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Linear quantum trajectories: Applications to continuous projection measurements
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We present a method for obtaining evolution operators for linear quantum trajectories. We apply this to a
number of physical examples of varying mathematical complexity, in which the quantum trajectories describe
the continuous projection measurement of physical observables. Using this method we calculate the average
conditional uncertainty for the measured observables, being a central quantity of interest in these measurement
processed.S1050-294{@8)00603-9
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[. INTRODUCTION familiar nonlinear version, is that in certain cases it has been
found that explicit evolution operators corresponding to
Quantum master equations, which govern the evolution ofhese equations may be obtained in a straightforward man-
a density matrix representing the state of a physical systenfier. However, as far as we are aware, the only method that
have a wide application in quantum dissipation and continuhas been used to obtain evolution operators for these equa-
ous measurement theofg—3]. They describe the evolution tions to date is to choose an initial state that allows the sto-
of a quantum system that is interacting with an environmenghastic equation for the state to be written as a stochastic
that’ due to the interaction' may absorb energy from the Sy§quati0n for an eigenvalue, or which SImpIIerS the action of
tem (dissipation, and will continually provide information the evolution operatd9,10]. In this paper we present a more
about the state of the systefontinuous measurementA general method for obtaining explicit evolution operators for
classic example of a system interacting with an environmenthese equations that makes no reference to the initial state.
is that of a single mode of an optical cavity that is allowed toNaturally the resulting evolution operators contain classical
leak out of the cavity via an imperfect end mirror. The pho_random variables. The complexity of the stochastic equations
tons in the cavity leak out over time, and these may be dethat govern these classical random variables depends upon
tected with a photodetector. The environment consists of thée complexity of the commutation relations between the op-
continuum of optical modes outside the cavity, and providegrators appearing in the LSE. If the complexity of the com-
a mechanism for dissipation and continuous measurement. futation relations is sufficiently high then the stochastic
master equation would describe the evolution of the systerduations governing the classical random variables become
averaged over all the possible times at which the photonf0 complex to solve analytically. Nevertheless, even if this
may be detected leaving the cavity. However, the mastei§ the case, the form of the evolution operator provides in-
equation may be rewritten in an equivalent form as a stoformation regarding the type of states produced by the LSE,
chastic equation which describes the evolution of the systerdnd the problem is reduced to integrating the classical sto-
for eachset of photodetection timdg]. Each possible real- chastic equations numerically. We also note that the solution
ization of the stochastic equation corresponds to a set dP an LSE provides additional information to that contained
detection times, or more generally, to a particular set of meal the solution to the equivalent master equation, because it
surement results. Each set of results is termed a quantufives the state of the system for each trajectory. For example,
trajectory [5], and the stochastic equation is saidutravel ~ the variance of a system operator may be calculated for each
the master equation. The kind of stochastic process appedfnal state(i.e., for each trajectojy and this is referred to as
ing in the equation will depend upon the kind of measure-the conditional variance as it is conditional upon the results
ment process. For photodetection of the output of a cavityaf the measurement. The overall average of these variances
mode the stochastic process is a point pro¢e§swhile for ~ may be then be calculated. The solution to the master equa-
homodyne detection it is a Wiener proc¢gk However, the  tion allows us to calculate only the variance that is obtained
master equation, giving the overall average evolution, doeBY first averaging the final states over all trajectories, which
not depend upon the choice of measurement. In other word&: in general, quite a different quantity. _
there are many different ways to unravel any particular mas- In the following we use as examples LSE'’s corresponding
ter equation. Here we will be concerned with stochastid0 the continuous measurement of physical observables. A
equations that contain the Wiener process. term of the form
The fact that quantum master equations may be rewritten )
as linear stochastic equatiofisSE’s) for the quantum state p=---—Kk[O,[O,p]] - (0]
vector, referred to alternatively dmear quantum trajecto-
ries, has been known in the mathematical physics literaturén a quantum master equation for the evolution of a density
for some timg 8], but has only fairly recently seen exposure matrix, p, for a quantum syster§, describes a continuous
in the physics literatur€9—11], where it has been common projection measurement of an observablef S. The rate at
to use nonlinear stochastic equati¢hg,13. The advantage which information is gained regarding the observable is de-
of writing master equations as LSE’s, rather than the mordéermined byk, which is a positive constant. That a continu-
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ous measurement of a physical observable can be describetent may be easily extended for multiple stochastic incre-
in this way has been demonstrated by Barchielli and coments. Let us write a general LSE with a single stochastic
workers [14], and also by Uedat al. [15] using a quite increment as

