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Zeros in „inverse… bremsstrahlung matrix elements
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~Received 30 June 1997!

We discuss the possibility of zeros in the nonrelativistic radiative continuum-continuum matrix element for
electron-atom~inverse! bremsstrahlung. As demonstrated earlier for upward transitions from bound states, the
occurrence of different signs for the free-free matrix element in limiting cases, plus the requirement of conti-
nuity, implies the existence of zeros. Using knowledge of the sign of the dipole matrix element in the soft- and
hard-photon limits with one continuum electron energy held fixed, we show that zeros can occur in thes-p
matrix element. We discuss the connection of our results to elastic scattering and to Ramsauer-Townsend
minima. We consider the observability of zeros in this (s-p) matrix element manifested as minima in the cross
sections.@S1050-2947~98!01701-6#

PACS number~s!: 03.65.Nk, 03.80.1r
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I. INTRODUCTION

We consider the possibility of zeros in the nonrelativis
continuum-continuum dipole matrix element for radiati
transitions of an electron in the static field of an atom or io
In previous work @1,2#, the existence of zeros in upwar
transitions from bound states was predicted by calcula
the sign of such transition matrix elements in the soft- a
hard-photon limiting cases. Using arguments for the conti
ity of the matrix element in energy, the existence of ze
then followed whenever the sign was different in the tw
limiting cases. The present work can be considered a na
extension of these arguments to the case of continu
continuum transitions.

In Sec. II we examine the behavior of the dipole rad
matrix element, holding one electron energy fixed, in
soft-photon limit, demonstrating that the sign of the mat
element in this limit can be determined from a knowledge
the phase shifts for elastic scattering in the potential. N
we again fix one electron energy and consider the limit
case where the other electron energy is taken to infin
Utilizing the knowledge that in this limit the radial matri
element is determined at small distances@3#, the sign of the
matrix element may be determined by evaluating the ra
integral using Coulomb wave functions. From the continu
of the matrix element in energy, the existence of zeros
certain cases can then be predicted. Our results for the
photon case are also suggestive of the intimate connectio
elastic-scattering phenomena. In Sec. III we discuss this c
nection and the relation of free-free zeros to Ramsau
Townsend minima observed in elastic scattering. Finally
Sec. IV we discuss the issue of observability of the predic
zero crossings in these free-free transition matrix elemen

*Present address: Department of Mathematics and Scien
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II. ZEROS IN FREE-FREE MATRIX ELEMENTS

We begin by writing the nonrelativistic dipole brem
strahlung matrix element for a spinless electron

M f i
nrd5E c2* ~eW* •pW !c1d3r , ~1!

wherec2 andc1 are continuum solutions of the full three
dimensional Schro¨dinger equation representing the initi
and final states of the electron, respectively,e is the photon
polarization vector, andpW is the momentum operator~as dis-
cussed, for example, in@4#!. The partial wave decompose
form of this matrix element is written@4#,

M f i
nrd5~ ik/p1p2!(

m
~ ê !m* (

l 1 ,m1 ,l 2 ,m2

F ~21! l 2i l 1i l 2

3ei ~d l 1
1s l 1

!ei ~d l 2
1s l 2

!Yl 1 ,m1
* ~ p̂1!

3Yl 2 ,m2
~ p̂2!Rl 1 ,l 2

~E1 ,E2!A 3~2l 111!

4p~2l 211!

3^ l 11;00u l 11;l 20&^ l 11;m1mu l 11;l 2m2&G , ~2!

where the ionic Coulombic phase shift

s l5argG~ l 111 ih ion!, ~3!

