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We discuss the possibility of zeros in the nonrelativistic radiative continuum-continuum matrix element for
electron-atom(inverse bremsstrahlung. As demonstrated earlier for upward transitions from bound states, the
occurrence of different signs for the free-free matrix element in limiting cases, plus the requirement of conti-
nuity, implies the existence of zeros. Using knowledge of the sign of the dipole matrix element in the soft- and
hard-photon limits with one continuum electron energy held fixed, we show that zeros can occusip the
matrix element. We discuss the connection of our results to elastic scattering and to Ramsauer-Townsend
minima. We consider the observability of zeros in thégp) matrix element manifested as minima in the cross
sections[S1050-2948)01701-9

PACS numbd(s): 03.65.Nk, 03.80+r

I. INTRODUCTION II. ZEROS IN FREE-FREE MATRIX ELEMENTS

We begin by writing the nonrelativistic dipole brems-
We consider the possibility of zeros in the nonrelativistic strahlung matrix element for a spinless electron
continuum-continuum dipole matrix element for radiative
transmqns of an electron in thg static field of an :_itom or ion. Mn_rd:J' wg(g* ) 5) rydr, 1)
In previous work[1,2], the existence of zeros in upward

transitions from bound states was predicted by calculatin . .
P y herey, and ¢, are continuum solutions of the full three-

the sign of such transition matrix elements in the soft- and,. . e ; . o
hard-photon limiting cases. Using arguments for the continug'menSIonal Schudinger equation reprgsentlng the initial
) and final states of the electron, respectivelys the photon

ity of the matrix element in energy, the existence of zeros o 2 }
olarization vector, ang@ is the momentum operatdéas dis-

then followed whenever the sign was different in the twoP d f e i h ial d d
limiting cases. The present work can be considered a natur:?fjsse , for example, ip]). The partial wave decompose

extension of these arguments to the case of continuu orm of this matrix element is writtefd],
continuum transitions.

In Sec. Il we examine the behavior of the dipole radial M?ifd:(ik/plpz)E (;); E [(—1)'2i'1i'2
matrix element, holding one electron energy fixed, in the m l1,ma,lo,my
soft-photon limit, demonstrating that the sign of the matrix
element in this limit can be determined from a knowledge of
the phase shifts for elastic scattering in the potential. Next 321,11
we again fix one electron energy and consider the limiting XY, m(P2)R;. 1.(E1,E5) [ 221 27
case where the other electron energy is taken to infinity. 2 12 4m(2l,+1)
Utilizing the knowledge that in this limit the radial matrix
element is determined at small distan¢8} the sign of the ><(Ill;oqI11;I20)(I11;m1m|lll;lzmz)}, (2
matrix element may be determined by evaluating the radial
integral usiqg Coulomb.wave functions. Erom the continuit_ywhere the ionic Coulombic phase shift
of the matrix element in energy, the existence of zeros in
certain cases can then be predicted. Our results for the soft- oy=argl (I +1+i 7)., (3)
photon case are also suggestive of the intimate connection to
elastic-scattering phenomena. In Sec. Ill we discuss this cons; is the (energy-dependent short-range phase shift,
nection and the relation of free-free zeros to Ramsauers,,,= —Zjn/p is the Coulomb parameter corresponding to
Townsend minima observed in elastic scattering. Finally, inthe ionic chargeZi,, (7i,n=0,=0 for a neutral atom 51’2

Sec. IV we discuss the issue of observability of the predictedre the electron momentaith magnitudes; , and the unit
zero crossings in these free-free transition matrix elementsyectorsp, ,— p; »/p; 5), € is a unit vector in the direction of

the photon polarization, and, ,, are the spherical harmon-
ics. [In all of our equations we use atomic units
*Present address: Department of Mathematics and Science@n=e=#A=1, with m the mass of the electror,the charge
Wayne State College, 1111 Main Street, Wayne, NE 68787. of the electron, and Planck’s constant divided by72)]. In

< ei(5|1+ (r|1)ei(5|2+ (r|2)YI*1 ,ml( bl)
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the summation in Eq(2), m represents thez compo- vectore), the Clebsch-Gordan coefficients in Eg) are zero
nent of the angular momentum of the photon andynlessl,=1,+1 andm,=m,+m, as expected in the dipole
l1,my(l2,m;) represent the angular momentum and 4ts approximation.

