1c* b1^CuB1&,
~8!

and the same as Eq.~8! for the tilded coefficients and ancilla
states. Moreover,

b̃1* a^B̃1uA&1 ã* b1^ÃuB1&5 b̃2* a^B̃2uA&1 ã* b2^ÃuB2&,

b1* c̃ ^B1uC̃&1c* b̃1^CuB̃1&5b2* c̃ ^B2uC̃&1c* b̃2^CuB̃2&.
~9!

We will call ub1u5ub2u5ubu and u b̃1u5u b̃2u5u b̃ u from now
on.

Let us now look into the constraints following from im
posing condition~II a!. Orientation invariance of the Bloch
vector sW means that all its components shrink by the sa
ratio hc :
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s1x

scx

5
s1y

scy

5
s1z

scz

5hc . ~10!

Using the unitary transformation~3! and ~4! and imposing
condition ~10! we find the constraints~i! uau22ucu25u ã u2

2u c̃ u2, ~ii ! uau22ucu25 Re@ b̃1* a^B̃1uA&1 ã* b1^ÃuB1&#,

~iii ! Im@ b̃1* a^B̃1uA&1 ã* b1^ÃuB1&#50, ~iv! b1* c̃ ^B1uC̃&
1c* b̃1^CuB̃1&50, ~v! b2* a^B2uA&1c* b1^CuB1&50,

~vi! b̃2* ã^B̃2uÃ&1 c̃* b̃1^C̃uB̃1&50, ~vii ! c̃* a^C̃uA&
2 ã* c^ÃuC&50, and (1↔2).

Here the notation 1↔2 indicates that as a result of th
symmetry condition the same set of constraints has to h
for exchange of the indices 1 and 2.

Inserting constraints~i! and~vii ! into the explicit form for
the ratiohc , we find easily thathc is a constant, i.e., inde
pendent of the input state. Thus, as mentioned before,
find that conditions~II a! and~II b! are not independent: afte
imposing condition~I!, condition~II b! is automatically sat-
isfied when ~II a! holds. Therefore, any symmetric clon
that does not rotate the initial state is isotropic.

The explicit form of the reduction factorh is

h5uau22ucu2, ~11!

which we want to maximize. The fidelity

F5 Tr~r1uc&^cu!5 1
2 ~11sW1•sWc!, ~12!

which for the symmetric isotropic cloner is related to t
reduction factor as

F5 1
2 ~11h!, ~13!

is maximized as well.
The maximization of the fidelity is carried out using th

Lagrange multiplier method, which takes into account
constraints imposed on the cloning transformation due to
unitarity, symmetry, and isotropy conditions. Here we ha
also required the unitary transformation to be symmetric
der exchange u0&↔u1& which leads to uau5u ã u,ubu
5u b̃ u, and ucu5u c̃ u. The explicit optimization procedure
is reported in Appendix A.

The idea is to use the Lagrange multiplier technique a
some knowledge about the coefficientsa and bi to find the
best value forucu. Then we use constraint~ii ! to find the
optimum value ofuau that gives usubu via the normalization
condition.

The results are

ucu50, uau5A2

3
, ubu5A1

6
. ~14!

Here ucu50 can be understood intuitively becausec is the
coefficient for the stateu11& that is maximally remote from
the ideal output stateu00& in Eq. ~3!.

Thus we find that the shrinking factorh of the optimum
symmetric isotropic cloner is
ld

e

e
e

e
-

d

h5
2

3
, ~15!

corresponding to the optimum cloning fidelity

F5
5

6
. ~16!

As shown in Appendix A, the class of unitary transform
tions for the optimal symmetric and isotropic cloner is giv
by

Uu0&u0&uX&5A2

3
eidau00&uA&1A1

6
eid ã~ u01&1u10&)uA'&,

~17!

Uu1&u0&uX&5A2

3
eid ãu11&uA'&1A1

6
eida~ u01&1u10&)uA&,

~18!

where^AuA'&50.
We can realize this transformation with two-dimension

ancilla states, e.g.,uA&5u0&, uA'&5u1&, or any other orien-
tation of uA&. These possibilities are different from eac
other with respect to the reduced density matrix of the anc
qubit. If we chooseda5d ã50 anduA&5u0& we arrive at the
cloning transformation proposed by Buzˇek and Hillery @6#,
one example for the optimum symmetric and isotrop
cloner.

As the requirements for the scalar products of the anc
states for the optimum cloner can be met by using anc
states of dimension 2 there is no better cloner using high
dimensional ancillas. We note that maximizing the glob
fidelity, defined byFg5 Tr@(rc ^ rc)r1,2#, where r1,2 de-
notes the total output density matrix, traced over the anc
leads to the same transformations~17! and ~18!.

B. Universal cloning by teleportation

So far we viewed the cloner as a machine that clo
quantum states at a given location. There are, however,
tain scenarios, especially in quantum communication a
cryptography, where cloning is followed by further proces
ing that may involve sending the two clones to two differe
locations. In these scenarios one may benefit from ‘‘non
cal’’ cloning, which can be achieved via teleportation.