d l is the ~energy-dependent! short-range phase shift
h ion52Zion /p is the Coulomb parameter corresponding
the ionic chargeZion (h ion5s l[0 for a neutral atom!, pW 1,2
are the electron momenta~with magnitudesp1,2 and the unit
vectorsp̂1,25pW 1,2/p1,2), ê is a unit vector in the direction o
the photon polarization, andYLM are the spherical harmon
ics. @In all of our equations we use atomic uni
(m5e5\51, with m the mass of the electron,e the charge
of the electron, and\ Planck’s constant divided by 2p)#. In

es,
227 © 1998 The American Physical Society
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228 57C. DAVID SHAFFER, R. H. PRATT, AND SUNG DAHM OH
the summation in Eq.~2!, m represents thez compo-
nent of the angular momentum of the photon a
l 1 ,m1( l 2 ,m2) represent the angular momentum and itsz
component for the initial~final! electron. We have used th
notation of Ref. @5# for the Clebsch-Gordan coefficien
^LL8;MM 8uLL8;JMJ& and the notation for a spherical ve
tor (eW )m derived from a Cartesian vectoreW ~and the corre-
sponding unit vectorê):

~eW !m5ueW uY1m~ ê !.

The bremsstrahlung cross section can then be obtained

d3s

dkdV2dV1
54p2akuM f i

nrdu2,

wherea5e2/\c is the fine-structure constant.
The radial matrix element is written in terms of the rad

wave functions as

Rl 1 ,l 2
~E1 ,E2!5E drf l 2

~E2 ;r !rf l 1
~E1 ;r !. ~4!

We note that this radial matrix element is the same as wo
appear in the partial wave decomposition of the matrix e
ment for absorption of a photon by an electron scatter
from an atom or ion: inverse bremsstrahlung. Thus the c
siderations that follow for this matrix element also apply
the process of inverse bremsstrahlung.

The radial wave functionsr 21f l(E;r ) that enter the ra-
dial matrix elementRl 1 ,l 2

(E1 ,E2) are defined as the rea
valued solutions of the radial Schro¨dinger equation

d2

dr2 f l~E;r !2F l ~ l 11!

r 2 12V~r !22EGf l~E;r !50, ~5!

with the asymptotic forms

f l~E;r !→NlS 2

pAE
D 1/2

sin~pr2h ionln2pr2 lp/21d l1s l !

as r→`, ~6!

f l~E;r !→r l 11 as r→0. ~7!

The normalization constantNl is chosen so that, as abov
the coefficient ofr l 11 near the origin is unity. In the Cou
lomb case,

Nl
Coul5

G~2l 12!

2le2ph/2uG~ l 111 ih!u
. ~8!

We require that the phase shiftsd l and the normalizationNl
be continuous functions of energy@6#, as are the Coulomb
normalization and phase. For most potentials the normal
tion constant, so defined, will not change sign as a func
of energy since an energy for whichNl50 would correspond
to a bound state in the continuum@6#. Note that since the
photon carries one unit of angular momentum~through the
s

l

ld
-
g
n-

a-
n

vectorê), the Clebsch-Gordan coefficients in Eq.~2! are zero
unlessl 25 l 161 andm25m11m, as expected in the dipole
approximation.

In the following subsections we consider the radial mat
element@Eq. ~4!# for dipole transitions as a function of th
energiesE1 and E2. This matrix element is a continuou
function of bothE1 and E2 ~except whenE15E2) if ~as
above! we suitably choose the definition of the normaliz
tions of the wave functionsf l(E;r ) @7,8#. Note that we have
used wave functions (f l) normalized so that the coefficien
of r l 11 in the expansion off l(E;r ) about r 50 is unity.
Since this normalization condition is independent ofE,
Poincare´’s theorem@6# applies and thef l are analytic inE.
In this way we can be sure thatRl 1 ,l 2

(E1 ,E2), as defined

above, is analytic except whenE15E2 and that forE real
andE.0 the two limiting cases we will consider are limi
ing cases forRl 1 ,l 2

of the same continuous matrix eleme
@9,8#.

