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Inferring the density matrix for a system of an unknown Hamiltonian
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An approximate inference approach is advanced in order to determine the density matrix in cases in which
the pertinent Hamiltonian is unknown, and the available expectation values pertain to noncommuting observ-
ables. The inference of both pure and mixed states is addressed, and on an equal footing, without facing
infinities in the pure state limit. Information-theoretical tools are employed.@S1050-2947~98!02604-3#

PACS number~s!: 03.65.Ca
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I. INTRODUCTION

In order to attempt a quantum description of a system
as to obtain the concomitant wave function or density mat
knowledge of the pertinent Hamiltonian is an all importa
requirement, as otherwise Schro¨dinger’s equation~or Von
Neumann’s! cannot be written down. However, cases
which the Hamiltonian is unknown abound, and indeed mu
effort, from both theoretical and experimental viewpoin
has been expended in trying to determine, at the very le
appropriateeffectiveHamiltonians in order to remedy suc
informational failure.

Since in statistical mechanics~SM! inferenceis the over-
all purpose, because incomplete information is always p
supposed, SM methods would seem to be called for in
case of an unknown Hamiltonian. Indeed, the main idea
derlying statistical mechanics is that of describing the m
salient characteristics of a given system by recourse t
small set of relevant expectation values~just ^H& in the case
of Gibb’s canonical distribution! @1#. But once again, one is
assumed to know the system’s Hamiltonian in order to p
ceed to build up canonical, grand-canonical, or other type
ensembles. What is to be done if such energetic informa
is not available?

Several types of hardship are to be faced in numeric
dealing with quantal problems by recourse to methods
statistical mechanics. Among them we can list the followin
for pure states, the thermodynamical entropy is identica
zero; the Hamiltonian may not be known; pure states
mixed states are often dealt with on anunequalfooting, due
to technical difficulties; some Lagrange multipliers may
verge; and the Kubo transform must be implemented in d
ing with non-commuting observables@2#, which is some-
times a rather difficult task.

Recourse to information theory~IT! @3#, as employed by
Jaynes@4# in his celebrated reformulation of SM~see also
Refs.@4–8#!, allows one to conveniently tackle the first tw
of the above problems, but subject to the following restr
tions: ~i! the pertinent methodology can be applied only
the case ofpure states, and~ii ! thea priori input information
must refer only to commuting observables. For details,
reader is referred to Refs.@9–19#. The purpose of the presen
effort is that of addressing the last three of the hardsh
571050-2947/98/57~4!/2319~6!/$15.00
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listed above, overcoming also the aforementioned lim
tions.

Concerning the fourth of the above-listed difficulties,
the associated scenario makes it possible to infer a statis
operator formixedstatesà la Jaynes, as one approaches t
pure state limit the associated Lagrange multipliers diver
to either plus or minus infinity@20#, which seems to erect a
formidable barrier to the workings of numerical technique
As for the last item in the lists of problems to be overcom
we mention that, if the available information refers to expe
tation values ofnoncommutingobservables, recourse to th
Kubo transform~KT! @2# becomes mandatory. Its beauty an
elegance notwithstanding, the KT confronts one, in gene
with involved integrals that are not always easy to deal w

In what follows we show how to apply Jaynes’ metho
ology in quantum-mechanical scenarios for which, t
Hamiltonian not being available, just a small set of expec
tion values ofnoncommuting operatorsconstitutes the only
prior information. Both pure and mixed states will be tackl
on an equal footing, without infinities in the Lagrange mu
tipliers, and no recourse to the KT needs to be made.

One would envision utilizing this formalism in situation
in which scarce information is available concerning the d
tails of the interactions governing the physics of the syst
to be described. Inference would then be the name of
game. A number of such scenarios found, for example
Refs. @21–47#, is by no means an exhaustive list. The fo
malism is introduced in Sec. II, some illustrations are d
cussed in Sec. III, and conclusions are drawn in Sec. IV

II. PRESENT FORMALISM

We assume thatM expectation values are at our dispos

^Ar&5dr , r 51, . . . ,M , ~1!

andwe do not assume that Aˆ
r are commuting operators.