different approach. For the theory of continuous measure- _

ment the reader is referred to these works and references dlg)y=[Adt+BdWt)]| ). (6)
[16—19. We refer to this measurement process as a continu- _

ous projection measurement because in the absence of anin this equatiorA andB are arbitrary operators. We will see
system evolution, the sole effect of this term is to reduce theéhat the complexity of the evolution operator will depend
off-diagonal elements of the density matrix to zero in theypon the complexity of the commutation relations betwaen
eigenbasis of that observable. That is, it describes, in thgngg.

long time limit, a projection onto one of the eigenstates of | et us define the integral of Wiener increments over a

the observable under observation. If, in addition, the observiime At asAW(t). The probability density fodAW(t) is [7]
able commutes with the Hamiltonian describing the free evo-

lution of the system under observation, then the free evolu-
tion does not interfere with this process of projection, and the P(AW(1))=
measurement is referred to as a continuous quantum non- 2mAt

demolition (QND) measuremer(i20,3. _ o , .
Before we proceed we note the following points. The LSESC that{AW(t)) =0 and([AW(1)]") = At. As a first step in
obtaining an evolution operator for the LSE in E&) we

that is equivalent to the general master equ LD
q 9 qualiat] rewrite it in the form

e—[AW(t)]Z/(zAt), )

N

. i A (g2
p=—7[H.p]+ X (20,p07= 010w —p0;0n), (2 |(t+dt)) = elA (ETRIAIBAMD] ) = eAdlgBA ), ®

whereH is Hermitian and thé, are arbitrary operators, is \\here we have definei=A— B2/2. It is easily verified that
this is correct to first order by expanding the exponentials to

. N
i ; ; 2
dled=| — —Hdt— 00.dt— 20 .dW.(t , second order and using the Ito calculus relatww/(t)
) h n§=:l( Ondt=20,dWn(1)) ||) =dt. To first order the state at tintet At is therefore
()

where thedW,(t) are independent stochastic Wiener incre-
ments that obey the Ito calculus relatidh,(t)%=dt [7]. so that the state at timemay be written as
During evolution an initially pure quantum state remains N
pure, but changes in a random way determined by the values e AAL_BAW
taken by the Wiener process. The state at tirjes(t))y, is ()= lim [T (e41eB4%n)|y(0)), (10)

[ (t+At))=ereBWh y(t)), (9)

not normalized, and the probability measure for the system A=on=d
to have evolved to that particular state at that time is giveRnere
by [9]
nAt
(O] (1)) wd Py, 4 AW, = (n_l)de(t), (11

wheredP,, is the Wiener measure. That is, it is the joint
probability measure for all the random variables that appe
in the expression fofy(t)),,. It follows therefore that mo-

andN—x asAt—0 so thatNAt=t is always true. To com-
a[5Iete the derivation of the evolution operator we must take
the limit in Eq.(10). To do this we must combine the argu-
Nhents of the exponentials that appear in the product, so that
we may sum the infinitesimals. We will choose to do this by
first repeatedly swapping the order of the exponentials con-
<0>:f (Y(1)]| O (1)) d Py, (5) taining the operatoA with those containing the operatBr.

The simplest case occurs wharandB commute so that the

where is the svstem operator in question. ahB.. repre- problem essentially reduces to the single variable case, and
Y p d ' w rep we treat this in Sec. Il B. The simplest nontrivial case occurs

sents integration over all possible values of the random vari- . .
ables. For an in-depth account of LSE’s and their relation-When the commutatqrA, B], while nonzero, commutes with

shib to phvsical measurements we refer the reader to RePOthA andB, and we treat this in Sec. Il C. In the final part
[g]p phy of this section we examine a more complicated example in

which the commutatofA,B] does not commute with either
A or B.

master equation at timeare given by the expression

II. OBTAINING EVOLUTION OPERATORS FOR LINEAR

QUANTUM TRAJECTORIES B. A QND measurement of photon number

A. General method The mathematically trivial case occurs whénand B

We will explicitly treat here LSE’s that contain only one commute. A nontrivial physical example to which this cor-
stochastic increment. However, it will be clear that this treat+esponds is a QND measurement of the photon number of a
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single cavity mode. Denoting the annihilation operator de- Conditional Uncertainty for a QND Measurement of n
scribing the mode by, the free cavity field Hamiltonian is s ' ' ' ' ; ' ' ' '

given by[3] sk Initial Photon Number Distributions |

H = ﬁw(afa-f— %)1 (12) M) o< Thermal State ]

in which w is the frequency of the cavity mode, and the  *°| l

observable to be measuredds=a'a. With this we have 3 9 .

