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Dynamics of a cw multimode dye laser

J. Sierks, T. J. Latz, V. M. Baev, and P. E. Toschek
Institut für Laser-Physik, Universita¨t Hamburg, D-20355 Hamburg, Germany

~Received 10 September 1997!

The spectral and temporal dynamics of a multimode dye laser has been studied theoretically and experi-
mentally. The analytical model includes quantum fluctuations as well asfour-wave mixingdue to population
pulsations, stimulated Brillouin scattering, and Rayleigh scattering both in a standing-wave linear laser, and in
a unidirectional ring laser. The nonlinearity found most important in the multimode dye laser is four-wave
mixing due topulsations of the populationof the upper laser level. Numerical simulations show features that
characterize this particular type of mode coupling: broadening of the emission spectrum, oscillations of the
light flux in individual laser modes, suppression of certain beat notes. Observations of these features confirm
population pulsations dominating the laser dynamics. Four-wave mixing due to population pulsations tends to
arrange the phases of the laser modes such as to minimize the pulsations and to limit its own strength.
@S1050-2947~98!08103-7#

PACS number~s!: 42.55.Mv, 42.60.Mi, 42.65.Es, 42.65.Sf
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I. INTRODUCTION

The emission spectra of multimode lasers are very se
tive to absorption inside the laser cavity@1–3#. Perturbation
of the laser emission dynamics by quantum noise and n
linear mode coupling limits the sensitivity. Such a limitatio
impedes the applicability of intracavity absorption for a po
erful spectroscopic technique~intracavity absorption spec
troscopy, ICAS!. Reduction of these perturbations would r
quire a detailed knowledge of their origin and their influen
on multimode lasers dynamics, which has not been stud
exhaustively so far.

This paper presents a theoretical model for the dynam
of the light field in a cw multimode dye laser including qua
tum noise and mode coupling that originates from four-wa
mixing ~FWM! due to population pulsations~PP! on the up-
per laser level, and due to stimulated Brillouin scatter
~SBS!. The model is applicable to most types of lasers w
homogeneously broadened gain, and, even with minor m
fications, to those lasers with inhomogeneously broade
gain that emit within a bandwidth much narrower than t
homogeneous broadening.

The results of numerical simulations are found to be
good agreement with experimental data on the spectral
namics of a multimode Rh6G dye laser, recorded at h
spectral and time resolution. The emission spectrum of a
laser shows the highest sensitivity to intracavity absorpt
achieved so far@4,5#. As a result, it reacts also sensitively
various perturbations@6–8#, and can be conveniently used
monitor weak mode coupling.

A very important contribution to FWM in a multimod
laser is the modulation of the gain in frequency and spa
domain due to saturation by interfering laser modes. T
phenomenon was predicted by third-order laser theory@9#.
Saturation of the inversion takes place mainly as a deple
of the upper laser level. The lower-level lifetime is shorter
more than one order of magnitude than that of the upper l
level, such that its occupation is negligible. Gain saturat
causes PP of the upper laser level with the mode-separa
frequency, as well as spatial hole burning, which is in fac
571050-2947/98/57~3!/2186~18!/$15.00
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product of degenerate PP at zero frequency. The two eff
yield nondegenerate and degenerate FWM of laser mod

So far, equations of motion of the multimode laser fie
have been solved analytically for up to three modes. Las
that are used for intracavity spectroscopy, however, m
show ten through several thousand oscillating modes. Eq
tions for 500 oscillating modes have been solved numeric
for a unidirectional ring laser@10#. The influence of PP back
on the intermode beat notes was shown to be destructive,
self-limitation of PP was predicted. However, that model h
substantial restrictions: it did not include quantum noise,
calculations were performed only on a time scale too sh
for reaching a stationary distribution of the light pow
among the modes, and intracavity absorption lines were
placed by sinusoidal modulation of spectral loss. The stati
ary distribution of the laser emission was also calcula
@11#; though with certain oversimplifications: only 30 mod
were assumed to be oscillating, and a fake etalon redu
their number to three in the stationary state. These res
seem inapplicable to comparison with the stationary ope
tion of a real multimode laser with intracavity absorption.

Another important contribution to FWM in a dye lase
might arise from the nonlinearity of the dye solution, in pa
ticular from stimulated Raman, Rayleigh, Rayleigh win
and Brillouin scatterings. An incident pair of light wave
with different frequencies generates a material excitation
its beat frequency; in turn, the material excitation intera
with each of the incident waves and induces a dielectric
larization whose frequency is shifted away from that of t
incident waves by the beat frequency. This coupling gen
ates FWM of the light waves. The process may be mode
by perturbation theory@12,13#. If only two waves are
present, the FWM is degenerate. In a multimode laser, h
ever, there are many light waves of different frequenc
corresponding to the longitudinal cavity modes. Each pair
these light waves reads out material excitations, created
all other pairs of light waves with the same beat frequenc
Hence stimulated scattering in a multimode laser causes
generate and nondegenerate FWM.
2186 © 1998 The American Physical Society
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57 2187DYNAMICS OF A cw MULTIMODE DYE LASER
Nonlinear light scattering can be caused by various m
rial excitations. Some of them have resonance frequencie
the order of the mode beat frequency, and therefore stro
influence the mode coupling. SBS, e.g., is caused by acou
phonons produced via the electrostrictive effect@14#. Stimu-
lated Rayleigh wing scattering is the result of libration of t
orientation of anisotropic molecules of the solvent. T
strength of the Rayleigh wing scattering is proportional
the optical Kerr constant, whereas SBS is proportional to
electrostrictive constant. It was shown that in alcohols u
as solvents for many dyes, the optical Kerr constant is ab
20–30 times smaller than the electrostrictive constant@15#.
Therefore we will neglect Rayleigh wing scattering as co
pared with SBS.

Other scattering mechanisms, such as stimulated Rayl
scattering~SRLS! and stimulated Raman scattering~SRS!,
have resonance frequencies very different from interm
frequencies; they are less important for mode coupli
SRLS is the result of local fluctuations of density and te
perature; it has its maximum close to zero frequency sh
Only a very small portion of this scattering in the far win
of its spectral profile may contribute to mode coupling. In t
following we shall estimate the contribution of SRLS to t
nonlinear mode coupling in the dye laser. In contrast, SR
caused by the internal vibration or rotation in molecules w
resonance frequencies that exceed the width of the emis
spectrum of the laser. Moreover, its peak value is sma
than that of resonant SBS. Therefore, SRS is neglected

The only type of stimulated scattering so far considered
affect multimode dye lasers is SBS. Numerical simulatio
of the spectral dynamics of aRh6G dye laser under the
influence of SBS have been carried out to determine the l
tation of the sensitivity to intracavity absorption@16,17#, and
to explain chaotic laser dynamics@18#. The observed redshif
and asymmetry of the emission spectra was ascribed to
Stokes part of SBS@19#. All simulations in these works were
performed in terms of a simplified photon approach leav
out nondegenerate FWM. The strength of SBS usu
served as a parameter specified by fitting the numerica
sults to the experimental data. Only linear lasers were c
sidered, and SBS in the backward direction, where the
quency shift is large. However, a considerable redshift of
emission was observed even in unidirectional ring las
@20#, indicating small-angle scattering in the forward dire
tion to appear.

The main purpose of this paper is to develop a model
an adequate description of the dynamics of the light am
tudes in a multimode dye laser by taking into account qu
tum fluctuations and the predominant mechanisms of FW
with realistic parameters, such that quantitative analysis
comparison with experiment become feasible. In Sec. II,
models for the description of FWM due to PP and stimula
Brillouin and Rayleigh scattering are introduced. Here, S
is taken into account, both in backward and forward dir
tions, by considering the transverse spatial mode profile.
contribution of optothermally excited phonons to Brillou
and Rayleigh scattering, known to appear in absorbing
uids @21#, is also estimated. Section III is devoted to
analysis of numerical simulations with the help of the mod
The data show the spectral dynamics of the emission of m
timode lasers under the influence of SBS or PP. They re
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the qualitative difference between FWM of saturation typ
which is represented by PP, and of stimulated-scatte
type, which is represented by SBS. The influence of sim
taneous PP and SBS on the spectral dynamics of the las
studied. In Sec. IV the spectrum of beat notes, the sourc
FWM, is studied in the presence of PP and SBS. Analyti
and numerical calculations of the model are supplemented
results of measurements of the dynamics of emission spe
and beat notes. In Sec. V the main results are summariz

II. MODEL OF A MULTIMODE DYE LASER
INCLUDING FOUR-WAVE MIXING

A. Susceptibility

We assume that light is emitted into many longitudin
laser modes that are associated with only one fundame
transverse mode of linear polarization. The eigenfrequen
of these laser modes are multiples of the cavity’s free sp
tral rangedv,

vq5qdv, ~1!

whereq is any positive integer. The electric fieldE of the
electromagnetic light wave inside the cavity can be expan
in the electric-field amplitudes of the cavity modes,

E5 1
2 (

q
Eq~ t,x!exp~2 ivqt !1Eq* ~ t,x!exp~ ivqt !. ~2!

The dielectric polarizationP induced by the light field has
the same frequency as the light and can be expanded into
same frequency components,

P5 1
2 (

q
Pq~ t,x!exp~2 ivqt !1Pq* ~ t,x!exp~ ivqt !. ~3!