Suppose that a sender~Alice! is to transmit an imperfec
copy of her qubit state to two receivers~Bob and Charlie!;
the three parties possess as a starting resource a part
entangled quantum state, but otherwise only classical c
munication is permitted from Alice to Bob and Charlie. Th
situation is essentially the three-party generalization of
well-known teleportationprotocol @7#, in which Alice can
transmit any qubit state to Bob perfectly, provided that th
share an entangled singlet stateuC2&5 1/A2 (u01&2u10&).
In this protocol, Alice first performs a joint measurement
the state to be teleporteduc& and her half of the singlet pair
the measurement being performed in the Bell basis
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uC6&5
1

A2
~ u01&6u10&)

uF6&5
1

A2
~ u00&6u11&). ~19!

Alice then sends a two-bit message to Bob indicating wh
of the four Bell states was measured. Bob can reconsti
uc& exactly from his half of the singlet if he performs th
final action: if he receives the message ‘‘C2,’’ nothing; if
‘‘ C1,’’ rotate his qubit bysz ; if ‘‘ F2,’’ rotate by sx ; if
‘‘ F1,’’ rotate by sy .

The same protocol, but applied to the particular thr
particle state

uCclone&5A2

3
u100&2A1

6
u010&2A1

6
u001&, ~20!

results precisely in a Buzˇek-Hillery cloning from Alice to
Bob and Charlie, provided that the results are averaged
the four possible measurement outcomes.~This averaging is
not necessary in ordinary teleportation; we will explain in
moment what happens if the measurement outcomes arenot
averaged over in the present form of teleportation.! In
uCclone&, the first particle is possessed by Alice, the seco
by Bob, and the third by Charlie.~Of course, the state is
symmetric with respect to Bob and Charlie.! The cloning is
achieved by classical transmission in the sense that A
need only broadcast the two-bit result of her Bell measu
ment to Bob and Charlie, with which they perform the sa
final action as in teleportation, in order for Bob and Char
to possess Buzˇek-Hillery clones of Alice’s original qubit
state.

It is informative to formulate our imperfect teleportatio
in the language of quantum operations with which Niels
and Caves have analyzed ordinary teleportation@10#. In this
language the transformation from Alice’s input staterc and
Bob’s ~or Charlie’s! output statero

i conditional upon mea-
surement outcomei ~unnormalized! is specified by the su
peroperator

ro
i 5(

j
Ai j rcAi j

† . ~21!

The output density operatorro taking all measurement out
comes into account just requires the sum over all outcomei :

ro5(
i , j

Ai j rcAi j
† . ~22!

Completeness requires

(
i , j

Ai j
† Ai j 51, ~23!

but if the sum is restricted to a particulari ,

(
j

Ai j
† Ai j 5Ei , ~24!
h
te

-

er

d

e
-

e

n

whereEi is the operator representing the measurement
come i in the positive-operator-valued theory of quantu
measurement.

This representation may be related simply to the Blo
vector picture. If we write the conditional output density o
erator as

ro
i 5

Pr~ i !

2
~11sWo•sW !

,

where Pr(i ) is the probability of measurement outcomei ,
then

Pr~ i !5 1
2 TrEi1

1
2 (

a
scaTr~Eisa! ~25!

and

Pr~ i !sob5 1
2 TrS (

j
Ai j Ai j

† sbD
1 1

2 (
a

scaTrS (
j

Ai j saAi j
† sbD . ~26!

A straightforward calculation shows that for our imperfe
teleportation, theF1 and F2 measurement outcomes a
indistinguishable~i.e., are described by the sameA operators
and therefore have the same probability of occurrence
leave the output qubit in the identical state!. This is also true
of the C1 andC2 outcomes. However, theF andC mea-
surements are distinct. This is in contrast to perfect telep
tation in which all four measurement outcomes lead to id
tical operations~just the trivial noiseless identity operator, i
fact!. For our case we find

AF,15A2

3S 1
2 0

0 1
D , AF,25A1

6S 0 0

1 0D ,

AC,15A2

3S 1 0

0 1
2
D AC,25A1

6S 0 1

0 0D , ~27!

and

EF5S 1
3 0

0 2
3

D , EC5S 2
3 0

0 1
3

D . ~28!

We note from Eq.~27! that the teleportation operation, kee
ing only the cases where the measurement outcome is aF,
resembles in some ways a ‘‘decay channel’’ in which t
state is damped towards theu1&-state fixed point. The case
where the measurement outcome isC behave identically ex-
cept withu0& andu1& interchanged~from which the isotropy
of the measurement-averaged operation emerges!. However,
it is incorrect to say that the total operation is obtained
selecting at random between the ‘‘F channel’’ and the ‘‘C
channel’’ ~although this is the way that@11# creates severa
interesting cloning transformations!, because theEi opera-
tors are not proportional to the identity as they are in perf
teleportation. Unlike in the randomly selected channel,
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probability of the measurement outcome depends on the
put state; we find directly from Eq.~28! that

Pr~F!5 1
3 ^0urcu0&1 2

3 ^1urcu1&,

Pr~C!5 2
3 ^0urcu0&1 1

3 ^1urcu1&. ~29!

