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Inferring the density matrix for a system of an unknown Hamiltonian
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An approximate inference approach is advanced in order to determine the density matrix in cases in which
the pertinent Hamiltonian is unknown, and the available expectation values pertain to noncommuting observ-
ables. The inference of both pure and mixed states is addressed, and on an equal footing, without facing
infinities in the pure state limit. Information-theoretical tools are emplo}®8050-294{®8)02604-3

PACS numbegs): 03.65.Ca

I. INTRODUCTION listed above, overcoming also the aforementioned limita-
tions.

In order to attempt a quantum description of a system so Concerning the fourth of the above-listed difficulties, if
as to obtain the concomitant wave function or density matrixthe associated scenario makes it possible to infer a statistical
knowledge of the pertinent Hamiltonian is an all importantoperator formixedstatesa la Jaynes, as one approaches the
requirement, as otherwise ScHioger's equation(or Von  Pure state limit the associated Lagrange multipliers diverge,
Neumann’$ cannot be written down. However, cases int0 either plus or minus infinity20], which seems to erect a
which the Hamiltonian is unknown abound, and indeed mucformidable barrier to the workings of numerical techniques.
effort, from both theoretical and experimental viewpoints,AS for the last item in the lists of problems to be overcome,
has been expended in trying to determine, at the very leasf'® mention that, if the available information refers to expec-

: : oS : tation values ofnoncommutingbservables, recourse to the
appropriateeffectiveHamiltonians in order to remedy such ’
inggrmZtional failure y Kubo transform(KT) [2] becomes mandatory. Its beauty and

Since in statistical mechani¢SM) inferenceis the over- elegance notwithstanding, the KT confronts one, in general,

I b . lete inf tion is al with involved integrals that are not always easy to deal with.
all purpose, because incomplete information is always pre- "\ b2t follows we show how to apply Jaynes’ method-

supposed, SM methods would seem to be called for in thg gy in quantum-mechanical scenarios for which, the
case of an unknown Hamiltonian. Indeed, the main idea uUngamijtonian not being available, just a small set of expecta-
derllymg statlsncql mechan|cs_|s that of describing the mostig values ofnoncommuting operatorsonstitutes the only
salient characteristics of a given system by recourse to gyior information. Both pure and mixed states will be tackled
small set of relevant expectation valugsst(H) in the case  on an equal footing, without infinities in the Lagrange mul-
of Gibb’s canonical distribution[1]. But once again, one is tipliers, and no recourse to the KT needs to be made.
assumed to know the system’s Hamiltonian in order to pro- One would envision utilizing this formalism in situations
ceed to build up canonical, grand-canonical, or other types ah which scarce information is available concerning the de-
ensembles. What is to be done if such energetic informatiorails of the interactions governing the physics of the system
is not available? to be described. Inference would then be the name of the

Several types of hardship are to be faced in numericallygame. A number of such scenarios found, for example, in
dealing with quantal problems by recourse to methods oRefs.[21-47, is by no means an exhaustive list. The for-
statistical mechanics. Among them we can list the following:malism is introduced in Sec. I, some illustrations are dis-
for pure states, the thermodynamical entropy is identicallycussed in Sec. lll, and conclusions are drawn in Sec. IV.
zero; the Hamiltonian may not be known; pure states and
mixed states are often dealt with on anequalfooting, due Il. PRESENT FORMALISM
to technical difficulties; some Lagrange multipliers may di-
verge; and the Kubo transform must be implemented in deal-
ing with non-commuting observabld®], which is some-
times a rather difficult task.