component for the initialfinal) electron. We have used the  |n the following subsections we consider the radial matrix
notation of Ref.[5] for the Clebsch-Gordan coefficients element[Eq. (4)] for dipole transitions as a function of the
(LL";MM’|LL";JMj) and the notation for a spherical vec- energiesE, and E,. This matrix element is a continuous
tor (€), derived from a Cartesian vecter (and the corre- function of bothE; and E, (except whenE,=E,) if (as

sponding unit vecto%): above we suitably choose the definition of the normaliza-
tions of the wave functiong,(E;r) [7,8]. Note that we have
() m=|e€lY1m(€). used wave functionsdf;) normalized so that the coefficient
of r'"1 in the expansion of¢(E;r) aboutr=0 is unity.

The bremsstrahlung cross section can then be obtained asSince this normalization condition is independent [f
Poincarés theorem[6] applies and thep, are analytic inE.

e ) o2 In this way we can be sure thﬁi‘;lJz(El,Ez), as defined
mzdm ak| M, above, is analytic except whe®, =E, and that forE real
andE>0 the two limiting cases we will consider are limit-
wherea=e%/%c¢ is the fine-structure constant. ing cases f0rR|1,|2 of the same continuous matrix element
The radial matrix element is written in terms of the radial[9,8].
wave functions as

A. The soft-photon limit

R|1,|2(E1,E2)= f drgb,z(EZ;r)rqb,l(El;r). (4) In the limit that the photon enerdygoes to zero with one
electron energy fixetthe soft photon limit, R, |,(E1,E») is

We note that this radial matrix element is the same as woul#hown to diverge as k [4]. We wish to determine the sign
appear in the partial wave decomposition of the matrix eleof Ri, 1, in this limit. To obtain the leading divergent term in
ment for absorption of a photon by an electron scatteringR,lJz, following Lassetre[10], we first partition the radial
from an atom or ion: inVerse bl’emSStl’ah|ung. ThUS the Coni'ntegral in Eq(4) into Contributions from two regions
siderations that follow for this matrix element also apply to
the process of inverse bremsstrahlung. o e o

The radial wave functions™ ¢, (E;r) that enter the ra- fo - fo + fr =lot+lq,
dial matrix elememR|l,|2(E1,E2) are defined as the real- ¢

valued solutions of the radial Sclinger equation wherer is chosen to be sufficiently large that the wave
functions will have reached, at least approximatgly],
d? [(1+1) their asymptotic form given by Eq6). If we analytically
gz B(EN = —Z—+2V(r) —2E|4(Er)=0, (®  evaluate the integraly using Eq.(6) and retain only the

dominant term in the soft-photon limit, we obtain

4\E sinA,  (E)

2 :
¢|(E;r)—>N|(W—\/E) sin(pr— nignIn2pr—17/2+ 6+ o)

with the asymptotic forms

as k—0, (9

where we have takenE;,~E,=E. Here A|l,,2(E)
asr—o, © = 8i_— &6 _+o_—o_, wherel_ (I.) is the lessefgreatey
of I; andl,. In the soft-photon limit,l4 diverges as k.
Since the integrand is well behaved in the region from 0 to
r., the integral ; does not give a divergent contributi¢ior
' finite r;) even in the soft-photon limit.
Thus we obtain(retaining onlyly) [12]

&(E:r)—r'*t as r—0. (7)

The normalization constaiti; is chosen so that, as above
the coefficient ofr' ™ near the origin is unity. In the Cou-
lomb case,

4\E sinA  (E)
NCoU I'(2l+2) _ @® Riy1,(E1 E9) =N N — klz 2 as k—0.
2'e " ™T(I+1+ip)| 10