= | Coherent
A=—iw(a’a+3})—2k(a'a)?, 13 & £} State 1

ok

B=.2ka'a, (14 ]
in which k is the measurement constant introduced in Eq. i
(1). As A andB commute the exponentials in E¢.0) com-
bine trivially and we obtain

05F

0

(D)= lim eANMex{ B> Avvn}w(o» .
At=0 " FIG. 1. The conditional uncertainty in photon number averaged
— eAteBW(t)| #(0)). (15) over all trajectories;o,(t) ), is plotted here against the dimension-

less scaled timer=kt. The dotted line corresponds to an initial

As the Wiener process\W(t), is a sum of independent coherent state, and the solid line to an initial thermal state. Both
Gaussian distributed random variabl#¥, , it is naturally initial states were chosen to ham§=20, giving the thermal state a
Gaussian distributed, the mean and variancaV¢f) being Mean photon number ofn)=4, and the coherent state a mean
zero andt, respectively. In a particular realization of the Photon number ofn)=20. The photon number distributions for the

stochastic equation, EG6), the Wiener process will have a WO Initial states are displayed in the inset.

particular value at each timg and as we mentioned above, S

. The uncertainty in our knowledge of the number of photons
the set of all these values corresponds to the trajectory that 8 the square root of this variance. Averaging this uncertaint
taken by that particular realization. The fact that to obtain the d i ging Y

state at time we require only the value of the Wiener pro- over all trajectories therefore tells us, on average, how accu-

cess at that time means that we do not require all the traje rately we will have determined the number of photons at a
. ) ) . L req . J€Gater time. To calculate the value of the uncertainty for each
tory information, but just a single variable associated W'thtrajectory averaged over all trajectories we must multiply

that trajectory. For more complicated cases, in which the ()., by the probability for each final state and average
operators do not commute, we will find that other variables”n\Yw DY the p . g

. . : : . over all the final states. The probability measure for the final
associated with the trajectory appear in the evolution opera- L . .
tor. states,p(t), is given by the Wiener measure multiplied by

. -‘- . _
As the situation we consider here is a QND measuremenfhb?“?mr;n of t?e :'nil f’t;ﬁe’ {rr]vg)lpéO)V (it)r};- T,["S Er?b

the phase uncertainty introduced by the measurement of phg- . %t deasu est ot In genera f aussnaD V:f( )’. utha
ton number does not feed back to affect the measurement, Flghted sum of aussians, one for eacrreriorming the
that the result is simply to decrease continuously the unCeI!]wulnpllcatlon, we obtain the average conditional uncertainty
tainty in photon number, and the state of the system as in photon number as
tends to infinity tends to a number state. If we denote the
evolution operator derived in E¢L5) by V(t), and start the <Un(t)w>:f \/2 N(M=n)pppmVnVmdPy, (18
system in an arbitrary mixed stat€0), then at timet the nm
normalized state of the system may be written as

in which
V(1) p(0)VT(t _aktn?4 2y
(t)= (t)p(0) (T) . (16) V,=e 4ktn +2V7Rnw, (19)
TrHV(H)p(0)V (1)}
As V(t) is diagonal in the photon number basis, we only de:Le—WZ/@wa, (20
require the diagonal elements of the initial density matrix to V2t

calculate moments of the photon number operator. Denotin%v ) _
the diagonal elements of the initial density matrixdy, and e note that(on(t),) may be written as a function of
the diagonal elements of(t)V'(t) by V,, the variance of =Kt which is the time scaled by the measurement constant.
the photon number, for a given trajectory, is given by Hence, as we expect, increasing the measurement time has
the same effect ofio,(t),) as increasing the measurement
, 2 constant. We evaluatéo,(7),,) numerically for an initial
; N“pnVn (; ”PnVn) thermal state, and an initial coherent state, and display the
= — >. (17) results in Fig. 1. We have chosen the initial states so that
E FAVA (2 ann) they have the same uncertainty in photon number, with the
n n result that the mean number of photons in each of the two