Finally, we note that since the Bell measurements occ
a Hilbert space of at least two qubits@12#, an open question
is raised of whether good 1-to-N cloning can be achieved b
teleportation through an~N11!-particle entangled state. I
the simplest generalization of the above protocol the e
Hilbert space size would still be two qubits~since there
would still just be one Bell measurement!, but the optimal
1-to-N cloner appears to require an ancilla withO(N) qubits
@13#; as Bužek has pointed out, this may well mean that th
teleportation approach to cloning may not generalize to o
cloning problems.

III. STATE-DEPENDENT QUANTUM CLONERS

Let us start this section with showing that in order
satisfy the isotropy requirement an ancilla system must
necessarily involved in the cloning transformation. This
proved in Sec. III A. In Sec. III B we drop the isotropy con
dition and investigate the case of a symmetric sta
dependent cloner in absence of ancilla. We will show tha
we have somea priori knowledge about the input states th
cloner can perform much better than the optimal univer
one.

A. Quantum cloner without ancilla

From the general ansatz for the unitary transformat
with an ancilla of arbitrary dimension we can draw conc
sions about a quantum cloner without ancilla by replacing
statesuA&,uBi&, . . . on theright-hand sides of Eqs.~3! and
~4! with the factor 1.

If we attempt to realize a symmetric and isotropic clon
we need to be able to fulfill the constraints~i!–~vii ! where all
scalar products of auxiliary states have to be replaced b
We will show that this is not possible.

Here we only write down those four constraints that
need for our argument:~i! uau22ucu25u ã u22u c̃ u2, ~ii ! uau2

2ucu25 Re@ b̃1* a1 ã* b1#, ~v! b2* a1c* b150, and ~vi!

b̃2* ã1 c̃* b̃150. Remember that from~7! we have ub1u
5ub2u5ubu and u b̃1u5u b̃2u5u b̃ u. In order to fulfill con-
straints~v! and ~vi! where both real and imaginary parts
the given sum have to vanish there are only these poss
ties ~for any choice of phasesda ,dbi

, . . . ):

~v! ubu50 or uau5ucu ~30!

and

~vi! u b̃ u50 or u ã u5u c̃ u. ~31!

There are four possible combinations of these constra
uau5ucu and u ã u5u c̃ u, uau5ucu and u b̃ u50, ubu50 andu ã u
5u c̃ u, andubu50 andu b̃ u50. For the first three possibilitie
we find immediately from~i! and Eq.~11! that h50, the
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trivial solution. For the last possibility we only need a glan
at constraint~ii ! to find h50 as well. We thus conclude tha
it is impossible to build a symmetric isotropic quantu
cloner without ancilla.

B. Optimal state-dependent cloner

In this subsection we answer the following questio
Given two possible input statesua& andub&, where in general
^aub&Þ0, what is the optimal quantum cloner with respect
a global fidelity criterion? We suppose that the input qubi
prepared with the same probability in either stateua& or ub&
and optimize the transformation as a function of their sca
product. The resulting optimal transformation will be ther
fore state dependent.

Two pure nonorthogonal states in a two-dimensional H
bert space can be parametrized as

ua&5cosuu0&1sinuu1&,

ub&5sinuu0&1cosuu1&, ~32!

where $u0&,u1&% represents an orthonormal basis andu
P@0,p/4#. The set of the two input states can equivalently
specified by means of their scalar productS5^aub&5sin2u.

Let us consider a unitary operatorU acting on H T

5H 2
^H 2 and define the final statesua& and ub& as

ua&5Uua&u0&, ~33!

ub&5Uub&u0&. ~34!

Unitarity gives the following constraint on the scalar produ
of the final states:

^aub&5^aub&5sin2u[S. ~35!

As a criterion for optimality of the state-dependent clon
we take the transformation that maximizes the global fide
Fg of both final statesua& andub& with respect to the perfec
cloned statesuaa&[ua& ^ ua& and ubb&[ub& ^ ub&. The glo-
bal fidelity is defined formally as

Fg5
1

2
~ z^auaa& z21 z^bubb& z2!. ~36!

We show in Appendix B that the above fidelity is max
mized when the statesua& andub& lie in the two-dimensional
spaceHaa,bb , which is spanned by vectors$uaa&,ubb&%.

Let us now maximize explicitly the value of the glob
fidelity ~36!. We can think about it in a geometrical way an
definef, d, andg as the ‘‘angles’’ between vectorsuaa& and
ubb&, uaa& and ua&, andua& and ub&, respectively. The glo-
bal fidelity ~36! then takes the form

Fg5
1

2
@cos2d1cos2~f2g2d!# ~37!

and is thus maximized when the angle betweenuaa& andua&
is equal to the angle betweenubb& and ub&, i.e., d5 1

2 (f
2g). The optimal situation thus corresponds to the maxim
symmetry in the disposition of the vectors.
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As we know thatf5arccos(sin22u) and from Eq.~35!
g5arccos(sin2u), after little algebra we can write the opt
mal global fidelity as

Fg,opt5
1

4
~A11sin22uA11sin2u1cos2uA12sin2u!2.

