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We establish the best possible approximation to a perfect quantum cloning machine that produces two clones
out of a single input. We analyze both universal and state-dependent cloners. The maximal fidelity of cloning
is shown to be 5/6 for universal cloners. It can be achieved either by a special unitary evolution or by a
teleportation scheme. We construct the optimal state-dependent cloners operating on any prescribed two non-
orthogonal states and discuss their fidelities and the use of auxiliary physical resources in the process of
cloning. The optimal universal cloners permit us to derive an upper bound on the quantum capacity of the
depolarizing quantum chann¢51050-2947®8)03303-4

PACS numbe(s): 03.67.Hk, 03.65-w, 89.70+c

[. INTRODUCTION reveals the overall effectiveness with which purely quantum
information, embodied in a completely unknown quantum
A 1—2 quantum cloneris a quantum-mechanical ma- state, can be copied.
chine that transforms a system described by some given pure In some cases the original qubit may be prepared in a
state|y) together with some prescribed state into two sys-tate that is selected from a known ensemble of states. In
tems, each with a state as “close” as possible to the giveruch cases we can designstate-dependentloner that is
one. Specifically, a quantum cloner for quantum bisbits  optimal with respect to a given ensemble; here we will con-
is defined by an input qubjt), a blank qubit0), an ancil-  sjder ensembles composed of only two nonorthogonal quan-
lary systemA in a state|X) (if necessary and a unitary  tym statega) and|b). Here the criterion of optimality is that
transformationU acting on all three of these, such that of optimizing the “global fidelity” between input and out-
put, i.e., to make the statgl’) given in Eqg. (1) have the
|)]|0)|X) — |¥)=U[4)|0)|X) (1) largestinner product possible withy|a) or |b)|b), depend-
ing upon the input state. This case is of some importance, for

. . . instan f the way it compar n ntr with
and, after the interaction, the reduced density operators forS ance, because of the way it compares and contrasts wit

the two qubits are identical, i.e., if;= Tr,A(|W)(¥) and ?ptimal _eavesdropping schemes on two-state quantum cryp-
" N : ographic protocol$5].
p2= Tria(|¥){(¥]), thenp;=p,. In general, ideal quantum ™ : ved as foll In Sec. Il A we di
cloners(i.e., ones for whictp;=p,=|#){#|) do not exist: € paper IS organized as Io7lows. In Sec. 11A we diScuss
Only if |) is ensured to be drawn from a fixed orthogonalthe performance of a umv_ersal q“a”t“”.‘ plom_er, analyzing the
set can such a quantum cloner be construffedd]. This role of the symme.try and |sotropy.cond!t|ons |mpo§ed on the
situation, however, leads naturally to the question, “HowSYStém. The cloning transformation with the optimal local
close to ideal can a cloner be?” This can be explored both afdelity is derived by aconstructiveproof and is shown to
a function of the sets from which the unknown state can b&oincide(modulo some phase factorsith the cloning ma-
drawn and as a function of various notions of “closeness” tochine proposed by Biek and Hillery[6]. We then demon-
ideality. In this paper, we explore two such sets and optimalstrate in Sec. Il B that universal quantum cloners can also be
ity criteria. implemented via quantum-state teleportatigi]. This
We define auniversall— 2 quantum cloner as a quantum method results in the creation of two imperfect clones at two
machine that takes as an input one qubit in a completelgifferent locations by a combination of a shared three-
unknown quantum state’) and generates at the output two particle entanglement and public broadcasting. In Sec. lll we
qubits such that each of them is in a state described by theelax the universality requirement and study state-dependent
reduced density operator of the form=7|y)(y|+(1  cloners. We derive the optimal cloning transformations with

— )11 The parametery describes the shrinking of the respect to two-state input ensembles. We also comment on

L - . . the role of state-dependent cloners in quantum cryptography
original Bloch vectors corresponding to the density operator and show that the “local” and “global” fidelity criteria lead

ly)(yl, ie., if [p)(y|=3(1+s-0) then p=3(1+7s-0), to distinct notions of cloning in the state-dependent case.
wherel is the 2< 2 identity matrix ando represents the set Finally, in Sec. IV, as an application of these results, we
of Pauli matrices. In this case, we shall be interested in theelate the optimality of universal cloners to quantum channel
best possible cloner with respect to the criterion of maximakapacity. All technical details of the optimality proofs are
», that is, maximal “local” fidelity F=(¢|p|#)=3(1+ 7) included in Appendix A(universal clonepsand Appendix B
between input and output. This case is important because (state-dependent clongrsAppendix C details the calcula-
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tions required to compare the optimal state-dependent cloner U|0)|0)|X)=a|00)|A) + b,|01)|B,)
to optimal eavesdropping in quantum cryptograp8yg).
Let us point out again that in this paper we restrict our +b,|10)|B,) +¢[11)[C), ()
discussion only to -2 cloners. More general results will be _ o _
presented elsewhere. U|1)|0)|X)=a|11)|A)+ b,|10)|B,)
+b,|01)|B,) + c|00)|C). (4

II. UNIVERSAL QUANTUM CLONER

In Sec. Il A we derive the unitary transformation with Here|X) denotes the initial state of the ancilla. Capital letters
optimum fidelity for a universal 4-2 quantum cloner. We A,B;,C,... refer to output ancilla states. We have not
then show in Sec. Il B the possibility of establishing this Specified the dimension of the ancilla and we have not as-
cloning transformation via teleportation. sumed any orthogonality relation to hold between
|A),|B;),... . The only condition we are imposing on
|A),|B;), ... isthat they are normalized. In this way we do
. ) i i o not restrict our argument leading to the optimum cloner to a

In this subsection we find the optimum fidelity for a quan- certain dimension of the Hilbert space of the ancilla. From
tum cloner that is defined as a unitary transformation actingpg general ansatz we can also draw conclusions about the
on two initial qubits(the one to be cloned in staje) (or  existence of symmetric and isotropic quantum cloning with-
py=|¥)(¥l) and the second one in a standard st@i and oyt ancilla, which are discussed in Sec. Il A.
pose the following conditions on a universal quantum cloner'CoefﬁCiems&,bi .C, ..., which are in general complex, must
(). p1=p, (symmetry, (Il a) §1= 77¢§¢ (orientation invari-  satisfy the normalization conditions
ance of the Bloch vectgrand(ll b) F= Tr(p,p;)= const.