We require that the phase shifésand the normalizatioiN, We see that in the soft-photon "ml I2(E11E2) is singular

be continuous functions of ener@g], as are the Coulomb . . e
normalization and phase. For most potentials the normaliza\’-\”th a sign that depends upon the phase shift difference

tion constant, so defined, will not change sign as a funCtiOléll'IZ(E) and on the s_lgns Oﬂ\lll and N'z'_ Whenever

of energy since an energy for whidh=0 would correspond A1,,1,(E) crosses, for integersn, as a function of the

to a bound state in the continuuf]. Note that since the matrix element in the soft-photon limit passes through zero
photon carries one unit of angular momentgimrough the and changes sign. Examples of such crossings can be found
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in realistic elastic-scattering phase shift calculatigi®-15. For neutral-atom potentials that do not supportl &0 vir-
Of course, it may be possible f(ZIﬂ | (E) to become equal tual bound state at threshoR( | (E E)—0 ase—0. For

to nar without crossing it. In such a case, the soft-photonsuch potentials, S|ncA| | (E) |s a continuous function of
matrix element would have a zero, but would not change: s |A| | (0)|>7., there W,|| be at Ieastn, -n |_1 ad-
sign. We do not address such phenomena explicitly here a
we will be concerned with and refer to “zero crossings”
throughout this paper.

In the pure Coulomb casA,lJZ(E) can be written ana-

lytically, using the relatiorj16]

n(ﬂtional Zero crossings |R, | (E E) for E>O (and a zero

in the limit E— o), assuming there are no bound states in the
continuum. For neutral-atom potentials that do support an
I =0 virtual bound state & =0, the number of zero cross-
ings for E=0, in addition to the zero at infinite energy, is
y Inj_—n;_—1/2 when |A, | |[=37/2. For such cases the
argl’(z+ 1)=argl“(z)+tan‘1;, (1) matrix element is nonzero El—EZ 0. We note that these
conditions for soft-photon zero crossings would force a zero
where z=x+iy, x andy are real, and the range of the in the soft-photon radial matrix element. They are sufficient,
arctangent is taken to be 7/2 to #/2. Using this relation but not necessary, conditions for the existence of zero cross-

and Eq.(3) we obtain ings in the soft photon limit. In Sec. lll we will give an
example of zeros in the soft-photon limit, corresponding to
Dion _ 1 Ramsauer-Townsend minima in elastic scattering, which are
AF(E)=—tan * =—sin!| ——|, not required by the arguments above.
l-+1 12 For positive ions, we can use a generalization of
1+7]T Levinson’s theorem[20—-22 that gives the zero-energy
on

(12) phase shifts in terms of zero-energy quantum defeq{d).

We make the replacements_— x,_(0) andn;_—u,_(0)
with the range of the arcsine function taken tober/2 to  and use the result for the difference of zero-energy Coulomb
/2. For an attractive Coulomb potentiajig,=0), we have  phase shiftss*°[!(0)= /2 from Eq.(12) to obtain instead
o< ACOU'(E)<7T/2 The Coulomb normalization is given by of Eq. (15)
Eq. (8) and is always positive. Thus, in an attractive pure
Coulomb potential, the matrix element in the soft-photon lonI (0)=[m1_(0)= m_(0)]m+ /2. (16)
limit R,l,|2(E,E) never changes sign. In the pure Coulomb -

case we obtain the soft-photon resul7] If |A}T|2(O)|>7r then soft-photon zeroén addition to the

4JE 1 1 zero for E—«) for E>0 are required in the ionic cases.
Rﬁ‘j}‘iz N N, = ——, (13)  Again, this condition is sufficient but not necessary. There
™ 12 will be a soft photon zero @ =0 in the ionic case only if
1+77—2 Ai‘i’],z(O)modnzo. In a study of photoionization, Yang,
on

Pratt, and Tong[23] give quantum-defect differences at
which is always positive for an attractive Coulomb potentialthreshold as a function &t for all Z, showing that, for the
(710n<<0), so that there are no soft-photon zero crossings ipotentials considered in their work, this condition is satisfied
this case. We note that in a pure Coulomb potential it hasor many atoms. For example, &=30 Yang, Pratt, and
been showr{18] that, more generally, the matrix element Tang find thatuo— u,~0.6, giVingA"’“, (0)=~1.1m.
Ri, 1, has no zeros, is always positive, and is a monotonically |, this subsection we have shown that the sign of the
decreasing function as one goes away from the singularity dfee-free radial matrix element in the soft-photon limit can be
the soft photon limit. obtained from a knowledge of the elastic-scattering phase
In a neutral or partially ionized atom, the detailed behav-shifts. We have also demonstrated that Levinson’s theorem
ior of the phase shifts depends upon the potential under comr its generalization can be applied deducethe required
sideration. In general we can requifé] that §—0 as existence of zero crossings in the soft-photon radial matrix

