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Adaptive single-shot phase measurements: The full quantum theory
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The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with
an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator
detuned from the system~heterodyne detection! so that it is sometimes in phase and sometimes in quadrature
with the system over the course of the measurement. This enables both quadratures of the system to be
measured, from which the phase can be estimated. One of us@H. M. Wiseman, Phys. Rev. Lett.75, 4587
~1995!# has shown recently that it is possible to make a much better estimate of the phase by using an adaptive
technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot
measurement. In a previous work@H. M. Wiseman and R. B. Killip, Phys. Rev. A56, 944 ~1997!# we
presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the
phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is
necessary for calculating the phase variance for fields with small photon numbers, and also for considering
figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to
heterodyne detection as far as the variance is concerned. However, the tails of the probability distribution are
surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of
error in phase-based optical communication.@S1050-2947~98!07303-X#

PACS number~s!: 42.50.Dv, 42.50.Lc
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I. INTRODUCTION

In a typical textbook of quantum mechanics one mig
find a statement such as ‘‘Every physical quantityZ has
associated with it an Hermitian operatorZ. A measurement
of Z for a system with state matrixr will yield a result z,
which is an eigenvalue ofZ. The probability of getting the
resultz is equal tô zuruz& whereZuz&5zuz&.’’ Unfortunately
the number of measurements of physical quantities for wh
this quantum measurement theory applies is very small. N
ertheless there are some in the context of quantum optic
is only detector inefficiencies~now quite small! that limit the
measurement of the photon number with operatora†a and
quadratures with operators such asX5a1a† for single-
mode optical fields. The former can be measured by di
photon counting and the latter by adding an essentially c
sical field of known phase~called the local oscillator! to the
quantum field before counting photons~see, for example
Ref. @1#!.

There is one obvious optical quantity of which we cann
make a quantum-limited measurement: the phasef of the
electromagnetic field. Despite the difficulties in defining
phase operator~which can be overcome@2#!, the ‘‘phase
eigenstates’’uf& are independent of any phase operator~see
Sec. II B! and have been recognized for a very long time@3#.
The opinion is sometimes expressed that the reason one
not measure phase is that the phase eigenstates do not
~even approximately! compact support on the number state
so that a measurement of phase would require infinite
ergy. This argument is specious, because the eigenstat
a1a† also do not have compact support on the energy eig

*Electronic address: wiseman@physics.uq.edu.au
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states, and yet in the limit of infinite local oscillator streng
and perfect photodetection a homodyne measurement
proaches a quadrature measurement. Nevertheless it is
that phase cannot be measured exactly, even in these
limits. The reason for this will be explored in the discussi
section.

Although the quantum phase of a single mode field can
be measured exactly, it can be measured approximately
well as being interesting for theoretical reasons, there ma
practical reasons for wishing to measure phase. For exam
quantum-limited communication could be possible by enc
ing information in the phase of single-mode pulses of lig
The first requirement for such a scheme would be to cre
states with very well-defined phase. This has been inve
gated by various authors~see Ref.@4# for some of these!. The
next step would be encoding the signal, which is easy to
using an electro-optic modulator. The third requirement
for the receiver to measure the encoded phase as accur
as possible. This is a problem that seems not to have
ceived the amount of attention it deserves, given that it is
important to communication as the generation of states w
well-defined phase. Another application for accurate ph
measurements could be in inferring the properties of ot
quantum systems that can cause a phase shift, such a
presence of an atom at a particular point in a single-m
standing wave.

The standard way of measuring phase~approximately! is
to use two simultaneous homodyne measurements of
thogonal quadratures~known as eight-port homodyne dete
tion!, or heterodyne detection, which are equivalent in
appropriate limit@5#. A way to improve upon this was firs
suggested by one of us@6#: single-shot adaptive measure
ments. By this we mean the use of measurement results f
earlier stages of asingle measurementto affect the condi-
2169 © 1998 The American Physical Society
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2170 57H. M. WISEMAN AND R. B. KILLIP
tions of the measurement in its later stages. In this cas
means using the photocurrent up to timet to control the local
oscillator phase at timet by a feedback loop, during th
detection of a single single-mode pulse. In Ref.@7# we in-
vestigated a particular feedback algorithm, illustrated in F
1, using semiclassical theory. We showed that for large fie
an adaptive measurement is a much closer approximatio
a true phase measurement than is heterodyne detection

