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Adaptive single-shot phase measurements: The full quantum theory
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The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with
an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator
detuned from the systefineterodyne detectigrso that it is sometimes in phase and sometimes in quadrature
with the system over the course of the measurement. This enables both quadratures of the system to be
measured, from which the phase can be estimated. One [dfi.usl. Wiseman, Phys. Rev. Let?5, 4587
(1999] has shown recently that it is possible to make a much better estimate of the phase by using an adaptive
technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot
measurement. In a previous wofkl. M. Wiseman and R. B. Killip, Phys. Rev. A6, 944 (1997] we
presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the
phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is
necessary for calculating the phase variance for fields with small photon numbers, and also for considering
figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to
heterodyne detection as far as the variance is concerned. However, the tails of the probability distribution are
surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of
error in phase-based optical communicati@1050-29478)07303-X

PACS numbeps): 42.50.Dv, 42.50.Lc

I. INTRODUCTION states, and yet in the limit of infinite local oscillator strength
and perfect photodetection a homodyne measurement ap-
In a typical textbook of quantum mechanics one mightproaches a quadrature measurement. Nevertheless it is true
find a statement such as “Every physical quantfyhas that phase cannot be measured exactly, even in these ideal
associated with it an Hermitian operafor A measurement limits. The reason for this will be explored in the discussion
of Z for a system with state matrig will yield a resultz, section.
which is an eigenvalue dZ. The probability of getting the  Although the quantum phase of a single mode field cannot
resultz is equal to(z|p|z) whereZ|z) =z|z).” Unfortunately ~ be measured exactly, it can be measured approximately. As
the number of measurements of physical quantities for whiclvell as being interesting for theoretical reasons, there may be
this quantum measurement theory applies is very small. Newpractical reasons for wishing to measure phase. For example,
ertheless there are some in the context of quantum optics. fuantum-limited communication could be possible by encod-
is only detector inefficiencie@ow quite smallthat limit the  ing information in the phase of single-mode pulses of light.
measurement of the photon number with operatta and  The first requirement for such a scheme would be to create
quadratures with operators such ¥s-a+a' for single- states with very well-defined phase. This has been investi-
mode optical fields. The former can be measured by direcyjated by various authofsee Ref[4] for some of these The
photon counting and the latter by adding an essentially clasaext step would be encoding the signal, which is easy to do
sical field of known phasécalled the local oscillatgrto the  using an electro-optic modulator. The third requirement is
quantum field before counting photorisee, for example, for the receiver to measure the encoded phase as accurately
Ref. [1]). as possible. This is a problem that seems not to have re-
There is one obvious optical quantity of which we cannotceived the amount of attention it deserves, given that it is as
make a quantum-limited measurement: the phasef the  important to communication as the generation of states with
electromagnetic field. Despite the difficulties in defining awell-defined phase. Another application for accurate phase
phase operatofwhich can be overcomg2]), the “phase measurements could be in inferring the properties of other
eigenstates’|¢) are independent of any phase operdgge quantum systems that can cause a phase shift, such as the
Sec. Il B and have been recognized for a very long tilBe  presence of an atom at a particular point in a single-mode
The opinion is sometimes expressed that the reason one castanding wave.
not measure phase is that the phase eigenstates do not haveThe standard way of measuring phaapproximately is
(even approximate)ycompact support on the number states,to use two simultaneous homodyne measurements of or-
so that a measurement of phase would require infinite enthogonal quadratured&nown as eight-port homodyne detec-
ergy. This argument is specious, because the eigenstatest@n), or heterodyne detection, which are equivalent in an
a+a' also do not have compact support on the energy eigerappropriate limitf5]. A way to improve upon this was first
suggested by one of U$]: single-shot adaptive measure-
ments. By this we mean the use of measurement results from
*Electronic address: wiseman@physics.ug.edu.au earlier stages of aingle measuremernb affect the condi-
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surement is completely described by the probability for each
PD of the possible results to occur. Let the set of all possible
: measurement resulisbe denoted). Then the measurement
System/ is specified by a probability measu(@M) on €. If we de-
""""" v 4 note the PM a$ then for any subseE C (), we can identify

BS | — P(E) as the probability to obtain a measurement reault
| e E. Of course this requireB(Q)=1.
oM< f <% For quantum mechanical systems, the most general way
. of generating a PMP is as the expectation value of an op-
Local | erator measur€ on (). That is, for a quantum system with
Oscillator ! SG state matrixp,
f’irgolglssor P(E)=TrpF(E)]. 2.

ObviouslyF(E) must be a positive operator, and by conser-
FIG. 1. Diagram for the experimental apparatus for making anvation of probability
adaptive phase measurement. Thin dashed lines indicate light rays
and the thin continuous line labeled BS represents a 50/50 beam F(Q)=1. (2.2)

splitter. Medium lines represent electro-optic devices: photodetecl-: thi E babilit t
tors (PD) and an electro-optic phase modulatBOM). Thick lines or this reason we cal- a probability operator measure

represent electrical components: a subtractor, a multiplier, an inte(POM)’ or sometimes awffectvalued measurgs,9]. Note

grator, a signal generat(8G), a signal processor, and a digital read that even for a subsé with a single elemenk, F()) is not
out giving the measured value @fe[0,27). The necessity for Necessarily a projector.

these particular electrical elements alone is a consequence of the

feedback algorithm explained in Sec. Il B. B. POMs for phase measurements

tions of the measurement in its later stages. In this case it Now consider the case where the measured quantity is to
means using the photocurrent up to titrte control the local be a phasep of a single-mode photon field, so th&tis a
oscillator phase at time¢ by a feedback loop, during the POM on Q=[0,27). Quantum mechanically this phase
detection of a single single-mode pulse. In Réfl we in-  should in some sense be conjugate to the photon number
vestigated a particular feedback algorithm, illustrated in Figoperatora'a, but as long as we stick with POMs to describe
1, using semiclassical theory. We showed that for large fieldshe measurement there are none of the difficulties associated
an adaptive measurement is a much closer approximation gith defining a phase operatfi]. Since phase is a continu-

a true phase measurement than is heterodyne detection. ous variable, we will usé(¢) to denote the phase POM

~ In this paper we continue our analysis of the simple adapgensity. The completeness relation for a phase POM is there-
tive algorithm, but this time we present the full quantumifgre written as

theory of these adaptive phase measurements. The back-

ground theory required is presented in Sec. Il. This intro- 2m _

duces the theory of probability operator measuROMS, fo doF(4)=1. 2.3
which is required for approximate measurements. It also

summarizes the theory of POMs for phase measurements aig explained in Ref[7], for F(¢) to be invariant under
POMs for measurements using a large local oscillator. Iphase shifts, and to be unbiased, implies that it can be written
Sec. lll we derive expressions for the POMs for the twoin the form

adaptive phase measurement schemes of[REfln Sec. IV

we use these POMs to calculate phase variances, for coherent 1 & b(m—n)

states, and for phase-optimized states with an upper bound F(¢)= ﬁn;:() [m)(nle Humn- 2.4

on the photon number. We compare our ex@piantum '

numerical results to the asymptotieemiclassicalanalytical  HereH is a positive-semidefinite Hermitian matrix with all
results obtained in Ref.7]. One feature that can only be entries real and positive, anfim) is the number state
calculated using the full quantum theory is the overall shapeaTa| m)=m|m).

of the probablllty distributions, including the tails. This is The Comp|eteness conditiqd.3) |mp||es that

required for determining the probability of error in phase

communication schemes. This aspect is investigated in Sec. vVm=0 H,,=1. (2.5

V, again for coherent states and for phase-optimized states o N . ] .

with an upper bound on the photon number. Section VI conThe posmwty condition on the matri obviously requires '
cludes with a discussion on the ultimate limits to phase meathat the off-diagonal elements be less than or equal to unity.

surements. A unique phase measurement is defined by specifying that all
of the off diagonal elements be equal to unity. This is what
Il. PROBABILITY-OPERATOR MEASURES has recently been called a canonical phase measuré¢Bient

although its special role was recognized very early in the
history of quantum theor{3].