A. The soft-photon limit

In the limit that the photon energyk goes to zero with one
electron energy fixed~the soft photon limit!, Rl 1 ,l 2

(E1 ,E2) is

known to diverge as 1/k2 @4#. We wish to determine the sign
of Rl 1 ,l 2

in this limit. To obtain the leading divergent term i

Rl 1 ,l 2
, following Lassetre@10#, we first partition the radial

integral in Eq.~4! into contributions from two regions

E
0

`

5E
0

r c
1E

r c

`

5I 01I d ,

where r c is chosen to be sufficiently large that the wa
functions will have reached, at least approximately@11#,
their asymptotic form given by Eq.~6!. If we analytically
evaluate the integralI d using Eq. ~6! and retain only the
dominant term in the soft-photon limit, we obtain

I d→Nl 1
Nl 2

4AE

p

sin D l 1 ,l 2
~E!

k2
as k→0, ~9!

where we have takenE1'E25E. Here D l 1 ,l 2
(E)

5d l ,
2d l .

1s l ,
2s l .

, wherel , ( l .) is the lesser~greater!

of l 1 and l 2. In the soft-photon limit,I d diverges as 1/k2.
Since the integrand is well behaved in the region from 0
r c , the integralI 0 does not give a divergent contribution~for
finite r c) even in the soft-photon limit.

Thus we obtain~retaining onlyI d) @12#

Rl 1 ,l 2
~E1 ,E2!→Nl 1

Nl 2

4AE

p

sin D l 1 ,l 2
~E!

k2
as k→0.

~10!

We see that in the soft-photon limitRl 1 ,l 2
(E1 ,E2) is singular

with a sign that depends upon the phase shift differe
D l 1 ,l 2

(E) and on the signs ofNl 1
and Nl 2

. Whenever

D l 1 ,l 2
(E) crossesnp, for integersn, as a function ofE the

matrix element in the soft-photon limit passes through z
and changes sign. Examples of such crossings can be fo
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57 229ZEROS IN ~INVERSE! BREMSSTRAHLUNG MATRIX ELEMENTS
in realistic elastic-scattering phase shift calculations@13–15#.
Of course, it may be possible forD l 1 ,l 2

(E) to become equa

to np without crossing it. In such a case, the soft-phot
matrix element would have a zero, but would not chan
sign. We do not address such phenomena explicitly here
we will be concerned with and refer to ‘‘zero crossings
throughout this paper.

In the pure Coulomb caseD l 1 ,l 2
(E) can be written ana-

lytically, using the relation@16#

argG~z11!5argG~z!1tan21
y

x
, ~11!

where z5x1 iy , x and y are real, and the range of th
arctangent is taken to be2p/2 to p/2. Using this relation
and Eq.~3! we obtain

D l 1 ,l 2
Coul~E!52tan21

h ion

l ,11
52sin21H 1

A11
l ,
2

h ion
2
J ,

~12!

with the range of the arcsine function taken to be2p/2 to
p/2. For an attractive Coulomb potential (h ion,0), we have
0,D l 1 ,l 2

Coul(E),p/2. The Coulomb normalization is given b

Eq. ~8! and is always positive. Thus, in an attractive pu
Coulomb potential, the matrix element in the soft-phot
limit Rl 1 ,l 2

(E,E) never changes sign. In the pure Coulom
case we obtain the soft-photon result@17#

Rl 1 ,l 2
Coul52

4AE

p
Nl 1

Nl 2

1

k2

1

A11
l ,
2

h ion
2

, ~13!

which is always positive for an attractive Coulomb potent
(h ion,0), so that there are no soft-photon zero crossing
this case. We note that in a pure Coulomb potential it
been shown@18# that, more generally, the matrix eleme
Rl 1 ,l 2

has no zeros, is always positive, and is a monotonic
decreasing function as one goes away from the singularit
the soft photon limit.

In a neutral or partially ionized atom, the detailed beha
ior of the phase shifts depends upon the potential under
sideration. In general we can require@6# that d l→0 as
E→`; s l has the same property. Thus we have

D l 1 ,l 2
~E!→0 as E→`. ~14!