Ur21(t)w
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states is quite different. The results show the decrease in N t
uncertainty with time, which is seen to be only weakly de- (Y(t)?)= lim AtZ [(n— 1)At]2At—f t'2dt' =t33,
pendent upon the initial state. At—0 Nn=1 0 28

C. A measurement of momentum in a linear potential N

The simplest mathematically nontrivial case occurs when (W(t)Y(t))= lim 2 [(n—1)At]At= ftt’dt’ =t2/2.
the commutator betweeA and B, while nonzero, is such At—on=1 0

that it commutes with botiA andB. A physical situation to (29
which this corresponds is a continuous measurement of the

momentum of a particle in a linear potential. If we denote theThe state at time, under the evolution described by the
position and momentum operators for the particleQaand  stochastic equation, is therefore

P, respectively, then the Hamiltonian is given by

| (1)) =eMeBMVe AR y(0)), (30)
1
H= ﬁpz FQ, 2D \where the joint probability density foN andY at timet is
given by
in which m is the mass of the particle artdis the force on
the particle from the linear potential. In this case we have \/1_2) 2 6 6
Pu(W,Y)= exg — —W?— —=Y2+ —WY]|.
—j iF 27t? t t3 t2
A= (Zﬁ —-2k|P WQ’ (22
Note that to obtain the probability density for the final state,
B=2kP 23) this must be multiplied by the norm of the state at titne
' Returning to the specific case of a particle in a linear
in which k is again the measurement constant. potential, we may now obtain results for various quantities of

Returning to Eq(10) we see that to obtain a solution we interest. Writing the evolution operator in terms of the mo-
must pass all the exponentials containing the opefates ~ Mentum and position operators we have
the right through the exponentials containing the operator

In order to perform this operation we need a relation of the _ ;_ 2 E
In or Idf(t)>w—eXp|' (Zﬁ 2k |P2+ - QH
eBeA— pAeC (24) X exp{V2K[ PW(t)+ FY(t)T} #(0)). (3D

For the present case the required relation is simply given byjsing the Zassenhaus formyi23] to disentangle the argu-
the Baker-Campbell-Hausdorff formula2,1] ment of the first exponential we may rewrite this in the more

eBeA= ePeBe[AB] (25) convenient form

Using this relation to propagate successively all of the expo- (1)) —exp{ Qtlex 7(— P2t — PF2—F2t3/3)]
w

nentials containind to the right in the product in Eq10)

WeNObta'” X X exp{ 2K PW(D) +FY(D TH#(0)), (32
11 (eAAteBAWn)zeX[[ANAt]ex;{BE Awn} in which 5= (i/2Am+ 2k). For those not familiar with the
n=1 n=1 Zassenhaus formula, it is complementary to the BCH for-
N mula. While the BCH formula shows how to write an expo-
Xex;{ —[A,BJAtY, (n— 1)AWn} nential of the sum of two operators as a product of exponen-
n=1 tials of the operators and their commutat@r in more

(26) complicated cases repeated commutators of the two opera-
tors), the Zassenhaus formula shows how to write the prod-
All that remains is to calculate the joint probability density uct of exponentials of two operators as the exponential of the
for the random variables. The first is the Wiener process, andum of the operators and repeated commutators.
the second is Let us first take an arbitrary initial state, writing it in the

\ momentum eigenbasis so that we have

Y(t)= lim AtY, (n—1)AW,= tt’dW(t’). (27) - -
At—o =t 0 |¢(0)>=f_m‘l’(p)lp>dp, f_wl‘lf(p)lzdp=1- (33

Clearly these are both Gaussian distributed with zero mean

and all that we require is to calculate the covariar(dgg)?) Using Egs(32) and(33) in Eq. (5) to calculate the moments
and(W(t)Y(t)) to determine completely the joint density at of p given by first averaging over all trajectoriébat is, the
timet. Using(AW,AW,)= 8,,At these quantities are easily moments that would be given by the equivalent master equa-
obtained: tion) we readily obtain
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(p(HM={((p(0)+Ft)"). (34 tial value to zero as— as we expect from the discussion

above. This means that while the average value of momen-

In particular, for any initial state(0)), the average value tum is determined by the measurement results, the error in

of the momentum at time, (p(t)), is simply shifted from  our estimate of the momentum at tirhés not.