Recourse to information theoi§yT) [3], as employed by ~ i
Jayneg[4] in his celebrated reformulation of SKsee also andwe do not assume that, Are commuting operators
Refs.[4—8]), allows one to conveniently tackle the first two In the (arbitrary) basis|i) the statistical operator is of the
of the above problems, but subject to the following restric-customary form
tions: (i) the pertinent methodology can be applied only in N
the case opure statesand(ii) thea priori input information ,3= E liYE (]| )
must refer only to commuting observables. For details, the 0 A
reader is referred to Reff9—-19. The purpose of the present
effort is that of addressing the last three of the hardshipsind our input-information can be cast in the fashion

We assume tha¥l expectation values are at our disposal,

(AY=d,, r=1,... M, 1)
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d,=(A,)=Tr(pA); (3) (i) the expectation value of the nor(f) =f 'f is finite,
ie.,

with |i) anarbitrary basis, we can choose(in principle, at
leas) as we please. Of course, practical considerations may
make a given basis more attractive than others. Notice that, <Z f.2> = Z=finite real number, 9
althoughN may be infinite, once more reasons of practicality =t
will force us always to consider finit&l values in actual
numerical computation$ is, of course, chosen according to
some appropriate criteria. It is clear, however, that, in gen-
eral, we shall deal with scenarios in whibhis larger(often S= —f d7 P(a)InP(a), (10
considerably spthanM.

In order to make further progress, a change of notation which, of course, has nothing to do with thermodynamical
will be necessary: we form, first of all, a VeCtdrOUt of the entropy. The latter is of fOfn(llO) but involves the dens”:y
M componentsd, of Eq. (3). Next we rearrangésay, in  operator. It describes quantum plus classical ignoratiee
lexicographic order the sublndlcgs and j of the matrix  so-called double weightinfg8]). With P(«) we go a step
elements of the statistical operaj@iso as to obtain a vector further, as Eq(10) describes our ignorance about which is
f of N2 components. Finally, using this rearrangement wethe sunaHbIe density mJatrlx within an ensemble of such mi';\—

trices. Here enters Jaynes’ maximum entropy principle

will regard the matrix elemeni|A,|j) as the elemer,, of
a rectangularil X N?) matrix G, where the row index runs (MEP) ['4]t kg_tbgpphed |rk1)|th|sf (;%unda?oult :pannefr to an
from one toM, while the columns are labeled by an index aps\r/(;pélg r?ot Icla'sme?hsaetnt]heerg 'Ireer;eer:(t;?('l'J' ;02500 e(gf;é
(L,... N?) that combines in some fashidtexicographic, the only ones th:!\t can be maggl neither th!\lt the Vare some-
for instanceé the Hilbert space basis’ indicesandj. In this how suyperior in some sense to’ an alternative get of con-
matrix notation Eq(3) adopt the appearance straints that could be imposed. Remember that one has, in
Gibbs’ case, the canonical ensemble, the grand-canonical
one, etc. We seledt)—(iii) merely on the basis that they are

hich clearl derd qi bl quite sensible requirements.
which clearly poses an underdetermined linear problem, as, qpioysly, we face a constrained extremization problem,
usually,M <N. Very many, possibly infinite, distinct vectors ,hich leads to the Lagrangian

f fulfill it.

and (iii) P(«) maximizes the Shannon information measure

d=Gf, (4)

Following Gibbs[48] we focus our attention not on Eq. N2 M N2
(4) itself but on anensembleof identical equations. More £=P(a)| INP(a)+(\o— 1)+7,2 f2+ 2 A 2 G,ifil,
precisely, we consider an ensemble conS|st|ng of all its pos-
sible solutions. In the ensemble, every solutfgrof Eq. (4) (1D
appears with a suitably normalized probabilRy«) so that variationsd£ with respect toP(«) vanish;
sz(“)dT:l’ ®) 5P(a)f £ dr=0. (12)
whereR is the space of “realizations” of the solutiorfg A word of explanation is needed concerning condition
If the coefﬂmentsfIl in Eq. (2) are real, we write down the (9). This should usually be construed as an inequaktyd
volume element 7 in the fashion thus not amenable to the Lagrange multiplier treatment
However, the point is that we canterpretit as an equality,
dr=dfidf,. - -dfye, (6) because we are not concerned with the exact value of the

sum on the left-hand sideZ]). Any value would do, because,
while, in the more general case, a slightly more complicatedt the end, we will discover that our solutidoes not depend

expression ensues, that is not needed for our present pu#pon the associated Lagrange multipligy and thus neither
poses. upon any putative value af. We are allowed then to treat