For neutral atoms, invoking Levinson’s theorem@19,6#, we
can require that the short-range phase shifts, taken to be
tinuous in energy@6#, go to nlp as E→0, wherenl is the
number of bound states with angular momentuml ~with the
exception of potentials with avirtual l 50 bound state a
threshold, sometime called a half bound state, in which c
we definen0 as the number of actuall 50 bound states plus
1
2!. Therefore,

D l 1 ,l 2
~E!→~nl ,

2nl .
!p as E→0. ~15!
e
nd

l
in
s

ly
of

-
n-

n-

se

For neutral-atom potentials that do not support anl 50 vir-
tual bound state at thresholdRl 1 ,l 2

(E,E)→0 asE→0. For

such potentials, sinceD l 1 ,l 2
(E) is a continuous function of

E, if uD l 1 ,l 2
(0)u.p there will be at leastunl ,

2nl .
u21 ad-

ditional zero crossings inRl 1 ,l 2
(E,E) for E.0 ~and a zero

in the limit E→`), assuming there are no bound states in
continuum. For neutral-atom potentials that do support
l 50 virtual bound state atE50, the number of zero cross
ings for E>0, in addition to the zero at infinite energy,
unl ,

2nl .
21/2u when uD l 1 ,l 2

u>3p/2. For such cases th

matrix element is nonzero atE15E250. We note that these
conditions for soft-photon zero crossings would force a z
in the soft-photon radial matrix element. They are sufficie
but not necessary, conditions for the existence of zero cr
ings in the soft photon limit. In Sec. III we will give an
example of zeros in the soft-photon limit, corresponding
Ramsauer-Townsend minima in elastic scattering, which
not requiredby the arguments above.

For positive ions, we can use a generalization
Levinson’s theorem@20–22# that gives the zero-energ
phase shifts in terms of zero-energy quantum defectsm l(0).
We make the replacementsnl .

→m l .
(0) andnl ,

→m l ,
(0)

and use the result for the difference of zero-energy Coulo
phase shiftsD l 1 ,l 2

Coul(0)5p/2 from Eq. ~12! to obtain instead

of Eq. ~15!

D l 1 ,l 2
ion ~0!5@m l ,

~0!2m l .
~0!#p1p/2. ~16!

If uD l 1 ,l 2
ion (0)u.p then soft-photon zeros~in addition to the

zero for E→`) for E.0 are required in the ionic case
Again, this condition is sufficient but not necessary. The
will be a soft photon zero atE50 in the ionic case only if
D l 1 ,l 2

ion (0)modp50. In a study of photoionization, Yang

Pratt, and Tong@23# give quantum-defect differences a
threshold as a function ofZ for all Z, showing that, for the
potentials considered in their work, this condition is satisfi
for many atoms. For example, atZ530 Yang, Pratt, and
Tang find thatm02m1'0.6, givingD l 1 ,l 2

ion (0)'1.1p.

In this subsection we have shown that the sign of
free-free radial matrix element in the soft-photon limit can
obtained from a knowledge of the elastic-scattering ph
shifts. We have also demonstrated that Levinson’s theo
or its generalization can be applied todeducethe required
existence of zero crossings in the soft-photon radial ma
elements in some cases. We will show in the following su
sections that sign changes in the soft-photon matrix elem
are indications of the existence of zero crossings in the g
eral bremsstrahlung radial matrix elementRl 1 ,l 2

(E1 ,E2),
even away from the soft-photon limit.

B. The high-energy limit

We now want to determine the sign of the matrix eleme
Rl 1 ,l 2

(E1 ,E2) in the limit E1→`. ~For convenience of no-

tation we will discuss only the case whereE2 is fixed andE1
varies, but the same arguments apply when reversing
roles of the energies.! For largeE1, f(E1 ;r ) will oscillate
for p1r @1. Since the other terms in the integrand of E
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~4! are slowly varying on this scale, the important contrib
tions to the integral occur whenr is of the order of 1/p1,
since for larger distances the integrand oscillates rapidly.
radial matrix element for fixedl in this high-energy limit will
be determined in this small-r region. Since a realistic atomi
potential would have nuclear Coulombic behavior at t
length scale, it is sufficient to use wave functionsf l(E;r )
for a particle in a Coulomb potential with nuclear chargeZ.
That is, we can use the reduced Coulomb functio
f l(E;r )5Fl(h;pr) ~normalized tor l 11 near the origin!,
whereh52Z/p is the ~nuclear! Coulomb parameter. It ha
previously been demonstrated@24# that the dipole Coulomb
free-free matrix element is positive everywhere~and thus in
the high-energy limit considered here!. It is nevertheless use
ful to obtain an expression for the matrix element in th
high-energy limit. We may expand the wave function for t
slow electronf l 2

(E2 ;r ) about r 50, keeping terms up to

order r l 212 ~the first two terms!:

f l 2
~E2 ;r !5r l 211@11Bl 2

~h2!r #, ~17!

where

Bl 2
~h2!5

p2h2

l 211
. ~18!