In the ~arbitrary! basisu i & the statistical operator is of th
customary form

r̂5(
i , j

N

u i & f i j ^ j u, ~2!

and our input-information can be cast in the fashion
2319 © 1998 The American Physical Society
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dr5^Âr&5Tr~ r̂Â!; ~3!

with u i & anarbitrary basis, we can choose it~in principle, at
least! as we please. Of course, practical considerations m
make a given basis more attractive than others. Notice t
althoughN may be infinite, once more reasons of practical
will force us always to consider finiteN values in actual
numerical computations.N is, of course, chosen according
some appropriate criteria. It is clear, however, that, in g
eral, we shall deal with scenarios in whichN is larger~often
considerably so! thanM .

In order to make further progress, a change of notat
will be necessary: we form, first of all, a vectordW out of the
M componentsdr of Eq. ~3!. Next we rearrange~say, in
lexicographic order! the subindicesi and j of the matrix
elements of the statistical operatorr̂ so as to obtain a vecto
fW of N2 components. Finally, using this rearrangement
will regard the matrix element̂i uÂr u j & as the elementGrl of
a rectangular (M3N2) matrix G, where the row indexr runs
from one toM , while the columns are labeled by an indexl
(1, . . . ,N2) that combines in some fashion~lexicographic,
for instance! the Hilbert space basis’ indicesi and j . In this
matrix notation Eq.~3! adopt the appearance

dW 5GfW , ~4!

which clearly poses an underdetermined linear problem,
usually,M,N. Very many, possibly infinite, distinct vector
fW fulfill it.

Following Gibbs@48# we focus our attention not on Eq.
~4! itself but on anensembleof identical equations. More
precisely, we consider an ensemble consisting of all its p
sible solutions. In the ensemble, every solutionfWa of Eq. ~4!
appears with a suitably normalized probabilityP(a)

E
R

P~a!dt51, ~5!

whereR is the space of ‘‘realizations’’ of the solutionsfWa .
If the coefficientsf i j in Eq. ~2! are real, we write down the
volume elementdt in the fashion

dt5d f1d f2•••d fN2, ~6!

while, in the more general case, a slightly more complica
expression ensues, that is not needed for our present
poses.

Since it is we that ‘‘build’’ the ensemble, we take the
liberty of designing it so that the vectorfW , of mean ensemble
value

^ fW&5E dtP~a! fWa , ~7!

is of such nature that~i! ^ fW& also fulfills Eq.~4!, that can thus
be written down in the guise

dW 5G^ fW&; ~8!
y
t,

-

n

e

s,

s-

d
ur-

~ii ! the expectation value of the normN( fW)5 fW trfW is finite,
i.e.,

K (
i 51

N2

f i
2L 5Z5finite real number; ~9!

and ~iii ! P(a) maximizes the Shannon information measu

S52E dt P~a!lnP~a!, ~10!

which, of course, has nothing to do with thermodynami
entropy. The latter is of form~10!, but involves the density
operator. It describes quantum plus classical ignorance~the
so-called double weighting@48#!. With P(a) we go a step
further, as Eq.~10! describes our ignorance about which
the suitable density matrix within an ensemble of such m
trices. Here enters Jaynes’ maximum entropy princi
~MEP! @4#, but applied, in this roundabout manner, to
appropriate Gibbs ensemble of different solutions of Eq.~4!.

We do not claim that the requirements~i!–~iii ! above are
the only ones that can be made, neither that they are so
how superior in some sense to an alternative set of c
straints that could be imposed. Remember that one has
Gibbs’ case, the canonical ensemble, the grand-canon
one, etc. We select~i!–~iii ! merely on the basis that they ar
quite sensible requirements.

Obviously, we face a constrained extremization proble
which leads to the Lagrangian

L5P~a!F lnP~a!1~l021!1g(
i 51

N2

f i
21 (

a51

M

la(
i 51

N2

Ga i f iG ,

~11!

so that variationsdL with respect toP(a) vanish;

dP~a!E L dt50. ~12!