Here the complex amplitudesPq andEq are slowly varying
functions of time on the scale of one cavity round tri
2p/dv.

The dielectric polarizationP generated byE derives from
the susceptibility tensorx, which is usually expanded into
power series of the electric field. In general, the spatial co
ponents of the polarization vector can be expressed@22# as

Pi~v i !5«0~x i j
~1!Ej1x i jk

~2!EjEk1x i jkl
~3! EjEkEl1••• !. ~4!

A dye solution is a homogeneous medium with inversi
symmetry. Therefore we shall neglectx (2) and assume tha
the tensorx (3) is diagonal, i.e., we neglect the vectorial n
ture of light and write only one componentE of the electric
field, and one componentP of the polarization. Then the
lowest-order nonlinear term in Eq.~4! is x (3)E3, with x (3)

being the corresponding component of the susceptibility t
sor. After expandingP andE in the frequency component
of the cavity modes by Eqs.~2! and ~3!, we keep only the
polarization terms having frequencies that coincide with o
of the laser modes. Since all four light frequencies are r
resented by light waves from within a laser emission ba
width which is much smaller than the central emission f
quency, one of the three light frequenciesin the productE3,
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2188 57J. SIERKS, T. J. LATZ, V. M. BAEV, AND P. E. TOSCHEK
on the right-hand side of Eq.~4!, must have its sign opposit
to the signs of the other two frequencies. For complex po
ization and field amplitudes at the frequencyvq , we obtain
the relation

Pq5«0S xq,q
~1!Eq1 1

2 (
r

(
p

xq,2~p1r !,p,q1r
~3! Ep1r* EpEq1r D .

~5!

Here q and p are positive integers, andr is the difference
between indices of two oscillating laser modes, which is a
integer, positive and negative, satisfying the conditionur u
!q,p. The sum in Eq.~5! extends over all possible comb
nations of oscillating modes.

The linear susceptibilityx (1) is proportional to a density
r (0), unmodified by light, which may represent the ma
density of the solvent, or the unsaturated inversion densit
the laser dye. The interference, or beating, of two light wa
Ep1r* Ep induces a deviationr (2) from the unperturbed den
sity r (0) that gives rise to a third-order contribution to th
susceptibility. SBS takes place with deviations from the m
density ~‘‘phonons’’!, and PP represent periodic deviatio
from inversion density. The most natural way of expand
these deviationsr (2) is in a Fourier series that contains a
intermode beat frequencies. The total densityr is then writ-
ten as

r5r~0!1(
r

r r
~2!exp~2 iv r t !5r~0!1^r0

~2!&z1Dr~2!5^r&z,t

1Dr~2!, ~6!

wherer r
(2) is the deviation of the density at the frequen

v r , resulting from all pairs of light waves separated by th
frequency and numbered by the indexp, andz is the coor-
dinate along the optical axis. We have separated the de
tions r (2) into a constant part̂r0

(2)&z that is proportional to
the light intensity, and an oscillating partDr (2) with Fourier
componentsDr r

(2)5r r
(2)2d r ,0̂ r0

(2)&z . The constant par
^r0

(2)&z , combined with the unperturbed densityr (0), is writ-
ten ^r&z,t . It represents the mean mass density of solven
saturated inversion densitymodifiedby the light. The second
part Dr r

(2) includes oscillating terms with values dependi
on the actual distribution of the light intensity among t
modes.

Spatial and temporal deviations of the total light intens
from its mean value are small, since they are averaged
many modes. As a result, the deviationsDr r

(2) of the density
from the mean valuêr&z,t are also small. Therefore th
polarization in Eq.~5! can be expressed as

Pq5«0CS ^r&z,tEq1(
r

Dr2r
~2!Eq1r D , ~7!

whereC is the linear susceptibility per density, and we co
siderDr r

(2) the perturbation. This approach differs from th
usual perturbative approach, and is particularly fitting sin
its validity does not explicitly require small light intensitie
It especially suits multimode lasers, where the intensity
individual modes exhibits full-scale fluctuations, whereas
total intensity is constant.
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Now the frequency component of the density deviatio
Dr r

(2) can be expanded into plane waves,

Dr r
~2!5Dr2r

~2!* 5
1

A~2p!3 E d3K Dr r ,K
~2! exp~ iK–r !, ~8!

where r is a spatial vector,K is the vector of the density
wave, and

Dr r ,K
~2! 5

Fr~ uK u2!

A~2p!3 E d3r(
p

1
2 ~Ep* Ep1r2d r ,0̂ Ep* Ep&z!

3exp~2 iK–r ! ~9!

are expansion coefficients. Here,Fr(uK u2) is the function of
the density response to the light field determined from
nonlinear susceptibility by Eqs.~5!–~9!. The response func
tion entails both electronicand center-of-mass excitation
The Kronecker symbold r ,0 takes into account subtraction o
the total laser intensity in accordance with our particular p
turbative approach. The integral in Eqs.~8! is taken over all
three wave-vector coordinates (Kx ,Ky ,Kz), and the integral
in Eq. ~9! is taken over all three spatial coordinates
r (x,y,z).

In the above terminology, the deviations of the dens
induced by two light waves depend only on the beat f
quencyv r , on the absolute difference of the wave vecto
and on the response functionFr(uK u2).

B. Mode geometry

Light propagation in nonlinear dielectric media is go
erned by the inhomogeneous electromagnetic wave equa

“3“3E1
n2

c2

]2E

]t2 52
1

«0c2

n212

3

]2P

]t2 ~10!

derived from Maxwell’s equations. The correction fact
(n212)/3 takes into account the effect of the local field@23#.
This formulation requires thatP excludes linear refraction
becausen has been inserted directly into the electromagne
wave equation instead of arising fromP, when deriving Eq.
~10!.

The restriction to a scalar field leaves only one compon
of electric fieldE and polarizationP. The electric-field am-
plitude in the laser modes is expressed by the reduced
plitudesaq ~Mq5aq* aq is the number of ‘‘photons’’ in the
modeq!, and a spatial eigenfunctionCq :

Eq5S 2\vq

n2«0
D 1/2

aq~ t !Cq~x!. ~11!

In the approximation of slowly varying amplitudes@9#,
the reduced amplitudes in Eq.~10! are driven by the dielec-
tric polarization in the laser cavity according to

d

dt
aq

~P!5
ivq

2«0

n212

3n2 S n2«0

2\vq
D 1/2E d3r Cq* Pq . ~12!

Here, the last factor is a spatial overlap integral of polari
tion and light amplitudes.
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57 2189DYNAMICS OF A cw MULTIMODE DYE LASER
We now consider the nonlinear part of the polarizati
only, i.e., the third-order part given by the second term in E
~7!. Substituting the density deviations by Eqs.~8! and ~9!,
and the light amplitude by Eq.~11!, and taking into accoun
that the polarization outside the gain medium is zero, yie
the third-order equation for the reduced amplitudes

d

dt
aq

~3!5
ivL

2

n212

3n2

\vL

n2«0
C(

r
(

p
aq1rap1r* ap

3E gain
medium

d3r Cq* Cq1r~r !
1

~2p!3

3E d3K F2r~ uK u2!E d3r 8@Cp1r* Cp~r 8!

2d r ,0̂ Cp* Cp~r 8!&z#exp@ iK•~r2r 8!#. ~13!

Here, by replacing the electric field amplitudes with Eq.~11!,
we assume the same frequencyvL for all laser modes. Since
the width of the emission spectrum, which limitsrdv, is
much smaller than the light frequencyvL , this approxima-
tion is well justified. Equation~13! shows explicitly that the
dynamics of individual laser modes of a multimode las
with a nonlinear medium in the cavity depends upon tri
products of oscillating laser modes that represent four-w
mixing.

A specific calculation requires the substitution of expr
sions for the spatial eigenfunctions of the laser modes.
assume that the cavity extends fromz50 throughz5L. The
polarization is located in the gain medium of lengthl placed
in the waist of the cavity mode atz5zg , ~with a ring cavity
zg50!. We shall assume the gain medium to be much lon
than the wavelength of laser emission, but much shorter t
the cavity length divided by the number of oscillating mod

2pc

nvL
! l !

L

r
. ~14!

This condition holds for a typical cw dye laser.
Near the waist atzg the wave is plane, andCq(r ) sepa-

rates into a transverse partV(x,y) and the longitudinal one
Zq(z):

Cq~r !5V~x,y!Zq~z!. ~15!

The z integral of Zq* Zq and the area integral ofV* V are
normalized to unity. Hermite-Gaussian TEM00 modes@24#
are assumed for the transversal distribution,

V5S 2

pw0
2D 1/2

expS 2
x21y2

w0
2 D , ~16!

with w0 being the radius of the waist of the electric field
the 1/e level. Since the transverse part of the spatial eig
function does not depend on the mode indexq, the interfer-
ence term of the spatial eigenfunctions of two different lo
gitudinal modes Cp* Cp1r in Eq. ~13! has the same
transverse distribution as the intensity in the laser,V* V. As
in Eq. ~8!, we expand this distribution into plane waves,
.

s

r

e

-
e

r
an
,

-

-

V* V5
1

~2p!2 E dKxE dKy expF2
w0

2

8
~Kx

21Ky
2!G

3exp@ i ~Kxx1Kyy!#. ~17!