Inserting this expansion into Eq.~4! and using the Coulomb
function for f l(E;r ), we obtain

Rl 1,l 2
~E1,E2!→E

0

`

@r l 2111Bl 2
~h2!r l 212#rF l 1

~h1;p1r !dr

as E1→`. ~19!

The first two terms in the expansion~17! are needed in Eq
~19! since they contribute to the same order in the sm
parameterh2 ~while further terms contribute pairwise i
higher orders inh2 or p2 /p1 @3,25#!. The reducedCoulomb
function Fl can be expressed in terms of the confluent
pergeometric functionM (a,b,z) @26#,

Fl~h;z!5S z

pD l 11

e2 izM ~ l 112 ih,2l 12,2iz!.

Equation~19! can be evaluated in a straightforward mann
by using an integral representation for the confluent hyp
geometric function given in@27#. Landau and Lifshitz@28#
give

Jag
n 5E

0

`

e2lzznF~a,g,kz!dz ~20!

5G~n11!l2n21F~a,n11,g,k/l!,
~21!

convergent if Ren.21 and Rel.uReku. To satisfy these
constraints, as is conventional in defining the bremsstrahl
matrix element, we introduce the exponentiale2lr into the
integrand of Eq.~21! and take the limitl→01 after integrat-
ing, obtaining
-

e

s

s

ll

-

r
r-

g

Rl 1 ,l 2
~E1 ,E2!→p1

2 l 223p2
l 211

G~ l 21 l 114!F i 2 l 22 l 124F~ l 1

112 ih1 ,l 21 l 114,2l 112;210i !

1~ l 21 l 114!i 2 l 22 l 125
Bl 2

~h2!

p1
F~ l 111

2 ih1 ,l 21 l 115,2l 112;210i !G , ~22!

whereF(a,b,c;z) is the hypergeometric function andG(z)
is the gamma function. Sincel 1 and l 2 are both integers,
these hypergeometric functions can be evaluated analytic
@29#. The additional constraintl 25 l 161 simplifies this alge-
braically tedious calculation. Retaining only the leading te
in h2 we obtain

Rl 1 ,l 111~E1 ,E2!→
24h1G~2l 112!

p1
2l 115 as E1→`

~23!

for upward transitions and

Rl 1 ,l 121~E1 ,E2!→
22h1G~2l 112!

l 1p1
2l 113 as E1→`

~24!

for downward transitions. Clearly,

Rl 1 ,l 2
~E1 ,E2!→01 as E1→` ~25!

for both upward and downward transitions. That is, the m
trix element Rl 1 ,l 2

(E1 ,E2) is positive in the limit that

E1→`.

C. Zero crossings

The consequences of these results for the signs
Rl 1 ,l 2

(E1 ,E2) can be most easily understood by looking
the first quadrant of the schematic illustration in Fig. 1. Fro
the result for the signs in the high-energy limiting case d
scribed above we see that ifRl 1 ,l 2

(E2,E2),0 for some

choice of E2, sinceRl 1 ,l 2
is continuous, there must be a

least one zero~or, more generally, an odd number of ze
crossings! along any path, confined to the first quadrant wit
out crossing the soft-photon line, connecting (E2,E2) to
(E1→`,E2). Similarly, if Rl 1 ,l 2

(E1,E1).0 then we pre-
dict an even number of zero crossings~possibly none! along
such a path.