If (as in the present caswe are unconcerned about the In realistic phase measurements the off-diagonal elements
fate of the system after it has been measured, then any meb, , will be less than unity, but fofm—n|=1 andm>1

A. General theory of POMs
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they should be close to unity if the measurement is to be anced(50/50. Then, ignoring vacuum fluctuations, the two
good phase measurement, as will be seen in Sec. IV. In faclields at the two output ports of the beam splitter are equal to
in all of the measurements we examine, we have
- + Ral Py a-iot
h(Mm)=1—Hy, sy =O(m™12). 2.6 b.(t)=+u(t)/2(axBe™V)e ' (2.10
wherea is the annihilation operator for the system and the
real numbeiB is the coherent amplitude of the local oscilla-
tor. This is normalized so that the instantaneous rate of pho-
1 todetection at each detector@bl(t)bt(t)y We have as-
Fe ¢)= 2—|¢><¢|, (2.7  sumed that the intensity profile of the local oscillator is the
m same as that of the system. However, we have included an
arbitrary phase variatio®(t) of the local oscillator relative
to the system. The total number of photons in the local os-
% cillator is 82, so we are interested in the limi?>1(a'a).
| )= 2 e"?|n) (2.8 For homodyne detectio® (t)=®,, a constant. For hetero-
n=0 dyne detectionb (t) = ®y+tA, whereA>T is the detuning.
The signal of interest is simply the difference between the

For a canonical measuremédr{im) is identically zero. In this
case we can write the POK2.4) as

where| ¢) is an unnormalized phase eigenstate

as referred to in the Introduction. two photocurrents at the two detectdiabeled =). If we
denote the number of photocounts at each of the detectors in
C. POMs for dyne measurements the time intervalt,t+ 8) by SN..(t) then we can define the

ignal photocurrent as
We now turn from the POMSs for phase measurements o? gnatp

a single-mode field to the POMs for measurements on a SN, (1)— SN_(1)
single-mode photon field made by interfering the light from L(t)= lim lim — -~
that field with another field that has a macroscopic coherent St—0B— Bét
excitation. This can be done at a beam splitter, and the two

output fields of the beam splitter can then be detected bygie that the two limits here do not commute. The lingit
normal photodetectors. The second field can be treated clas- implies that both photocounts will be dominated by the

sically as ac number, and is known as a local oscillator. All ¢,ntribution from the local oscillator. The fact that the limit
practical phase-sensitive measurements require a local oscg‘t_@ is taken second indicates that we are only interested in

lator, to act as a phase reference. If the local oscillator ighe fiyctuations il (t) on a time scale much greater than the
resonant with the system field then this type of measuremeny,,,, time~u(t) 182 between photodetections.

is known ashomodynedetection. If the local oscillator is The general quantum theory of dyne measurements was
detuned(outside the bandwidth of the system figttlen this derived by one of us in Ref10] for the case where the

is known asheterodynedetection. In considering phase mea- g stem mode is derived from an exponentially decaying cav-
surements we will have to consider other sorts of measurqw so thatu(t) = ye~ " wherey is the cavity linewidth. This

”?”e”tts |n\I/oIv_|ng mterferer;ce with a q_uazlclflssma][ local Os‘ls easily generalized for arbitrary(t). First we define a
cillator. In ignorance of any received term for such g i odpor’ o

measurements we will call them examplegdghedetection,

so that homodyne and heterodyne are obviously special .

cases. . _ . v=J’ u(s)ds. (2.12
Let us assume that our single-mode signal field has a tem- 0

poral pulse shapa(t) that is positive and normalized as

(2.11

T This is dimensionless, and increases monotonically with
f u(t)=1. (2.9 from 0 to 1. For the c:lslseu(t)zyefyt we havev=1
0 —e . The photocurrent in terms of is scaled so that

Here we are obviously ignoring the phase variation at optical I(v)dv=1(t)dt=dv 1(t)/u(t). (2.13
frequencyw; u(t) is the envelope function. The total tinfe
is necessarily much greater than %, so that the pulse can
be considered monochromatic. This is essential in order fO{O timet is the complete photocurrent recokft’) from t’

the dyne measurementwhich are phase-sensitive measure- _ ", %/ [or equivalently,l (v') from v’ =0 to v’ =v)]
ment3 to be quantum limited. That is, for quantum effects toThis record is, in theory at least, a continuous infinity of real

provide the limit to the phase uncertainty in the measure- D . .
ment. If the characteristic spectral width of the pulBe numbers, which is an impractically huge amount of data.

=T Lis too | then the bh tainty will be domi Fortunately it turns out that there are just two sufficient sta-
- IS too large then the phase uncertainty will be domi-yqiioq 4t scaled time (henceforth called simply time

_nated by the termd¢~T'/w coming from the uncerta_unt]] namely, the two complex numbers
in the frequency. In all that follows we assume this uncer-
tainty to be negligible.

For simplicity we wi]l take t.he beam §p|itter at which the A,= fvl(u)ei(l)(u)d u, (2.14
system and local oscillator fields are interfered to be bal- 0

Now the measurement result for a dyne measurement up
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BU=—er2i¢(“)du. 219 G'(a,6)=Q'(a,€)|a,e)a,el, (2.23
0

whereQ’ is some new positive function af, e. In this case

We call these the sufficient statistics because, as shown #fe set of all measurement results (5= C® C, where C
Ref.[10], the POM for the measurement at timep<1 is  denotes the set of complex numbers. If we imagine varying
given by the state of the systefs) (assumed puje then the prob-
ability to obtain the resultr, e is
G,(A,,B,)=Q,(A,,B,)exp3B,a?+A a’
o(Ay,By)=Qy( )exp(3 ) P(a,€)|(at,e )2 (2.24
X (1—v)2'"42exp 1B* a2+ A* a), _
v v Provided exp|)<|a|, the squeezed stale,e) has a well-
(216  defined coherent amplitude. Hence from Eq(2.24) if the
unknown system statéy) is also localized in the phase

whereQ, (A, ,B,) is a positive function, which will be de- 00 'it is highly likely that it must have a coherent ampli-

fined shortly. This implies that the probapility for obtaining tude close tax. This fact will be used later to good effect.
any photocurren{l (_u):Osu<v}_ is determined only by the We must now address the issue of hA,B) is found.
two complex functionals of this currer, andB,. Any , pet [10] it is shown thatQ(A,B) is the joint probability

other features ofl (u):0<u<uv} are completely irrelevant.  isinution thatA,B would have if the photocurrerit(s)
It might be thought that the second integBa) does not were given by

depend on{l(u):0<u<uw} at all because the photocurrent

does not appear explicitly in Eq2.195. However, it may | (v)dv=dW ), (2.25
appear implicitly if the local oscillator phask(v) depends

upon{l(u):0<u<uwj}. This is precisely the situation we will \yheredW(v) is the infinitesimal increment in a real Wiener
consider later to construct a phase measurement. When WRocesq12] satisfying

do so, the theory presented here shows dhét) should be

made to depend ofil (u):0<u<uwv} only through the two (dW(v))=0, (2.26
integrals(2.14),(2.195. That is to say, we should have

O(v)=1,(A, B,) (2.17) dW(v)dW(v)=dt. (2.27)

. . . I In Ref.[10], Q(A,B) was called theostensibleprobability
fe‘;rté‘r’n”;f (D%Sﬁé%tlre"s‘iﬁevpvﬁ?cdhe)ilﬂﬂ‘itﬁnaﬂ'igtﬁ'i‘fw'i an  istribution for A,B. It is the probability distribution that
y_p_ " atas o A,B would have if there were no signal whatsoever; that is,
In the limit v—1, (1~v)* **~|0)(0|, where|0) is the it the system were prepared in the vacuum state. The noise in
vacuum state. So, dropping the subscripvhenv=1, we  Eq. (2.25 then represents the local oscillator shot ndise
can write the POM2.16) as vacuum fluctuations if a Heisenberg picture interpretation is
~ ~ preferred. The presence of a nonzero signal determines the
G(A,B)=Q(A,B)[¢(AB)}¥(AB)[, (218  actualprobability distribution through the PONR.18). That
is to say, if the system state matrix gsthen the true prob-