the initial value by the impuls&t. The variance of the mo-

mentum at timet, aﬁ(t)=<p(t)2>—(p(t)>2, remains equal D. A quadrature measurement with a general quadratic

to its original value. That is, the uncertainty introduced into Hamiltonian

the position of the particle by the momentum measurement . . .

does not feed back into the momentum, even though th We now consider an LSE in which the commutdiéB]

momentum does not commute with the Hamiltonian. This is?0€S not commute with eithek or B. As in the previous

because while the momentum determines the position at %xample, IeR findQ be, respectlvely, the can_omcal momen-
later time, the converse is not true. These results for thé!M @nd position operators for a single particle so that they

moments are easily checked using the equivalent mast ey th_e.ganonlcal.commutatlon relatip@, P]=i. W'Fh
this definition we will takeA and B to have the following

equation.
Now let us consider the conditional variance of the mo-O™MS:
mentum at timet averaged over all trajectories. In the pre- A= aP?+ yQ?+ £QP+ P+ {Q (38)
vious section we calculated the conditional uncertainty, be- ’
ing the square root of the variance, and averaged this over all B=kQ+ P, (39)

trajectories. Here, however, we will find that the conditional

variance is independent of the trajectory taken, and dependghere «,y,7,¢,k, and k are complex numbers. This ex-
only on the measurement time. This will also be true of theample applies to an optical mode of the electromagnetic
example that we will treat in the next section. In this casefield, including classical driving and/or classically driven
clearly it does not matter if we first average the conditionalsubharmonic generatiofi24] and for which an arbitrary
variance over the trajectories, and then take the square roqjuadrature is continuously measured. It also applies to the
or if instead we average the conditional uncertainty, becaussituation of a single particle, which may feel a linear and/or
the averaging procedure is redundant. However, in generglarmonic potential, and which is subjected to continuous ob-
the two procedures are not equivalent. We will denote theservation of an arbitrary linear combination of its position
conditional variance bjag(t)wy As the uncertainty in po- [25] and momentum.

sition does not feed back into the momentum, we expect that To obtain an evolution operator for the LSE with this
this variance should steadily decrease to zero. This is beshoice of the operatord and B, we require, as before, a
cause during a trajectory our knowledge of the momentunelation of the form given by Eq24). To derive this relation
steadily increases so that the distribution over momentunve proceed in the following manner.

becomes increasingly narrow. To perform this calculation we First we may use the Baker-Campbell-Hausdorff expan-
take the initial state to be the minimum uncertainty wavesion[1], or alternatively solve the equations of motion given
packet given by the ground state of a harmonic oscillator oby dB/de=[A,B], to obtain an expression fa“Be™ A,
frequencyw. The average values of the position and momen-The result is

tum of the particle are both zero in this state and the respec-

tive variances are e ““cBe’=cfi(e)Q+efy(e)P+efs(e), (40
) h ’ o Mo in which
(Q)=55-=0q(0), (P)=-——=0y(0), .
and in momentum space the state may be written fa(e)= X(_2K7+ kg)StkC, 41
14 oo , 1
|¢(0)>:(Wmhw) J,wefp "emtelpydp.  (39) fa(€) =+ (2ka—k&)S+«C, (42)

The moments of momentum for each trajectory are given by

o O
S CTOIT (39

and we calculate the first and second to gim%(t)W
=(p(t)),,—(p(t))2 . We obtain

1
f3(e)= F(knf— 2kal—k{E—2kyn)[C—1]

1
+X(k77—K§)S. (43

In these expression€=cosh{fi\e), S=sinh{f\e), and \
) 0,2)(0) = /€= 4ay. Using the relation
<Up(t)w>:—2' (37 —eA A — €A A
1+8kop(0)t e “Af(eB)e=f(e ““eBe™), (44)
This is independent o#V andY and hence independent of \ve obtain from Eq(40)
the trajectory. It is therefore unnecessary to average over the
final states. Indeego5(t),,) decreases steadily from the ini- e PeBeh=gel(c)Qtela(e)Pgelsle) (45)
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Multiplying both sides of this equation on the left b we |w(t»wzeAteX1<t>Q+Xz(t)PeX3<t)+iﬁZ<t>| #(0)). (51
obtain a relation of the forne*Be"=e*e*P(9) as we re-
quire. Hence even though values for averages over all trajectories