~38!

The corresponding unitary transformationU on the basis
states u00& and u10& of the initial subspace of the four
dimensional Hilbert space of the two qubits is given by

Uu00&5au00&1b~ u01&1u10&)1cu11&, ~39!

Uu10&5cu00&1b~ u01&1u10&)1au11&, ~40!

where

a5
1

cos2u
@cosu~P1Qcos2u!2sinu~P2Qcos2u!#,

~41!

b5
1

cos2u
Psin2u~cosu2sinu!, ~42!

c5
1

cos2u
@cosu~P2Qcos2u!2sinu~P1Qcos2u!#,

~43!

with

P5
1

2

A11sin2u

A11sin22u
, ~44!

Q5
1

2

A12sin2u

cos2u
. ~45!

The transformation forua& and ub& can be readily derived
from Eqs.~39! and~40!. We can easily see that the transfo
mation is symmetric, i.e.,ra,15ra,25ra for input stateua&
and similarly forub&.

In order to compare the performance of the sta
dependent cloner with the universal one we calculate
local fidelity Fl of each of the output copies with respect
the input one, generally defined as

Fl5 Tr@raua&^au#. ~46!

For the above transformation we find

Fl ,15
1

2 F11
cos22u

A11sin22u
1

sin22u~11sin2u!

11sin22u G
5

1

2 F11
12S2

A11S2
1

S2~11S!

11S2 G . ~47!
-
e

Due to the symmetry of the problem the same express
~47! is obtained for the fidelity ofrb and it is plotted in Fig.
1. As we can see, the fidelity takes surprisingly high valu
in the whole range ofu, well above the optimal value 5/6 o
the universal cloner.

Let us now examine the degree of entanglement that
‘‘quasicloning’’ transformation has introduced in the syste
An estimation of the degree of purity of the state is given
the modulus of thesW vector in the Bloch sphere: The modu
lus is maximized to unity when the state is pure. In the c
under consideration it takes the form

usWu5Asin22u~11sin2u!2

~11sin22u!2 1
cos22u

11sin22u
~48!

FIG. 1. Local fidelity of the state-dependent cloner as a funct
of u: the solid line results from maximization of the global fideli
@see Eq.~47!#, the dashed line corresponds to the local fidelity in t
optimal eavesdropping scheme@given in Eq.~50!#, and the dotted
line is the optimal local fidelity@see Eq.~51!#.

FIG. 2. Modulus of the Bloch vectorsW for the optimal state-
dependent cloner@see Eq.~48!#.
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and is plotted in Fig. 2. As we can see, the top of the vec
sW is always very close to the surface of the Bloch sphere
any value ofu and the degree of purity of the output state
therefore always fairly high. Notice that the length of t
Bloch vector is always much bigger than the value 2/3 of
optimal universal cloner. We also point out that in this ca
the Bloch vector is not only shrunk but also rotated by
state-dependent angleq, given by

q5arccosF 1

usWu

cos2u

A11sin22u
G22u. ~49!

Perhaps the most important practical use for sta
dependent cloners is in the eavesdropping on some qua
cryptographic systems. For example, if the quantum key
tribution protocol is based on two nonorthogonal states@5#,
the optimal state-dependent cloner can clone the qubi
transit between a sender and a receiver. The original q
can then be re-sent to the receiver and the clone can stay
an eavesdropper who by measuring it can obtain some in
mation about the bit value encoded in the original. T
eavesdropper may consider storing the clone and dela
the actual measurement until any further public commun
tion between the sender and the receiver takes place.
eavesdropping strategy, for instance, has been discusse
cently in Ref.@11#.

It should be noted, however, that eavesdropping via a
rect cloning attempt is not the most advisable course of
tion for the eavesdropper if she wishes to be the most
t
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reptitious. For that task, the eavesdropper’s main concer
not in copying the quantum information, as embodied in
two nonorthogonalquantum states, but rather in optimizin
the trade-off between the classical information made av
able to her versus the disturbance inflicted upon the orig
qubit @8,9#. The optimal solution to that problem leads to
one-parameter class of unitary interactions, the paramete
ing the degree of disturbance. It turns out that, regardles
the value of the parameter, the optimal unitary interact
there never matches that given in Eqs.~39!–~45!.