Whereﬂ(A,B)) is an unnormalized ket defined by ability density is
|#(A,B))=exp(3Ba’?+Aa")|0). (2.19 P(A,B)d?Ad?B=Q(A,B)(%(A,B)|p|#(A,B))d?Ad®B.
. : o . (2.2
With a little operator algebra it is easy to show that this is
proportional to the squeezed stald] Before moving onto specific examples in the following
section, we will derive some general results regarding the
|ar,e)=exp(aa’— a* a)exp(3€*a®~€a'?)|0), ostensible distributio®(A,B). First, the ostensible mean of
(220 Ais
where 1
<A>Q=f (e dW(v))=0. (2.29
A+BA* 0
-—, 220 |
1-18| This holds true even ifP(v) depends on the photocurrent

record{l (u):0<u<uv} becauseéN(v) is a strictly Markov-
_ —B atanhB| ian process. Second,

E_
B

111 1
From Eq.(2.15), it is evident thaiB|<1. For the schemes (A%)q= fo fo (e HIPWdW(U)dW(v)) = J; do(e? ™))
we will consider|B| <1 with probability one, so that the two
expressiong2.21), (2.22 are well defined. =—(B)g- (2.30
If we rewrite the POM(2.16) in terms ofa, € instead of
A,B, we have Third,

(2.22
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FIG. 2. Plot of theH matrix that defines the POM for phase measurements as iri2=, for the four schemega) canonical,(b)
heterodyne(c) adaptive mark |, andd) adaptive mark 1.

11 1 Having specifiedP(v) all that remains to completely de-
<|A|2>Q:J j <dW(U)dW(U)>:f dv=1. (23D  scribe this heterodyne measurement is to deteri@i®,B),
070 0 the ostensible probability distribution for the measurement
resultsA,B. Because the abov@(v) is independent of the

Il. PHYSICALLY REALIZABLE PHASE photocurrentl, the “result” B is a constan{rather than a
MEASUREMENTS random VariablkWith value
A. Heterodyne measurements 1
. . B=— 2i(Py+vA 2
As noted in Sec. Il B the ideal form of phase measure- fo dvexp 2i(Potva)] 32
ment is a canonical phase measurement in whigh, from
Eq.(2.9) is equal to un?ty for alim,n. This is plotted in Fig. _ 1—exp(2iA)
2(a). All physically realizable phase measurements fall short =exp(2idy) > A —0, 3.3

of this ideal. The simplest method for making a phase mea-

surement is via heterodyne detection. As explained above, i . i

this involves a local oscillator that is far detuned from theWhere the final limit results from taking —c. The only

system. The linear variation of the phase is in fact not essep/arable in this case is therefore

tial; all that is required is that all relative phasésf the L

system with respect to the local oscillgtobe sampled _ -

equally and on a time scale much shorter than the reciprocal A Jo dol(v)exii(o+vA)]. 34

bandwidth of the system. As long as there is a record of the

local oscillator phase as a function of time, the informationTo find the ostensible statistics fér we treatl (v)dv as an

in the photocurrent record can be recovered. For definitenesgydependent Gaussian variall®V/(v) for each infinitesimal

however, we will take the local oscillator phase to simplyinterval[v,v+dv). SinceA is just the sum of these Gauss-

change linearly with(scaled time v. That is, ian variables, it must ostensibly be a Gaussian variable itself.

From Egs.(2.29—(2.31 with B=0 it follows that the osten-

P(v)=Potua, 3D giple distribution forA is the rotationally invariant Gaussian

whereA>1. QM(A)d?A=7"texp —|A|?)d?A. (3.5
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From these results and E.18 we find the POM for Second, what do we choose to be our best estimate of phase
heterodyne measurements to be ¢ once the measurement is completed? We will postpone
_ _ answering the second question. It was already noted above

G"(A)=7"texp —|AI®)[#(A0)¥(A0)|. (3.6) thatthe theory of dyne measurements implies that we should

chooseng(u)=fU(AU ,B,) for some functionf. For the re-

Now from Egs. (2.20—(2.22 it is easy to verify that mainder of this paper we choose

|%(A,0)) is simply proportional to the coherent stgi&)
whereA is the coherent amplitude usually denotedt turns S(v)=ar 31
out that the proportionality factor is just expl/2) so that plv)=arh, (312

we can rewrite Eq(3.6) as as in Ref[7]. As outlined in that reference, the motivations

het oy — 1 for this choice are as follows1) It is suggested by the above
G A) =7 AXA. (3.7 analysis for heterodyne detectig®) As shown by one of us
This result has been obtained many times before by othdfl: it reproduces the canonical result if the system has at
means; for one example see REE]. The factor of 71  Most one photon(3) It gives a feedback algorithm that
remains because the coherent states are overcomplete.  Would be easy to implement experimentalfg) It is math-
In the context of this paper we are interested in hetero€matically tractable. When we say it can be exactly solved,
dyne measurements only insofar as they enable us to mak¥e mean that we can determine the POM. IO do this requires
an estimate of the phase of the system. If there is no prioPnly the ostensible probability distributio {A.B) given

information about the system then HG.7) suggests a good the feedback algorithm, Eqe3.11) and(3.12). To find this it
estimate of the phase to be is convenient to recast the ostensible integral equations

(2.14,(2.15 as the ostensible ltostochastic differential
Pher= argA. (3.9  equations

The POM for this phase estimate is found simply by margin- dA,=e @ dW(v), (3.13
alizing the modulus of\. That is,
dB,=e?*dy, (3.14

Fhe =f°°AdA G"e(|Ale'?). 3.9
() 0| | ddlAD t(l ) (3.9 with the initial conditions

Evaluating this in the number state basis yields the métrix Ap=By=0. (3.1
of Eq. (2.4) to be _
With the above feedback algorithm we hae®®)

het TL(N+m)/2+1] =iA,/|A,|. This gives
™ 319
n-m dA,=iA,dW(v)/|A,|. (3.16

CIearIyHﬁﬁE 1, as required, while the off-diagonal elements

decrease with distance away from the diagonal. These feg- s ¢an be solved by transforming to polar coordinates

tures can be seen in the matrix plotlf in Fig. 2(b). o(v)=argA, and|A,|. Using the Ifocalculus we find
2_
B. Adaptive measurements d|A,[*=dv, (3.17
A heterodyne phase measurement is not as good as a ca- dgAD(v)ZdW(v)/|Av|. (3.19

nonical measurement because it is actually a measurement of

both phase and amplitude, with the latter information beingrye first of these can be solved trivially to yield,|= N
) .
thrown away. In order to make a better phase measuremer,5; is the modulus oA evolves deterministically and in

one would like to concentrate on measuring the phas articularl Al=1 . as required by Ed2.31). Substituting this
quadrature. This can be done by homodyne dete§@ihrbut i?r)no the s|ec|ond,givesq y Eq2.33. g

only if one already knows the phase of the system. A true
phase measurement should work even if one has no informa- R R 1

tion about the system phase. Nevertheless we can use this go(v)=(p(0)+f dW(v)/\/E. (3.19
idea to construct a true phase measurement as follows. 0

Rather than measuring a fixed quadrature, we control the R

local oscillator phase as a function of time in order to mea-Here ¢(0) is an arbitrary initial phase. It is irrelevant to the

sure theestimatedbhase quadrature. That is, we defv) to  Problem because the divergencevat0 of the integrand in
be equal to this equation means that the initial phase will be randomized

A immediately:
D(v)=¢(v)+ 72, (3.11)

1
~ o 2 = =
wheree(v) is theestimatedphase of the system at time {¢%q fo dofv=c. (320
Two questions remain to be decided. First, given our mea-

surement recordl (u):0<u<v} how do we decidep(v)?  Thus the ostensible probability distribution fAris
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1 2m - -
2(A)d*A= S(|Al=1)|Ald(A[) 5—d(argA). Fad(d)):Jo dGDJ fdzC G*{¢,C)8(¢— dad ¢,C))-
(3.2) (3.29

We require the joint ostensible probability distribution  There are constraints on the functigng,C). Clearly if
Q3YA,B). But rather than work wittB, it is more conve- the phase of the statg is rotated by some anglé, the

nient to consider the variable probability distributionP . ¢)=Tr[ pF.{#)] for ¢ should
) . be shifted similarly. Now to rotate the phase of the stat® by
C,=e" 2i<p(v>J' edie(dqy. (3.2  isequivalent to rotating that of the POM byé. This has the
0

effect of replacingd(e'¢,e?¢C)) by
It is easy to prove that foy =1 e—ioa*am(eu}; ezi;C»:W(ei({o— 0) e2i(€p—€)c)>.
C=BA*/A, (3.23 (3.30

Thus the distributiorP . ¢) will shift by the desired amount

so thatA,C can replacéA,B as the sufficient statistics. The if and only if ¢y is given by

advantage of the variablg, is that, from Eq(3.22 and Eq.