In this paper we continue our analysis of the simple ad
tive algorithm, but this time we present the full quantu
theory of these adaptive phase measurements. The b
ground theory required is presented in Sec. II. This int
duces the theory of probability operator measures~POMs!,
which is required for approximate measurements. It a
summarizes the theory of POMs for phase measurements
POMs for measurements using a large local oscillator.
Sec. III we derive expressions for the POMs for the tw
adaptive phase measurement schemes of Ref.@7#. In Sec. IV
we use these POMs to calculate phase variances, for coh
states, and for phase-optimized states with an upper bo
on the photon number. We compare our exact~quantum!
numerical results to the asymptotic~semiclassical! analytical
results obtained in Ref.@7#. One feature that can only b
calculated using the full quantum theory is the overall sh
of the probability distributions, including the tails. This
required for determining the probability of error in pha
communication schemes. This aspect is investigated in
V, again for coherent states and for phase-optimized st
with an upper bound on the photon number. Section VI c
cludes with a discussion on the ultimate limits to phase m
surements.

II. PROBABILITY-OPERATOR MEASURES

A. General theory of POMs

If ~as in the present case! we are unconcerned about th
fate of the system after it has been measured, then any m

FIG. 1. Diagram for the experimental apparatus for making
adaptive phase measurement. Thin dashed lines indicate light
and the thin continuous line labeled BS represents a 50/50 b
splitter. Medium lines represent electro-optic devices: photode
tors ~PD! and an electro-optic phase modulator~EOM!. Thick lines
represent electrical components: a subtractor, a multiplier, an
grator, a signal generator~SG!, a signal processor, and a digital rea
out giving the measured value offP@0,2p). The necessity for
these particular electrical elements alone is a consequence o
feedback algorithm explained in Sec. III B.
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surement is completely described by the probability for ea
of the possible results to occur. Let the set of all possi
measurement resultsl be denotedV. Then the measuremen
is specified by a probability measure~PM! on V. If we de-
note the PM asP then for any subsetE#V, we can identify
P(E) as the probability to obtain a measurement resull
PE. Of course this requiresP(V)51.

For quantum mechanical systems, the most general
of generating a PMP is as the expectation value of an o
erator measureF on V. That is, for a quantum system wit
state matrixr,

P~E!5Tr@rF~E!#. ~2.1!

ObviouslyF(E) must be a positive operator, and by cons
vation of probability

F~V!51. ~2.2!

For this reason we callF a probability operator measur
~POM!, or sometimes aneffect-valued measure@8,9#. Note
that even for a subsetE with a single elementl, F(l) is not
necessarily a projector.

B. POMs for phase measurements

Now consider the case where the measured quantity i
be a phasef of a single-mode photon field, so thatF is a
POM on V5@0,2p). Quantum mechanically this phas
should in some sense be conjugate to the photon num
operatora†a, but as long as we stick with POMs to describ
the measurement there are none of the difficulties associ
with defining a phase operator@2#. Since phase is a continu
ous variable, we will useF(f) to denote the phase POM
density. The completeness relation for a phase POM is th
fore written as

E
0

2p

dfF~f!51. ~2.3!

As explained in Ref.@7#, for F(f) to be invariant under
phase shifts, and to be unbiased, implies that it can be wri
in the form

F~f!5
1

2p (
n,m50

`

um&^nueif~m2n!Hmn . ~2.4!

Here H is a positive-semidefinite Hermitian matrix with a
entries real and positive, andum& is the number state
a†aum&5mum&.

The completeness condition~2.3! implies that

;m>0 Hmm51. ~2.5!

The positivity condition on the matrixH obviously requires
that the off-diagonal elements be less than or equal to un
A unique phase measurement is defined by specifying tha
of the off diagonal elements be equal to unity. This is wh
has recently been called a canonical phase measuremen@5#,
although its special role was recognized very early in
history of quantum theory@3#.

In realistic phase measurements the off-diagonal elem
Hm,n will be less than unity, but forum2nu51 andm@1
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57 2171ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: . . .
they should be close to unity if the measurement is to b
good phase measurement, as will be seen in Sec. IV. In
in all of the measurements we examine, we have

h~m![12Hm,m11<O~m21/2!. ~2.6!

For a canonical measurementh(m) is identically zero. In this
case we can write the POM~2.4! as

Fcan~f!5
1

2p
uf&^fu, ~2.7!

whereuf& is an unnormalized phase eigenstate

uf&5 (
n50

`

einfun& ~2.8!

as referred to in the Introduction.