A word of explanation is needed concerning conditi
~9!. This should usually be construed as an inequality~and
thus not amenable to the Lagrange multiplier treatme!.
However, the point is that we caninterpret it as an equality,
because we are not concerned with the exact value of
sum on the left-hand side (Z). Any value would do, because
at the end, we will discover that our solutiondoes not depend
upon the associated Lagrange multiplierg, and thus neither
upon any putative value ofZ. We are allowed then to trea
Eq. ~9! as if it were an equality~anyZ value goes!.

Before discussing the solution to the MEP problem~12!,
we notice that the last term on the right-hand side of Eq.~11!
can be recast as

(
i 51

N2

f i (
a51

M

Gia
tr la5(

i 51

N2

f iG i5 fW trGW , ~13!

invoking transposition of the matrixG, so that

GW 5GtrlW . ~14!



ica

-

to

em

on
-

se

tio

erse
ad
sis

No
x-
nts
r

e,

ices
ng

ing
ce
one,

s
tri-
ical
e all

ith
real

s in

r
n
e

the

e
rre-
er.

es

57 2321INFERRING THE DENSITY MATRIX FOR A SYSTEM . . .
The present MEP variational problem has an analyt
solution

P~a!5exp~2l0!exp@2g~ fW !22GW fW#, ~15!

where the partition functionZ5el0 is given, on account of
normalization, by

Z5)
i 51

N2

F E d fiexp~2g f i
22G i f i !G . ~16!

The Gaussian integrals in Eq.~16! can be immediately per
formed so as to yield

Z5)
i 51

N2

@Ap/gexp~G i
2/4g!#, ~17!

so that Eq.~7! is translated into

^ fW&52GW /2g. ~18!

According to usual practice we are now in a position
claim that the components of^ fW&,

^ f i&52G i /2g, ~19!

are the best possible choice for the solutions of our probl
Out of the many possible solutions of Eq.~4!, ~19! is the
‘‘best,’’ in Gibbsian terms, in the same sense that the can
cal statistical operator exp(l02bĤ) is the best statistical op
erator one can infer when thea priori knowledge is just that
of the expectation value of the Hamiltonian. But, of cour
we are not through yet, as, thus far,GW and g are unknown
quantities.

In order to make further progress let us focus our atten
upon Eqs.~8!, ~14!, and~18!. By formal manipulation of Eq.
~14!, we find

lW 5~Gtr!21GW , ~20!

while, from Eq.~18!, we have

GW 522g^ fW&, ~21!

that, inserted into Eq.~20!, gives

lW 522g~Gtr!21^ fW&, ~22!

that, on account of Eq.~8!, yields

lW 522g~Gtr!21G21dW , ~23!

which, reinserted into Eq.~22!, leads finally to

^ fW&5Gtr~GGtr!21dW , ~24!

which neatly expresses our inferred statistical operatorà la

Gibbs in terms of the input datadW and the known matrixG
~no dependence upong, as stated before!.

The matrix

PG5Gtr~GGtr!21, ~25!
l

.

i-

,

n

is, of course, the celebrated Moore-Penrose pseudoinv
@49# of the matrixG. The present treatment is seen to le
one to a most convenient tool of the numerical analy
weaponry.

In writing down Eq. ~24! we accomplish our goal: the
density matrix has been determined via a MEP approach.
Lagrange multipliers enter this equation. Everything is e
pressed in terms of the data input and of the matrix eleme
of the operators whose expectation values constitute oua
priori information. Thus, everything should remain finit
even for pure states.

Notice that we actuallyuseonly the ensemble mean~19!,
not the whole distributionP(a). This should not be con-
strued as an indication that our ensemble of density matr
is not necessary. Building it up is the price to pay for getti
rid of the troublesome~within the present context! original
Lagrange multipliers of Jaynes’ treatment, and replac
them with our own multipliers. Thus, the essential differen
between the present approach and the orthodox Jaynes’
as employed in Refs.@9–19#, lies in the fact that our
Lagrange multipliers refer to the workings of our fictitiou
ensemble, i.e., to the collective of acceptable density ma
ces, and are thus not endowed with any obvious phys
relevance. On the other hand, we have indeed overcom
the difficulties mentioned in Sec. I.

III. SIMPLE ILLUSTRATIONS

We shall illustrate the procedure advanced in Sec. II w
reference to some simple examples. We consider only
density matrices.