A. Optimal universal quantum cloner

(isotropy). p; andp, represent the reduced density operators |a|?+]by|?+|byl|*+]c|?=1,
of the two output qubits o _ _
[al?+[by|?+[b,*+[c|?=1 (5)
p1= Troa[ [ W)(W]], )

and the orthogonality condition
where| W) is the global state at the output of the cloner and
the .partial trace is performed on the second copy a.nd the* c(A|C)+b%b(B,|B,)+b¥b,(B,|B,)+c*a(ClA)=0.
ancilla’s degrees of freedom, and analogously der F is 6
the fidelity of the cloner.

Let us comment on these three conditions. The first con- We now impose the constraints and (1) to satisfy the
dition demands that the reduced density matrices of the twymmetry and the isotropy properties. We define the free
output states are the same. This is what we mean by synphases for the coefficients as=|ale'%, a=|ale'’s and
metric cloning. The second condition requires that the Blochanalogously for the other coefficients. From imposing the
vector of the original state/ does not change its direction symmetry condition we find that our ans#&® and(4) has to
but only its length: It shrinks by a factoy,, indicating that  fulfill the relations
the clones are not pure states, due to entanglement between

themselves and the ancilla. The third condition requires that lbq|=|by|, [b4=|b,l,

the cloner treats every state in the same way, i.e., the fidelity

and thus the reduction factar does not depend on the input |<Bl|’|§2>|:|<|32|’|§1>|, |<Bl|§1>|:|<82|§2>| 7
vector.

We will see in the following that conditionéll a) and and
(Ilb) are not independent: If condition$) and (Il a) are
satisfied(ll b) holds automatically, i.e., symmetry plus ori-  abj (Ba|A)+c*by(C|B,)=abj(B,|A)+c*b;(C|By),
entation invariance implies isotropy. On the other hand, we tS)
notice that any transformation on a qukiie., on a Bloch
vecton can be decomposed into a transve(satation and a
longitudinal (rescaling part. By demanding that the cloner
treats all input states in the same way the Bloch vector of the —~,
original qubit can only be rescaled but not rotated, because a1
rotation has always two fixed points on the sphéfeairy - o~ - - - - -
ball” theorem), so at least two states are transformed in a b7 €(B1|C)+c*b1(C[B1)=b3 c(B,|C)+c*by(C|B,).
“special” way that contradicts the universality requirement. )

Thus for a symmetric cloner the second and the third con- - — -
dition are equivalent. This is the reason that we called thenYVe will call |by|=|b,|=|b| and|b,|=|b,|=|b| from now
(Il'a) and (Il b). on. _ . . .

We start from a general ansatz for the unitary transforma- Let us now look into the constraints following from im-
tion U performed by the C|0ner and acting on the tota| Hil- pOSIng Condltlon(ll a.). Orientation invariance Of the BIOCh
bert spaceH "="H 2®H 2®H ¥, wherex is the dimension vector s means that all its components shrink by the same
of the Hilbert space for the ancilla states: ratio 7,

and the same as E() for the tilded coefficients and ancilla
states. Moreover,

a(B4|A)+a*b,(A|B;)=b3 a(B,|A)+a*b,(AB,),
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S1, Si1, Si, 2
_:—y:—:m,- (10) 17:§, (15
Sy, Sy, Sy,

Using the unitary transformatio8) and (4) and imposing corresponding to the optimum cloning fidelity

condition (10) we find the constraintsi) |a|?—|c|?>=]|al?

—[SJ2, (i) |a]?~|c|*= ReBYa(Bi|A)+a*bi(AlB)], F=§. (16)

(i) Im[bya(By|A)+a*by(A[By)]=0, (iv) bic(ByC)
+c*b(C[By)=0, (v) 5a(B,|A)+c*b;(C|B,)=0,
(vi) b3a(B,JA)+c*b(C[B)=0, (vii) c*a(C|A)
—a*c(A|C)=0, and (1-2).

Here the notation 42 indicates that as a result of the

symmetry condition the same set of constraints has to hold

for exchange of the indices 1 and 2.
Inserting constraint§) and(vii) into the explicit form for
the ratio»,,, we find easily thaty,, is a constant, i.e., inde-

As shown in Appendix A, the class of unitary transforma-

tions for the optimal symmetric and isotropic cloner is given

by

2. 1.
Ul0)lo)1x)= ge'5a|oo>|A>+\[ge'fa<|01>+|1o>)|m>,

17

pendent of the input state. Thus, as mentioned before, we

find that conditiongll a) and(ll b) are not independent: after
imposing condition(l), condition(ll b) is automatically sat-
isfied when (Il a) holds. Therefore, any symmetric cloner
that does not rotate the initial state is isotropic.

The explicit form of the reduction factoy is

n=la|*~|c|?, (1D
which we want to maximize. The fidelity
F= Tripa|)(s])= 3(1+5,-5,), (12

which for the symmetric isotropic cloner is related to the

reduction factor as

F=:(1+7), 13

is maximized as well.