The longitudinal part of the spatial eigenfunctions has t
contributions corresponding to electromagnetic waves pro
gating in opposite directions, with wave vecto
6(n/c)vq Zq

→ andZq
← . They are related as

Zq
→5Zq

←* 5S 1

L D 1/2

expS i
n

c
vqzD . ~18!

In unidirectional ring cavities, only copropagating pairs
travelling waves are excited. Their interference terms

Zp1r* Zp5
1

L
expS 2 i

n

c
v rzD ~19!

show small wave vectors that correspond to the beat n
v r .

In standing-wave cavities the longitudinal part of the sp
tial eigenfunctions is

Zq5
1

& i
~Zq
→2Zq

←!5S 2

L D 1/2

sinS n

c
vqzD . ~20!

The interference of two waves in a standing-wave cavity
two types of components: One,Zp1r ,p

2⇒ , with small wave
numbersnv r /c due to copropagating pairs of waves, as
the ring laser, and another,Zp1r ,p

2↔ , with large wave numbers
nv2p1r /c, due to counterpropagating pairs of waves,

Zp1r* Zp5
1

2L FexpS 2 i
n

c
v rzD2expS 2 i

n

c
v2p1rzD G1c.c.

5Zp1r ,p
2⇒ 2Zp1r ,p

2↔ . ~21!

The radius of the beam waist in a typical cw dye laser
much larger than the wavelength of the laser light, but mu
smaller than the wavelength of thebeat notesof two laser
modes. As a consequence, the relations

S nv2p1r

c D 2

'S 2nvL

c D 2

@^Kx
21Ky

2&5
8

w0
2 @S nv r

c D 2

~22!

hold. They indicate that counterpropagating pairs prod
beat waves that propagate along the optical axis, but
propagating pairs of waves produce beat waves that pro
gate almost perpendicularly to the optical axis.

We insert Eq.~21! into Eq. ~13! and perform the last two
integrations. According to the condition in Eq.~14!, we ne-
glect integrals over fast oscillating terms, such
cos(2nvLz/c), across the dye jet. The result is split into tw
parts: one with a source term originating from counterpro
gating waves, and another from copropagating pairs
waves. The former is
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d

dt
aq

~3,↔ !5
ivL

2

n212

3n2

\vL

n2«0

1

pw0
2 C

3(
r

F2rF S 2nvL

c D 2Gaq1r(
p

ap1r* ap

l

L2

3E gain
medium

dz
1

l
cosS n

c
v2q1rzD cosS n

c
v2p1rzD .

~23!

Here the response function of the density to the light field
plane beat waves,Fr(uK u2)'Fr@(2nvL /c)2# is considered
constant in the gain medium and is extracted from the in
grals in Eq.~13!, since the range of wave numbers of the b
notes is small,rdv!2vL @Eq. ~22!#. In contrast, nearly co-
propagating pairs of waves allow extraction ofFr(uK u2)
'Fr(Kx

21Ky
2) only from thez andKz integrals of Eq.~13!.

The equation Eq.~13!, with source terms composed of co
propagating waves, is

d

dt
aq

~3,⇒ !5
ivL

2

n212

3n2

\vL

n2«0
C(

r
(

p
aq1rap1r* ap

l

L2

3H F E gain
medium

dz
1

l
cos2S n

c
v rzD G2d r ,0J

3E E dKxdKyF2r~Kx
21Ky

2!

3expF2
w0

2

4
~Kx

21Ky
2!G . ~24!

Equations~23! and ~24! can be written in general form
including copropagating and counterpropagating waves:

d

dt
aq

~3,↔/⇒ !5 1
2 (

r
Sr

~↔/⇒ !aq1r(
p

ap1r* ap~jp2q/r
~↔/⇒ !

2d↔/⇒,⇒d r ,0!. ~25!

Herej denotes the results of thez integrals over the exten
sion of the gain~from zg2 l /2 throughzg1 l /2! in the spatial
interference factors in Eqs.~23! and ~24!,

jp2q
~↔ ! 5 1

2 sincFp~p2q!l

L GcosFp~p2q!2zg

L G , ~26!

j r
~⇒ !5

1

2 F11sincS prl

L D cosS pr2zg

L D G . ~27!

These integrals account for spatial correlations of the f
interacting waves in the gain medium, and sinc(x)
[(sinx/x). The Kronecker symbold r ,0 is used for subtrac-
tion of the mean light intensity. In Eq.~25!, all constants are
lumped in the scattering coefficientS.

With the approximation of a thin gain medium@Eq. ~14!#,
the sinc functions are close to unity. Moreover, with uni
rectional ring cavities,jp2r

(↔)50 andzg50. In this case only
one correlation term appears,j r

(⇒)51. With a symmetric
standing-wave cavity~i.e., zg5L/2!, j r

(⇒)5@11(21)r #/2
f

-
t

r

and jp2r
(↔)5(21)p2q/2. Thus all the odd modes in such

laser are correlated with each other, as well as all e
modes. However, odd and even modes are uncorrelated
each other for copropagating pairs of waves, but antico
lated for counterpropagating pairs of waves.

The scattering coefficientS should be determined indi
vidually for each type of FWM. In the next sections it will b
calculated for nonlinearities that arise from population p
sations on the laser transition or from stimulated Brillou
and Rayleigh scattering.

C. Laser gain

The laser gain is obtained from a solution of the Maxwe
Bloch equations. For this purpose Eqs.~12!, derived from
Maxwell equations, must be combined with the equation
the material polarization,

P5Dab~rab1rba!. ~28!

We assume that the laser emission is resonant with t
sition a↔b whereua& is the upper state;ub& the lower state;
vab the resonance frequency;Dab the dipole matrix element
r i j the density matrix, withi , j P$a,b%; and rab5rba* . We
consider an ideal four-level dye laser whose relaxation r
of ground-state population densityrbb much exceeds the re
laxation ratega of the upper-state population densityraa .
Therefore we neglectrbb and calculate the laser inversion b
integratingraa over the gain medium,

N5E
zg2 l /2

zg1 l /2

dzE
2`

`

dxE
2`

`

dy raa . ~29!

The optical Bloch equations of motion for such a laser
the rotating-wave approximation, supplemented by rates
excitation and decay, are

d

dt
raa5P

V2

l
2garaa2

iD ab

2\

n212

3 F(
q

Eq* exp~ ivqt !rab

2c.c.G , ~30!

d

dt
rab52~ ivL1g t!rab2

iD ab

2\

n212

3 (
q

raaEq

3exp~2 ivqt !. ~31!

HereP is the pump rate andg t is the dipole dephasing rate
Since in the dye laserg t@ga , Eq.~31! is adiabatically elimi-
nated, i.e., it is replaced by the quasistationary solution

rab'2
iD ab

2\

n212

3
raa(

q

Eqexp~2 ivqt !

i ~vL2vq!1g t
, ~32!

and Eq.~30! writes
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d

dt
raa5P

V2

l
2raaFga1S Dab

2\

n212

3 D 2

3(
q

(
r

Eq* Eq1r exp~2 iv r t !

i ~vL2vq1r !1g t
1c.c.G . ~33!

The profile of the pump-light beam in a cw dye laser
usually adapted to that of the laser beam, such that we
sume the distribution of the inversion density to agree w
that of the laser intensity,

raa'V2~x,y!G, ~34!

whereG5*2`
` dx*2`

` dy raa . With Eq. ~34! taken into ac-
count, Eq.~33! is integrated overdx anddy and multiplied
by V2,

d

dt
raa5P

V2

l
2raaFga1S Dab

2\

n212

3 D 2

3(
q

(
r
E E dx dy V2

3
Eq* Eq1rexp~2 iv r t !

i ~vL2vq1r !1g t
1c.c.G . ~35!

The solution of Eq.~35! is cast in the form

raa5^raa&z,t1Draa
~2! , ~36!

analogous to Eq.~6!, with Draa
(2) compounded of the sma

second-order deviations of the inversion density from
mean valuê raa&z,t generated by temporal and spatial inte
ference of laser modes.

We now consider the inversionN̄ controlled by the mean
light flux, i.e., temporally and spatially averaged. Spatial
tegration of Eq.~33! and temporal averaging yield accordin
to Eqs.~11! and with the approximation

K (
q

(
r

Eq* Eq1rexp~2 iv r t !

i ~vL2vq1r !1g t
1c.c.L

z,t

'(
q

2g t

~vL2vq!21g t
2

1

l E
zg2 l /2

zg1 l /2

dz Eq* Eq , ~37!

the equation for the mean inversion@see Eq.~29!#

d

dt
N̄5P2gaN̄2(

q
BqN̄aq* aq , ~38!

whereBq is the rate of stimulated emission per inverted m
ecule and per photon. Its spectral profile is

Bq5
Bmax

11@~vq2vL!/g t#
2 . ~39!

The maximum value ofBq at vq5vL is determined from
Eqs.~11! and ~35!–~39! as
s-
h

e

-

-

Bmax5
vLDab

2

n2«0\g t
S n212

3 D 2 1

L E
2`

`

dxE
2`

`

dy V4

5
vLDab

2

n2«0\g tLpw0
2 S n212

3 D 2

. ~40!

Note that the assumption of a Gaussian transversal distr
tion of the gain@Eq. ~34!# results inBmax being half as large
as the value calculated with a step function for the invers
density.

The stationary solution of the mean value of the invers
follows from Eq.~38!,

N̄5
P

ga1(
q

Bqaq* aq

. ~41!