(3.19, it obeys the stochastic’ ltdifferential equation bl #,.C)=0+g(C), (3.30)

4c = — 2idW(v) N 2dv C +do (3.24 for some arbitrary real functiog of C. Furthermore, it can
v Ju v ' ' be shown that forH,,, to be real and positive we need
g(C*)=-9(C).
with the initial conditionCy=0. Since neither this initial
condition nor the above differential equation involve the 1. Adaptive mark | measurements

value of&(O) (which is essentially random as noted abgpve The simplest choice ig=0. This corresponds to
the final value ofC will be ostensibly independent of that of
A. That is, b= (p argA. (3.32

Q*A,C)=Q¥A)Q(C). (329  That is, the phase estimaie used in the feedback loop is
. also used as the final phase estimate. We call this the adap-
In fact, given the above result E¢3.21) we need onlye tive mark | measurement. In this case the POM is
=argA so that

do F'(¢)=J szc G4 4,C).
QAC)d’A d°C——QitC)d’C.  (3.26

= d2CQ.(C)|P(e'?,e?*C)) (e ¢, ¢C)|.
The problem remaining is thus to fir@9C). It has not f f QO 2AC |

proven possible to find this analytically. However, we have (3.33

been able to find the exact values of the moments This POM can be easily evaluated in the number state

NM_ /AN~ m basis using the definitiof2.19. The result is in the form of
M, (C,C, >Q (327 Eq. (2.4 with the matrixH given by
via a recurrence relation. This is done in Appendix A. For (/2] [n/2]
our purposes these moments are sufficient so we can assume H = 2 YmpYng(CP(C*)%o, (3.34

the distributionQ.(C) known. From Eq.(2.18 The POM
for the resultsp,C under the feedback algorith8.11) and

(3.12 is th mi2] |n/2
12 is thus
:pzo qZO YmpYnqM ™. (3.39
G*($,C) dp d2C=(7(e%,e%C))(P(e'*,e?*C))|

d
x5 d2CQH(C). (3.29 Jmr

- 3.3
TP 2P (m—2p)1 p! (3:39

Here|m/2| is the integer part om/2 and

Since the point of this exercise is to construct a phase
measurement, we want ultimately to calculate some phasehis is an exact expression since the moménts? can be
bad @,C) from the sufficient statisticg,C. We are not con- calculated exactly. It is not obvious from this definition
strained to choosé even though we have been using it asHna=1 for all n, but this can be verified computationally.
our estimated phase in the feedback loop. Therefore the gen- The matrixH}, is plotted in Fig. Zc). It appears not
eral expression for the POM of our adaptive phase measurgreatly different from that for the heterodyne measurement.
ment is One difference is thatﬂ HOm for all m, and in particular
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that forn,m=1, H\, \=1. This is identical to the canonical  The matrixHy,, for n,m up to 8 is shown in Fig. @).
measurement and as good as possible, as first revealed fiom this it is apparent that the adaptive mark Il scheme is
Ref.[6]. This result shows that for very weak fields the adap-9enerally much closer to a canonical measurement in this
tive mark | measurement is significantly better than the stantange than are either the heterodyne or adaptive mark |
dard heterodyne technique. For moderate fields it is not siggcheme. Indeed, all the matrix elements are above 0.7, and
nificantly better(as Fig. 2 shows As we will show later, for ~ all are greater than or equal to the heterodyne matrix ele-
large fields it is very much worse. Evidently the adaptivements. The only place where the adaptive mark Il scheme is
mark | scheme is not the scheme we would choose for modbferior to the adaptive mark | scheme is for very low photon
practical situations in which the photon number per pulse i§lumbersHg,<1 unlike H, . We will show in the next sec-

very large.

2. Adaptive mark Il measurements

tion that the superiority of the mark Il scheme over the other
two schemes continues for large photon numbers, as quanti-
fied by the measured phase variance of various states.

A generally better result can be obtained by considering a

final phase measurementg = ¢+9g(C) with g(C)#0. Re-

call the result Eq(2.24) obtained above, that the probability
of obtaining a measurement result is proportional to the
squared inner product of the system state with a squeeze‘_ﬂ1

state
P(a,e)x|{a,e|¥)|? (3.37

Herea, € are defined in terms d&,B by Egs.(2.21), (2.22.
We are interested in the case when the stajehas a well-

defined(but unknown phase. Since any physical state will
have a finite mean photon number this means that it mu
have a large coherent amplitude. As argued in Sec. Il C, it is

most likely that this coherent amplitude will be closedo
Now in terms of the variableg,C we have

e¢(1+C) 338
= ——— . .
1-|C|?
This suggests the mark Il phase estimate
dy=arge=g-+arg1+C). (3.39
That is, we choose the functiar(C) so that
. [1+C
i9(C) —
e 17 CF (3.40
With this choice
Fl(¢)=/[d’C G*{¢p—arg1+C),C]. (3.4)
The H matrix is therefore
Lm/2| |n/2| 1+C (n—m)/2
n _ p q
Hmn= pZO b 'Ymp'ynq< 1+ C* CP(C*) >Q
(3.42

Unfortunately[ (1+ C)/(1+ C*)]("~™"2 is not a polynomial

in C andC* so we cannot obtain an exact answer in terms o
the known momentdM P9, However, from the definition
(3.22 it is apparent that the modulus of the random variable

C is strictly bounded by unity. In facC)qo=(C*)q

=(C*C)o=1/3, and all higher moments are smaller. Hence

the MacLaurin series fdr(1+ C)/(1+C*)]"~™"2 will con-

IV. PHASE VARIANCE
A. Phase variance andH

Because phase is a cyclic variable, the definitions of mean
d variance that apply to the real line are not applicable.
The sensible starting point for these two statistics for a cyclic
variable with distributionP(¢) is

M=f e?P(4)d¢. (4.9)
S‘[he mean phase can then be defined to be
P=arqu, (4.2)
and the phase variance
V=|u| 2-1. 4.3

It can easily be verified that these definitions go over to the
usual ones appropriate for the real line whefty) is suit-

ably localized(so that 1-|u|<1). There are of course other
definitions of the variance in terms ¢f:| that would also
give the correct limi{13,14]. The advantage of the one pre-
sented here is that it can be used to derive an uncertainty
relation

4v=((a'aa'a)—(a'a)(a'a)) 1, (4.9
as shown by Holev§15]. This inequality holds for the vari-
ance of anyP(¢) arising from a phase measurement con-
forming to the definition in Sec. Il B.

Without loss of generality we can consider a system state

|¢>=r§0 aln), (4.5

with real number state amplitudes, so that it is guaranteed
to have a mean phase of zero. The probability distribution
from a phase measurement described by a P@M with
matrixH is

1 < .
P(o)= Engzo ’pm’pnel(ﬁ(m_n)Hmn- (4.6

For such a system we have

verge rapidly and so can be well approximated by a polyno-

mial. Using an expansion to 100 terms, we have evaluated e 2

this POM matrix elements fan,m up to 100.