Indeed this can be seen in a direct manner. The opti
eavesdropping strategy is quite similar to the scenario
scribed above. The eavesdropper uses a probe system
teract with the in-transit qubit and then later performs a m
surement on it~after all public discussion has ceased!.
Although it is not assumed, it turns out to be sufficient
take the probe system itself to be a single qubit@8,9#. In
general, the final state of the probe will not be the same
that of the receiver’s qubit: For instance, if the eavesdr
per’s available information is adjusted to vanish, then h
probe will be left in its original state, which is complete
independent of the sender’s qubit’s state. Nevertheless
Appendix C it is shown that when the disturbance is adjus
so that the statistical distinguishability between the state
the eavesdropper’s probe is identical to that of the final sta
of the receiver’s qubit, then the optimal eavesdropp
scheme is actually a quantum cloner. In that case, the l
fidelity between input and output works out to be
Fl ,25
1

2
1

A2

4
A~122S212S31S4!1~12S2!A~11S!~12S13S21S3! . ~50!
out
ve

lti-

m
no
ay.
ys
e

the
ts in
two

en in
The difference between this fidelity andFl ,1 in Eq. ~47! is
only slight ~they differ at most by 0.000 651 whenS
50.579 924; see Fig. 1!, but this is enough to show tha
optimal cloning and optimal eavesdropping are two differ
tasks.

Similar results can be obtained for the four states in
Bennett-Brassard quantum cryptographic protocol@14#.
Modifying the optimal eavesdropping scheme for that pro
col in Ref.@15# into a quantum cloning device as above giv
a local fidelity of 0.854. Note that in the scenario of Benn
and Brassard we can restrict the input of a cloning mach
therefore, one would not want to use the universal Buzˇek-
Hillery cloner for the task of eavesdropping in the Benne
Brassard protocol.

A more intriguing point, however, can be gleaned fro
noting that actually for allS, Fl ,2>Fl ,1 . This implies that the
optimal global quantum cloner is not optimized with resp
to the local fidelity criterion: In the state-dependent case,
two criteria differ. In fact, the state-dependent cloner deriv
from optimal eavesdropping is still not the best with resp
to the local fidelity criterion. For instance, in Appendix C
is shown that there is a still better state-dependent clone
this criterion; it gives rise to a local fidelity given by
t

e

-

t
e;

-

t
e
d
t

or

Fl ,35
1

2
1

A2

32S
~11S!~323S1A122S19S2!

3A2112S13S21~12S!A122S19S2. ~51!

Again, the difference betweenFl ,3 andFl ,2 is not large~the
largest difference 0.001134 is attained whenS51/2; see Fig.
1!, but it is enough to show that there are better cloners
there with respect to the local fidelity criterion. We ha
verified thatFl ,3 is indeed the optimallocal fidelity for a
state-dependent cloner as defined in Eqs.~39! and ~40!, but
refrain from presenting the tedious calculations here. U
mately, the disparity between Eqs.~47!, ~50!, and~51! only
points out the subtlety of the concept of ‘‘copying’’ quantu
information: Given that it cannot be done ideally, there is
single sense in which it can be done in the best possible w

Finally, let us note that in this subsection we have alwa
considered qubits for the purpose of illustration, but w
stress that the results hold for an arbitrary dimension of
input states. In this case we can rephrase our argumen
terms of the two-dimensional subspace spanned by the
input states and choose the same parametrization as giv
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Eq. ~32! for the input states in such subspace. We can t
derive the same conclusions as above.

IV. APPLICATION TO QUANTUM CAPACITY

The optimal universal cloners, e.g., the Buzˇek-Hillery
cloner, permit us to establish an upper bound on the quan
capacity of a depolarizing qubit channel. A simp
(12h)-depolarizing channel transmits a quantum st
whose Bloch vector is shrunk byh, as above. The quantum
capacityQ(h) is the maximum rate at whichk qubits can be
coded inton qubits in such a way that thek qubits can be
recovered with high fidelity by the receiver, in the limit ofk
andn going to infinity. We can show that

Q50, h<
2

3

Q~h!<12H2S 3

4
h1

1

4D , h.
2

3
, ~52!

where H2(x)52xlog2x2(12x)log2(12x) is the binary en-
tropy function.

The second part of Eq.~52! is proved in @16,17#. The

proof of Q50 for h5 2
3 follows from the universal cloning

results above. Suppose the opposite,Q(h5 2
3 ).0; Sec. IV

of @18# shows that this cannot be so: Consider the Buzˇek-
Hillery cloner inserted into a three-party Alice-Bob-Char
communications protocol discussed above in Sec. II B
Bob and Charlie were oblivious to each other’s existen
they could both, by experiments conducted in concert w
Alice, establish that the Alice-Bob channel and the Alic
Charlie channel are both simple depolarizing channels w

depolarization fractionsh5 2
3. If Q( 2

3 ).0 this would mean
that Alice could, with suitable encoding, transmit a state
Bob and Charlie, both of whom could successfully decod
and obtain a high-fidelity copy of it. However, this violate
the no-cloning theorem for quantum states@1#; thus it must

be so thatQ( 2
3 )50. Q50 for h, 2

3 follows from the non-
decreasing~as a function ofh) property ofQ: If a lower h
gave a higherQ then Alice could add noise herself to th
signal thereby turning a high-h channel into the supposedl
better lower-h channel.