First-order equations for reduced amplitudes@Eq. ~12!#
are obtained by substituting the polarization from Eqs.~28!
and ~32!, assumingraa5^raa&z,t , and adding terms tha
model cavity lossg and quantum fluctuations

d

dt
aq

~1!5
BqN̄2g2ckq

2
aq1 f q . ~42!

Herekq is the coefficient of narrowband intracavity absor
tion, andf q is a Langevin random force describing quantu
noise that obeys the conditions@25#

^ f q~ t !&50, ~43!

^ f p* ~ t ! f q~ t8!&5gd~ t2t8!dp,q . ~44!

The ratio of susceptibility over inversion densityC in Eq. ~7!
is found by comparing the stimulated emission rate for lig
amplitudes1

2 BqNaq in Eqs.~40! and ~42! with Eqs.~7! and
~12!,

C~PP!5
2 i3n2lpw0

2

~n212!vL
Bq , ~45!

where the superscript stands for ‘‘population pulsations’’.
Approximate stationary solutions for the total ‘‘photo

number’’ M and for the mean value of the inverse populati
are obtained from Eqs.~38! and ~42! by neglectingf q and
assumingkq50:

M5(
q

aq* aq'
~h21!ga

Bmax
, ~46!

N̄'
g

Bmax
. ~47!

Hereh is the pump rate relative to the laser threshold,

h5
PBmax

gga
. ~48!

With the definitions in Eqs.~39! and~40!, the inversion den-
sity in Eq. ~35! can be written as
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d

dt
raa5

hgga

Bmax

V2

l
2raaFga1(

r
(

q

Bq1Bq1r

2

3aq1r* aqLZq1r* Zq exp~ iv r t !G . ~49!

Subtraction of the zeroth-order equation for^raa&z,t from Eq.
~49!, and dropping the products of second-order deviatio
yields the equation of motion for the second-order contri
tion to the inversion density:

d

dt
Draa

~2!52Draa
~2!S ga1Bmax(

q
aq* aqD

2^raa&z,tBmax(
r

(
q

aq1r* aq~LZq1r* Zq2d r ,0!

3exp~ iv r t !. ~50!

Here the spectral variation of the gain coefficientB was ne-
glected (Bq>Bmax). Fourier decomposition of Eq.~50! and
insertion of the total photon number from Eq.~46! provides
us, according to Eq.~9!, with the response function

Fr~ uK u2!52
raa

~0!Bmax

hga2 iv r

n2«0

\vL
. ~51!

This result shows that the response function for PP
independentof K . The scattering coefficientSPPfor this non-
linearity can be found with Eqs.~24!, ~25!, ~45!, and~47!:

Sr
~PP,↔ !5Sr

~PP,⇒ !52
gBmax

hga1 iv r
. ~52!

This scattering coefficient has a Lorentzian spectral pro
with width on the order of 100 MHz@half-width at half
maximum~HWHM!# for a typical cw dye laser.

D. Phonons

In this section we consider the nonlinearity in the las
due to deviations of the density of the dye solution from
average valuêr&z,t . The constantC in Eq. ~7! relating the
density of the dielectric material to the material’s polariz
tion is

C~SBS!5
n221

r0
. ~53!

Since the main effect originating from density oscillations
stimulated Brillouin scattering for this constant we use
notationC(SBS) in order to distinguish it from the constan
C(PP), determined by the nonlinearity of the gain, Eq.~45!.

The solution of the coupled equations of motion for ma
density and temperature@12# provides the response functio
s,
-

is

e

r

-

e

s

Fr~ uK u2!

5

n221

2

n212

3
1

n2bT

Cp

acn

iv r2GR

vB
2 S 11

Cp2Cn

Cp

GR

iv r2GR
D2v r

22 iv rGB

«0uK u2.

~54!

HerebT is the thermal expansion coefficient,n is the speed
of sound,Cp andCn are the specific heat capacities at co
stant pressure and constant volume, anda is the absorption
coefficient. We assume that all the absorbed energy is t
malized immediately.

The denominator of the response function shows t
resonances, at frequency shiftuv r u5vB andv r50. The first
one is the Brillouin resonance, with

vB5nuK u5
2nnvL

c
sin

b

2
, ~55!

at which phase matching takes place of sound waves and
beat notes of the light, propagating at an angleb (0<b
<p) to each other. The width of this resonance@full width at
half maximum~FWHM!#,

GB5
H

r0
uK u2, ~56!

is determined by the viscosityH of the solvent. The respons
varies over the Brillouin resonance within the frequen
range

vB<2nvLn/c5vB
↔ . ~57!

The maximum response of the Brillouin resonancevB
↔ cor-

responds to density waves excited by counterpropaga
light waves. Copropagating light waves in a unidirection
ring laser also excite Brillouin resonance, but with small fr
quencies determined by the divergence of the laser ligh
the cavity modes@Eq. ~16!#.

The second resonance is Rayleigh scattering at zero
quency with width~HWHM!

GR5
lTuK u2

r0Cn
, ~58!

wherelT is the thermal conductivity of the solvent.
The response function@Eq. ~54!# is a sum of two contri-

butions. The first contribution is due to electrostriction, i.
the deformation of the dielectric under the influence of t
electric field. It is proportional to linear susceptibility, whic
is n221. The second contribution is heating by the lig
combined with thermal expansion. Heating may result fro
residual light absorption in the dye solution, e.g., by trip
states of the dye molecules, or from collisional relaxation
dye molecules following stimulated emission~Fig. 1!. We
attribute the major contribution to the relaxation of dye m
ecules from the lower laser level to the ground state. T
relaxation of the pump excitation to the upper laser le
does not contribute to the response function, since it is
correlated with the laser light field. The energy absorbed
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the medium due to relaxation is proportional to both t
energy of the amplified laser light and the ratio of the ene
of the lower laser level to the laser photon energy. We
sume that the energy of the lower laser level is close to
energy excess of the pumped level~pump frequencyvp
52pc/lp! over the upper laser level, and write the ‘‘absor
tion’’ coefficient a in Eq. ~54! as

a'
vp2vab

2vab
BmaxN

L

cl
. ~59!

The above analysis shows that the response function
tains four terms. The first two terms represent stimula
Brillouin ~SBS! and Rayleigh~SRLS! scattering due to elec
trostriction. The second two terms are optothermal contri
tions defined as stimulated thermal Brillouin scatteri
~STBS! and stimulated thermal Rayleigh scatteri
~STRLS!. Figures 2 and 3 show the calculated respo
function of the dye solution for a Rh6G dye laser emitting
600 nm and withlp5514 nm. The laser gainBmaxN is set at
4% per cavity round trip~equal to the cavity loss!. The thick-
ness of the dye jet isl 5100mm, andw056.7mm. The dye
solvent is ethylene glycol~molar mass 62! with the param-
etersn51.43,r051110 kg/m3, n51660 m/s,H50.019 kg/
ms, lT50.25 kg/~s2 K!, and Cp52400 m2/s2 K, all taken
from Ref. @26#; andCn>Cp2(T0bT

2/r0k)52050 m2/~s2 K!,
bT56.231024 K21, and the compressibility k53
310210 ms2/kg, all taken from Ref.@27#.

The electrostrictive part of the response function is sho
in Fig. 2 for three values ofuK u expressed through the ang
b between light waves in Eq.~55!. It is calculated with Eq.
~54! under the assumption that optothermal effects are ab
(a50), and only SBS and SRLS are present. For coun
propagating light waves (b5p) the Brillouin resonance ha
its maximum value atvB5vB

↔52p38 GHz. The spectra
width of SBS is GB52p32.5 GHz ~FWHM!. At smaller
angles between the light waves~smaller value ofuK u!, the
maximum of the response function becomes higher and
rower, Eq.~56!. The contribution of stimulated electrostric
tive Rayleigh scattering~SRLS! is very small. It is hardly
visible around zero frequency.

FIG. 1. Energy-level diagram of a dye molecule and schema
of pump excitation, collisional relaxation, and laser emission.
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Figure 3 shows the optothermal contribution of the
sponse function for the same values ofuK u as in Fig. 2. The
Brillouin contribution ~STBS! has smaller amplitude bu
larger spectral width than the Rayleigh contributio
~STRLS!. Therefore the response function is shown on t
frequency scales: Fig. 3~a! shows the complete spectrum o
STBS, and Fig. 3~b! a narrow section which contains, how
ever, all of the STRLS. The strongest contribution com
from STRLS, but its spectral width is some 10 MHz onl
For counterpropagating light waves, e.g., it isGR>2p
316 MHz ~HWHM!.

Figures 2 and 3 show that the contribution of SBS
much larger than that of SRLS and STBS, but the contri
tion of STRLS, at small frequencies, might be even larg
than that of SBS. The relative strength of the influence of
most important contributions, SBS and STRLS, on laser
namics is estimated when comparing the imaginary part
the response functions, since these parts are responsibl
the variation of the lightamplitudes. The area under the
imaginary part of the SBS resonance curve in Fig. 2
counterpropagating light waves is approximately three tim
larger than that under the STRLS resonance in Fig. 3~b!.
Moreover, the STRLS peak is very narrow and poorly ov
laps with the beat notes in lasers of less than 10-m ca
length. Typical dye lasers are much shorter, and we c
clude, that FWM by SBS dominates in a multimode dye la
over that by STRLS. Taking into account only SBS, the
sponse function@Eq. ~54!# writes

Fr~ uK u2!5«0

n221

2

n212

3

uK u2

vB
2~ uK u2!2v r

22 iv rGB~ uK u2!
.