E—o0; o, has the same property. Thus we have elements in some cases. We will show in the following sub-
sections that sign changes in the soft-photon matrix element
A (E)—=0 as E—o. (14 are indications of the existence of zero crossings in the gen-

eral bremsstrahlung radial matrix elemeRt | (Eq,E)),
. . . , 112

For neutral atoms, invoking Levinson’s theor¢®,6], we  oyen away from the soft-photon limit.
can require that the short-range phase shifts, taken to be con-
tinuous in energy6], go ton;7 as E—0, wheren, is the
number of bound states with angular momentutwith the
exception of potentials with airtual 1=0 bound state at We now want to determine the sign of the matrix element
threshold sometime called a half bound state, in which casR| 1,(E1, 2) in the limit E;— . (For convenience of no-

2. Therefore, varies, but the same arguments apply when reversing the

roles of the energiesFor largeE;, ¢(E4;r) will oscillate
Al (B)=(n_—n )7 as E—0. (5 for p,r>1. Since the other terms in the integrand of Eq.

B. The high-energy limit
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(4) are slowly varying on this scale, the important contribu-

tions to the integral occur when is of the order of 1;, Ry, (E;,Ex)—p, 2 °p2 'T(I,+1,+4)
since for larger distances the integrand oscillates rapidly. The

radial matrix element for fixetlin this high-energy limit will +1—in,lo+1+4,2,+2;2+0i)

be determined in this small+egion. Since a realistic atomic

potential would have nuclear Coulombic behavior at this _ By, (72)

length scale, it is sufficient to use wave functiopngE;r) +(|2+|1+4)|7'27'175p—|:(|1+1
for a particle in a Coulomb potential with nuclear cha#ye !
That is, we can use the reduced Coulomb functions

& (E:r)=F,(7;pr) (normalized tor'*! near the origin —ing.lo+1,+52,4+2;2+0i)
where = —Z/p is the (nucleaj Coulomb parameter. It has

previously been demonstrat¢@d] that the dipole Coulomb \whereF(a,b,c;z) is the hypergeometric function aid(z)
free-free matrix element is positive everywhéamd thus in i the gamma function. Sincg and |, are both integers,
the high-energy limit considered heré is nevertheless use- these hypergeometric functions can be evaluated analytically
ful to obtain an expression for the matrix element in this[og) The additional constrait=1,+ 1 simplifies this alge-
high-energy limit. We may expand the wave function for thepaically tedious calculation. Retaining only the leading term
slow electron¢|2(E2;r) aboutr=0, keeping terms up to i, 7, We obtain

orderr'2*2 (the first two terms

il 4E(]

. (22

¢|2(E2;r)=r'2+1[1+B|2(7;2)r], (17 Rll’IlH(El’EZ)_}T as E;—»
1
where (23
for upward transitions and
P22
Bi(m2)= 71 (18) —29,['(21,+2)
Rll,llfl(EllEZ)_) | 21,+3 as E1—>00
Inserting this expansion into E@) and using the Coulomb 1Py 24
function for ¢,(E;r), we obtain (24)
for downward transitions. Clearly,
Ip+1 Ip+2 .
Rll,lz(ElyEz)—)Jo [r27 2+ By (72)r 27 “IrFy (71;par)dr R, .,(E1,.Ex)—0+ as E;—o (25)
as E;—oo. (190 for both upward and downward transitions. That is, the ma-

trix element R, | (E;,Ey) is positive in the limit that
The first two terms in the expansidf7) are needed in Eq. E, . 12
(19 since they contribute to the same order in the small
parameteryn, (while further terms contribute pairwise in
higher orders iny, or p,/p; [3,25]). ThereducedCoulomb
function F, can be expressed in terms of the confluent hy- The consequences of these results for the signs of
pergeometric functioM (a,b,z) [26], R, 1,(E1,Ez) can be most easily understood by looking at
the first quadrant of the schematic illustration in Fig. 1. From
the result for the signs in the high-energy limiting case de-
scribed above we see that Fﬁ,lv,z(E*,E*)<0 for some
choice of E™, since R, is continuous, there must be at
Equation(19) can be evaluated in a straightforward mannereast one zerdor, more generally, an odd number of zero

by using an integral representation for the confluent hypergrossingsalong any path, confined to the first quadrant with-
geometric function given i27]. Landau and Lifshit{28] oyt crossing the soft-photon line, connecting (E~) to