1
n,m=0 2

f A P %
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:ngo ‘//n+1‘//an+1,n- (4-8)

Thus the only part oH that contributes to the phase variance
is the subdiagonal

Hn+l,n51_h(n)- (4-9)

-
o
QI
4

4 %
i

o

i
!y
+

+

Althoughh'"(n) is not known exactly it was calculated to
a very good approximation fon up to 100, as explained
above. For heterodyne detection and adaptive mark | detec .
tion we have exact results and for a canonical phase me: RXe. T
surement of coursbB®®\(n)=0. For large photon numbers it e,
is more useful to have approximate asymptotic expression : R
for h(n) for the three physically realizable schemes. These 1072

can be derived using semiclassical dyne detection tH&Qry ! Coherentzstate ampalitude 4
The results are

Phase Variance

h"®{m)=(8m)~*+0(m™2), (4.10 FIG. 3. Plot of the exadipointy and asymptoticlines) expres-
sions for the phase variantg,, of a coherent state of amplitugk
hl(m)z(Smllz)_l*' O(m_l), (4.1 vs B under the four schemes: canonical (* and solid )irretero-
dyne (O and dotted ling adaptive mark [+ and dash-dotted ling

h"(m)=(16m*?)~1+0O(m~2). (4.12  and adaptive mark 11X and dashed line

As will be shown in Secs. IV B and IV C this leads to a Clearobtained numerically from Eq(4.14, and the asymptotic

superiority of the adaptive mark Il scheme over the hetero,q ¢ Eq.(4.16 for 3 from 1 to 5. The latter corresponds to

dyne scheme, and of the latter over the mark | scheme, fof . o4n photon number of 25, which is evidently large

measuring the phase of states with large photon numberg_nough for the asymptotic results to hold quite well.
Furthermore, it is shown at the end of Appendix B that the

adaptive mark Il scheme is the best scheme for measuring

. . X 2. Heterodyne
large fields given the feedback algorith®12).

For heterodyne detection we can use the exact expression
B. Coherent states Eq. (3.10 to get

1. Canonical

3
A coherent state of h I't h ff - T{n+z)8"
coherent state of mean phase equal to zero has coeffi- _ 2
cients n=pexp— B )ngo T 2T(+1)" 4.1
n . . .
U= expl — B212) B . 4.13 In terms of confluent hypergeometric functions, this is
Vnt 5
Thus for a canonical measurement we can use48) with F(E) ,
Hmn=1 to get M=BeXF(—B2)W1F1(z;2;B2)- (4.18
A : :
M:exq_lg2)2 - (4.14 Using the analog to Euler's formula, 412 of [16]
n=0 pn! asymptotic expansion
By expandingyn in a Taylor series about= 82 while rec- 1
ognizing the moments of a Poisson distribution we obtain p=1l-—- +0(B79). (4.19
a4p?  328*
7
n=1- 8_,82_ 1288° +0(B7°). (419 Thus the phase variance from a heterodyne measurement is
Thus the variance from a canonical measurement of the he 24 2 o9,

phase of a coherent state is coh™ 282 8p* (4.20

can__
coh

el +O(879) 4.16 To first.(and almost tq seconarder this is twiqe _that of
4p? 328* ' ' the canonical phase variance. The reason for this is apparent

from the expression Ed3.9) for the heterodyne POM. The
This can be regarded as the intrinsic phase variance of probability distribution for a heterodyne phase measurement
coherent state. In Fig. 3 we have plotted the exact resuis
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10° 1 _
Veor= 25 T O(B?). (4.29
)
2 2 This is plotted in Fig. 3 along with the exact result calculated
.g 1 ' ” from Egs.(4.8) and (3.39) truncated an=100. This result
gw‘ g e e le :‘;“;T ~~~~~ - shows that the adaptive mark | is far worse than a heterodyne
” e \ ou IR . measurement for larg@. Indeed, to the order calculated, the
& X e, phase variance is entirely due to the excess phase variance
£ N L
o : i | 1
P10 : Vi~ V= 5 +0(B72). (4.26
3 .
O T
M e This was the result used to obtain
10° ; ; ; ) > h 2\ 1 | cam _ 1 -2
1 2 3. 4 I(IB )—E[Vcoh_vco _@"'O(,B ), (4-27)
Coherent state amplitude

as recorded above in EGt.11). The asymptotic resu(@.26

and its exact value are plotted in Fig. 4. This shows that for
small coherent states, with amplitude less than about 2, the
mark | measurement introduces less excess noise than the
heterodyne measurement. F®+=5 the asymptotic result is
already a very good approximation.

FIG. 4. Plot of the exacfpointy and asymptoticlines) expres-
sions for the excess phase variaivgg,— V& of a coherent state of
amplitudeg vs B under the three dyne schemes: heterodyneafd
dotted ling, adaptive mark [+ and dash-dotted lingand adaptive
mark 1l (X and dashed line

o . 4. Adaptive mark Il
PE )= | 1Al d(al) (BIF(IAle)8) @20

For our final scheme we again used semiclassical tech-
niques in Ref[7] to show thatP} (#) was approximately
Gaussian with a variance

1 (- .
:;fo rdr|{B|re'?)|2. (4.22

VA =i+i+0([3’4)
coh 4ﬂ2 8ﬂ3 .
strongly peaked at=>1. Thus ) . L . o
Like the canonical result, this is dominated by the intrinsic
p'c*g}]( ¢)x|<IB|Bei ¢>|2, (4.23 phase noise of the coherent state. This asymptotic result, and
the exact result from Eq$4.8) and(3.42), are plotted in Fig.
In other words, this distribution is approximately the convo-3. The excess phase noise in this case is
lution of the intrinsic phase distributions of two coherent
states of amplitud@. Thus we expect the distribution to be
approximately Gaussian, with a variance double that of a
canonical measurement. The exact result from(Ed.8 and
the asymptotic result Eq4.20 are plotted on Fig. 3. The which is far below that of the other two dyne schemes. This
excess phase noise in the heterodyne result is because théymptotic result, and the exact excess phase variance, are
measurement is not as good as the canonical result. In fagjlotted in Fig. 4. Once again, the asymptotic behavior is
we have evident for3=5.

(4.28

For ¢ close to the mean value of 0 the integrand will be

1
2h..<ﬂ2>=Vth—vz3R=8—Bg+0<ﬁ*4>, (4.29

1

hi
Ve Vo= e ~2h"{(8?),

C. Phase-optimized states

(4.29
From the coherent state results, the marked superiority of

. . ) the adaptive mark Il measurement over the standard tech-

where h(m) is the asymptotic expression 8y mi1—1  niques is apparent only from considering the excess phase

given in Eq.(4.10. The quantity in Eq(4.24), whichwe will *_ \5rance. A more direct measure is tiénimumphase vari-

call the excess phase variance, is plotted in Fig. 4. From Eqy,ce for each measurement scheme. In this measure, the state