C. POMs for dyne measurements

We now turn from the POMs for phase measurements
a single-mode field to the POMs for measurements o
single-mode photon field made by interfering the light fro
that field with another field that has a macroscopic cohe
excitation. This can be done at a beam splitter, and the
output fields of the beam splitter can then be detected
normal photodetectors. The second field can be treated
sically as ac number, and is known as a local oscillator. A
practical phase-sensitive measurements require a local o
lator, to act as a phase reference. If the local oscillato
resonant with the system field then this type of measurem
is known ashomodynedetection. If the local oscillator is
detuned~outside the bandwidth of the system field! then this
is known asheterodynedetection. In considering phase me
surements we will have to consider other sorts of meas
ments involving interference with a quasiclassical local
cillator. In ignorance of any received term for suc
measurements we will call them examples ofdynedetection,
so that homodyne and heterodyne are obviously spe
cases.

Let us assume that our single-mode signal field has a t
poral pulse shapeu(t) that is positive and normalized as

E
0

T

u~ t !51. ~2.9!

Here we are obviously ignoring the phase variation at opt
frequencyv; u(t) is the envelope function. The total timeT
is necessarily much greater thanv21, so that the pulse can
be considered monochromatic. This is essential in order
the dyne measurements~which are phase-sensitive measu
ments! to be quantum limited. That is, for quantum effects
provide the limit to the phase uncertainty in the measu
ment. If the characteristic spectral width of the pulseG
*T21 is too large then the phase uncertainty will be dom
nated by the termdf;G/v coming from the uncertaintyG
in the frequency. In all that follows we assume this unc
tainty to be negligible.

For simplicity we will take the beam splitter at which th
system and local oscillator fields are interfered to be b
a
ct,
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anced~50/50!. Then, ignoring vacuum fluctuations, the tw
fields at the two output ports of the beam splitter are equa

b6~ t !5Au~ t !/2~a6beiF~ t !!e2 ivt, ~2.10!

wherea is the annihilation operator for the system and t
real numberb is the coherent amplitude of the local oscill
tor. This is normalized so that the instantaneous rate of p
todetection at each detector is^b6

† (t)b6(t)&. We have as-
sumed that the intensity profile of the local oscillator is t
same as that of the system. However, we have included
arbitrary phase variationF(t) of the local oscillator relative
to the system. The total number of photons in the local
cillator is b2, so we are interested in the limitb2@1,̂ a†a&.
For homodyne detectionF(t)5F0, a constant. For hetero
dyne detectionF(t)5F01tD, whereD@G is the detuning.

The signal of interest is simply the difference between
two photocurrents at the two detectors~labeled6). If we
denote the number of photocounts at each of the detecto
the time interval@ t,t1d) by dN6(t) then we can define the
signal photocurrent as

I ~ t !5 lim
dt→0

lim
b→`

dN1~ t !2dN2~ t !

bdt
. ~2.11!

Note that the two limits here do not commute. The limitb
→` implies that both photocounts will be dominated by t
contribution from the local oscillator. The fact that the lim
dt→0 is taken second indicates that we are only intereste
the fluctuations inI (t) on a time scale much greater than t
mean time;u(t)21b22 between photodetections.

The general quantum theory of dyne measurements
derived by one of us in Ref.@10# for the case where the
system mode is derived from an exponentially decaying c
ity so thatu(t)5ge2gt whereg is the cavity linewidth. This
is easily generalized for arbitraryu(t). First we define a
scaled time variable

v5E
0

t

u~s!ds. ~2.12!

This is dimensionless, and increases monotonically witt
from 0 to 1. For the caseu(t)5ge2gt we have v51
2e2gt. The photocurrent in terms ofv is scaled so that

I ~v !dv5I ~ t !dt5dv I ~ t !/u~ t !. ~2.13!

Now the measurement result for a dyne measuremen
to time t is the complete photocurrent recordI (t8) from t8
50 to t85t @or equivalently,I (v8) from v850 to v85v)#.
This record is, in theory at least, a continuous infinity of re
numbers, which is an impractically huge amount of da
Fortunately it turns out that there are just two sufficient s
tistics at scaled timev ~henceforth called simply time!,
namely, the two complex numbers

Av5E
0

v
I ~u!eiF~u!du, ~2.14!
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Bv52E
0

v
e2iF~u!du. ~2.15!