~60!

The scattering coefficientS(SBS) is calculated from this
response function by taking into account the distribution

s

FIG. 2. Response function of the gain medium for excitation
density waves by electrostrictive excitation induced by two lig
waves that cross at the angleb5p ~solid line!, p/3, and p/6
~dashed lines!.
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the light field either for counterpropagating@Eq. ~23!# or co-
propagating@Eq. ~24!# waves, using Eqs.~25! and ~53!:

Sr
~SBS,↔ !5Smax

SBS
vB
↔

v r

11 i @~vB
↔22v r

2!/v rGB
↔#

11@~vB
↔22v r

2!/v rGB
↔#2 , ~61!

Sr
~SBS,⇒ !5Smax

SBSE
0

`

d~ uK u2!
w0

2

4
expS 2

w0
2

4
UKU2D

3
ivB
↔GB

↔~c/2nvL!2uK u2

~vB
↔21 iv rGB

↔!~c/2nvL!2K22v r
2 . ~62!

FIG. 3. Response function of the gain medium for excitation
density waves by optothermal excitation induced by two lig
waves that cross at the angleb5p ~solid line!, p/3, and p/6
~dashed lines!. ~a! Contributions from STBS and STRLS;~b! same
as in~a!, but the frequency scale is expanded, and the ordinate s
compressed.
In Eqs.~61! and ~62!,

Smax
SBS5Fn212

3
~n221!G2 \vL

4

r0c2n2

2

pw0
2L

l

L

1

vB
↔GB

↔

~63!

is the maximum value of the scattering coefficient. For
laser with cavity lengthL51 m and with the above param
eters,Smax

SBS51.731027 s21.
The scattering coefficient in the backward directio

Sr
(SBS,↔) , is shown in Fig. 4~a!. Its spectral dependenc

agrees with that of the response function, shown in Fig
(b5p), except that the real and imaginary parts are int
changed. It shows that each laser mode is efficiently coup
with two groups of modes with frequencies shifted
68 GHz. At the cavity lengthL51 m these groups consis
of about 20 modes.

The spectral profile of the scattering coefficient in forwa
direction Sr

(SBS,⇒) is shown in Fig. 4~b!. Its real part is ob-
tained by analytical evaluation of Eq.~62!, and its imaginary
part is derived from the real part by the Kramers-Kron

f
t

le

FIG. 4. Scattering coefficientsSr(v r) for SBS in ~a! backward
and ~b! forward direction, and for~c! PP.
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57 2195DYNAMICS OF A cw MULTIMODE DYE LASER
relations. The maximum value of the spectral profile is ab
one-third of that for backward scattering, and it is situated
a much lower frequency~0.2 GHz!. At the assumed cavity
length (L51 m) the emitting modes are coupled efficien
only with their next neighbors.

SBS in the backward direction is three times stronger
couples 20 times more laser modes than SBS in the forw
direction. Therefore, its influence on laser dynamics is ab
60 times larger. In a linear laser, where both scattering
rections are present, we neglect SBS in the forward direc
and keep only SBS in the backward direction when simu
ing laser dynamics.

Figure 4~c! shows the scattering coefficient calculated
PP with Eq.~52!. Its maximum value is 104 times larger than
that for the SBS in the forward direction, and it has appro
mately the same spectral width. Therefore, in the unidir
tional ring laser that lacks SBS in the backward direction,
neglect SBS and consider only PP in the simulations. I
standing-wave laser both SBS and PP must be consider

III. NUMERICAL SIMULATIONS

The equations of motion of the light amplitudes are co
bined from Eqs.~42! for the first-order contribution to the
amplitude and Eq.~25! for the third-order contribution to the
amplitudes; they are

d

dt
aq5

BqN̄2g

2
aq1 f q1 1

2 (
r

(
p

@Sr
↔jp2q
↔

1Sr
⇒~j r

⇒2d r ,0!#aq1rap1r* ap ~64!

if narrow-band intracavity absorption is lacking. These eq
tions are solved numerically by taking into account FW
due to PP and/or SBS in the backward direction. Since t
contain stochastic forces, they are solved by a Monte C
procedure. Equation~41! for the mean value of the inversio
is adiabatically eliminated. For the initial condition we ado
a thermal distribution of complex light amplitudes of th
cavity modes@28,29#, i.e., an exponential distribution of pho
ton numbers and random phases. The calculations were
with finite time increments, whose duration should sati
the condition t,h/g(h21) for stability of the coupled
equations for laser inversion and total photon number. T
random forcef q simulating quantum fluctuations is added
each iteration; it has a two-dimensional Gaussian distribu
in the complex amplitude space. The mean value of
added photon numbers is given by Eq.~44!. Even after one
iteration it exceeds the initial number of thermal photo
Therefore the actual realization of the distribution of phot
numbers among the modes in the spectrum of laser emis
is determined by the random force rather than by the ini
conditions.

The parameters of a real cw dye laser were measured.
waist w056.7mm is estimated from the divergence of th
laser light. The loss rate of the cavity is determined from
transmittance of the output mirror~2%!, and from the inter-
nal cavity loss~2% per cavity round trip!, as a function of the
cavity length, g50.04c/2L. The gain rate is determine
from measurements of the output power at different pu
rates and cavity lengths as a function of the cavity leng
t
t
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B510210c/2L. The dipole dephasing rate, g t
51.831014 s21, is calculated from the spectral width of th
gain, and the pump rate is set toh51.3. The lifetime of the
upper laser level,ga52.53108 s21, was taken from the lit-
erature@30#.

The simulated laser has a symmetric two-mirror config
ration with anL55.25 cm cavity length~in some cases 1.75
cm!. The number of simulated modes is 81, enough for
reproduction of the entire emission spectrum at any ti
except the first millisecond. This spectral width of the ga
corresponds to 104 mode spacings ~HWHM! at L
55.25 cm, and the spectral peak of the SBS coefficient@Eq.
~61!# overlaps with the third-neighboring mode.

To speed up computation, we considered SBS pho
frequencies only up tor 59. The scattering coefficient ac
cording to Eq. ~61! decreases quickly withr . For L
55.25 cm, it is 30 times smaller atr 59 than atr 51. This
approximation was proved to suffice by observing no dev
tions from results simulated with the full phonon spectrum

In contrast, the PP is calculated for all beat frequenc
that show up in the laser, i.e.,l ,r ,80. Reduction of the
beat spectrum may diminish the strength of FWM sign
cantly. This finding is brought about by the imaginary part
the scattering coefficient from a PP, decreasing but slo
with r , as shown in Fig. 4~c!.

The results of a numerical simulation of Eqs.~64! in a
standing wave, and in a unidirectional ring laser, are sho
in Figs. 5–12. Simulated complex reduced amplitudesaq
provide us with photon numbers in laser modes and with
modes’ phases. Photon numbers and phases are shown
figures as two separate trajectories. The increase in bri
ness of the mode tracks in the trajectories indicates
growth of power or phase. The black background represe

FIG. 5. Simulated trajectories of the light flux~top! and phases
~bottom! of the light in individual modes of the laser with quantu
fluctuations, but no~nonlinear! mode coupling. Horizontal lines
represent individual laser modes; brighter gray values indic
higher power or a more advanced phase~mod 2p!. The maximum
of laser gain is atq5q0 .
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zero photon number and zero phase. The phase is give
the range from 0 to 2p modulo 2p. The length of the tra-
jectories extends from the start of laser oscillation to 290
in Fig. 5, and to 58 ms in Figs. 6, 7, and 9–11.

Figure 5 shows the result of a simulation of laser dyna
ics without nonlinear mode coupling, but withquantum fluc-
tuations @Eq. ~42!#. The spectral profile of laser emissio
condenses into a few surviving modes at the end of the tr
These modes show, as expected@31#, full-scale quantum
fluctuations. The autocorrelation time of these fluctuatio
that depends upon the average photon number in the
mode astq5^Mq&/g @3,31#, is about 600 ms in the centra
laser mode. Weaker modes exhibit shorter fluctuations,
they are hardly visible in the trajectory of photon numbe
~top! due to the limited dynamical range of the print. Instea
they are observed in the trajectories of the phase~bottom!.
The spectral width of the steady-state output, averaged
long time or over many laser pulses, is expected to be me
1.2 mode separations~HWHM! @3#.

The trajectory in Fig. 6~top! shows the laser dynamic
simulated with Eq.~25! at p5q, which merely takes into
account quantum fluctuations and nonlinear mode coup
only by degenerate SBS. This case represents earlier attem

FIG. 6. Simulated trajectories of the light flux in individua
modes of the laser with quantum fluctuations and nonlinear m
coupling by degenerate SBS~top!, and both degenerate and nond
generate SBS~center! in a standing-wave symmetric cavity. Phas
of the light in individual laser modes with nondegenerate SBS~bot-
tom!.
in
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to describe laser dynamics in a ‘‘photon’’ approach@16–19#.
The main features of this trajectory are~i! the redshift of the
emission, which is due to Stokes scattering of photons in
neighboring modes with smaller index,~ii ! the emission
spectrum being much broader than one without mode c
pling, as in Fig. 5~top!, and~iii ! the autocorrelation time o
the fluctuations being much shorter than expected from
influence of quantum noise only. These features were p
dicted in previous simulations@16–19#.