(4.8 it follows that, for states with a well-defined coherent ;g optimized for each scheme, and is subject to the constraint

amplitude, the excess phase variance for any scheme is age having a maximum photon numba. That is to say we
proximately 2h(?). '

have to optimize the unit-norm real vectapq, ¥4, . . . ,i¥n)
3. Mark | adaptive S0 as tomaximize
It was shown in Ref[7] that for a coherent state of am- B % 1—h 4.30
plitude B>1 the adaptive mark | phasge can be approxi- r= e U1l ()] ’

mated by a Gaussian random variable of mean zero and vari-
ance This can be rewritten as
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for some positive powep=1/2 and positive coefficiert of
order unity. From this we got

o ] Ve~ 2eNP+ (—2;)(2cp)2°N"21FPB (4.3

e ‘;5\@ werez;~ —2.338 is the first zero of the Airy function. The
I . | leading term here is simply equal tdh@N). This is essen-
2o Tuenl tially the excess noise introduced by the measurement, just
S as sh%"qB?) was for the coherent state. In this case the
Feley intrinsic noise(the second terjnvaries between the different
Cr e, schemes because the state is optimized for each measure-
Tia Ty ment.
From Fig. 5 it is apparent that the exact numerical results
N are approaching this asymptotic result for the heterodyne and
10“1’00 16‘ mark | measurements. However, the mark Il exact results are
a long way from the asymptotic results even witl+ 100.
Upper bound on photon number This is actually not surprising. A simple calculation carried

out in Ref.[7] suggested that the asymptotic results would
FIG. 5. Plot of the exadfpointy and asymptotidlines) expres- only become valid for

sions for the minimum phase varianég,, of the optimal state with

at mostN photons vsN+1 under the four schemes: canonical

(* and solid ling, heterodyne © and dotted ling adaptive mark | NzNaS=(
(+ and dash-dotted lingand adaptive mark 11X and dashed line

ury
o
L
T
*
*
Y
i
i

Phase variance

-
o
»

&
)
o

1/(2—-p)
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For an adaptive mark | measurement we hbljg=400; for
heterodyneN,~4000; and for adaptive mark IN,&~3
x 10’. Evidently these requirements are overly conservative
(as noted in our earlier papeNevertheless, it does explain
where why the minimum adaptive mark Il phase variance is a long
way from reaching its asymptote foi=100. This under-
lines the usefulness of the approximate asymptotic results.
An exact numerical solution withl=10" would be severely
(4.32  impractical. It also points out the danger of trying to derive
power laws such as E¢4.36) from numerical data for mod-
The problem of maximizing: thus reduces to that of finding erate photon numbers of a few hundred, as done by D’Ariano
the largest eigenvaluk,,,, of the real symmetric matrid. and Paris in Ref[17]. A detailed comparison with their re-
Since we havéa(n) for all schemes up ta= 100 this can be sults for heterodyne detection for optimized states with a

1 N
M=7 E 0 Yodmntn » (4'3])

m,n=

1 1
Imn=5[1=h(N)]18mns 15 [1=N(M)]8mn-1.

done for a maximum photon numbkirup to 100. fixed mean photon number will appear in a future paper.
For the canonical case with(m)=0 the eigenvalue can
be found exactly to be V. PHASE PROBABILITY DISTRIBUTIONS
T A. P(¢) for coherent states
Amax=C0§ = (4.33 . .
S<N+2) Although the semiclassical theory of R§T] has proven
invaluable for calculating the asymptotic phase variance for
so that states of large photon number, it cannot readily yield the
total phase distributiorP(¢). This is the quantity that is
can T w7 4 needed for a proper analysis of optical communication based
Viin=tarf N7z~ m“‘@JFO(N ). (434 on encoding information in the phase of single-mode pulses.

For a communication system there are certain phases that

For the dyne measurements there is no analytical solution b@"e would be expec_tmghto rﬁcelve, so what mattebrs |shnot thi
a numerical solution is easily obtained. The results are plotf€an-square error in the phase measurement, but the prob-

ted in Fig. 5. This clearly shows the same order as estabe_lbility for mistaking one phase for another. This depends on

lished for coherent states with large photon numbers: th&e tptaIP(¢), which requires knowledge of the full matrix
adaptive mark Il measurement is best, followed by heteroHmn:

dyne, followed by adaptive mark I. 1
Also plotted in Fig. 5 are the asymptotic results for the P(¢)=— E P P (5.1
three dyne measurements. These were obtained in[Rf. 270 /m=0

using the asymptotic results ftw(n) of Egs.(4.10—(4.12. _ _ . .
The results are most easily expressed by noting that thegiherepp,, is the density matrix for the system state in the

functionsh(n) can all be written as photon number basis.
Before calculating probabilities of error it is informative

h®"§n)=cn P (4.35  simply to plotP(¢) for the various schemes with the system
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Evidently this ratio depends crucially on the relative values
of the matrix elements$i,,, for m,n~ B2. In particular, just
becauseH? =HP V¥ m,n it does not follow thatP?(r)
<PP(ar). That is, a measurement with a POM closer to the
canonical POM, in the sense of having all element#igf,
closer to unity, does not guarantee an unambiguously better
phase probability distribution.

1. Heterodyne measurements

For heterodyne detection we can find an expression for
P(7) analytically. Recall that in this case the POM is

1
Gl @)= —|a)(ald?e, 5.3

where|«) is a coherent state and the phase estimatg is
=arge. Clearly then the probability to obtaih= 7 is
FIG. 6. Plot of the exact expressions for the log of the probabil-
ity distribution P.,( ¢#) for coherent states under the four schemes: 1 [
canonical (solid ling), heterodyne(dotted ling, adaptive mark | P?gﬁ(ﬂ')Z—f rdr|{B|—r)|? (5.9
(dash-dotted ling and adaptive mark lldashed ling The coherent mJo
amplitude is(a) =1, (b) B=2, (c) B=3.5,(d) B=5.

1(- 2
in a coherent state. In Fig. 6 we plot Bg(¢) versusg for _;fo rdrexpl —(£+1)7].
various values of coherent amplitugle One thing is clear: (5.5
the canonicaP(¢) is best by any definition. For small co-
herent amplitudes the adaptwt_a mar_k | case is the best dyng,q integral can be evaluated in terms of the error function,
measurement, and is almost indistinguishable from the cgs for 8>1 it is well approximated by
nonical measurement. A8 becomes larger the peak of
P #) becomes sharper and taller than thatRif(¢).
The peak oiP!oh(¢) becomes sharper and taller still, and for
moderateg is indistinguishable from that A #). All of
the curves are inverted parabolas for smngglindicating that

the distributionsP(¢) are approximately Gaussian. It can be verified from Fig. 6 that this is a very good approxi-
All of these features could be predicted from the above, o even for3="5. For very large8 the most important

results. What is unexpected is the shape of the tails of th‘éontribution is the expt 8 term. This scaling can be ex-
curves. First, ag increasesPia(¢) ceases to fall mono-

h
PSi(m) = -

: exp(— %) (5.6)
5 : :

T 2

) oh pressed as
tonically with distance fromp=0, but suddenly reverses at
¢~1 and has a broad local maximumet= 7. The hetero- het 5
dyne distribution has no such reversal, but nevertheless lev- INPcor(m)=—B". (5.7)
els out and approaches the canonical valuebat7. The
adaptive mark | case is also apparently smooth, but has much 2. Adaptive measurements

higher tails than the canonical heterodyne distributions. The . o adaptive measurements we can also determine
big surprise is the adaptive mark Il distribution. Like the P() by returning to the POM

canonical distribution it reverse@lthough smoothly and
has a broad local maximum ab=s. But the value of
Pl() is actually the largest of all four schemes. In fact,
for large B, Pl.(7) closely followsPS2Y ¢) until it reaches

a floor, which is roughly the same as thatRJf ().

- - d
G*($,0) dp d’C=5_d2CQy(C)

These features are not easy to explain from the matrix x|(e'?,e?°C))(Y(e'?,e?¢C)|,
elementH .. For example, the ratio of the probability den- (5.9
sity at ¢= 7 to that at¢p=0 is given by

where
> Hp(—1)™ "m0/ /nim! - - . .
P(m) _ mn p 5.2 |g(e'¢,e?*C))=exp se¥¢Ca’?+e'“a")|0). (5.9
P(0) '

> HpnB™ Y nimt
mn

For a coherent sta{g) with g real the probability density is
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g Q.C) ~ ~ - and heterodyne POMs have been examined before by Hall
PeoH( ¢,C) = —— [(Blp(e'?,e?¢C))? and Fusg18]. Here we follow their approach, and consider
M-ary encoding; that is, the transmission of data as the string
Q.(C) ) N o of M-ary digits{0,1, ... M—1}. Each digit is represented
= exp(— B +Rge”?Cp“+2€'?3]). by a rotated version of some single quantum stgewhose
phase distribution is peaked about zero. The digis en-
(5.10 coded as eXjf2inm/M)a'a]|y). The receiver makes a phase
measuremen(as defined in Sec. Il Bon this state and infers
from the result which digit was sent. That is, a reshin the
interval 27n/M = /M is interpreted as the digit.
The essential measure of any mode of digital communi-

Consider first the adaptive mark | scheme for whigh
= ¢. The ratio ofPL () to P (0) is

[ f f d?CP(m,C) cation is the probability that an error occurs. For each of the
PCOh(ﬂ-) ..
= (5.17 four measurement schemes we have calculated the minimal
PLoi(0 ' bability of that be achieved f h of t
LoH(0) f f &2cpP0C) probability of error that may be achieved for each of two
coht. = types of transmitted states. The first type is coherent states.