2. 1.
UlD)[0)[X)= \[59'55|11>|AL>+ \[ge"sa(|01>+|10>)|A>,
(18)

where(A|A,)=0.

We can realize this transformation with two-dimensional
ancilla states, e.g|A)=|0), |A, )=|1), or any other orien-
tation of |A). These possibilities are different from each
other with respect to the reduced density matrix of the ancilla
qubit. If we chooses,= §;=0 and|A)=|0) we arrive at the
cloning transformation proposed by Bikzand Hillery[6],
one example for the optimum symmetric and isotropic
cloner.

As the requirements for the scalar products of the ancilla
states for the optimum cloner can be met by using ancilla
states of dimension 2 there is no better cloner using higher-
dimensional ancillas. We note that maximizing the global
fidelity, defined byFq,= Tr[(p,®py)p12], Wherep, , de-

The maximization of the fidelity is carried out using the notes the total output density matrix, traced over the ancilla,
Lagrange multiplier method, which takes into account theleads to the same transformatioils) and (18).
constraints imposed on the cloning transformation due to the
unitarity, symmetry, and isotropy conditions. Here we have

also required the unitary transformation to be symmetric un- B. Universal cloning by teleportation

der exchange |0)—|1) which leads to |a|=]|al,|b]
=|b|, and |c|=]|c|. The explicit optimization procedure
is reported in Appendix A.

The idea is to use the Lagrange multiplier technique an
some knowledge about the coefficiemtsand b; to find the
best value for|c|. Then we use constrairiti) to find the
optimum value ofa| that gives ugb| via the normalization
condition.

The results are

N AN
el=0, lal=v/5 Ibl=\/g

Here|c|=0 can be understood intuitively becausés the
coefficient for the stat¢ll) that is maximally remote from
the ideal output statf00) in Eq. (3).

Thus we find that the shrinking factay of the optimum
symmetric isotropic cloner is

(14

So far we viewed the cloner as a machine that clones
guantum states at a given location. There are, however, cer-
tain scenarios, especially in quantum communication and

d:ryptography, where cloning is followed by further process-

ing that may involve sending the two clones to two different
locations. In these scenarios one may benefit from “nonlo-
cal” cloning, which can be achieved via teleportation.
Suppose that a sendéklice) is to transmit an imperfect
copy of her qubit state to two receivefBob and Charlig
the three parties possess as a starting resource a particular
entangled quantum state, but otherwise only classical com-
munication is permitted from Alice to Bob and Charlie. This
situation is essentially the three-party generalization of the
well-known teleportation protocol 7], in which Alice can
transmit any qubit state to Bob perfectly, provided that they
share an entangled singlet statee )= 1/2 (|01)—|10)).
In this protocol, Alice first performs a joint measurement of
the state to be teleportégh) and her half of the singlet pair,
the measurement being performed in the Bell basis
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* —i +
|® >—ﬁ(|00>—|11>)- (19

Alice then sends a two-bit message to Bob indicating which
of the four Bell states was measured. Bob can reconstitute

| ) exactly from his half of the singlet if he performs the
final action: if he receives the messag® ™,” nothing; if
“y* " rotate his qubit byo,; if “ ®~,” rotate by oy; if
“®*," rotate by o .
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whereE; is the operator representing the measurement out-
comei in the positive-operator-valued theory of quantum
measurement.

This representation may be related simply to the Bloch-
vector picture. If we write the conditional output density op-
erator as

p‘o=%')<1+§o-&>

where Pr() is the probability of measurement outcome
then

The same protocol, but applied to the particular three-

particle state

|V cione) = \/§|100>— \/%I010>— \/§|001>, (20)

results precisely in a Bek-Hillery cloning from Alice to

Bob and Charlie, provided that the results are averaged over

the four possible measurement outcon{@éis averaging is

not necessary in ordinary teleportation; we will explain in a

moment what happens if the measurement outcomenare
averaged over in the present form of teleportajiom

| P ci0ne the first particle is possessed by Alice, the seconqeI

by Bob, and the third by CharligOf course, the state is
symmetric with respect to Bob and Charli&he cloning is

achieved by classical transmission in the sense that Alic
need only broadcast the two-bit result of her Bell measure-

ment to Bob and Charlie, with which they perform the sam

final action as in teleportation, in order for Bob and Charlie

to possess Buek-Hillery clones of Alice’s original qubit
state.
It is informative to formulate our imperfect teleportation

in the language of quantum operations with which Nielsen

and Caves have analyzed ordinary teleportafti@j. In this
language the transformation from Alice’s input statgand
Bob's (or Charlie’s output statep,, conditional upon mea-
surement outcomeé (unnormalized is specified by the su-
peroperator

p‘o=§ Aijp Al (21)

The output density operatgr, taking all measurement out-
comes into account just requires the sum over all outcames

po=§ Aijp Al (22)
Completeness requires
EJ AlA;=1, (23)
but if the sum is restricted to a particulgr
; AlLA=E, (24)

e

Pri)= $TrEi+ 32 Sy, Tr(Eio,) (25)

and
PH(i)Sop= %Tr(; AjA] aﬁ)

+ 1> szr(Zj Ao Al 05). (26)

A straightforward calculation shows that for our imperfect
eportation, theb* and ®~ measurement outcomes are
indistinguishabléi.e., are described by the sarAeoperators

nd therefore have the same probability of occurrence and
eave the output qubit in the identical stat€his is also true

of theWw ™ and¥~ outcomes. However, thé and¥ mea-
surements are distinct. This is in contrast to perfect telepor-
tation in which all four measurement outcomes lead to iden-
tical operationgjust the trivial noiseless identity operator, in
fact). For our case we find