The bound given in Eq.~52! is discontinuous ath5 2
3 . If

we made the seemingly natural assumption thatQ is a con-
tinuous function ofh, as is the channel capacity in the cla
sical setting, then we can apply the methods introduced
@18# to show thatQ<3h22 for h. 2

3 . This would improve
on Eq. ~52! for a range ofh ’s near 2

3 . Unfortunately, the
continuity of Q has proved surprisingly difficult to establis
rigorously; this has finally been established@19# for a par-
ticular channel, the quantum erasure channel. The fact
the Bužek-Hillery cloner is proved to be optimal shows th
no stronger bound onQ for the depolarizing channel can b
established by this reasoning and in fact no upper bound
a lower threshold is known, although there is also no e
dence that the capacity of Eq.~52! can be attained. Thus thi
remains one of the many open questions in quantum in
mation theory.
n

m

e

If
,

h
-
h

o
it

in

at

th
i-

r-

ACKNOWLEDGMENTS

We thank Vladimir Buzˇek and Nicolas Gisin for discus
sions. This work was supported in part by European TM
Research Network Grant No. ERB-4061PL95-1412 and
NATO collaborative research grant. D.P.V. and J.A.S. tha
the Army Research Office for support. C.A.F. would like
thank the Lee A. DuBridge Foundation for financial suppo
He also acknowledges support from DARPA through t
Quantum Information and Computing Institute administer
by the U.S. Army Research Office. Part of this work w
completed during the Elsag-Bailey–ISI Foundation resea
meeting on quantum computation.

APPENDIX A: OPTIMIZATION FOR UNIVERSAL
CLONER

We want to maximize the functionh while the constraints
~i!–~vii ! as well as the unitarity constraints~5! and ~6! are
fulfilled. The independent variables are the absolute val
of the coefficientsa,bi , . . . , their phases, the absolute valu
of the scalar products of the ancilla states@two of these are
already fixed via the symmetry condition~7!#, and their
phases, which we denote

^AuC&5 z^AuC& zeidAC, ~A1!

and accordingly for the other scalar products.
We impose the natural symmetry requirement on the g

eral ansatz that the reduced density matrix of the two clo
should not change under the exchangeu0&↔u1&, i.e., the out-
come should not depend on renaming the basis. This lead
immediately to

uau5u ã u, ubi u5u b̃ i u, ucu5u c̃ u ~A2!

and the following restrictions for the scalar products of a
cilla states from off-diagonal density matrix elements:

z^AuBi& z5 z^ÃuB̃i& z,

z^Bi uC& z5 z^B̃i uC̃& z, z^CuA& z5 z^C̃uÃ& z. ~A3!

We also find that the phasesd ÃB̃i
,d B̃i C̃

,d C̃Ã can be expressed

as functions of the phasesdABi
,dBiC

,dCA andda ,dbi
, . . . .

We are using the method of Lagrange multipliers, whe
we have to solve the system of equations

]h

]uau
1(

i 51

13

l i

]w i

]uau
50,

]h

]ubu
1(

i 51

13

l i

]w i

]ubu
50, . . . w i[0, i 51, . . . ,13,

~A4!

where

h52uau212ubu221, ~A5!

w i denotes the constraints, and the Lagrange multipliers
l i . The order of the constraints that defines the Lagra
multiplier indices in later equations is taken to be
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w15uau212ubu21ucu221,

w252uau212ubu2212 Re@ b̃1* a^B̃1uA&1 ã* b1^ÃuB1&#,

w35 Im@ b̃1* a^B̃1uA&1 ã* b1^ÃuB1&#,

w45b1* c̃ ^B1uC̃&1c* b̃1^CuB̃1&,

w55b2* a^B2uA&1c* b1^CuB1&,

w65 b̃2* ã^B̃2uÃ&1 c̃* b̃1^C̃uB̃1&,

w75 c̃* a^C̃uA&2 ã* c^ÃuC&,

w85a* c̃ ^AuC̃&1b2* b̃1^B2uB̃1&1b1* b̃2^B1uB̃2&

1c* ã^CuÃ&

w9,10,11,12,135w2,3,4,5,6 with 1↔2. ~A6!

In solving this system of equations we can use so
knowledge about the coefficients. We know from constra
~ii ! and Eq.~A2! that bothuau and ubu cannot take the value
0 because otherwiseh50, the trivial solution.

Taking the partial derivative with respect toucu leads to

2l1ucu1l4@b1* eid c̃^B1uC̃&1 b̃1e2 idc^CuB̃1&#

1l11@b2* eid c̃^B2uC̃&1 b̃2e2 idc^CuB̃2&#

1l5b1e2 idc^CuB1&1l12b2e2 idc^CuB2&

1l6b̃1e2 id c̃^C̃uB̃1&1l13b̃2e2 id c̃^C̃uB̃2&

12l8a* eid c̃^AuC̃&50, ~A7!

where we have already eliminated^ÃuC& by insertingw7

[0 into w8. From the derivatives with respect toz^Bi uC̃& z,
z^CuB̃i& z, z^CuBi& z, z^C̃uB̃i& z, and z^AuC̃& z we arrive~after di-
viding through phase factors! at

l j ubuucu50 with j 54,5,6,11,12,13 ~A8!

and

l8uauucu50. ~A9!

After multiplying Eq. ~A7! by ucu we find

l1ucu250. ~A10!