Since it iswe that “build” the ensemble, we take the Eq.(9) as if_ it were an equalit)(anyz value goeg
liberty of designing it so that the vectér of mean ensemble ~ Before discussing the solution to the MEP problet),

value we notice that the last term on the right-hand side of (Ed)
can be recast as
<F>:f drP(a)f,, ) N2 N? o
2 f E  Giaha= 2, Fili=F'T, (13

is of such nature thdt) (F) also fulfills Eq.(4), that can thus
be written down in the guise invoking transposition of the matri§s, so that

d=G(f); (8) ['=G"\. (14)
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The present MEP variational problem has an analyticals, of course, the celebrated Moore-Penrose pseudoinverse
solution [49] of the matrixG. The present treatment is seen to lead
. one to a most convenient tool of the numerical analysis
P(a)=exp —No)exd — y(f)2—T'f], (15  weaponry.

» ) N In writing down Eq.(24) we accomplish our goal: the
where the partition functioZ=e"c is given, on account of  gensity matrix has been determined via a MEP approach. No
normalization, by Lagrange multipliers enter this equation. Everything is ex-
pressed in terms of the data input and of the matrix elements

N2
_ 2 of the operators whose expectation values constituteaour
Z_i:Hl fdf‘eXp(_Yfi —Tifi)|. (16 priori information. Thus, everything should remain finite,
even for pure states.
The Gaussian integrals in E(L6) can be immediately per- Notice that we actuallyiseonly the ensemble medi9),
formed so as to yield not the whole distributiorP(«). This should not be con-

strued as an indication that our ensemble of density matrices

N2 . S . . .
is not necessary. Building it up is the price to pay for getting
Z:iﬂl [\l yexp(TFl4y)], (17 rid of the troublesoméwithin the present contexbriginal
Lagrange multipliers of Jaynes’ treatment, and replacing
so that Eq(7) is translated into them with our own multipliers. Thus, the essential difference
between the present approach and the orthodox Jaynes’ one,
(fy=—T12y. (189 as employed in Refs[9-19] lies in the fact that our

Lagrange multipliers refer to the workings of our fictitious
According to usual practice we are now in a position toensemble, i.e., to the collective of acceptable density matri-

claim that the components ¢f) ces, and are thus not endowed with any obvious physical
’ relevance. On the other hand, we have indeed overcome all
(fiy=—T/2y, (190  the difficulties mentioned in Sec. I.

are the best possible choice for the solutions of our problem.
Out of the many possible solutions of E@), (19) is the
“best,” in Gibbsian terms, in the same sense that the canoni- We shall illustrate the procedure advanced in Sec. Il with
cal statistical operator ex)p({—ﬁﬂ) is the best statistical op- reference to some simple examples. We consider only real
erator one can infer when theepriori knowledge is just that density matrices.

of the expectation value of the Hamiltonian. But, of course,

we are not through yet, as, thus fat,and y are unknown A. Calculation in the oscillator basis
guantities.

In order to make further progress let us focus our attentior(lj1
upon Eqgs(8), (14), and(18). By formal manipulation of Eq.

lll. SIMPLE ILLUSTRATIONS

We assume now that we are expanding wave functions in
one-dimensional harmonic-oscillator basis. We chdése
=4, so that we deal with 4 4 input matrices this time. Our

(14), we find a priori information is taken to be that of the expectation
N=(G")"IF, (20  values ofx?, p?, andp?, and, out of these three values, we
intend to infer the ten independent elements of>ad4den-
while, from Eq.(18), we have sity matrix. We take it that the “exact(in general, mixeg
state is a linear admixture of two pure states, that in the
I'=—2x(f), (21)  oscillator-basigphonon number y read
that, inserted into Eq(20), gives |A)=1(0.3n=0)+(0.2n=2)+(0.2n=4)
X=—24(G")XF), (22) +.(0.3n=6) (26)
that, on account of E(q8), yields and
N=-2y(G") G, (23 IB)={(0.19n=0)+ {0.2n=2) + (0.18n=4)
which, reinserted into E(22), leads finally to +(0.5n=6, (27)
£\ _ ot try—14
(f)=G(GG") ", (24) respectively.