2[ 1 0 1/0 0
2(1 0 1/0 1
Avi= V3l Ay 2= g(o 0), (27)

and

wIn

) . (28

We note from Eq(27) that the teleportation operation, keep-
ing only the cases where the measurement outcomedis a
resembles in some ways a “decay channel” in which the
state is damped towards tht)-state fixed point. The cases
where the measurement outcomelibehave identically ex-
cept with|0) and|1) interchangedfrom which the isotropy

of the measurement-averaged operation emegrgEsvever,

it is incorrect to say that the total operation is obtained by
selecting at random between the&*channel” and the ‘¥
channel” (although this is the way thdfl1] creates several
interesting cloning transformationsbecause thé; opera-
tors are not proportional to the identity as they are in perfect
teleportation. Unlike in the randomly selected channel, the

0

1
3
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probability of the measurement outcome depends on the irtrivial solution. For the last possibility we only need a glance

put state; we find directly from Eq28) that at constraintii) to find =0 as well. We thus conclude that
. ) it is impossible to build a symmetric isotropic quantum
Pr(®)=3(0[p,|0)+3(1|pyl1), cloner without ancilla.
—2 1
Pr(¥)= §<O|P¢|O> + §<l|p¢,| 1). (29 B. Optimal state-dependent cloner

Finally, we note that since the Bell measurements occupy In this subsection we answer the following question:
a Hilbert space of at least two qublts2], an open question Given two possible input stat¢a) and|b), where in general
is raised of whether good 1-fd-cloning can be achieved by (alb)#0, what is the optimal quantum cloner with respect to
teleportation through afN+ 1)-particle entangled state. In a global fidelity criterion? We suppose that the input qubit is
the simplest generalization of the above protocol the extr@repared with the same probability in either stgte or |b)
Hilbert space size would still be two qubifsince there and optimize the transformation as a function of their scalar
would still just be one Bell measuremgnbut the optimal product. The resulting optimal transformation will be there-
1-to-N cloner appears to require an ancilla wWii{N) qubits ~ fore state dependent.
[13]; as Buzk has pointed out, this may well mean that this Two pure nonorthogonal states in a two-dimensional Hil-
teleportation approach to cloning may not generalize to othepert space can be parametrized as
cloning problems. .
|a) = cos|0) + sing| 1),
IIl. STATE-DEPENDENT QUANTUM CLONERS |b>=sin0|0>+cos9| 1>’ 32

Let us start this section with showing that in order to
satisfy the isotropy requirement an ancilla system must b&here {|0),/1)} represents an orthonormal basis afd
necessarily involved in the cloning transformation. This is € [0,7/4]. The set of the two input states can equivalently be
proved in Sec. Il A. In Sec. Ill B we drop the isotropy con- Specified by means of their scalar prodéet (a|b) = sin26.
diton and investigate the case of a symmetric state- Let us consider a unitary operatd acting onH '
dependent cloner in absence of ancilla. We will show that if=H ®H * and define the final stat¢s) and|g) as
we have soma priori knowledge about the input states the
cloner can perform much better than the optimal universal |a)=U|a)|0), (33

one.
|8)=U[b)|0). (34)

Unitarity gives the following constraint on the scalar product
From the general ansatz for the unitary transformatiorof the final states:
with an ancilla of arbitrary dimension we can draw conclu-

A. Quantum cloner without ancilla

sions about a quantum cloner without ancilla by replacing all (a|B)y=(a|b)=sin20=S. (35
states|A),|B;), ... on theright-hand sides of Eqg3) and
(4) with the factor 1. As a criterion for optimality of the state-dependent cloner,

If we attempt to realize a symmetric and isotropic clonerwe take the transformation that maximizes the global fidelity
we need to be able to fulfill the constrairits—(vii) where all ~ Fg of both final state$a) and|8) with respect to the perfect
scalar products of auxiliary states have to be replaced by Eloned statesaa)=|a)®|a) and|bb)=|b)®|b). The glo-

We will show that this is not possible. bal fidelity is defined formally as
Here we only write down those four constraints that we .
need for our argumenti) [a*~|c|*=[a|*~[c[?, (i) |a® Fg=5(Kalaa)P+BIbb)P). (36)
—|c|?>= Rdb¥a+a*b;], (v) bia+c*b;=0, and (vi)
bja+c*b;=0. Remember that fron{7) we have |b| We show in Appendix B that the above fidelity is maxi-

=|b,|=|b| and [by|=|b,|=|Db]|. In order to fulfill con- mized when the statdg) and|3) lie in the two-dimensional
straints(v) and (vi) where both real and imaginary parts of space},, ,,, Which is spanned by vectof$aa),|bb)}.
the given sum have to vanish there are only these possibili- Let us now maximize explicitly the value of the global

ties (for any choice of phaseéa,ébi, c) fidelity (36). We can think about it in a geometrical way and
define¢, 8, andy as the “angles” between vectofaa) and
(v)~|b|=0 or |a|=|c| (300 |bb), |aa) and|a), and|«) and|B), respectively. The glo-

bal fidelity (36) then takes the form
and

— _ o~ 1
(vi)~|b|=0 or |a|=|c|. (31 Fg=§[C0§5+CO§(¢—7— )] (37)