We see from the above procedure that the relation in Eqmay in general have to be calculated numerically, the evolu-
(24) may be obtained as long as a closed form can be founglon gperator provides us with information regarding the type
for the solution to the operator differential equatidB/de  of states that will occur at time In particular, if the initial
=[A,B]. Clearly this is straightforward if this equation is state is Gaussian in positidand therefore also Gaussian in
linear in B, which is true in the example we have treated momentur, then as each of the exponential operators in the
here, and is sometimes possible in cases in which the equatove equation transform Gaussian states to Gaussian states,

tions are nonlinear. _ we see that the state of the system remains Gaussian at all
In addition, for this example we also require the BCH times. The mean of the Gaussian in both position and mo-
relation in the form mentum change with time in a random way determined by
1 the values of the stochastic variables.
efeB=eATBH2IAB] (46) We will shortly consider a particular example, that of a

. ) i harmonic oscillator undergoing a continuous observation of
This is so that we can sum up none exnpAct)Eentlal the operg;qsition, and use this evolution operator to calculate the con-
tors that result from syvappmgA. " ande"™". ditional variance for the position at tinte We will take the

Using the expressions derived above, with the replacep;tjg state to be a coherent state, which is a Gaussian wave
mentse=nAt and e=AW,, for eachn from 1 10N, by  packet. This conditional variance does not depend upon the
repeatedly swapping the exponentials containBigwith  yaiectory, but simply upon the initial state and the measure-
those containing\ as in the previous example, we obtain  ment time, as indeed we found to be the case for the momen-

N tum measurement in Sec. Il C.
lim H (ePAgBAWY) — gAteXs(DQ+Xp(DPgXa(gihZ(D), _ _Let us fir_st show that fc_Jr an initial poh_erent state Fhe con-

At—on=1 ditional variance of any linear combination of position and

(47) momentum is independent of the trajectory for all of the
cases covered by the evolution operator in Exf). To do
in which the classical stochastic variabksandZ, are given  this we must calculate the effect of this evolution operator on
by a coherent state. Clearly the effect of the rightmost exponen-
. tial operator is at most to change the normalization, which
Xi(t):f fi(t)dW(t'), (48)  effects neither the average values of position and momen-
0 tum, nor the respective variances. The effect of the next ex-
ponential, being linear i andQ, is calculated in Appendix
B. We find that it changes the mean values of the position
and momentum, and alters the normalization, but the state
remains coherent in that the position varia@ed hence the
where the expressions for tHfe are given above, and the momentum variangds unchanged. Finally, the effect of the
integrals are Ito integrals. Th¥; are Gaussian distributed exponential quadratic iR andQ is calculated in Appendix
with zero mean, and their covariances are easily calculated & We find that this operator modifies the position variance.
in the previous example: However, as the operator does not contain any stochastic
variables, and as the manner in which it changes the position
variance is independent of the mean position and momen-
tum, we obtain the result that the effect on the position vari-
ance, and hence the variance of any linear combination of
In addition, the two-time correlation functions for these vari- position and momentum, is trajectory independent.
ables are also easily obtained analytically. In particular we Let us now consider a harmonic oscillator in which the
have position is continuously observed. This situation has been
analyzed by Belavkin and Staszewski using the equivalent
(50) nonIir_1ear equationgl3]. The operatorg\ andB in this case
are given by

t t
Z<t>=fofla')xz(t')dwa')—fofzu')xl(t')dwu'),

t
(Xi(t)Xj(t)>=Jofi(t’)fj(t')dt’- (49

min(t, )
<Xi(t)xj(7)>:j0 fi(t")f;(t")dt’.

However,Z(t) is not Gaussian distributed. We are not aware —j —ima?

of an analytic expression for this variable, so that its prob- A=< )Pz ( o7

ability density may have to be obtained numerically. We

note in passing, however, that in some cases double stochas-

tic integrals of this kind may be written explicitly in terms of B=12kQ, (53

products of Gaussian variablgg]. We note also thaZ de-

termines only the normalization of the final state, and not then which m is the mass of the particley is the frequency of

state itself. The normalized state at timeés therefore inde- the harmonic oscillation, ankl is the measurement constant

pendent ofZ, and we examine the consequences of this irfor the continuous observation of position. Taking the initial