While the exact trajectory~or trajectories! in the (E1 ,E2)
plane of the curve~s! of zero crossings probably requires d
tailed calculation, based on our previous discussion we
see that it is required that one such trajectory intersect
soft-photon zero crossing. Thus a zero in the soft-pho
matrix element must persist in bremsstrahlung away from
soft-photon limit. ~How far is yet unknown; results from
bound-free transitions suggest that this depends on
choice of potential and change of angular momentum in
transition@23#.! Closed loops of zero crossings~or paths for
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which both ends extend out of the first quadrant! are allowed,
but paths that end in the first quadrant away from the s
photon limit are not. We illustrate this in Fig. 2.

We remember, as noted above, that Levinson’s theo
for short-range potentials that do not supportl 50 virtual
bound states at thresholdrequiresa sign change in the soft
photon matrix elementRl 1 ,l 2

(E,E) for E.0 if the condition

unl 1
2nl 2

u.1 on the difference of the number of bound sta
is satisfied. Similarly, the generalization to quantum defe
for ions requires a soft-photon zero crossing forE.0 if
um l ,

(0)2m l .
(0)11/2u>1. Thus, in these cases an ener

FIG. 1. Sketch of one possible trajectory of bremsstrahlung
ros based on the known position of the Ramsauer-Townsend m
mum in elastic scattering~near E0). The filled circle in the first
quadrant represents the position of the soft-photon zero assoc
with the Ramsauer-Townsend minimum. The filled circle at
origin represents the zero present for all neutral-atom potentials
do not supportl 50 virtual bound states at threshold. The fille
circles in the second quadrant represent the possible continuati
the bremsstrahlung zeros into the bound-free transition quadra

FIG. 2. Example of allowed zero-crossing trajectories and
impossible zero crossings trajectory~which terminates in the firs
quadrant!.
t-

m

s
ts

E2 where Rl 1 ,l 2
(E2,E2),0 must exist and, since

R(E2,`).0, there must be zero crossings in the brem
strahlung matrix elementR(E2,E2) for someE2.

In the theory of bound-free transitions for a neutral ato
~all states in a potential with an asymptotic ionic Latter ta!
it is well known that there can be a sequence of zeros in
matrix elements for transitions between Rydberg states
the continuum. In Fig. 1 we have included such a seque
~in the second quadrant! for illustrative purposes. One ca
anticipate a continuation of such a curve of zero matrix e
ments into the free-free regime for such an ionic potentia

III. RELATION TO ZEROS IN ELASTIC SCATTERING

It is well known that the soft photon region (E1'E2) of
bremsstrahlung is related to another atomic process~elastic
scattering! through the low-energy theorem@30#. Conse-
quently, the zeros in the soft photon bremsstrahlung ma
elements are related to zeros in elastic scattering. It is p
sible, for this soft photon region, to write the bremsstrahlu
radial matrix elementRl 1 ,l 2

in terms of elastic-scattering am
plitudes or matrix elements. This allows us to see the re
tionship between zeros in the matrix elements for the t
processes.

The relationship between matrix elements can be obtai
directly through manipulation of Eq.~10!. Here we demon-
strate that, as noted, it is a direct consequence of the no
ativistic form of the low-energy theorem for soft photon
Low @30# obtained the first two terms of the expansion of t
bremsstrahlung matrix element in powers ofk, the lowest-
order term in the series being of order 1/k. If we retain only
this lowest-order term in Low’s expansion and write its no
relativistic form we obtain

Mbrem→
1

k
ê•~pW 12pW 2!Melas as k→0, ~26!

whereMelas is the elastic-scattering matrix element. We no
that this expression gives a dipole photon angular distri
tion. That is, we did not make a dipole approximation but,
expected, when we neglect relativistic terms in the lo
energy theorem~of higher order in the electron velocityb),
we obtain a dipole angular distribution for the emitted ph
ton.

The matrix elements in Eq.~26! correspond tototal ma-
trix elements, not radial matrix elements. To obtain the c
responding relationships for the radial matrix elements
must expandMbrem and Melas in partial waves series. The
expansion ofMbrem[M f i

nrd can be found in Eq.~2! and we
simply write down the expansion ofMelas,

Melas5
2

pAE
(
l ,m

f l
elas~p!Ylm~ p̂2!Ylm* ~ p̂1!,

where the elastic-scattering amplitudes

f l
elas~p!5

ei ~d l1s l !sin~d l1s l !

p
. ~27!