There are foEr po~ssible combinati~ons of these consjraintscind is thus maximized when the angle betwkea) and| )
|a|=lc| and|a|=|c|, |a]=[c| and|b[=0, [b|=0 and|a| s equal to the angle betwedhb) and|B), i.e., 5=3%(¢
=|c|, and|b|=0 and|b|=0. For the first three possibilites — ). The optimal situation thus corresponds to the maximal
we find immediately from(i) and Eq.(11) that =0, the = symmetry in the disposition of the vectors.
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As we know that¢=arccos(sif26) and from Eq.(35)

y=arccos(sing), after little algebra we can write the opti-

mal global fidelity as

2373

1 0 [
Fgopi=7 (V1+Sif20y1+sin20+ o201 - sin26)?. 8
(38) L
<]
The corresponding unitary transformatidh on the basis ol
states|00) and |10) of the initial subspace of the four- @
dimensional Hilbert space of the two qubits is given by i
U|00)=a|00) +b(|01)+|10)) +c|11), (39 ol
[+o]
2L i
U|10)=c|00)+b(|01)+|10)) +a|11), (40) e oz oL o8
where 6
FIG. 1. Local fidelity of the state-dependent cloner as a function
. of @: the solid line results from maximization of the global fidelity
a= Cos20 [cosf(P + Qcos2) —sin(P—Qcos2y)], [see Eq(47)], the dashed line corresponds to the local fidelity in the
(41) optimal eavesdropping scherfigiven in Eq.(50)], and the dotted
line is the optimal local fidelitysee Eq(51)].
b= Psin26(cos#—sind), (42) Due to the symmetry of the problem the same expression
cos2) (47) is obtained for the fidelity opz and it is plotted in Fig.
1. As we can see, the fidelity takes surprisingly high values
) in the whole range ob, well above the optimal value 5/6 of
= So525 COF(P—Qcos2) —sing(P+Qcos2p) ], the universal cloner.
(43) Let us now examine the degree of entanglement that our
“quasicloning” transformation has introduced in the system.
with An estimation of the degree of purity of the state is given by
the modulus of the vector in the Bloch sphere: The modu-
1 V1+sin26 lus is maximized to unity when the state is pure. In the case
P=— — (44)  under consideration it takes the form
2 \J1+sir?26
' . sif26(1+sin260)°  cos26
Q:%—Vl_s';a_ 45) |s|_\/ (L+sif20? ' 1rsize  ®
cos

The transformation fofa) and|B) can be readily derived
from Egs.(39) and(40). We can easily see that the transfor-
mation is symmetric, i.ep, 1= p4.2=p, for input statea)
and similarly for|b).

In order to compare the performance of the state-
dependent cloner with the universal one we calculate the
local fidelity F| of each of the output copies with respect to
the input one, generally defined as

0.99

Fi= Trlp.la)all. (46)
For the above transformation we find 2
=]
1 cos26 Sirf26(1+ sin26)
Fl,lz_ 1+ + B ! ! 1
2 V1+sir?26 1+ sirf26 0 0.2 0.4 0.6
e
2 2 R
:l + 1-S + S(1+9S) (47) FIG. 2. Modulus of the Bloch vectos for the optimal state-
2 J1+S2 1+ %2 dependent clondisee Eq.(48)].
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and is plotted in Fig. 2. As we can see, the top of the vectoreptitious. For that task, the eavesdropper’s main concern is

s is always very close to the surface of the Bloch sphere fofiot in copying the quantum information, as embodied in the
any value of@ and the degree of purity of the output state istwo nonorthogonalquantum states, but rather in optimizing
therefore always fairly high. Notice that the length of thethe trade-off between the classical information made avail-
Bloch vector is always much bigger than the value 2/3 of theable to her versus the disturbance inflicted upon the original
optimal universal cloner. We also point out that in this casequbit [8,9]. The optimal solution to that problem leads to a
the Bloch vector is not only shrunk but also rotated by aone-parameter class of unitary interactions, the parameter be-
state-dependent angl®, given by ing the degree of disturbance. It turns out that, regardless of
the value of the parameter, the optimal unitary interaction

S— arcco i cos2/ _20 (49) there never matches that given in E¢39)—(45).
|§| J1+sirP26 ' Indeed this can be seen in a direct manner. The optimal

eavesdropping strategy is quite similar to the scenario de-
Perhaps the most important practical use for statescribed above. The eavesdropper uses a probe system to in-
dependent cloners is in the eavesdropping on some quantuigract with the in-transit qubit and then later performs a mea-
cryptographic systems. For example, if the quantum key dissyrement on it(after all public discussion has ceased
tribution protocol is based on two nonorthogonal stafs  Although it is not assumed, it turns out to be sufficient to
the optimal state-dependent cloner can clone the qubit igke the probe system itself to be a single quBig]. In

transg beéween a sendher and a receivir. Tlhe original q“t?.ﬁqeneral, the final state of the probe will not be the same as
can then de re-sentr:otbe receiver an?t € Cgtm? can stay }N' at of the receiver's qubit: For instance, if the eavesdrop-
an eavesaropper who by measuring It can obtain some in Orpier’s available information is adjusted to vanish, then her
mation about the bit value encoded in the original. The

. ) .—probe will be left in its original state, which is completely
eavesdropper may consider storing the clone and delaymﬁllde endent of the sender’s qubit's state. Nevertheless, in
the actual measurement until any further public communica, pen L d o : )
tion between the sender and the receiver takes place. Théppendm C itis shown that when the disturbance is adjusted

eavesdropping strategy, for instance, has been discussed rqé)_that the statistical distinguishability between the states of
cently in Ref.[11]. ’ ' the eavesdropper’s probe is identical to that of the final states

It should be noted, however, that eavesdropping via a di¢f the receiver's qubit, then the optimal eavesdropping
rect cloning attempt is not the most advisable course of acscheme is actually a quantum cloner. In that case, the local
tion for the eavesdropper if she wishes to be the most suffidelity between input and output works out to be