Appendix A. state to be coherent, and denotingdb, the initial position
We may now write the state at tinteas wave function is given by

—ZK)QZ, (52)
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2\ 1/4 )5 PO [ll. CONCLUSION
<X|a>=(—> g X +2sxa—5(|a|+a )’ (54) o _
T We have presented a method for obtaining evolution op-
erators for various classes of stochastic equations describing
where s>=mw/(2%). Using the results in Appendix B, we linear quantum trajectories, and applied this to a number of
find that the coefficient ok at a later timet is given by physical examples pertaining to physical systems subjected
to the continuous projection measurement of an observable.
We have shown how the complexity of the stochastic equa-
, (55  tions governing the random variables that appear in the evo-
lution operator depends upon the commutation relations be-
tween the operators appearing in the LSE. For the case in
which both these operators commute with their commutator,
probability densities for the random variables may be ob-
|= —12 . (56) tained analytically. We have also shown that in cases in
rzcoth(zot)+(1+ir)’ which the commutation relations are more complex it is
sometimes still possible to obtain an explicit evolution op-
and we have defined the parameters erator. This is possible even in cases in which the classical
stochastic integrals, or equivalently the stochastic equations,
2i Maw? governing the random variables that appear in this operator
z=\7 -1 r=o (57)  are too complex to solve analytically.

1-2
3-2l

1-2I

12_ <2
2

S “=S§

where
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APPENDIX A: ELIMINATING VARIABLES THAT

2 —
Ux(t)W_4 Rqslz] ) (59) AFFECT ONLY THE FINAL NORMALIZATION

We found in Sec. Il D that not all the random variables
As t tends to infinity, Eq(58) gives a steady state value for that appear in the evolution operator are Gaussian distrib-
the conditional variance, which is uted. This result is surprising because it has been shown
previously, using the nonlinear equations, that for an initial
1 Gaussian state, the probability density for the conditional
ol= =252\ Var2+1+1) L. (600  mean position and momentum, and therefore for the final
41m(z] state,are Gaussian distributed for this cagE2]. These two
results may be reconciled due to the fact that the non-
The parameter is a dimensionless quantity that gives essenGaussian variable in the evolution operator given in &d)
tially the ratio between the frequency of the harmonic oscil-affects purely the normalization of the final state, rather than
lator, and the rate of the position measurement. We mayhe state itself.
view the dynamics of the position variance as being the re- | et ys assume that we have an initial stpf¢, and an
sult of two competing effects. One is the action of the meazyolution operator that is a function of the random variables
surement, which is continuously narrowing the distributionx andz (which may in general be vector valuetiVe let the
in position, and consequently widening the distribution inrandom variablez determine only the normalization of the

momentum. The other is the action of the harmonic motionfina state, so that the evolution operator may be written as
which rotates the state in phase space, so converting the wid-

eneo_l momentum distribution into position. Depend_ing on the V(X,Z,t) = OX,Hf (Z,1), (A1)
relative strengths of these two processes, determined by the

dimensionless constant a steady state is reached in which . . L

they balance. If the rate of the measurement is very fas\(vhereo IS an opera'gor valued funcUon, aridis 3|mply_a
compared to the frequency of the oscillati@orresponding complex valued function. The unnormalized state at tirree
to r<1), then the localization in position is much greaterthen given by

than it would be for an unmonitored oscillator, and in that

case we succeed effectively in tracking the position of the [(1)w=O(X,)F(Z,0)] ). (A2)
particle. However, if the frequency of oscillation is much

greater than the rate of localization due to the measuremerlearly once we have normalized that state at timeis no
then the steady-state position variance remains essentiallgnger dependent upa#. In particular the normalized state
that of the unmonitored oscillator. is given by
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O(X.t 252\ L4 - s
[B0)w= DO g :(7) e S o iare, (B6)
V( OT XD OX, D) )
where
The probability measure for the final state is
Mo
P(X,Z,)=(¢(O] ()P u(X,Z,1), (A4) s=V\ %7 (B7)
in which P,,(X,Z,t) is the probability density given by the a=a,+ia. (B8)

Wiener measure for the variablésand Z. However, since
the normalized state depends only uparwe require for all  Note that this expression contains the phase factor

calculations only the marginal probability density %rDe-  —jq,a;. This is left out in many texts, but is essential for
noting this marginal density also by, we have consistency with the completeness relations for the position
states. We also require the inner product of two coherent
P(x.t)=f P(X,Z,t)dzZ (A5)  States,
<a|ﬁ>:e*(l/2)(‘a\2+|ﬂ|2)+a*ﬁ, (B9)