We write the right-hand side of Eq.~26!

-
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M f i
brd→

2

pAE

1

k(m ~ ê* !m* p@Y1m~ p̂1!2Y1m~ p̂2!#

3 (
l 8,m8

f l 8
elas

~p!Yl 8m8~ p̂2!Yl 8m8
* ~ p̂1!,

where the notation for the spherical vector (ê)n has been
used ~see Sec. I!. Note that we are not retaining terms
higher order ink; we have usedp1'p2[p ~for the magni-
tudes only!. We now utilize the orthogonality properties o
the spherical harmonics,

E dVYlm~V!Yl 8m8
* ~V!5d l l 8dmm8,

to select individual partial wave terms on both sides of E
~26!. We obtain

Rl 1 ,l 2
5~21! l 1

4pp3

k2 e2 i ~d l 1
1s l 1

!e2 i ~d l 2
1s l 2

!@ f l 1
elas2 f l 2

elas#.

~28!

ThusRl 1 ,l 2
can be expressed in terms of the elastic-scatte

amplitudes for partial wavesl 1 and l 2. If we insert the ex-
pressions~27! for f l

elas in terms of elastic-scattering phas
shifts we obtain Eq.~10!.

We now discuss some features of the elastic-scatte
matrix elements that are, in view of the previous discuss
relevant to zeros in the bremsstrahlung matrix element.
well known from the theory of elastic scattering that, in
short-range potential at very low energy, thel 50 phase shift
and therefore thel 50 matrix element dominates@6#. Under
circumstances described in@31# it is possible that thel 50
phase shift can pass throughnp, n50,1,2, . . . , in a re-
gion where it is the dominant phase shift~the potential must
be sufficiently strong at smallr to accommodate an integra
number of wavelengths of thel 50 wave function at energie
where other phase shifts are small!. This causes a zero in th
dominantl 50 matrix element in elastic-scattering and the
fore a minimum in the total elastic-scattering matrix elem
Melas. Such minima are called Ramsauer-Townsend mini
They have been observed in experiments involving ela
scattering from noble-gas atoms@31#. In Fig. 3 we show the
phase shifts obtained by Holtsmark@13# using a Hartree-
Fock potential with an imposed long-range static dipole
teraction resulting from static polarizability~see@32#!. We
see that at energies less than about 5 eV, thel 50 phase shift
is dominant, while near 2 eV it passes through 3p, causing a
Ramsauer-Townsend minimum. It is also clear from this fi
ure that (modp) the same phase shifts, and thus the elas
scattering amplitudes, cross near 2 eV, causing a zero
sign change in the soft-photon bremsstrahlung matrix
ment in Eq.~28!. We refer to Fig. 1, which, if we takeE052
eV, represents the soft-photon result for argon. In that fig
we have sketched a possible trajectory of zeros, pas
through this soft-photon zero. From our discussion we can
assured that in cases where Ramsauer-Townsend minim
cur there will also be zeros in the (s-p) bremsstrahlung ma
trix element away from the soft-photon limit.
.
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IV. OBSERVABILITY OF ZEROS

We now wish to address the observability of the free-fr
zeros we have discussed above. For bremsstrahlung m
electron angular momenta, and so many transition ma
elements, begin to contribute to cross sections at ener
low compared to energies considered in current experime
and theoretical efforts; they contribute at still lower energ
to angular distributions. We know from elastic scattering th
higher phase shifts become comparable tos-wave phase
shifts by 10 eV in neutral noble gases, so observation
zeros causing Ramsauer-Townsend minima may be confi
to the region near 1–10 eV. Zeros in bremsstrahlung ma
elements from neutral atoms~but less likely for ions, for
which many matrix elements generally contribute at m
angles! can likewise be observable when both initial and
nal electrons are of low energy. However, in bremsstrahlu
there is additional opportunity for observation since as lo
as one electron is slow, small numbers of its partial wa
contribute in bremsstrahlung even as the other electron
comes fast. Whenever the dipole approximation rema
valid, only a few radial matrix elements are important a
one can still expect to see effects of these zeros, as in th
region of the spectrum of faster electrons. Note that
bremsstrahlung spectrum is fairly well described in the n
relativistic dipole approximation~cancellation of relativistic,
retardation and higher multipole effects@33#! up toward 100
keV, so that in the tip region thes-p dipole matrix elements
continue to play a dominant role in the spectrum: Effects
any zeros should be visible.