1 2
F|’2=§+\/T_\/(1—282+283+S4)+(1—82)\/(1+S)(1—S+382+S3) : (50)
|

The difference between this fidelity ard ; in Eq. (47) is 1 \/E
only slight (they differ at most by 0.000 651 whe8 Fls=—+—(1+S)(3—3S+1-25+95%)
=0.579 924; see Fig.)1but this is enough to show that T2 35
optimal cloning and optimal eavesdropping are two different
tasks. ><\/—1—|—28+382+(1—8)\/1—28+982. (51)

Similar results can be obtained for the four states in the
Bennett-Brassard quantum cryptographic proto¢@¥].  Again, the difference betwedr ; andF, , is not large(the
Modifying the optimal eavesdropping scheme for that protodargest difference 0.001134 is attained wi8n1/2; see Fig.
col in Ref.[15] into a quantum cloning device as above givesl), but it is enough to show that there are better cloners out
a local fidelity of 0.854. Note that in the scenario of Bennettthere with respect to the local fidelity criterion. We have
and Brassard we can restrict the input of a cloning machineyerified thatF, 5 is indeed the optimalocal fidelity for a
therefore, one would not want to use the universaldbuz state-dependent cloner as defined in E§9) and (40), but
Hillery cloner for the task of eavesdropping in the Bennett-refrain from presenting the tedious calculations here. Ulti-
Brassard protocol. mately, the disparity between Edg.7), (50), and(51) only

A more intriguing point, however, can be gleaned from points out the subtlety of the concept of “copying” quantum
noting that actually for al§, F, ,=F, ;. This implies that the information: Given that it cannot be done ideally, there is no
optimal global quantum cloner is not optimized with respectsingle sense in which it can be done in the best possible way.
to the local fidelity criterion: In the state-dependent case, the Finally, let us note that in this subsection we have always
two criteria differ. In fact, the state-dependent cloner derivecconsidered qubits for the purpose of illustration, but we
from optimal eavesdropping is still not the best with respectstress that the results hold for an arbitrary dimension of the
to the local fidelity criterion. For instance, in Appendix C it input states. In this case we can rephrase our arguments in
is shown that there is a still better state-dependent cloner fderms of the two-dimensional subspace spanned by the two
this criterion; it gives rise to a local fidelity given by input states and choose the same parametrization as given in
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The optimal universal cloners, e.g., the BuzHillery

APPENDIX A: OPTIMIZATION FOR UNIVERSAL

2 CLONER
Q=0, n=z — . . .
3 We want to maximize the function while the constraints
(i)—(vii) as well as the unitarity constrain{§) and (6) are
3 2 fulfilled. The independent variables are the absolute values
Q(7)<1-H, 27tz >3 (520  ofthe coefficients,b;, . . . ,their phases, the absolute values

of the scalar products of the ancilla stafeso of these are
) ) already fixed via the symmetry conditiofY)], and their
where H,(X) = — xlogox—(1-x)logy(1-X) is the binary en-  phases, which we denote

tropy function.

The second part of Eq52) is proved in[16,17]. The (A|C)=[(A|C)|e' ®Ac, (A1)
proof of Q=0 for »= 3 follows from the universal cloning
results above. Suppose the opposié7=35)>0; Sec. IV
of [18] shows that this cannot be so: Consider the d&uz

and accordingly for the other scalar products.
We impose the natural symmetry requirement on the gen-
Hillery cloner inserted into a three-party Alice-Bob-Charlie eral ansatz that the reduced density matrix of the two clones

communications protocol discussed above in Sec. Il B. IfShOUId not change under the exchay@e D, €., th? out-
Bob and Charlie were oblivious to each others existencec®Me should not depend on renaming the basis. This leads us

they could both, by experiments conducted in concert withimmEd'atEEIy to

Alice, establish that the Alice-Bob channel and the Alice- | |_|~| b |—|E| | |_|~| (A2)
Charlie channel are both simple depolarizing channels with aj=lal, il =10il,Jel=ic
depolarization fractions;=3. If Q(5)>0 this would mean and the following restrictions for the scalar products of an-

that Alice could, with suitable encoding, transmit a state tocilla states from off-diagonal density matrix elements:
Bob and Charlie, both of whom could successfully decode it

and obtain a high-fidelity copy of it. However, this violates [(AIB)|=|(A|B})],
the no-cloning theorem for quantum stafé$ thus it must
be so thatQ(2)=0. Q=0 for <% follows from the non- [(Bi|C)|=|(B{|C)|, |(C|A)|=|C|A). (A3)

decreasindas a function ofy) property ofQ: If a lower 7 ) o
gave a higheQ then Alice could add noise herself to the We also find that the phaségg;, 5,c , 6c& can be expressed

signal thereby turning a high-channel into the supposedly as functions of the phase$g, s c,dca andd,, oy, - - -

better lowers channel. We are using the method of Lagrange multipliers, where
The bound given in Eq552) is discontinuous ay= 2. If ~ we have to solve the system of equations

we made the seemingly natural assumption as a con-

13
tinuous function ofy, as is the channel capacity in the clas- ‘9_71+2 N %:0
sical setting, then we can apply the methods introduced in dal <=1 'alal !
[18] to show thatQ<37—2 for »>%. This would improve
on Eq. (52 for a range ofy’s near . Unfortunately, the i O g
continuity of Q has proved surprisingly difficult to establish eriZl A m:o, ... ¢i=0, i=1,...,13,

rigorously; this has finally been establishgi®| for a par-

ticular channel, the quantum erasure channel. The fact that

the Buzk-Hillery cloner is proved to be optimal shows that where
no stronger bound o for the depolarizing channel can be
established by this reasoning and in fact no upper bound with n=2|a|?+2|b|?>—1, (AB)

a lower threshold is known, although there is also no evi-

dence that the capacity of E(h2) can be attained. Thus this ¢; denotes the constraints, and the Lagrange multipliers are
remains one of the many open questions in quantum infor\;. The order of the constraints that defines the Lagrange
mation theory. multiplier indices in later equations is taken to be