We call these the sufficient statistics because, as show
Ref. @10#, the POM for the measurement at time 0<v,1 is
given by

Gv~Av ,Bv!5Qv~Av ,Bv!exp~ 1
2 Bva†21Ava†!

3~12v !a†a/2exp~ 1
2 Bv* a21Av* a!,

~2.16!

whereQv(Av ,Bv) is a positive function, which will be de
fined shortly. This implies that the probability for obtainin
any photocurrent$I (u):0<u,v% is determined only by the
two complex functionals of this currentAv and Bv . Any
other features of$I (u):0<u,v% are completely irrelevant.

It might be thought that the second integralBv does not
depend on$I (u):0<u,v% at all because the photocurre
does not appear explicitly in Eq.~2.15!. However, it may
appear implicitly if the local oscillator phaseF(v) depends
upon$I (u):0<u,v%. This is precisely the situation we wil
consider later to construct a phase measurement. When
do so, the theory presented here shows thatF(v) should be
made to depend on$I (u):0<u,v% only through the two
integrals~2.14!,~2.15!. That is to say, we should have

F~v !5 f v~Av ,Bv! ~2.17!

for some ~possibly time-dependent! function f . This is an
extremely powerful result, which is not at all intuitive.

In the limit v→1, (12v)a†a/2→u0&^0u, whereu0& is the
vacuum state. So, dropping the subscriptv when v51, we
can write the POM~2.16! as

G~A,B!5Q~A,B!uc̃~A,B!&^c̃~A,B!u, ~2.18!

whereuc̃(A,B)& is an unnormalized ket defined by

uc̃~A,B!&5exp~ 1
2 Ba†21Aa†!u0&. ~2.19!

With a little operator algebra it is easy to show that this
proportional to the squeezed state@11#

ua,e&5exp~aa†2a* a!exp~ 1
2 e* a22ea†2!u0&,

~2.20!

where

a5
A1BA*

12uBu2
, ~2.21!

e5
2B atanhuBu

uBu
. ~2.22!

From Eq.~2.15!, it is evident thatuBu<1. For the schemes
we will consideruBu,1 with probability one, so that the two
expressions~2.21!, ~2.22! are well defined.

If we rewrite the POM~2.16! in terms ofa,e instead of
A,B, we have
in

we

G8~a,e!5Q8~a,e!ua,e&^a,eu, ~2.23!

whereQ8 is some new positive function ofa,e. In this case
the set of all measurement results isV5C^ C, where C
denotes the set of complex numbers. If we imagine vary
the state of the systemuc& ~assumed pure!, then the prob-
ability to obtain the resulta,e is

P~a,e!}u^a,euc&u2. ~2.24!

Provided exp(ueu)!uau, the squeezed stateua,e& has a well-
defined coherent amplitudea. Hence from Eq.~2.24! if the
unknown system stateuc& is also localized in the phas
plane, it is highly likely that it must have a coherent amp
tude close toa. This fact will be used later to good effect.

We must now address the issue of howQ(A,B) is found.
In Ref. @10# it is shown thatQ(A,B) is the joint probability
distribution thatA,B would have if the photocurrentI (v)
were given by

I ~v !dv5dW~v !, ~2.25!

wheredW(v) is the infinitesimal increment in a real Wiene
process@12# satisfying

^dW~v !&50, ~2.26!

dW~v !dW~v !5dt. ~2.27!

In Ref. @10#, Q(A,B) was called theostensibleprobability
distribution for A,B. It is the probability distribution that
A,B would have if there were no signal whatsoever; that
if the system were prepared in the vacuum state. The nois
Eq. ~2.25! then represents the local oscillator shot noise~or
vacuum fluctuations if a Heisenberg picture interpretation
preferred!. The presence of a nonzero signal determines
actualprobability distribution through the POM~2.18!. That
is to say, if the system state matrix isr then the true prob-
ability density is

P~A,B!d2Ad2B5Q~A,B!^c̃~A,B!uruc̃~A,B!&d2Ad2B.
~2.28!

Before moving onto specific examples in the followin
section, we will derive some general results regarding
ostensible distributionQ(A,B). First, the ostensible mean o
A is

^A&Q5E
0

1

^eiF~v !dW~v !&50. ~2.29!