Figure 6~center! shows the trajectory of photon numbe
in laser modes, simulated with quantum fluctuations a
nonlinear mode coupling due tonondegenerate SBS. Nonde-
generate SBS takes into account the coupling of a lar
number of modes, and results in a larger total scattering

e

FIG. 7. Simulated trajectories of the light flux~top! and phases
~bottom! of the light in individual modes of the laser, with quantu
fluctuations and nonlinear mode coupling by PP, in a standing-w
symmetric cavity.

FIG. 8. Closed circles denote the frequency shift of the light
laser modes off the eigenfrequencies of the empty cavity, ado
from the trajectories in Fig. 7~bottom!, which depends upon the
mode index, and a fit with Eq.~65! ~solid line!. Open circles denote
the frequency shift of the light in laser modes calculated with E
~25! by using a simplified model@32# ~degenerate modesp5q
only!, and fit with Eq.~65! ~dashed line!.



de
n

ow
bu
ow

te

-
rre-
ase
ver,
rum,
away
8;

g

aser

de

-

a
nd

l
with
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than with degenerate SBS. As a result, the spectral broa
ing turns larger, and the autocorrelation time of fluctuatio
is shorter than with degenerate SBS. The trajectory sh
both a redshift and a blueshift of the output spectrum,
still the redshift dominates. The phases in laser modes sh
in Fig 6 ~bottom! do not show obvious correlation.

The trajectories in Fig. 7 show laser dynamics, simula
with quantum fluctuations andnonlinear mode coupling due

FIG. 9. Simulated trajectories of the light flux~top! and phases
~bottom! of the light in individual modes of the laser, with aunidi-
rectional ringcavity with quantum fluctuations and nonlinear mo
coupling by PP.

FIG. 10. Simulated trajectories of the light flux~top! and phases
~bottom! of the light in individual modes of the laser with aunidi-
rectional ringcavity with no quantum fluctuations, but with nonlin
ear mode coupling by PP.
n-
s
s
t
n

d

to PP in a standing-wavesymmetric cavity. Now, the emis
sion spectrum is broadened, but not shifted. The autoco
lation time for central modes is larger than before. Ph
correlation between adjacent modes is obvious. Moreo
phases permanently increase in the blue half of the spect
and decrease in the red: PP push the mode frequencies
from the gain center. This frequency shift is shown in Fig.
it is fitted with the dispersive Lorentzian profile

Dvq5
p0~q2q0!

11@~q2q0!/p1#2 , ~65!

with p052p332 Hz andp1558. Such a frequency pushin
was predicted theoretically@32# in an attempt to explain
measurements of the beat spectrum in a helium-neon l
@33#. The right-hand side of Eq.~25! shows that the fre-
quency shift is caused by the imaginary part ofSr . However,
previous models assumed only degenerate terms (p5q) to

FIG. 11. Simulated trajectories of the light flux~top! and phases
~bottom! of the light in individual modes of the laser with
standing-wave symmetric cavity, with quantum fluctuations a
nonlinear mode coupling by PPand SBS.

FIG. 12. Section of the trajectory of the light flux in individua
laser modes of a standing-wave symmetric laser, simulated
quantum fluctuations and PP. High time resolution.
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generate mode pushing. In this case the shift can be der
for modes far from emission center. It is

Dv5
g~h21!ga

2~q2q0!dv
. ~66!

The frequency shift calculated with Eq.~25! and assuming
the degeneracy of modesp andq, as in that previous mode
is also shown in Fig. 8~open circles! together with its fit
~dashed line! according to Eq.~65!. The results of this fit,
p052p3129 Hz andp158 and 2, differ significantly from
those making use of nongenerate mode pairs, though
qualitative features are fairly reproduced. Indeed, the dif
ence originates from previously neglecting nondegene
terms in the mode coupling by PP. Our results show that
approximation is insufficient for an adequate modeling
multimode lasers.

The trajectories in Fig. 9 show laser dynamics, simula
with quantum fluctuations and nonlinear mode coupling d
to PP in aunidirectional ring cavity. The autocorrelation
time for central modes is significantly longer here than t
with the standing-wave laser~Fig. 7!, and extends beyond
the simulated time range. The phase dynamics shows no
vious mode pushing. In the spectral wings of the emiss
disordered and fast-fluctuating phases show up, determ
mostly by quantum noise. In the central region, we notic
stable, but nonuniform phase distribution corresponding
phase locking of the laser modes.

Suppression of quantum noise( f q50) in a laser with
nonlinear mode coupling due to PP in a unidirectional r
cavity enforces amplitude locking of all calculated modes
the laser, which is demonstrated in Fig. 10. Starting from
random distribution, the phases exhibit, after about 5 m
quasistable distribution in all the calculated trajectories. T
case corresponds to previous approximative simulation
the influence of PP on laser dynamics@10#. The actual laser
dynamics with PP and quantum noise shown in Fig. 9 d
fers, however, from the results of that approximation, a
shows that including quantum noise is indispensable.

Simulated laser dynamics with quantum fluctuations a
nonlinear mode coupling due toPP and SBSin a standing-
wave cavity laser is shown in Fig. 11. It resembles the la
dynamics in Fig. 7 calculated for the same laser, but with
SBS. Typical features that characterize SBS~Fig. 6, center!
are invisible, but mode pushing and phase correlation, t
cal of laser dynamics with PP, are well reproduced. We c
clude that PPdominatethe laser dynamics of a multimod
dye laser even in the standing-wave configuration. This p
domination may come about by mode-locking due to
leading to particular phase relations, which are a handi
for effective FWM by SBS. However, at different values
certain laser parameters, e.g., with smaller cavity loss,
relative strength of SBS might be larger, since the scatte
coefficient of the PP is reduced, according to Eq.~52!. In
contrast, the scattering coefficient of FWM due to SBS d
not depend on cavity loss. In a unidirectional dye ring las
where PP is about as strong as in a standing-wave la
whereas SBS is some 60 times weaker, PP always domin
over SBS.
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IV. INTERMODE BEAT NOTES

A. Dynamic eigenvalues of intermode beat notes

Some specific features of the laser dynamics, that may
tested in experiments, require better time resolution of
simulated trajectories. Figure 12 shows a section of suc
trajectory with 10-ms time resolution, calculated with Eqs
~64! by taking into accountquantum fluctuations and PP.
The modeled laser consists of a 1.75-cm-long two-mir
linear cavity with the dye jet placed in the center. The pum
rate is assumed to beh52, and the cavity loss 4% per roun
trip. Figure 12 reveals strong pulsations of the photon nu
bers in individual modes in the frequency range from 10
100 kHz. Simulations show this feature neither when dro
ping all nonlinear terms nor when merely including SBS.

The oscillations are obviously a characteristic feature
the laser dynamics determined by FWM from PP, which
included in Eqs.~64!. In order to identify these oscillation
we consider, first, a unidirectional ring laser: When insert
the matching values of the spatial correlation functionsj r

⇒

51 andjp2q
↔ 50 and transforming Eqs.~64! into equations

of motion for photon numbersaq* aq , we obtain

d

dt
~aq* aq!5

Lq1Lq*

2
aq* aq1~ f q* aq1c.c.!

1(
rÞ0

F S (
p

ap1rap* D Sr*

2
aq1r* aq1c.c.G ,

~67!

where the linear loss and quasilinear gain are lumped
gether inL. The strength of FWM described by the last ter
in Eqs. ~67! obviously depends on the correlation
(pap1rap* of light amplitudes in the laser modes. These c
relations are complex beat notes that should modify the o
all laser power at each of the intermode frequenciesv r . The
equations of motion for the beat notes are also derived fr
Eqs.~64!. After suitably rearranging the triple sum, they b
come

d

dt S (
q

aq* aq1sD 5(
q

Lq* 1Lq1s

2
aq* aq1s1(

q
~aq* f q1s

1 f q* aq1s!1(
rÞ0

S2r1Sr*

2

3(
p

ap* ap1r(
q

aq1r* aq1s . ~68!

For nonlinearities with spectrallyantisymmetricscattering
coefficient,S2r52Sr* , such as FWM by SBS@Figs. 4~a!
and 4~b!#, the last, nonlinear term in Eqs.~68! vanishes. In
this case the correlation of light amplitudes in the las
modes is determined only by linear terms and stocha
quantum noise.

Let us consider nonlinear mode coupling with asymmet-
ric scattering coefficient, such as with FWM by PP@see Fig.
4~c!#, which leaves nonvanishing the nonlinear term in E
~68!. The internal sum overq consists of two parts: The firs
part contains degenerate terms,r 5s, and represents just th
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57 2199DYNAMICS OF A cw MULTIMODE DYE LASER
overall photon number, Eq.~46!. It is kept constant due to
gain saturation. The remaining sum overp is made up of
beat notes, i.e., the variables of Eqs.~68!. When keeping
only the degenerate terms (r 5s) in the right-hand-side of
Eqs. ~68!, this equation describes beat notes that unde
damped oscillations,

d

dt S (
q

aq* aq1sD 5
~h21!ga

Bmax

S2s1Ss*

2 (
q

aq* aq1s .

~69!