(A4)
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901=|a|2+ 2|b|2+|c|2—1, We will now show thath,+Xg=—1 corresponds to a
minimum of #, i.e., =0. From the derivatives with respect
0,=2]a|%+2|b|2—1— ReDB*a(B,|A)+3*by(AB,)], T0|||§)I|31|A>| and |(B,|A)| we find, after dividing through
a ’

_ R*a/R T A
3= Im[bTa(By|A)+a*by(A|By)], —NoCOY 8, 85+ T8 ) + NaSIN 35— 35, + 85,0) =0,

o (A12)
®4=b7 c(B4|C)+c*b;(C[B,),

—NgCOY 83— 05, I5,a) + N 10SIN( 80— 5, + 65,4) =0

¢5=b3a(By|A)+c*by(C|By), (A13)
es=Db3a(B,|A)+c*b(C[By), and from the derivatives with respect &g 4 and 5g a ,
o,=c*a(C|A)—3* c(A[C), N2l(B1|A)[Sin( 8.~ 85+ 55,a)
‘PB:a*E<A|6>+b)2\-’51<82|§1>+b’{’52<81|§2> +)\3|<§1|A>|C015a— 861+8é1A):0, (A14)
+cra(ClA) Nol(Bol A)ISIn 8,— S5+ 55,0)
$9,10,11,121F P234,56 With 1-2. (A6) +N1d(B,|A)|cog 5,— 85, + 05,0)=0. (A15)

In solving this system .Of. equations we can use somey Ao+ Ag=—1 then at least one of these two multipliers is
knowledge about the coefficients. We know from constramtnot equal to zero. Let us assume that< 0. We multiply Eq

(i) and Eq.(A2) that both|a| and|b| cannot take the value s 4 C
0 because otherwisg=0, the trivial solution. (AL2) by coSa~ 3, + &), Obtaining
Taking the partial derivative with respect ftg leads to :
amep pecto N3COS 8, 55, + 55,0)SiN 84— 55, + 55,)
2N 4|c|+ N o[ €%5(B,|C)+ b, % C[B})] = \2COS( 85— 85, + 5 a). (A16)
+ *el%(B,|C)+b,e '%(C|B . . - .
)\“[bzé (B2 C)+boe _<C| 2)] Substituting Eq.(A16) into Eq. (A14) multiplied by sing,
+)\5b1e7|§C<C|Bl>+)\12bzeilﬁc<c|Bz> —851+ %lA)' we Obtaln)\2|<§1|A>|=O, so that
B.e-195(CB B.e 1%5(CB _
+)\6b1e <C|Bl>+)\l3b2e <C|BZ> <Bl|A>=0 if c#0. (Al?)
+2\ga* e ’s(A|C)=0, (A7) - o , :
The same reasoning in which tilded and untilded variables

where we have already eliminatéd|C) by inserting ¢, are interchanged leads to

=0 into ¢g. From the derivatives with respect kB;|C)|,
[(C|B), [(C|B)], |(C|B:)], and|[(A|C)| we arrive (after di-
viding through phase factorat Due to constraintii) this means thay=0.

If the assumption,# 0 does not hold theng# 0 and the

same line of arguments leads {8,/A)=(A|B,)=0 and
also »=0. We have thus establishéd =0, and therefore

(A|B1)=0if c#0. (A18)

\;|b||c|=0 with j=4,5,6,11,12,13 (A8)

and n=|al?. We also notice that fromes, ¢, and @g, @13 We
Nelallcl=o0. (n9) Meed

After multiplying Eq. (A7) by |c| we find (BilA)=(Bi[A)=0. (A19)
Mafel*=0. A1) i senived using constratily and e normalisator

In the same way we use the equations resulting from differcondition:

entiating with respect tdal, |(Bi|A)|, [(AIB)], [(Bi|A)], ) R —
|<§I|’A>| and|<A|E)| and get (i)~ |al*= Rg bya(B;|A)+a*b;(A[B)]
=|al[b| R %2~ %,)(By|A)+ €%~ 2/(A|By)]

=|a||b|& (A20)

2|a|+\q|a]+2),]a)+ 2N glal=0. (A11)

Multiplying this with |c|? and using Eq(A10) we conclude
that, sincdal|#0, either\,+\q=—1 or|c|=0. or
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The global fidelity is given by
lal?=1-

- (A21)
2+ g 1 2|2 2|2
Fg=§(|a0+bos |°+|b;+a,5%%). (B7)
Sola|? is maximized for the maximum value @f, which is

2_ 52 ;
§°=2°. This leads to Inserting constraintg; and ¢, into Eq. (B7) yields

2 1
jal= \ﬁ b= \ﬁ (A22) 1
3 6 Fg=5[2— (1= 8% (Jay]*+|bol?) = (|col*+]cy|*)]-
We can meet the maximum @&fby choosing (B8)
(AB)=1, (Bi|A)=1 (A23)  We can now use the method of Lagrange multipliers for the
remaining two constraints, which gives the system of equa-
and tions
561: 5’5i, 5’;: 5bi' (A24) (?Fg +§ \ (9QD| 0
dlagl =1 dlag

Collecting our information about the coefficients and scalar
products, the class of optimal unitary transformations is
iven b JoF Jp;