C. Zero crossings

I+1
FI(W;Z):<B) e IM(1+1—i7,2 +2,22).

give (Ey—,E"). Similarly, if R, (E*,E*)>0 then we pre-
. dict an even number of zero crossing®ssibly nongalong
JZ’W:J e Mz'F(a,y,kz)dz (20) such a path. ' ' o
0 While the exact trajectoryor trajectoriesin the (E;,E,)
plane of the curve) of zero crossings probably requires de-
=T(v+1)N """ F(a,v+1,9,kIN), tailed calculation, based on our previous discussion we can

(21 see that it is required that one such trajectory intersect any

soft-photon zero crossing. Thus a zero in the soft-photon

convergent if Re>—1 and Ra>|Rek|. To satisfy these matrix element must persist in bremsstrahlung away from the
constraints, as is conventional in defining the bremsstrahlungoft-photon limit. (How far is yet unknown; results from

matrix element, we introduce the exponengal’ into the  bound-free transitions suggest that this depends on the

integrand of Eq(21) and take the limih— 0™ after integrat-  choice of potential and change of angular momentum in the
ing, obtaining transition[23].) Closed loops of zero crossingsr paths for
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E~ where R,1,|2(E‘,E‘)<0 must exist and, since

R(E™,»)>0, there must be zero crossings in the brems-
E, strahlung matrix elememR(E~,E,) for someE,.

o L& In the theory of bound-free transitions for a neutral atom
< \00\\ (all states in a potential with an asymptotic ionic Latter)tail

° it is well known that there can be a sequence of zeros in the
matrix elements for transitions between Rydberg states and
the continuum. In Fig. 1 we have included such a sequence
S | (in the second quadranfor illustrative purposes. One can
anticipate a continuation of such a curve of zero matrix ele-
' ments into the free-free regime for such an ionic potential.

T o)
-1 eV} ) &

0<%

E- E° Er E
2 I1l. RELATION TO ZEROS IN ELASTIC SCATTERING

It is well known that the soft photon regio{(~E,) of
bremsstrahlung is related to another atomic pro¢eksstic
scattering through the low-energy theorerf80]. Conse-
quently, the zeros in the soft photon bremsstrahlung matrix
elements are related to zeros in elastic scattering. It is pos-

FIG. 1. Sketch of one possible trajectory of bremsstrahlung ze-Sibl_e’ for this soft photon r_egion, to write the brems_strahlung
ros based on the known position of the Ramsauer-Townsend minr-adlal matrix eIemenIR|1,|2 in terms of elastic-scattering am-
mum in elastic scatteringnear E°). The filled circle in the first ~plitudes or matrix elements. This allows us to see the rela-
quadrant represents the position of the soft-photon zero associatéidnship between zeros in the matrix elements for the two
with the Ramsauer-Townsend minimum. The filled circle at theprocesses.
origin represents the zero present for all neutral-atom potentials that The relationship between matrix elements can be obtained
do not support =0 virtual bound states at threshold. The filled directly through manipulation of Eq10). Here we demon-
circles in the second quadrant represent the possible continuation gfrate that, as noted, it is a direct consequence of the nonrel-
the bremsstrahlung zeros into the bound-free transition quadrant. ativistic form of the low-energy theorem for soft photons.

Low [30] obtained the first two terms of the expansion of the
which both ends extend out of the first quadjame allowed, bremsstrahlung matrix element in powerskofthe lowest-
but paths that end in the first quadrant away from the softorder term in the series being of ordek1If we retain only
photon limit are not. We illustrate this in Fig. 2. this lowest-order term in Low’s expansion and write its non-