A. Calculation in the oscillator basis

We assume now that we are expanding wave function
a one-dimensional harmonic-oscillator basis. We chooseN
54, so that we deal with 434 input matrices this time. Ou
a priori information is taken to be that of the expectatio
values ofx̂2, p̂2, and p̂4, and, out of these three values, w
intend to infer the ten independent elements of a 434 den-
sity matrix. We take it that the ‘‘exact’’~in general, mixed!
state is a linear admixture of two pure states, that in
oscillator-basisuphonon number n&, read

uA&5A~0.3un50&1A~0.2un52&1A~0.2un54&

1A~0.3un56& ~26!

and

uB&5A~0.15un50&1A~0.2un52&1A~0.15un54&

1A~0.5un56, ~27!

respectively.
After determining our density matrix according to th

considerations expounded in Sec. II, we perform the co
sponding quality test with reference to its predictive pow
To this end, we infer the expectation values ofx̂4, x̂6, x̂8, and
p̂6, and compare them to the ‘‘exact’’ ones for various valu
of the admixture proportiont,
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r̂exact5~12t!uA&^Au1tuB&^Bu. ~28!

Figure 1, wheret labels the horizontal axis and the rela
tive difference

D5
^Ôtest&exact2^Ôtest& inferred

^Ôtest&exact

, ~29!

is represented in the vertical one, displays the correspond
results. It is seen that our predictive errors are smaller th
13%.

B. A discrete system

We assume that we confront a spin-2 system, and d
with 535 input matrices. Oura priori information is taken
to be that of the expectation values ofĴz , Ĵy

4 , Ĵx
3 , and Ĵz

2Ĵy
2

1 Ĵy
2Ĵz

2 , and, out of these four values, we intend to infer th
16 independent elements of a 535 density matrix. We take
it that the ‘‘exact’’ ~in general, mixed! state is a linear ad-
mixture of two pure states, that, in theJz basisum&,

Ĵzum&5mum&, ~30!

read

uA&5A~0.25u2&1A~0.20u1&1A~0.25u0&1A~0.15u21&

1A~0.15u22& ~31!

and

uB&5A~0.35u2&1A~0.30u1&1A~0.10u0&1A~0.15u21&

1A~0.10u22&, ~32!

respectively.
After determining our density matrix according to th

considerations expounded in Sec. II, we perform the cor
sponding quality test with reference to its predictive powe
To this end, we infer the expectation values ofĴx , Ĵx

2 , Ĵz
2 ,

FIG. 1. Relative difference between exact and inferred expec
tion values vs the mixture parametert for a continuous one-
dimensional problem.
ng
n

al

e-
.

Ĵz
3 , Ĵz

4 , and Ĵx
4 , and compare them to the ‘‘exact’’ ones fo

various values of the admixture proportiont @see Eq.~28!#.
Figure 2, wheret labels the horizontal axis, and the rela

tive difference@see Eq.~29!# is represented in the vertical
one, displays the corresponding results. It is seen that
predictive errors are smaller than 10%.

In Fig. 3 we display the thermodynamical entropy

ST52tr@r ln~r!# ~33!

as a function of the admixture coefficientt. ST should not be
confused with the information measure~10!. They are quite
different entities. The solid line plots the ‘‘exact’’ entropy
while the dashed one corresponds to our inferred, appro
mate one. Obviously ours is larger, as our prior informatio
is not abundant enough so as to be in a position to infer t
exact solution in an errorless fashion. We clearly apprecia
here the fact that the physical entropy is also an informati
measure, and thus is able to measure our ignorance, or l
of information. Indeed, the units on the vertical scale are b
~logarithms were evaluated in the basis 2!. As expected, in
the pure state limit the entropy vanishes. For mixed sta
(0,t,1), the entropy acquires finite values, and reflec

a- FIG. 2. Same as Fig. 1 for a spin-2 problem.

FIG. 3. Thermodynamical entropy for the problem of Fig. 2
Exact and inferred entropies are plotted againstt.
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the lack of information associated with the fact thatt in our
mixed state is not an amplitude, but a weight.