This holds true even ifF(v) depends on the photocurren
record$I (u):0<u,v% becauseW(v) is a strictly Markov-
ian process. Second,

^A2&Q5E
0

1E
0

1

^eiF~v !1 iF~u!dW~u!dW~v !&5E
0

1

dv^e2iF~v !&

52^B&Q . ~2.30!

Third,
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FIG. 2. Plot of theH matrix that defines the POM for phase measurements as in Eq.~2.4!, for the four schemes~a! canonical,~b!
heterodyne,~c! adaptive mark I, and~d! adaptive mark II.
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^uAu2&Q5E
0

1E
0

1

^dW~u!dW~v !&5E
0

1

dv51. ~2.31!

III. PHYSICALLY REALIZABLE PHASE
MEASUREMENTS

A. Heterodyne measurements

As noted in Sec. II B the ideal form of phase measu
ment is a canonical phase measurement in whichHmn from
Eq. ~2.4! is equal to unity for allm,n. This is plotted in Fig.
2~a!. All physically realizable phase measurements fall sh
of this ideal. The simplest method for making a phase m
surement is via heterodyne detection. As explained ab
this involves a local oscillator that is far detuned from t
system. The linear variation of the phase is in fact not ess
tial; all that is required is that all relative phases~of the
system with respect to the local oscillator! be sampled
equally and on a time scale much shorter than the recipr
bandwidth of the system. As long as there is a record of
local oscillator phase as a function of time, the informati
in the photocurrent record can be recovered. For definiten
however, we will take the local oscillator phase to simp
change linearly with~scaled! time v. That is,

F~v !5F01vD, ~3.1!

whereD@1.
-

rt
a-
e,

n-

al
e

ss,

Having specifiedF(v) all that remains to completely de
scribe this heterodyne measurement is to determineQ(A,B),
the ostensible probability distribution for the measurem
resultsA,B. Because the aboveF(v) is independent of the
photocurrentI , the ‘‘result’’ B is a constant~rather than a
random variable! with value

B52E
0

1

dvexp@2i ~F01vD!# ~3.2!

5exp~2iF0!
12exp~2iD!

2iD
→0, ~3.3!

where the final limit results from takingD→`. The only
variable in this case is therefore

A5E
0

1

dvI ~v !exp@ i ~F01vD!#. ~3.4!

To find the ostensible statistics forA we treatI (v)dv as an
independent Gaussian variabledW(v) for each infinitesimal
interval @v,v1dv). SinceA is just the sum of these Gaus
ian variables, it must ostensibly be a Gaussian variable its
From Eqs.~2.29!–~2.31! with B50 it follows that the osten-
sible distribution forA is the rotationally invariant Gaussia

Qhet~A!d2A5p21exp~2uAu2!d2A. ~3.5!
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From these results and Eq.~2.18! we find the POM for
heterodyne measurements to be

Ghet~A!5p21exp~2uAu2!uc̃~A,0!&^c̃~A,0!u. ~3.6!

Now from Eqs. ~2.20!–~2.22! it is easy to verify that
uc̃(A,0)& is simply proportional to the coherent stateuA&
whereA is the coherent amplitude usually denoteda. It turns
out that the proportionality factor is just exp(uAu2/2) so that
we can rewrite Eq.~3.6! as

Ghet~A!5p21uA&^Au. ~3.7!

This result has been obtained many times before by o
means; for one example see Ref.@1#. The factor ofp21

remains because the coherent states are overcomplete.
In the context of this paper we are interested in hete

dyne measurements only insofar as they enable us to m
an estimate of the phase of the system. If there is no p
information about the system then Eq.~3.7! suggests a good
estimate of the phase to be

fhet5argA. ~3.8!

The POM for this phase estimate is found simply by marg
alizing the modulus ofA. That is,

Fhet~f!5E
0

`

uAu d~ uAu! Ghet~ uAueif!. ~3.9!

Evaluating this in the number state basis yields the matrixH
of Eq. ~2.4! to be

Hmn
het5

G@~n1m!/211#

An!m!
. ~3.10!

ClearlyHnn
het51, as required, while the off-diagonal elemen

decrease with distance away from the diagonal. These
tures can be seen in the matrix plot ofHmn

het in Fig. 2~b!.