The complex eigenvalue of the beat amplitude, i.e., its re
nance frequencyDs and damping constantGs , is calculated
upon substituting the scattering coefficient for PP from E
~52!,

Gs1 iDs5
g~h21!

h

11 ivs /hga

11~vs /hga!2 . ~70!

The second part of the internal sum, with nondegene
termsrÞs, acts as the drive term for the damped oscilla
generated by the other beat notes, which adds a determin
contribution to the drive, but does not modify the eigenval

The oscillation frequencyDs of the beat note at intermod
frequencyvs has the same sign asvs . Consequently, inter-
mode beating takes place at the frequencyvs1Ds , which
exceeds the frequency separationvs of the beating modes
The shift Ds of beat frequencies is much larger than fou
from the dispersion caused by the laser gain, and from si
lations with the present model, but with moderate tempo
resolution only ~Fig. 8!. As a result, the sidebands th
FWM-PP contributes to the dynamics of light amplitudes
Eqs. ~64! are frequency shifted off the mode eigenfreque
cies byDs . Mixing these sidebands with the light amplitud
in laser modes gives rise to modulation of the light pow
with the frequenciesDs . These eigenfrequencies of the be
notes are supposed to appear in the photon-number traj
ries of the modes. As an example, Fig. 12 shows a sectio
simulated trajectory with 1-ms time resolution. Indeed, thi
trajectory reveals light modulation of various frequencies
a 10-kHz range. Fourier analysis yields, in Fig. 13, spectra
the light modulation in the central laser modeq0 calculated
for a 5.75-cm-long laser at pump rate 1.3, and 4% cavity l
per cavity round trip. Figure 13~a!, calculated with quantum
fluctuations only, but no mode coupling, shows a pu
random-walk process. Figure 13~b! shows a spectrum o
fluctuations in the output of a mode in a unidirectional ri
laser with quantum fluctuationsand PP. There are severa
peaks corresponding to the expected eigenvalues. The
quency of these peaks is derived from Eq.~70!, which sim-
plifies atvs@hga to

Ds5
g~h21!ga

vs
. ~71!

The strongest peak, atD l575 kHz in Fig. 13~b!, is the
fundamental pulsation frequency corresponding to the b
note fundamental frequencyv l5dv. Subharmonic pulsa
tions Ds5D1 /s correspond to beat-note overtonessdv.
Their amplitudes decrease withs increasing.
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In standing-wave cavities the spatial correlation of mod
in Eq. ~64! becomes important. A symmetric cavityzg
5L/2 has two types of spatial correlations:~i! Correlations
of copropagatingpairs of waves: With the approximation o
a thin jet, this correlations function isj r

⇒5@11(21)r #/2,
such that copropagating pairs of waves contribute to FW
only if the modes are separated by anevenmultiple (2i ) of
the fundamental beat frequency. Accordingly, pulsation f
quenciesD2i 11 from odd overtones vanish, as demonstra
in Fig. 13~c!. ~ii ! With correlations ofcounterpropagating
pairs of waves, in contrast,jp2q

↔ 5(21)p2q/2 holds. Now,
the beat notes contain terms likeaqaq1s with alternating
signs. Since the correlation is half the value ofj r

⇒ , the dy-
namic eigenfrequenciesDs8 have half the values of copropa
gating pairs, i.e.,Ds85Ds/2'D2s . Therefore, copropagating
and counterpropagating pairs of waves in a standing-w
laser generate only every second modulation frequency
compared with a ring laser.

Copropagating pairs of waves do not affect the beat no
by antisymmetric FWM~SBS, e.g.! whereas counterpropa
gating pairs impose a drive on the beat. However, there is
resonance, and the dynamic eigenvalues arise only f
symmetric FWM. Figure 13~d! illustrates that statement. I
shows a spectrum of photon fluctuations in the laser m
due to quantum fluctuations and FWM due to SBS. As

FIG. 13. Spectrum of fluctuations of the light flux in the centr
laser mode calculated from a simulation of laser dynamics w
quantum fluctuations, but~a! no nonlinear mode coupling and~b!
with quantum fluctuations and PP, in a unidirectional ring las
with quantum fluctuations and PP,~c! in a standing-wave laser, an
~d! with quantum fluctuations and SBS in a standing-wave lase
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2200 57J. SIERKS, T. J. LATZ, V. M. BAEV, AND P. E. TOSCHEK
pected, there are no peaks in it.
The pulsations of the light in individual laser modes ha

been also observed in experiment. The experimental setu
analogous to one used in previous experiments@8#. A cw dye
laser is pumped by an argon laser atl5514 nm. A jet of
Rhodamine 6G dye dissolved in ethylene glycol is set
Brewster’s angle to the optical axis in the geometric cente
the cavity. Cavity mirrors of 98.75% and 99.95% reflectiv
are separated byL518 mm. They form a symmetric, con
centric, standing-wave cavity. The rear sides of the mirr
were AR-coated and tilted with respect to the optical axis
order to avoid spectral modulation of the emission spectr
by multiple-beam interferences.

The dye-laser emission is collimated and spectrally a
lyzed by a 1-m Czerny-Tuner grating spectrograph w
0.005-nm resolution. This resolution suffices for spectra
recording individual longitudinal modes. The spectrogra
was used in two modes of operation: as a monochroma
for the observation of the temporally varying emission
individual laser modes by a photomultiplier, or as a po
chromator. In the latter version, the laser spectrum is
corded by a diode array or by a mechanical streak cam
that allows recording of spectrochronograms with simu
neous temporal and spectral resolution. The streak cam
consists of a rotating mirror that replaces the diode arra
the output plane of the spectrograph, and of a lens that
ages the ten-times-magnified laser spectrum on the scr
The moving image is photographed on sensitive 36-mm fi
~Kodak P3200!. The temporal resolution of these spectr
chronograms being recorded at 2-Hz rotation of the mirro
about 10ms. Figure 14 shows a spectrochronogram of a d
laser recorded at the pump rateh52.0. It shows strong pul-
sations of the light power in the laser modes, and resem
the spectrochronogram in Fig. 12, numerically simulated
a dye laser with the same parameters.

The temporal variation of the light flux in individual lase
modes is recorded by a photomultiplier with a spectrogra
operating in the monochromator mode. Time series w
65 536 data points separated by 2ms are analyzed by Fourie
transformation. The resulting spectrum, shown in Fig.
has two distinct peaks at 22 and 45 kHz. Since odd b
frequencies remain unshifted by PP in the symme
standing-wave cavity (D2i 1150), we assume that thes
maxima represent even pulsation frequencies atD2 andD4 .
From these data and the applied pump rateh51.5 we derive,

FIG. 14. Experimentally recorded spectrochronogram of the
namics of the light flux in individual modes of a cw dye laser in
1.8-cm-long standing-wave cavity.
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with Eq. ~71!, the total cavity loss of the laser. The obtain
value, 2.8% per cavity round trip, complies well with th
1.25% output coupling, if one ascribes 1.55% to the intrin
loss of the cavity. This value agrees with the results of in
pendent measurements of the cavity loss, 1.5–2 %, in sim
lasers when recording the laser threshold vs the transmitta
of the output mirror. Note that the experimental line shap
are broadened, a result of nonequidistant mode spac
caused by the dispersion in the cavity. In the above mo
however, we assumed equidistant mode spacings accor
to Eq. ~1!.

B. Strength of intermode beat notes

It was shown that beat notes of the laser field modes
the driving force for various types of FWM. Now we con
sider the back action of FWM, by nonlinear mode couplin
on the strength of intermode beating. As shown above, S
is only a small drive for the beat notes but no dampin
whereas PP imposes extra damping and extra driving
them. The last term of Eq.~68! is the nonlinear drive terms
of the beat notes. It is a sum of products of two beat note
r ands2r . Since the frequency shiftsDs of the beat notes
vary inversely withvs5s•dv @Eq. ~71!#, the shiftsD r and
Ds2r do not matchDs , and each beat note is driven by th
others off resonance. Thus, the extra damping of the b
notes by PP may exceed the extra drive.

Figure 16 shows spectra of beat notes calculated fr
numerical simulations for a unidirectional ring laser at va
ous moments of time after the onset of laser oscillation.
Fig. 16~a!, quantum fluctuations are absent; however, the
tial conditions are assumed to be stochastic. The first sp
trum at 50 ms shows almost equal amplitudes at all be
frequencies, i.e., the spectrum is characterized entirely by
initial conditions. With increasing duration of laser oscill
tion the beat notes decrease; they are damped by PP. Fur
more, the extra driving of the beat notes by PP at high f
quencies diminishes because the emission spectrum narr
As a result, high frequencies are damped more than low
quencies.

Figure 16~b! is calculated for the laser with quantum flu
tuations present. Here the reduction of beat notes is sm
than in Fig. 16~a!, and the stochastic driving force of quan
tum fluctuations is stronger than that of PP. The station
beat notes are determined by the balance of this stoch

-
FIG. 15. Fourier spectrum of the power in individual las

modes recorded in the 1.8-cm-long standing-wave cavity at
pump rateh51.5.
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57 2201DYNAMICS OF A cw MULTIMODE DYE LASER
drive of quantum fluctuations and their damping by PP.
This result demonstrates the importance of quantum fl

tuations when simulating the laser dynamics and taking
into account, unlike in a previous model@10#. With quantum
fluctuations neglected, PP reduces the beat notes and e
tually correlates all the emission spectrum, as observe
Fig. 10. Mode amplitudes are correlated in such a way,
the beat notes are strongly suppressed. As a result, the
pression of beat notes limits the strength of all types of FW
and establishes a stationary amplitude distribution that
pends upon initial conditions. Quantum fluctuations act a
permanent driving force for beat notes and establish the
tionary level of the beat. With PP present, this station
level is lower: PP diminishes, via mode coupling, the infl
ence of quantum fluctuations on the phase of the la
modes. An analogous effect takes place in a two-m
He-Ne laser by external modulation at the beat freque
@34#.