IV. CONCLUSIONS

Using rather well-known mathematical ideas@49#, we
have advanced a way of introducing complementary inf
mation into the Jaynes’ maximum entropy machinery, so
to enable one to apply his philosophy to the inference
approximate density matricesin cases in which the Hamil
tonian of the system is unknown. Both mixed and pure state
are treated on equal footing, and no divergence of the p
ics
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nent Lagrange multipliers ensues in the pure state limit. O
approach was illustrated with reference to simple examp
that illuminate the workings of our approach. It is shown th
ours is a reasonably powerful inference technique.

ACKNOWLEDGMENTS

This work was performed under the auspices of both
General Agreement signed between the Universities of I
Balears, and Nacional de La Plata and Grant No. DGICY
PB95-0492-A~Spain!. A.P. and M.C. acknowledge suppo
from CONICET, Argentina.
s, P.

R.

, L.
l.

L.
A.

8.
E.

an,

a-

ro-

T.

v.

r.
@1# F. Reif, Fundamentals of Statistical and Thermal Phys
~McGraw-Hill, New York, 1965!.

@2# R. Kubo, J. Phys. Soc. Jpn.12, 570 ~1957!; Rep. Prog. Phys.
29, 255 ~1966!.

@3# C. Shannon, Bell Syst. Tech. J.27, 379~1948!; 27, 623~1948!.
@4# E. T. Jaynes, Phys. Rev.106, 620 ~1957!; 108, 171 ~1957!.
@5# L. Brillouin, Science and Information Theory~Academic, New

York, 1956!.
@6# A. Katz, Principles of Statistical Mechanics~Freeman, San

Francisco, 1967!.
@7# R. Balian,From Microphysics to Macrophysics~Springer, Ber-

lin, 1991!.
@8# R. Balian, Y. Alhassid, and H. Reinhardt, Phys. Rep.131, 1&2

~1986!; H. Reinhardt, R. Balian, and Y. Alhassid, Nucl. Phy
A 413, 475 ~1984!.

@9# A. R. Plastino and A. Plastino, Phys. Lett. A181, 446 ~1993!.
@10# N. Canosa, A. Plastino, and R. Rossignoli, Phys. Rev. A40,

519 ~1989!.
@11# N. Canosa, R. Rossignoli, and A. Plastino, Nucl. Phys. A512,

492 ~1990!.
@12# N. Canosa, A. Plastino, R. Rossignoli, and H. Miller, Phy

Rev. C45, 1162~1992!.
@13# L. Arrachea, N. Canosa, A. Plastino, and R. Rossignoli, Ph

Rev. A 45, 7104~1992!.
@14# N. Canosa, A. Plastino, and R. Rossignoli, Nucl. Phys. A550,

453 ~1992!.
@15# L. Arrachea, N. Canosa, A. Plastino, and R. Rossignoli, Ph

Lett. A 176, 353 ~1993!.
@16# M. Casas, A. Plastino, A. Puente, N. Canosa, and R. R

signoli, Phys. Rev. A47, 3530~1993!.
@17# M. Casas, A. Plastino, and A. Puente, Phys. Lett. A184, 385

~1994!.
@18# M. Casas, A. Plastino, and A. Puente, Phys. Rev. A49, 2312

~1994!.
@19# M. Casas, A. Plastino, and A. Puente, Phys. Rev. C48, 607

~1993!.
@20# R. Rossignoli and A. Plastino, Phys. Rev. C40, 1798~1989!.
@21# J. W. A. den Herder, P. C. Dunn, E. Jans, P. H. M. Keizer,

Lapikás, E. N. M. Quint, P. K. A. de Witt Huberts, H. P. Blok
and G. van der Steenhoven, Phys. Lett. B161, 65 ~1985!.

@22# J. W. A. den Herder, J. A. Hendriks, E. Jans, P. H. M. Keiz
G. J. Kramer, L. Lapika´s, E. N. M. Quint, P. K. A. de Witt
Huberts, H. P. Blok, and G. van der Steenhoven, Phys. R
Lett. 57, 1843~1986!.

@23# R. Ent, H. P. Blok, J. F. A. van Hienen, G. van der Stee
.

s.

s.

s-

.

,

v.