These are important because, with the exception of squeezed
stated11], they are perhaps the only pure single-mode quan-
tum states that can be produced readily enough to be consid-

f f d2CQ,(C)exp — B2+ R4 CAY] - 28)

= ered for communication applications.
f f d’CQ.(C)exp(— B2+ R4 CB%]+2p) Under the decoding scheme described above the probabil-
ity of error is independent of the digit encoded. For the zero
— exq _ 4[3) ) (512 state it is
Now since P (¢#) is approximately Gaussian we have E= jzrﬂ/M P(¢)ddb. (5.17)
PLoi(0)=(2mVLy) ~Y2=(m/4B8) 12 so that m

P'Coh( m)= _[ABmexp(—4pB). (5.13 It is easy to see thd is the expectation value of the positive
operatorFg=1—F where

This agrees excellently with the numerical result plotted in

Fig. 6 for B=5. For very largeB the dominant term is ob- Fo— sifm(m—n)/M] Ho o my(n|.  (5.18
viously the exponential, which we can express by the equa- ¢ afito  m(m—n) mn ' '
tion

| Using this operator, the expansion of a coherent state in
INPeor( ) =—4p. (5.14  terms of number states, and the valuesHgf,, for 0<m,n
. . <1 li il ine th -
For the adaptive mark Il scheme we expect the tail of theabil(i)tg g?rgﬁg:efgregr:g’eﬁ?it;z Sv?tsr,: );r?];:armme the prob
distribution to be at least as high as that for the adaptive We can find approximate asymptotic analytic expressions
mark | case, which is what is indeed seen. That is becaus%r E by returning to Eq(5.17). The logarithm ofE will be
(5.15 well approximated by the logarithm of the largest value of

$=e¢targ1l+C), the integrand in Eq5.17). SinceP(¢) for coherent states is
and arg(1+C) lies between— /2 and 7/2. Thus irrespec- approximately monotonically decreasing frof=0 to ¢
tive of C, a resultp~ 7 in the tail of the distribution of the ~ 7 for all schemes, we can thus say
mark | measurement must also give a resplin the tail of
the mark Il measurement. By this crude argument we would
also expect the log of the tail of the distribution of the mark
Il measurement to scale in the same way:

INE o= NP7/ M). (5.19

To proceed further we make the approximation g ¢)
is Gaussian until it hits the floor value( ). That is,

1l —
NPl )= =46 (510 NP )~ Max — ¢/2V g NP m)}, (5,20
Clearly the relative disparity between the height of tails of
the adaptive measurements and those of the heterodyne ¥? that
canonical measurements will continue to increasg3as-

creases. A discussion about the reason for this disparity is to ) w?
be found in Appendix B. INEon~ — mm{ PVEVIR INPeo(m) . (5.21)
coh
B. M-ary encoding with coherent states From the results of Sec. IV B and Sec. V A we can evalu-

As stated above, one reason for wishing to know the comaté this expression for the probability of error for the various
plete phase probability distributions, including the tails, isSchemes.
for calculating the effectiveness of the various schemes for can - )
digital communication using phase encoding. The canonical INEcgy~ — Bmin{2(7/M)“, 1}, (5.22



2182 H. M. WISEMAN AND R. B. KILLIP 57

|
IS

y of error
3 o

Probabilit

_.
<:I
3
T

1 2 3 4 5
Coherent state amplitude

FIG. 7. Plot of the exadfpointy and asymptoticlines) expres-
sions for the log of the probability of errdg.,, for quaternary
phase encoding using coherent states of ampliige 8 under the
four schemes: canonical (* and solid ljn@eterodyne © and dot-
ted line), adaptive mark I(+ and dash-dotted lingand adaptive
mark Il (X and dashed line

INEN~ — g2min{(=/M)?,1}, (5.23
INEL~ — Bmin{2(7/M)?,4}, (5.24
INEY i~ — Bmin{2B(7/M)2,4}. (5.25

As long asB>2(M/m)? we have the simple results that
—InE scales quadratically witl8 for canonical and hetero-
dyne measurements, and linearly wator the two adaptive
measurements. F@<2(M/=)? the adaptive mark Il mea-
surement scales quadratically.

From Fig. 6 it is evident that the approximation & ¢)
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FIG. 8. Plot of the exactpointy expressions for the log of the
minimum probability of errorE., for quaternary phase encoding
using the optimal state with at mostphotons vaN under the four
schemes: canonicgf), heterodyne ©), adaptive mark [+), and
adaptive mark 1l ).

more important feature, and it is interesting that E525
does correctly predict the change from quadratic to linear
behavior of IiEL,,, at B~ 2 (4/m)%~3.24.

From the asymptotic results it is clear that for laggehe
adaptive mark Il measurement has a higher probability of
error than heterodyne detection. Specifically, kb3 the
crossover point is at

B~4(M/m)2. (5.28

For M=4 this is 8~6.48, which agrees well with the nu-
merical data in Fig. 7. At this point the error is

as a Gaussian plus a constant tail is poorest for the hetero- INEgor~ — 16(M/ )2, (5.29
dyne measurement. Thus we would not expect the expression

(5.23 to be particularly good. However, for this measure-

ment scheme we can find the following expressionEor
1 (= (ay
1—EQ§L=—f f e B*Y'4xdy, (5.2
mJo Jo
where a= cot(7/M). After quite some effort this yields the
asymptotic expression

(1+ a2)5_ a.lO
\/;(1+ a2)9/2
+0(B7Y). (5.2

The leading term of this differs from the above reg8l23
by at most 25%for M=3) and approaches it for largd.

In(EN®h=—g%/(1+a?+In

) +1In(B)

The full expression5.27), and the above approximate ex-

pressiong5.22), (5.24), and(5.29 are plotted as a function

Thus depending on whether the acceptable error level is less
than or greater than this amount, the best dyne measurement
scheme to us€in the sense of requiring the least energy
hwB? per pulse will be heterodyne or adaptive mark II,
respectively.

C. M-ary encoding with optimal states

In this section we consider the probability of error for
optimized states subject to a maximum-photon-number con-
straint. Since the probability of error is

E=(yl1-Fcly), (5.30

it is readily seen that the problem of finding the minimal
probability of error for states of the forrx,_oNc,|n) is
precisely that of finding the largest eigenvalue of the matrix
formed by truncating the number-state matrix Fy of Eq.
(5.18. For smallN this eigenvalue problem can be solved

of B in Fig. 7 forM =4. Also plotted are the exact numerical using MATLAB and theH ,,,, matrices computed earlier.

calculations of the probability of error. The express{br27)

Figure 8 depicts the results for quaternaby£€ 4) encod-

is evidently a very good approximation. The other analyticaling. It is clear from this graph that the log of th&, for
expressions match quite well the slopes of the curves, but amptimized states has the same sort of dependence of the

displaced vertically. For larg® the slope is of course the

maximum photon numbel as the log ofE,, has on the



57 ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: ... 2183

mean photon numbgs?. That is, for largeN, the heterodyne photodetection. We proceed by using the analysis in Appen-
and canonical measurements scale linearly Wittwith the  dix B.

latter having the greater slopwhile the adaptive measure- It was shown in Appendix B that the probability for ob-
ments scale as the square rootNbfwith the adaptive mark taining a particular phase is determined largely by the