Also inverse bremsstrahlung, absorption of a photon
a slow electron scattering from an atom or ion, wou
be a prime candidate for observation of such zeros.
many cases experiments are conducted at elec
energies 1 eV,E1,300 eV and photon energies near t
soft-photon regime~an example of an external field is on
due to CO2 lasers withhn50.117 eV! @34–37#. Thus we
would expect that at some electron energies the scatte
electrons would be transparent to the laser in the region
the zeros discussed here.

There are several previous works that might suggest
existence of observable zeros in free-free transitions. In

FIG. 3. Ramsauer-Townsend minimum for scattering from n
tral argon, plotted using numerical elastic-scattering phase s
from @13#.



c-
ns

n-
e
ue
g
s

ul
e
to

ne

-
sit
in
ac
-
in

to
r
n
oi
re
is

s in
of

on
ed
g is
ms-
trix

auer-
n’s

ros
the

n’s
ns
that
the

s

rk
P.
m

57 233ZEROS IN ~INVERSE! BREMSSTRAHLUNG MATRIX ELEMENTS
calculation Zon@38# observed a deep minimum in the spe
trum for absorption of a photon by low-energy electro
scattering from argon. In this work, however, Zon~appropri-
ately! included the effects of the dynamic~rather than static!
polarizability of the atom in an approximate way; it is u
clear what effect this treatment has on the arguments h
Zon states that his observation is unrelated to Ramsa
Townsend minima because the ‘‘frequency correspondin
the photoabsorption minimum is much higher in this ca
than the width of the Ramsauer dip.’’ Our results here wo
indicate that zeros connected to Ramsauer-Towns
minima may be visible at energies away from the soft-pho
limit. In another investigation, Green@39,40# observed, but
did not discuss, minima in transition cross sections obtai
from nonrelativistic dipole calculations~retaining all impor-
tant dipole contributions! using wave functions correspond
ing to continuum electrons in finite temperature and den
Thomas-Fermi potentials. In a third related work, Ashk
@41# compared various approximate theories to an ‘‘ex
calculation’’ ~nonrelativistic but with all partial waves in
cluded! of the spectrum for absorption by electron scatter
from argon. Ashkin used the potential of Holtsmark@13#,
which includes a static polarizational tail and is known
produce a Ramsauer-Townsend minimum near 2 eV. His
sults indicated a shallow minimum in absorptivity at incide
electron energies near 0.3 eV, corresponding to the outg
electron energy of about 2 eV, far from the soft-photon
gime. However, this minimum is shallow enough that it
difficult to discern.
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V. SUMMARY

We have demonstrated the possible existence of zero
the bremsstrahlung matrix element by calculating the sign
this matrix element in two limiting cases, the soft-phot
limit and the fast incident electron limit, and showing it ne
not be the same. Since the soft-photon bremsstrahlun
related to elastic scattering, zeros in the soft-photon bre
strahlung are related to zeros in the elastic-scattering ma
elements, in some circumstances observed as Rams
Townsend minima. We have demonstrated that Levinso
theorem can be invoked to identify situations in which ze
in the soft-photon radial matrix element, and therefore in
radial matrix element away from the soft-photon limit,must
exist. Similarly, we have used the extension of Levinso
theorem to the case of ionic species to identify situatio
where such zeros must exist in ions. We have argued
zeros in free-free matrix elements can be observable if
energy of either~or both! the incident or outgoing electron i
sufficiently small.
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