-

hoven, J. F. J. van den Brand, J. W. A. den Herder, E. Jan
H. M. Keizer, L. Lapikás, E. N. M. Quint, P. K. A. de Witt
Huberts, B. L. Berman, W. J. Briscoe, C. T. Christou, D.
Lehman, B. E. Norum, and A. Saha, Phys. Rev. Lett.57, 2367
~1986!.

@24# G. van der Steenhoven, H. P. Blok, E. Jans, M. de Jong
Lapikás, E. N. M. Quint, and P. K. A. de Witt Huberts, Nuc
Phys. A480, 547 ~1988!.

@25# J. W. A. den Herder, H. P. Blok, E. Jans, P. H. M. Keizer,
Lapikás, E. N. M. Quint, G. van der Steenhoven, and P. K.
de Witt Huberts, Nucl. Phys. A490, 507 ~1988!.

@26# E. N. M. Quint, Ph. D. thesis, University of Amsterdam, 198
@27# J. B. J. M. Lanen, H. P. Blok, H. J. Bulten, J. A. Caballero,

M. de Guerra, M. N. Harakeh, G. J. Kramer, L. Lapika´s, M.
van der Schaar, P. K. A. de Witt Huberts, and A. Zonderv
Nucl. Phys. A560, 811 ~1993!.

@28# A. Bianconi, S. Jeschonnek, N. N. Nikolaev, and B. G. Z
kharov, Nucl. Phys. A608, 437 ~1996!.

@29# A. Polls, M. Radici, S. Boffi, W. H. Dickhoff, and H. Mu¨ther,
Phys. Rev. C55, 810 ~1997!.

@30# V. van der Sluys, K. Heyde, J. Ryckebusch, and M. Wa
quier, Phys. Rev. C55, 1982~1997!.

@31# T. Kobasyashi, O. Yamakawa, K. Omata, K. Sugimoto,
Shimoda, N. Takahashi, and I. Tanihata, Phys. Rev. Lett.60,
2599 ~1988!.

@32# I. Tanihata, Nucl. Phys. A522, 275c~1991!.
@33# T. Kobayashi, Nucl. Phys. A553, 465c~1993!.
@34# P. C. Hansen, Nucl. Phys. A553, 89c ~1993!.
@35# H. Sagawa and K. Yazaki, Phys. Lett. B244, 149 ~1990!.
@36# Y. Ogawa, Y. Suzuki, and K. Yabarra, Nucl. Phys.571, 784

~1994!.
@37# J. S. Al-Khalili, J. A. Tostevin, and I. J. Thompson, Phys. Re

C 54, 1843~1996!.
@38# E. Garrido, D. V. Fedorov, and A. S. Jensen, Phys. Rev. C55,

1327 ~1997!.
@39# T. Koga, Theor. Chim. Acta58, 173 ~1981!.
@40# T. Koga and M. Morita, Theor. Chim. Acta59, 423 ~1981!.
@41# T. Koga and M. Morita, Theor. Chim. Acta59, 639 ~1981!.
@42# T. Koga, M. Sugawara, and M. Morita, Theor. Chim. Acta61,

87 ~1982!.
@43# T. Koga and M. Morita, Theor. Chim. Acta61, 73 ~1982!.
@44# T. Koga, M. Shimokawa, I. Inagawa, and M. Morita, Theo

Chim. Acta62, 39 ~1982!.
@45# D. A. Peek and R. O. Simmons, J. Chem. Phys.94, 3169

~1991!.



y

s.

2324 57A. RIGO, M. CASAS, AND A. PLASTINO
@46# G. Baym, G. Friedman, R. J. Hughes, and B. V. Jacak, Ph
Rev. D48, R3957~1993!.

@47# A.M. Herkommer, V. M. Akulin, and W. P. Schleich, Phy
Rev. A 49, 3127~1994!.
s.@48# R. C. Tolman,The Principles of Statistical Mechanics~Oxford
University Press, Oxford, 1938!.

@49# J. Baker-Jarvis, J. Math. Phys.30, 302~1989!; J. Baker-Jarvis,
M. Racine, and J. Alameddine,ibid. 30, 1459~1989!.