Il having the greater slopeOnce again the adaptive mark I maximum overlap between the system state and any of the
measurement is the best realizable measurement for moddiure states which contribute to the probability oper&t(y)

ateN, while the heterodyne measurement becomes superid® that phase. For dyne measurements, these pure states are

for largeN. We would expect the crossover point to scale asSdueezed states. As a result of this, the variance of the mea-
M% and forM=4 the numerical data show that it is kit sured phase probability distribution will béo a good ap-
%6’4% 25(M /)" proximation equal to the truécanonical phase variance of

the system plus the phase variance of the maximum-overlap

pure state. Furthermore, it was shown in Appendix B that in

order to obtain a large overlap, the maximum-overlap
VI. DISCUSSION squeezed state must have a well-defined coherent amplitude

In this paper we have presented the exact quantum theofpughly equal to the coherent amplitude of the system.
of two adaptive phase measurements. From this we have From these considerations we can conclude that if the
confirmed the semiclassical results obtained in R&f. In  System has roughli photons, then the excess phase vari-
particular, the phase variance from our adaptive mark [Bnce will be approximately that of a squeezed state with a
phase measurement is always less than that from a standdRan photon number dfl. Now the minimum(canonical
phase measuremefstich as heterodyne detectioVe have phase variance of_a squ.eezed state with a mean photon num-
also applied our theory to an area inaccessible to the semier ofN has been investigated by Collg20], who found the
classical theory, that is the complete shape of the probabilitpSymptotic result
distribution for the measured results. We find that the
adaptive measurement phase probability distributions have InN
surprisingly high tails. This has the consequence that the V= —. (6.2)
adaptive measurement is not necessarily better than standard 4N
phase measurements when it comes to communication using
M-ary encoding of data in the phase of states. This represents a lower bound on the excess phase variance
The fact that the adaptive phase measurement is not netitroduced by any dyne measurement. So, for examph, if
essarily superior to the standard phase measurement fis sufficiently large then the minimum measured phase vari-
M-ary phase encoding does not mean that it is a poor phagce for a state with at most photons would be
measurement, or that adaptive measurements in general are

not useful. After all the situation d¥l-ary encoding does not INN
really call for a phase measurement; rather it calls for a mea- vame —. (6.2
surement which can distinguish as well as possible between a 4N

finite number of known differenfbut not orthogonalstates.

For the case of binary phase encoding using coherent states This lower bound should is a long way below the variance
(with phases 0 andr), there is an adaptive measurementachieved by the adaptive mark Il scheme presented here, for
which has been known for some tini@9] which distin-  which

guishes these possible states as well as quantum mechanics

allows. It is only whenM ~N, whereN is the mean photon 1
number of the states, that the measurement required is really V= 75 (6.3
a phase measurement. In this limit the variance of the distri- 8N

bution is the important factor, and the adaptive mark Il phase
measurement always gives a lower error rate than standaghich itself is a long way below the variance achieved by

detection. standard measurements, namely,
Although the asymptotics for the phase variance of the
adaptive schemes were already known from the semiclassical 1
theory of Ref.[7] the quantum theory presented here sheds Vﬂﬁrﬂ: IN° (6.9

knew light on these results and allows us to probe new is-
sues. For example, what is the ultimate limit on the phase
noise introduced by an adaptive phase measurement? IR fact, the lower bound6.2) is very close to the absolute
other words, how closely is it possible to approximate a calower limit set by canonical measuremé@at]

nonical phase measurement by using a measurement involv-

ing dyne measuremenfthat is measurements using photo- 2

detection and a local oscillator with arbitrary time-varying Vf;?}ﬂ:—z. (6.5
phase¢? Although we cannot answer this question at this N

stage, we can show that there is a lower bound on the amount

of excess noise. This lower bound is not due to imperfectiong&xactly how close one can come to the lower bo®d) by
such as a finite local oscillator or inefficient detectors, but isusing a different feedback algorithm is a matter for future
a fundamental limitation of the method of measurement viaesearch.
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APPENDIX A: THE OSTENSIBLE MOMENTS OF C

Following the text, we denote the ostensible moments of

C as
MIM=(CICrM,. (A1)
Using the rules of ftacalculus to evaluate
dM™™M=((C,+dC,)"(C*+dC*)M—C"C*™ (A2)
we find from Eq.(3.24)

n,m 2
dMU — _ 2(n_m) Mn,m+nMn—l,m+mMn,m—1

dv v
(A3)

SinceMS'Ozl these equations may be solved recursively to

find

Mn’m_ nMnfl,m_F mMn,mfl (A4)
2(n—m2+n+m

Recall that by conventiom™™=M1{"". Forn or m equal to
zero this recurrence relation can be solved to get

Mn'O:MO'n: 1 _ 1
(2n+1)(2n—1)---1 (2n+1)I1°
(A5)
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a=—(1-C) 1, (B4)

e=—ataniC. (B5)

This describes a squeezed state centered=at 2/(1—C)
with anx variance

1+C
exp(—26)= 1= (B6)
The overlap betweefB) and|a,e) is
—(1+tanhe)(B8+ a)?
(Bla, = SRR )] (®7)
— — _ 2
Zexp{ (1-O)[B+1/(1 C)]}. B9)

J1—C?

Ignoring the negligibley1—C?, this expression is maxi-
mized for

1-c=8"1 (B9)
This impliesa= — B8 and exp(-2¢)=2. Substituting this in
Eq. (B8) gives

NP m)=Inl( Bla, €)P=— 48,

as obtained in the body of the paper.

This derivation in this appendix shows that the reason for
the high tails of the adaptive distributions is the laxgeari-
ance of the squeezed stdie, €), giving it a much larger
overlap with| 8) than hag0) (from the heterodyne measure-
men). Although this large squeezing is responsible for the

(B10)

These boundary values allow us to rapidly compute all thehigh tails, it is also what allows the narrow peak of the adap-

desired moment™™,

APPENDIX B: THE TAILS OF THE DISTRIBUTIONS

The reason for the different scaling of the tails of the

tive mark Il measurement. This can be seen as follows.
The most likely result for the adaptive mark Il casedis

= {o+arg(1+ C)=0. This is obviously most likely to occur
for =0, in which case the only difference is that

adaptive measurements compared to the heterodyne mea-

surement can be understood as follows. For heterodyne de-
tection the dominant term is the inner product of the system

state8 with the coherent state-r) for r=0". This maxi-
mizes the overlap while still maintainingg=arg = =

InPger(0)=In|{8|0)|?=— B2. (B1)

For the adaptive mark | technique the overlap will be with a

squeezed stater, €), where(using ¢ = o=)

1+C ©2)
1-|c®’
CatanhC| 3)
€= — ——~
Cl

The problem is to determine the value ©fthat maximizes
this overlap.

It is not difficult to see that the value & we seek will be
real and positive. In this case

1+C

a=———0. B11
TE (B11)

Once again it is easy to see that the maximum overlap will
be forC~1. The overlap in this case is

2
. (B12

1
In|(,6’|a,e>|2z—(1—C)( “1-¢

This is maximizedwith a value of zerpat exactly the same
C=1-8"1 This givesa= B as expected, and the same
variance.

In this case what is of more interest is thevariance

exp2e)=(2B) 1.

The intrinsic phase variance of this squeezed state is thus

(B13)

(y>) exp2e) 1

W e s O
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This is precisely equal to the asymptotic expression for thenost likely POM. This is completely analogous to the argu-
excess variance ment centered around E@.23 for the heterodyne case. For
the adaptive mark | measurement the measured distribution
is actually much wider, but the above calculation shows that
for the adaptive mark Il measurement all of the introduced
noise is due to the quantum uncertainty in the states making
The reason for this is that the measured phase distribution igp the POM. Thus the mark Il phase estimate is, for large

at least as wide as a convolution of the ttaanonical phase fields, the best possible estimate given the feedback algo-
distribution of the state with the true phase distribution of therithm (3.12.

1
Il can__
Vcoh_ Vcoh_ 8,33 : (815)
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