We remember, as noted above, that Levinson’s theorerrelativistic form we obtain
for short-range potentials that do not suppb#t0 virtual
bound states at threshotdquiresa sign change in the soft-
photon matrix eIemerRH',z(E,E) for E>0 if the condition
|n,l— n|2|>1 on the difference of the number of bound states olas: . _ .
is satisfied. Similarly, the generalization to quantum defectd/N€reM==is the elastic-scattering matrix element. We note
for ions requires a soft-photon zero crossing B0 if that this expression gives a dipole photon angular distribu-

| (0)— g (0)+1/2=1. Thus, in these cases an energytion. That is, we did not make a dip_ol_e fipproximz_ition but, as
< > expected, when we neglect relativistic terms in the low-

energy theorentof higher order in the electron veloci),

1. . .
MbremHEE_(pl_pz)Melas as k_>0, (26)

/ Ro1>0 we obtain a dipole angular distribution for the emitted pho-
E ton.
1 The matrix elements in Eq26) correspond tdotal ma-
Not allowed trix elements, not radial matrix elements. To obtain the cor-

responding relationships for the radial matrix elements we
must expandV®®™ and M®"S in partial waves series. The

>3 expansion ofM®®™=M"" can be found in Eq(2) and we
= simply write down the expansion ofl 25
o
M2 93 )Y () Vi P)
W\/El’ml Im{P2) Yim(P1),
” where the elastic-scattering amplitudes
E E
2 felas( _ ei((slﬂrl)sm(‘sl"_o'l) >
FIG. 2. Example of allowed zero-crossing trajectories and an )= p ' @7

impossible zero crossings trajectomyhich terminates in the first
quadrank We write the right-hand side of E¢26)
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2 1 Argon phase shifts
brd Tk k A — n T T
MES k2 (€ RPLYan(Py) ~Yan(P)] .
| - -
X 2 F5 ) Vi (P2) Y] (P2),
1";m &
X3
where the notation for the spherical vectas) { has been §
used(see Sec.)l Note that we are not retaining terms of £
higher order ink; we have useg,~p,=p (for the magni-
tudes only. We now utilize the orthogonality properties of
the spherical harmonics,
* " 1 1Io 100
_ 0.1
f dQY ()Y} ()= Oy » Energy (eV)
to select individual partial wave terms on both sides of Eq, F!C- 3. Ramsauer-Townsend minimum for scattering from neu-
(26). We obtain tral argon, plotted using numerical elastic-scattering phase shifts
' from [13].
3
R (- 1)|147sz e—i(5|1+o|1)e—i(5|2+a|2)[fflas_ f:ela IV. OBSERVABILITY OF ZEROS
112 ' -
k ! ? (28) We now wish to address the observability of the free-free

zeros we have discussed above. For bremsstrahlung many-
electron angular momenta, and so many transition matrix
_ _ Yements, begin to contribute to cross sections at energies
amplitudes for partial wavely andl,. If we insert the ex- o\ compared to energies considered in current experimental
pressions(27) for ff'**in terms of elastic-scattering phase and theoretical efforts; they contribute at still lower energies
shifts we obtain Eq(10). to angular distributions. We know from elastic scattering that
We now discuss some features of the elastic-scatteringigher phase shifts become comparablestwave phase
matrix elements that are, in view of the previous discussionghifts by 10 eV in neutral noble gases, so observation of
relevant to zeros in the bremsstrahlung matrix element. It igeros causing Ramsauer-Townsend minima may be confined
well known from the theory of elastic scattering that, in ato the region near 1-10 eV. Zeros in bremsstrahlung matrix
short-range potential at very low energy, the0 phase shift elements from neutral atom@ut less likely for ions, for
and therefore thé=0 matrix element dominatd$]. Under  which many matrix elements generally contribute at most
circumstances described [81] it is possible that thé=0  angles can likewise be observable when both initial and fi-
phase shift can pass throughr, n=0,1,2...,in are- nal electrons are of low energy. However, in bremsstrahlung
gion where it is the dominant phase stiifte potential must there is additional opportunity for observation since as long
be sufficiently strong at smail to accommodate an integral as one electron is slow, small numbers of its partial waves
number of wavelengths of tHe=0 wave function at energies contribute in bremsstrahlung even as the other electron be-
where other phase shifts are smallhis causes a zero in the comes fast. Whenever the dipole approximation remains
dominantl =0 matrix element in elastic-scattering and there-valid, only a few radial matrix elements are important and
fore a minimum in the total elastic-scattering matrix elementone can still expect to see effects of these zeros, as in the tip
M®s Such minima are called Ramsauer-Townsend minimaregion of the spectrum of faster electrons. Note that the
They have been observed in experiments involving elastibremsstrahlung spectrum is fairly well described in the non-
scattering from noble-gas atorf31]. In Fig. 3 we show the relativistic dipole approximatiofcancellation of relativistic,
phase shifts obtained by Holtsmafk3] using a Hartree- retardation and higher multipole effe¢®3]) up toward 100
Fock potential with an imposed long-range static dipole in-keV, so that in the tip region the-p dipole matrix elements
teraction resulting from static polarizabiliisee[32]). We  continue to play a dominant role in the spectrum: Effects of
see that at energies less than about 5 eV| #h@ phase shift any zeros should be visible.
is dominant, while near 2 eV it passes through, 8ausing a Also inverse bremsstrahlung, absorption of a photon by
Ramsauer-Townsend minimum. It is also clear from this fig-a slow electron scattering from an atom or ion, would
ure that (modr) the same phase shifts, and thus the elasticbe a prime candidate for observation of such zeros. In
scattering amplitudes, cross near 2 eV, causing a zero antdany cases experiments are conducted at electron
sign change in the soft-photon bremsstrahlung matrix eleenergies 1 e\<E;<300 eV and photon energies near the
ment in Eq.(28). We refer to Fig. 1, which, if we takE®=2  soft-photon regimean example of an external field is one
eV, represents the soft-photon result for argon. In that figurelue to CQ lasers withhv=0.117 eV [34—37. Thus we
we have sketched a possible trajectory of zeros, passingould expect that at some electron energies the scattering
through this soft-photon zero. From our discussion we can belectrons would be transparent to the laser in the region of
assured that in cases where Ramsauer-Townsend minima ate zeros discussed here.
cur there will also be zeros in the-p) bremsstrahlung ma- There are several previous works that might suggest the
trix element away from the soft-photon limit. existence of observable zeros in free-free transitions. In one