9 y R S s A

2.
U|0)|0)|x)= \[ge'ﬁa|00>lA>

etc. Let us concentrate on the equations where we differen-
tiate with respect to the parametecg,c,, and (Co|C,).
+ \ﬁe‘”?(|01>+|10>)|Ai>, (A25) Without loss of generality, we can considgy and(Cy|C,)
6 real, whilec; must be taken to be in general compleg (
5 =|c,4|€'%). The corresponding equatiofsbtained by differ-
_ . entiating with respect tay, |c4|, and(Cy|C,), respectively
UlD)[0)[X)= \[ge 1D)|AL) give

+ \/%elﬁa(|01>+|10>)|A>' (AZG) _CO+)\1 RQ|Cl|ei5<C0|Cl>]+)\2 Im[|C1|eI5<C0|Cl>](:B%)

where(A|A, )=0. —|cq|+ N1 RECoe¥(Co|Cy) ]+ N, IM[coe'%(Cy|C1)]=0,
(B

10)
APPENDIX B: OPTIMIZATION FOR STATE-DEPENDENT s s
CLONER N1 Recolcy|e' ]+, Im[colcy|e'?]=0.  (B11)

Let us assume thd) and|g) have some contribution  After multiplying Eq.(B9) by c,, Eq. (B10) by |c4|, and Eq.
that does not lie i, 5. Then we can write explicitly the  (B11) by (C,|C,) and inserting the last equation into the

form of |a) and|g) other two we findco=|c,|=0. We can therefore conclude
)= ag|aa) + bo|bb) + Co| o). (B1) that|a) and|B) lie in Hagpb-
|8)=ay|aa)+by|bb)+c4|Cy), (B2) APPENDIX C: STATE-DEPENDENT CLONERS FROM

EAVESDROPPING
where vectordCy) and|C,) are normalized and lie in the
subspace orthogonal td,, ,,. The unitarity of the transfor-
mation imposes the constraints

We take as our starting point for these calculations the
development in Refd.8] and[9] just at the point where the
eavesdropper’s probe is restricted to consist of a single qubit,

¢1= Rda}a;+b}ib,+S*(akb,+b}a;)+cgci(ColCh)] i.e., we take sin=0 in those references. This leaves a two-
parameter family of unitary interactions to be considered.
—S=0, (B3)  (Note that we shall interchange the symbalsind 6 used in

B . . __— . . Refs.[8] and[9] so as to be consistent with the notation of
¢o= Im[aga; +bgby+S*(agby+bgay) +c5ci(ColCy)] the present paper.
-0 (B4) With this much given, suppose we label the receiver's
' state for his qubit after the eavesdropping interactiorpby
©3=|ag|%+|by|2+ 252 Rd ai byl +|co|2—1=0, (B5)  OF ph, depending upon whether the sender sent $tgter
|b). Similarly suppose we label the eavesdropper’'s probe
@a=|ag|?+|bs|2+2S? Rda*b,]+|c,|2—1=0, (B6) States bypZ or p;. Then we have from Eq$86)—(91) and
(98)—(100) of Ref. [9] that the matrix elements for these
whereS is defined in Eq(35). operators will be
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~ 1 Scos
(PE)oo= (1+ cOSZc0S28), (1) tan2a— ¥ (9
1—S?(1—sin2¢)
A 1

(pg)m:Z[(cosﬁ—sine)zsin2(¢>—a) [See Eq.(52) in Ref.[8] and Eq.(108) in Ref.[9].] On the

other hand, in order for the optimal eavesdropping solution
+ (cosd+sinb)?sin2(p+ a)], (C2 to also be a quantum cloner, it must be the case ﬂiat

L =ph andpE=p} . A little algebra applied to Eq$C1)—(C6)

SEY. = (1—cos20C0S c3 shows that this can occur only when cgs2cos2x. Hence,
(Pa)us 2( ) €3 if there is not to be an inconsistency with the constraint given

by Eq. (C9), then it must be the case that the parameter

and =sin2¢ is such that it satisfies

Ay L,
(p2) o= cogbcog a+ sirf fsirfa, (CH (S+S)x2+ (1— S)x—S=0 . (C10

R 1
(pR)o1=cossingsin2¢pcos2u + EcoquSsmzm (CH Solving this quadratic equation and inserting the result into
Eq. (C8) gives the fidelityF, , of Eq. (50).
(;’oA)u: sirtgcoLa + co2dsirta . (C6) As stated in Sec. Il B, this discussion can be expanded to
produce a quantum cloner still better with respect to the “lo-
Hermiticity determines the remainder of the matrix elementscal” fidelity criterion than the one just found. We simply set
The matrix elements fopE and p? are given by the same =@ in the interaction above and ignore the constré@)
expressions, except with o@nd sird interchanged. With that the interaction lead to optimal eavesdropping. With this,
this interaction, the fidelity between the sender’s and receivEd- (C8) reduces to
er's states, i.e., £ D in Eq. (33) of Ref.[8] and 1-D(U) in
Eq. (101 of Ref.[9], is given by F(d)= %Jr ;(1+S) (1-S)cos2p+ %Ssin4q§)

F(a,$)=(a|psla)=(blpp|b) (C7) (C1D)
=coSa+ 3 Scos2psin2a

— 1 S%(1-sin2¢)cos2u. (C8

This expression is maximized when

Now it is shown in Refs[8] and[9] that if this interaction sin2¢= i( —1+S+J1-2S+ 987) . (C12
is to be one for optimizing the trade-off between the eaves- 45
dropper’s information and the fidelity between the sender’s
and receiver's quantum states, themnd ¢ must satisfy the Inserting this particular value for siginto Eq.(C11) gives
relation the expressioffr, 3 reported in Eq(51).
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