The influence of PP on the stationary beat spectra
shown in Fig. 17. The beat spectra are averaged over a
104 data point in the last 75% section of the simulated t
jectories, where stationary laser dynamics is reached.
gram ~a! shows beat notes with quantum noise, but FW
dropped~see Fig. 5!. The solid lines in all diagrams of Fig
17 represent spectra of beat notes with the same photon
tribution as in the simulated trajectories,but with light
phases distributed stochastically. They represent a lase
whose spectral dynamics is governed byquantum noise, and
the photon distribution among the laser modes correspo
to the actual one. With this assumption, beat notes can
calculated from the actual photon distribution forrÞ0, as

K U(
q

aq1r* aqU L 5S (
q

Mq1rMqD 1/2

, ~72!

FIG. 16. Spectra of beat notes in simulations of spectral dyn
ics of a unidirectional ring dye laser when taking into accou
FWM by PP, without quantum fluctuations~a!, and with quantum
fluctuations~b!, at various times after onset of laser oscillation.
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This procedure is proved in Fig. 17~a!, where the data points
are calculated from the left-hand side of Eq.~72!, and the
line is calculated from the right-hand side of Eq.~72!. Since
the laser dynamics in this case is governed by quantum n
only, both representations agree with each other.

Figure 17~b! shows simulated beat notes of a laser w
FWM by PP, and with quantum noise,in a unidirectional
ring cavity ~see Fig. 9!. The beat notes~data points! are
suppressed, due to the PP, below the level that prevails
comparable emission spectra solely under the action of qu
tum fluctuations~line!.

Figure 17~c! shows beat notes of a laser with FWM due
PP and with quantum noise in astanding-wave asymmetri
cavity. The gain medium is placed asymmetrically at the p
sition zg5L/10. In a standing-wave laser, the nonunifor
spatial mode correlation in the gain medium results in a s
pression of the beat notes only between certain pairs
highly correlated modes. The cavity configuration here p
vides high spatial correlation between every tenth mode.
cordingly, beat notes corresponding to multiples of ten f
spectral ranges of the cavity are reduced as compared
beat notes of the laser determined by quantum noise. In c
trast, beat notes at the frequencies with no spatial mode
relation (r 55,15,25, . . . ) areeven increased.

-
t

FIG. 17. Stationary spectra of beat notes in simulations of sp
tral dynamics of a cw dye laser with quantum noise, but no mo
coupling ~a!, with quantum noise and PP, in a unidirectional rin
cavity ~b!, with quantum noise and PP, in a standing-wave asy
metric cavity (zg5L/10) ~c!, and with quantum noise and SBS in
standing-wave asymmetric cavity (zg5L/10) ~d!. Solid lines repre-
sent spectra of beat notes with stochastically distributed li
phases.



ea
ial
s

s
rt
h

t
lie

e
,
th

at
n

t
e
la
re
e

de
f

ea

a
tr
n

s
ec

p
u

.
o

ex

i
ch
-

e
b

u
th
nt
ou
ns
ec
e
e

his
-
fec-
al-
to

ering

nt
t to
is
try

he
ing
ode
al-

the
beat
n of
ck.
rce

ser
the
er
pec-
e
urier
f a
er-

sers

cw
ies:
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Obviously, the suppression of beat notes, as it app
with a unidirectional ring laser due to its uniform spat
mode correlation, places restrictions on the relative phase
the field modes, such that phase locking occurs~Fig. 9!. With
nonuniform spatial correlation of the modes, as it appear
a standing-wave laser, the absence of suppression of ce
beat notes provides sufficient freedom for the phases suc
to allow mode pushing~Fig. 7!. Strong periodic correlation
between laser modes in a standing-wave laser might be
basis for regular dynamics, which was observed in ear
experiments@8#.

Figure 17~d! shows beat notes in the simulation of th
laser dynamics withFWM by SBS, and with quantum noise
in the same asymmetric standing-wave cavity. One notes
the beat notes are the same as in the case of domin
quantum fluctuations. This feature proves that SBS does
give rise to mode correlation~also see Fig. 6!.

For a measurement of beat notes, Fourier analysis of
recorded total laser output suffices. Since we have to m
sure beat frequencies between modes separated by a
number of mode spacings, a laser with a long cavity is
quired in contrast with the experiment on spectrally resolv
dynamics. The dye jet was placed in a standing-wave fol
three-mirror cavity. The two spherical mirrors with radii o
curvature 15 and 30 cm are highly reflecting (R>99.9%).
The output plane mirror has 0.4% transmittance. Wher
the position of the jet was set tozg515 cm, the cavity length
L was varied from 68 to 300 cm. The total laser output w
measured with an avalanche photodiode. The beat spec
was electronically reconstructed from the photodiode sig
with a spectrum analyzer~HP 853A/8558B! in the frequency
range up to 1.8 GHz.

The spectra of the recorded beat notes~cavity lengthL
5300, 157, and 68 cm! are shown in Fig. 18. The recording
consist of sharp maxima at multiples of the cavity free sp
tral range,dv550 MHz ~a!, 96 MHz ~b!, and 220 MHz,
respectively. Each maximum corresponds to one beat am
tude. All these spectra show that the beat notes are minim
at multiples ofc/2zg , i.e., at 0 GHz, 1 GHz, 2 GHz, etc
These frequencies correspond to separations between m
having a maximum spatial correlation in the dye jet, as
pected from the model.

Such a beat spectrum cannot emerge from a periodic
terference structure in the emission spectrum, since su
spectral modulation causesmaximumbeat notes at the mul
tiples of the spectral period, notminimumones. The mea-
sured beat spectra agree with simulations in Fig. 17~c!, and
prove that PP dominates the dynamics of the dye laser sp
fied above, correlates the laser modes, and reduces the
notes.

V. SUMMARY

We have presented the most complete model of a cw m
timode dye laser so far. It is based on equations for
complex light field amplitudes in laser modes and takes i
account quantum noise and FWM by PP and by vari
types of stimulated light scattering. Numerical solutio
show that SRLS as well as SBS close to the forward dir
tion do not contribute significantly to FWM. However, th
electrostrictive part of SBS in the backward direction do
rs
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contribute, although less than PP in a typical dye laser. T
result is in contrast with that of the simpler ‘‘photon’’ ap
proach to SBS, neglecting nondegenerate FWM. The ef
tive inclusion of nondegenerate FWM in our approach
lows a consideration of anti-Stokes scattering in addition
Stokes scattering, and enhances the rate of photon scatt
events.

FWM by PP and by SBS is distinguished by differe
spectral symmetry of scattering coefficients with respec
the frequency of the material excitation: the coefficient
symmetric for PP and antisymmetric for SBS. The symme
of scattering coefficient for PP results in the shift of t
nonlinear drive of the beat notes off resonance, and damp
the beat notes. In contrast, SBS does not influence m
correlations. The effect of the PP-induced dynamic eigenv
ues, i.e., the shift of the beat notes off the multiples of
cavity free spectral range and the suppression of the
notes, causes mode correlations and self-suppressio
FWM, i.e., PP control themselves by negative feedba
However, quantum noise acts as a continuous driving fo
supporting FWM.

Two characteristic features of the influence of PP on la
dynamics, predicted by the model, have been observed in
experiment:~i! Pulsations of the photon numbers in the las
modes have been detected by recording mode-resolved s
tral laser dynamics.~ii ! The suppression of the intermod
beat notes generated by PP has been proved by Fo
analysis of the records of spectrally integrated output o
laser in a standing-wave cavity configuration. These obs
vations show that PP dominate laser dynamics in dye la

FIG. 18. Experimentally recorded spectra of beat notes in a
standing-wave dye laser with three different asymmetric cavit
zg /L50.05 ~a!, 0.096 ~b!, and 0.22~c!. Herezg is kept constant,
andL is varied.
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with the typical parameters~length, loss, . . . ! used in the
experiments. However, the relative strength of PP and S
may change by variation of these parameters. Smaller ca
loss, e.g., reduces the influence of PP and might increas
relative influence of SBS on laser dynamics. Moreover,
tothermally excited SRLS might become important with
larger cavity length. Dispersion in the cavity might also b
come important and should supplement the model. The
proach used here for a description of the dynamics of a m
timode laser is a prerequisite for a realistic evaluation of
.
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ultimately achievable sensitivity of the emission spectrum
a cw multimode dye laser to intracavity absorption, a pro
lem of superior practical interest.

ACKNOWLEDGMENTS

We thank S. A. Kovalenko for helpful discussions. Th
work was supported by the Deutsche Forschungsgem
schaft and, in part, by the Volkswagen-Stiftung.
ys.

,
er,

pt.

.

er-

e-

t.
@1# L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V
Titova, and S. S. Churilov, Pis’ma Zh. Eksp. Teor. Fiz.12, 60
~1970! @JETP Lett.12, 43 ~1970!#.
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