In the same way we use the equations resulting from dif
entiating with respect touau, z^B̃i uA& z, z^ÃuBi& z, z^Bi uA& z,
z^B̃i uÃ& z and z^AuC̃& z and get

2uau1l1uau12l2uau12l9uau50. ~A11!

Multiplying this with ucu2 and using Eq.~A10! we conclude
that, sinceuauÞ0, eitherl21l9521 or ucu50.
e
t

r-

We will now show thatl21l9521 corresponds to a
minimum ofh, i.e.,h50. From the derivatives with respec
to z^B̃1uA& z and z^B̃2uA& z we find, after dividing through
uauubu,

2l2cos~da2d b̃1
1d B̃1A!1l3sin~da2d b̃1

1d B̃1A!50,
~A12!

2l9cos~da2d b̃2
1d B̃2A!1l10sin~da2d b̃2

1d B̃2A!50
~A13!

and from the derivatives with respect tod B̃1A andd B̃2A ,

l2z^B̃1uA& zsin~da2d b̃1
1d B̃1A!

1l3z^B̃1uA& zcos~da2d b̃1
1d B̃1A!50, ~A14!

l9z^B̃2uA& zsin~da2d b̃2
1d B̃2A!

1l10z^B̃2uA& zcos~da2d b̃2
1d B̃2A!50. ~A15!

If l21l9521 then at least one of these two multipliers
not equal to zero. Let us assume thatl2Þ0. We multiply Eq.
~A12! by cos(da2db̃1

1dB̃1A), obtaining

l3cos~da2d b̃1
1d B̃1A!sin~da2d b̃1

1d B̃1A!

5l2cos2~da2d b̃1
1d B̃1A!. ~A16!

Substituting Eq.~A16! into Eq. ~A14! multiplied by sin(da

2db̃1
1dB̃1A), we obtainl2z^B̃1uA& z50, so that

^B̃1uA&50 if cÞ0. ~A17!

The same reasoning in which tilded and untilded variab
are interchanged leads to

^ÃuB1&50 if cÞ0. ~A18!

Due to constraint~ii ! this means thath50.
If the assumptionl2Þ0 does not hold thenl9Þ0 and the

same line of arguments leads to^B̃2uA&5^ÃuB2&50 and
also h50. We have thus establisheducu50, and therefore
h5uau2. We also notice that fromw5 ,w12 and w6 ,w13 we
need

^Bi uA&5^B̃i uÃ&50. ~A19!

Now h is maximized by maximizinguau, which can be
easily achieved using constraint~ii ! and the normalization
condition:

~ii ! uau25 Re@ b̃1* a^B̃1uA&1 ã* b1^ÃuB1&#

5uauubu Re@ei ~da2d b̃1
!^B̃1uA&1ei ~db1

2d ã!^ÃuB1&#

5uauubuj ~A20!

or



la
i

the
ua-

ren-

e
e

the

bit,
o-
ed.

of

r’s

be

e

57 2377OPTIMAL UNIVERSAL AND STATE-DEPENDENT . . .
uau2512
2

21j2
. ~A21!

So uau2 is maximized for the maximum value ofj2, which is
j2522. This leads to

uau5A2

3
, ubu5A1

6
. ~A22!

We can meet the maximum ofj by choosing

^ÃuBi&51, ^B̃i uA&51 ~A23!

and

da5d b̃ i
, d ã5dbi

. ~A24!

Collecting our information about the coefficients and sca
products, the class of optimal unitary transformations
given by

Uu0&u0&uX&5A2

3
eidau00&uA&

1A1

6
eid ã~ u01&1u10&)uA'&, ~A25!

Uu1&u0&uX&5A2

3
eid ãu11&uA'&

1A1

6
eida~ u01&1u10&)uA&, ~A26!

where^AuA'&50.

APPENDIX B: OPTIMIZATION FOR STATE-DEPENDENT
CLONER

Let us assume thatua& and ub& have some contribution
that does not lie inHaa,bb . Then we can write explicitly the
form of ua& and ub&

ua&5a0uaa&1b0ubb&1c0uC0&, ~B1!

ub&5a1uaa&1b1ubb&1c1uC1&, ~B2!

where vectorsuC0& and uC1& are normalized and lie in the
subspace orthogonal toHaa,bb . The unitarity of the transfor-
mation imposes the constraints

w15 Re@a0* a11b0* b11S2~a0* b11b0* a1!1c0* c1^C0uC1&#

2S50, ~B3!

w25 Im@a0* a11b0* b11S2~a0* b11b0* a1!1c0* c1^C0uC1&#

50, ~B4!

w35ua0u21ub0u212S2 Re@a0* b0#1uc0u22150, ~B5!

w45ua1u21ub1u212S2 Re@a1* b1#1uc1u22150, ~B6!

whereS is defined in Eq.~35!.
r
s

The global fidelity is given by

Fg5
1

2
~ ua01b0S2u21ub11a1S2u2!. ~B7!

Inserting constraintsw3 andw4 into Eq. ~B7! yields

Fg5
1

2
@22~12S4!~ ua1u21ub0u2!2~ uc0u21uc1u2!#.