In certain cases the probability measure for the normalized
state may therefore be Gaussian, even though the measwasd the well known integral formula
for the unnormalized state is not. However,Z,t) con-
. " i p
tains a factor of the norm dfz/{(t))w, the probability mea _ f o @ xgy— \/:832/(4“), R a]>0. (B10)
sure for the output process will, in general, only be Gaussian @

if the norm is Gaussian iX. Clearly the norm is Gaussian in ] N o
X for initial Gaussian states in the case we investigate in SedVe proceed first by rewriting the exponential in terms of

I D. annihilation and creation operators, so that we have
vP+uQ_ nba+pal _ j¢al ba 64/2
APPENDIX B: THE EFFECT ON A COHERENT STATE © © eree (B1Y)
OF EXPONENTIALS LINEAR AND QUADRATIC in which
IN P AND Q
We first calculate the effect of an operator of the form g:( 7\ /%_w \ /@) (B12)
eVP+,uQ (Bl)
f ) mi

on a coherent stater). The coherent state is defined as the =\ v"Nopa T vV =) (B13)

eigenstate of the annihilation operatrsuch that
We may now use the completeness relation for the coherent

ala)=ala), (B2)  states to obtain
and (X|)=(x|e?'e"|a) %2
2=\t 3 9 [ [ sl emlarereas
2h 2hme’ ™
Herem and w are the mass and frequency of a harmonic = if f (x| B)( Bl ar)elat #6* +00i242 g
oscillator, which serves the purposes of defining the coherent ™

state. In particular we are interested in the position wave

: ' _ (1/2) | |2+ R ad* 1+ da+ 6412
function of the result. We therefore wish to calculate =(x|a+ p)er? ¥ - (B14)

We see that the state remains coherent, although it is no
longer normalized, and is shifted in phase spacepby

We now wish to calculate the effect of an operator of the
form

(X|gy=(x|e""" Q| ), (B4)

where|x) is an eigenstate of the position opera@rsuch
that
2 2
7P +{Q°+éQP B15
Q[x)y=x|x). (B5) (B15)
. . . on a coherent state. This time we require to calculate
Note that in generdly) will not be normalized. To perform g
this calculation we will need the BCH formula given in Eq. <X|¢>:<X|e7]P2+gQ2+§QP| a). (B16)
(46), and the position wave function for a coherent state,
va For this calculation we will need the disentangling theorem
o 52+ 253~ (112) (|al?+ a) for the exponential of a general quadratic form of the anni-
hilation and creation operators, which is given[28]

252

o) =|

™
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gua®+va?rwala_ g(w+y)i2glat?gratagmea? (B17) We now proceed by using the disentangling theorem, and
’ employing the completeness relation for the coherent states:

in which
v <X| ¢> — <X| e(w+ X)/Zelafze)(a*aemaﬂ 01>
= footf—w’ (B18 1 o
— ;f f <X|B><’8|e(w+x)/2ela exa'agma |a{>dzﬁ
f
x=In - , (B19)
f coth(f) —w sinh(f) 1
=—| | xIB)Blaer)
u
M=t cothf)—w’ (820 x & F* 202 ge2] @ X(eX - meP ey w2, (Bog)
f=J(w?—4uv). (B21)

Performing the integral over the real and imaginary parts of

First of all rewriting the exponential containirig andQ as @ We obtain
an exponential in the annihilation and creation operators, we

have 1 SZ 1/4 ) )
, , , " . <X|l/l>= (_) e7(1/2)\a\ —Ma ey+(w+k)/2
(x|e”P +{Q +§QP| a):(xle”a +va'“+wa a+u|a,> (822) V142]\ 7
: . X exp —s?x? 172 1+21_—2|
in which 3-2I 1+21
| {h nmheo &L « 5 " 1 1+21—2|
“l2me T2 '2) (B23 OXP eSXe® 37 1+2l
1 |1 2
(h mMhow &h 202y Z
v:<m_ > I7 ’ (824) Xexp a“e 3-2 2+1+2| . (827)
We §—+17mﬁw , (B25) It is easily ve_rlfle_d tiat this reduces t{x|«) as required
Mo when we set=y=m=0.
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