After determining our density matrix according to the
considerations expounded in Sec. Il, we perform the corre-
sponding quality test with reference to its predictive power.
To this end, we infer the expectation valuesdfx®, x8, and
f)e, and compare them to the “exact” ones for various values
Ps=G"(GG") 1, (25  of the admixture proportion,

which neatly expresses our inferred statistical operatts
Gibbs in terms of the input dath and the known matrixG
(no dependence upop, as stated befoje

The matrix
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FIG. 1. Relative difference between exact and inferred expecta- FIG. 2. Same as Fig. 1 for a spin-2 problem.

tion values vs the mixture parameter for a continuous one-

dimensional problem. 32,32, andJ;, and compare them to the “exact” ones for

. various values of the admixture proportierfsee Eq.(28)].
Pexact= (1= 7)|A)(A|+ 7|B)(B|. (28 Figure 2, wherer labels the horizontal axis, and the rela-
. . . tive difference[see EQq.(29)] is represented in the vertical
_ Figure 1, wherer labels the horizontal axis and the rela- one displays the corresponding results. It is seen that our
tive difference predictive errors are smaller than 10%.

A A In Fig. 3 we display the thermodynamical entropy
D= <Otes> exact <Otes> inferred

< (’\)IESQ exact

is represented in the vertical one, displays the correspondings a function of the admixture coefficientS; should not be
results. It is seen that our predictive errors are smaller thagonfused with the information measufk0). They are quite
13%. different entities. The solid line plots the “exact” entropy,
while the dashed one corresponds to our inferred, approxi-
B. A discrete system mate one. Obviously ours is larger, as our prior information
. i? not abundant enough so as to be in a position to infer the
We assume that we confront a spin-2 system, and dea L : .
. . ) ) T exact solution in an errorless fashion. We clearly appreciate
with 5X5 input matrices. Oua priori information is taken h : . . )

) AL oad A3 ~oao ere the fact that the physical entropy is also an information
to be that of the expectation valuesdf, Jy, J;, andJzJy  measure, and thus is able to measure our ignorance, or lack
+J§J§, and, out of these four values, we intend to infer theof information. Indeed, the units on the vertical scale are bits
16 independent elements of &5 density matrix. We take (logarithms were evaluated in the basis 2s expected, in
it that the “exact” (in general, mixegstate is a linear ad- the pure state limit the entropy vanishes. For mixed states

' 29 S=—trlpln(p)] 39

mixture of two pure states, that, in tie basis|m), (0=<7<1), the entropy acquires finite values, and reflects
J,my=m|m), (30 L8
- Sexact
read """"" sinferred
T S —
|Ay=1/(0.252)+ /(0.241) + 1/(0.250) + /(0.1 — 1) [
+(0.15-2) 31 il ST
and ?
0.1
|B)=1/(0.352)+/(0.301)+(0.100) +(0.15 ~ 1)
+4(0.19-2), (32
respectively. 0 ' ' ' '
After determining our density matrix according to the 0 0.2 04 06 08 1

. . . T
considerations expounded in Sec. Il, we perform the corre-

sponding quality test with reference to its prgdic'Eive POWEr. g1, 3. Thermodynamical entropy for the problem of Fig. 2.
To this end, we infer the expectation valuesJof J)z(, Jf, Exact and inferred entropies are plotted against
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the lack of information associated with the fact thah our  nent Lagrange multipliers ensues in the pure state limit. Our

mixed state is not an amplitude, but a weight. approach was illustrated with reference to simple examples
that illuminate the workings of our approach. It is shown that
IV. CONCLUSIONS ours is a reasonably powerful inference technique.
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