~B8!

We can now use the method of Lagrange multipliers for
remaining two constraints, which gives the system of eq
tions

]Fg

]ua0u
1(

i 51

2

l i

]w i

]ua0u
50,

]Fg

]ub0u
1(

i 51

2

l i

]w i

]ub0u
50,

etc. Let us concentrate on the equations where we diffe
tiate with respect to the parametersc0 ,c1, and ^C0uC1&.
Without loss of generality, we can considerc0 and^C0uC1&
real, while c1 must be taken to be in general complex (c1
5uc1ueid). The corresponding equations~obtained by differ-
entiating with respect toc0, uc1u, and^C0uC1&, respectively!
give

2c01l1 Re@ uc1ueid^C0uC1&#1l2 Im@ uc1ueid^C0uC1&#50,
~B9!

2uc1u1l1 Re@c0eid^C0uC1&#1l2 Im@c0eid^C0uC1&#50,
~B10!

l1 Re@c0uc1ueid#1l2 Im@c0uc1ueid#50. ~B11!

After multiplying Eq.~B9! by c0, Eq. ~B10! by uc1u, and Eq.
~B11! by ^C0uC1& and inserting the last equation into th
other two we findc05uc1u50. We can therefore conclud
that ua& and ub& lie in Haa,bb .

APPENDIX C: STATE-DEPENDENT CLONERS FROM
EAVESDROPPING

We take as our starting point for these calculations
development in Refs.@8# and @9# just at the point where the
eavesdropper’s probe is restricted to consist of a single qu
i.e., we take sinl50 in those references. This leaves a tw
parameter family of unitary interactions to be consider
~Note that we shall interchange the symbolsa andu used in
Refs.@8# and @9# so as to be consistent with the notation
the present paper.!

With this much given, suppose we label the receive
state for his qubit after the eavesdropping interaction byra

A

or rb
A , depending upon whether the sender sent stateua& or

ub&. Similarly suppose we label the eavesdropper’s pro
states byra

E or rb
E . Then we have from Eqs.~86!–~91! and

~98!–~100! of Ref. @9# that the matrix elements for thes
operators will be
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~ r̂a
E!005

1

2
~11cos2ucos2f!, ~C1!

~ r̂a
E!015

1

4
@~cosu2sinu!2sin2~f2a!

1~cosu1sinu!2sin2~f1a!#, ~C2!

~ r̂a
E!115

1

2
~12cos2ucos2f! ~C3!

and

~ r̂a
A!005cos2ucos2a1sin2usin2a, ~C4!

~ r̂a
A!015cosusinusin2fcos2a1

1

2
cos2fsin2a, ~C5!

~ r̂0
A!115sin2ucos2a1cos2usin2a . ~C6!

Hermiticity determines the remainder of the matrix elemen
The matrix elements forr̂b

E and r̂b
A are given by the same

expressions, except with cosu and sinu interchanged. With
this interaction, the fidelity between the sender’s and rec
er’s states, i.e., 12D in Eq. ~33! of Ref. @8# and 12D(U) in
Eq. ~101! of Ref. @9#, is given by

F~a,f![^aura
Aua&5^burb

Aub& ~C7!

5cos2a1 1
2 Scos2fsin2a

2 1
2 S2~12sin2f!cos2a. ~C8!

Now it is shown in Refs.@8# and@9# that if this interaction
is to be one for optimizing the trade-off between the eav
dropper’s information and the fidelity between the sende
and receiver’s quantum states, thena andf must satisfy the
relation
hu

r,
.

v-

-
s

tan2a5
Scos2f

12S2~12sin2f!
. ~C9!

@See Eq.~52! in Ref. @8# and Eq.~108! in Ref. @9#.# On the
other hand, in order for the optimal eavesdropping solut
to also be a quantum cloner, it must be the case thatr̂a

E

5 r̂a
A andr̂b

E5 r̂b
A . A little algebra applied to Eqs.~C1!–~C6!

shows that this can occur only when cos2f5cos2a. Hence,
if there is not to be an inconsistency with the constraint giv
by Eq. ~C9!, then it must be the case that the parametex
[sin2f is such that it satisfies

~S1S2!x21~12S2!x2S50 . ~C10!

Solving this quadratic equation and inserting the result i
Eq. ~C8! gives the fidelityFl ,2 of Eq. ~50!.

As stated in Sec. III B, this discussion can be expande
produce a quantum cloner still better with respect to the ‘‘
cal’’ fidelity criterion than the one just found. We simply s
f5a in the interaction above and ignore the constraint~C9!
that the interaction lead to optimal eavesdropping. With th
Eq. ~C8! reduces to

F~f!5
1

2
1

1

2
~11S!S ~12S!cos2f1

1

2
Ssin4f D .

~C11!

This expression is maximized when

sin2f5
1

4S
~211S1A122S19S2! . ~C12!

Inserting this particular value for sin2f into Eq. ~C11! gives
the expressionFl ,3 reported in Eq.~51!.
nal
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