ThusR|1,|2 can be expressed in terms of the elastic-scatterin
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calculation Zon38] observed a deep minimum in the spec- V. SUMMARY
trum for absorption of a photon by low-energy electrons
scattering from argon. In this work, however, Z@ppropri- We have demonstrated the possible existence of zeros in

ately included the effects of the dynamiather than static  the bremsstrahlung matrix element by calculating the sign of
polarizability of the atom in an approximate way; it is un- this matrix element in two limiting cases, the soft-photon
clear what effect this treatment has on the arguments hergmit and the fast incident electron limit, and showing it need
Zon states that his observation is unrelated to Ramsauefpt pe the same. Since the soft-photon bremsstrahlung is
Townsend minima because the “frequency corresponding tQg|ated to elastic scattering, zeros in the soft-photon brems-

the photoabsorption minimum is much higher in this caseyapiung are related to zeros in the elastic-scattering matrix

than the width of the Ramsauer dip.” Our results here WOUIdeIements, in some circumstances observed as Ramsauer-

indicate that zeros connected to Ramsauer-Townsengownsend minima. We have demonstrated that Levinson’s

minima may be visible at energies away from the SOﬁ'phomr{heorem can be invoked to identify situations in which zeros

limit. In another investigation, Gredr89,40 observed, but . . . ;
did not discuss, minima in transition cross sections obtained! the soft-photon radial matrix element, and there_fo_re in the
radial matrix element away from the soft-photon linmiust

from nonrelativistic dipole calculationgetaining all impor- st Similarl h d th : f Levi ,
tant dipole contributionsusing wave functions correspond- exist. Similarly, we have used the extension of Levinson's

ing to continuum electrons in finite temperature and densitfn€orem to the case of ionic species to identify situations
Thomas-Fermi potentials. In a third related work, AshkinWhere such zeros must exist in ions. We have argued that
[41] compared various approximate theories to an “exacg€ros in fre_e-free matrix el_em_ents can be (_)bservable lf_ the
calculation” (nonrelativistic but with all partial waves in- €nergy of eithefor both the incident or outgoing electron is
cluded of the spectrum for absorption by electron scatteringSufficiently small.

from argon. Ashkin used the potential of Holtsmddga|,

which includes a static polarizational tail and is known to

produce a Ramsauer-Townsend minimum near 2 eV. His re- ACKNOWLEDGMENTS
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