B. Adaptive measurements

A heterodyne phase measurement is not as good as
nonical measurement because it is actually a measureme
both phase and amplitude, with the latter information be
thrown away. In order to make a better phase measurem
one would like to concentrate on measuring the ph
quadrature. This can be done by homodyne detection@7#, but
only if one already knows the phase of the system. A t
phase measurement should work even if one has no infor
tion about the system phase. Nevertheless we can use
idea to construct a true phase measurement as follo
Rather than measuring a fixed quadrature, we control
local oscillator phase as a function of time in order to m
sure theestimatedphase quadrature. That is, we setF(v) to
be equal to

F~v !5ŵ~v !1p/2, ~3.11!

whereŵ(v) is theestimatedphase of the system at timev.
Two questions remain to be decided. First, given our m

surement record$I (u):0<u,v% how do we decideŵ(v)?
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Second, what do we choose to be our best estimate of p
f once the measurement is completed? We will postp
answering the second question. It was already noted ab
that the theory of dyne measurements implies that we sho
chooseŵ(v)5 f v(Av ,Bv) for some functionf . For the re-
mainder of this paper we choose

ŵ~v !5argAv , ~3.12!

as in Ref.@7#. As outlined in that reference, the motivation
for this choice are as follows:~1! It is suggested by the abov
analysis for heterodyne detection.~2! As shown by one of us
@6#, it reproduces the canonical result if the system has
most one photon.~3! It gives a feedback algorithm tha
would be easy to implement experimentally.~4! It is math-
ematically tractable. When we say it can be exactly solv
we mean that we can determine the POM. To do this requ
only the ostensible probability distributionQad(A,B) given
the feedback algorithm, Eqs.~3.11! and~3.12!. To find this it
is convenient to recast the ostensible integral equati
~2.14!,~2.15! as the ostensible Itoˆ stochastic differential
equations

dAv5eiF~v !dW~v !, ~3.13!

dBv5e2iF~v !dv, ~3.14!

with the initial conditions

A05B050. ~3.15!

With the above feedback algorithm we haveeiF(v)

5 iAv /uAvu. This gives

dAv5 iAvdW~v !/uAvu. ~3.16!

This can be solved by transforming to polar coordina
ŵ(v)5argAv and uAvu2. Using the Itôcalculus we find

duAvu25dv, ~3.17!

dŵ~v !5dW~v !/uAvu. ~3.18!

The first of these can be solved trivially to yielduAvu5Av.
That is, the modulus ofA evolves deterministically and in
particularuAu51, as required by Eq.~2.31!. Substituting this
into the second gives

ŵ~v !5ŵ~0!1E
0

1

dW~v !/Av. ~3.19!

Here ŵ(0) is an arbitrary initial phase. It is irrelevant to th
problem because the divergence atv50 of the integrand in
this equation means that the initial phase will be randomi
immediately:

^ŵ2&Q5E
0

1

dv/v5`. ~3.20!

Thus the ostensible probability distribution forA is
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Qa
ad~A!d2A5d~ uAu21!uAud~ uAu!

1

2p
d~argA!.

~3.21!

We require the joint ostensible probability distributio
Qad(A,B). But rather than work withBv it is more conve-
nient to consider the variable

Cv5e22i ŵ~v !E
0

v
e2i ŵ~u!du. ~3.22!

It is easy to prove that forv51

C5BA* /A, ~3.23!

so thatA,C can replaceA,B as the sufficient statistics. Th
advantage of the variableCv is that, from Eq.~3.22! and Eq.
~3.19!, it obeys the stochastic Itoˆ differential equation

dCv52F2idW~v !

Av
1

2dv
v GCv1dv, ~3.24!

with the initial conditionC050. Since neither this initial
condition nor the above differential equation involve t
value ofŵ(0) ~which is essentially random as noted abov!,
the final value ofC will be ostensibly independent of that o
A. That is,

Qad~A,C!5Qa
ad~A!Qc

ad~C!. ~3.25!

In fact, given the above result Eq.~3.21! we need onlyŵ
5argA so that

Qad~A,C!d2A d2C→
dŵ

2p
Qc

ad~C!d2C. ~3.26!

The problem remaining is thus to findQc
ad(C). It has not

proven possible to find this analytically. However, we ha
been able to find the exact values of the moments

M v
n,m5^Cv

nCv*
m&Q ~3.27!

via a recurrence relation. This is done in Appendix A. F
our purposes these moments are sufficient so we can as
the distributionQc(C) known. From Eq.~2.18! The POM
for the resultsŵ,C under the feedback algorithm~3.11! and
~3.12! is thus

Gad~ ŵ,C! dŵ d2C5uc̃~ei ŵ,e2i ŵC!&^c̃~ei ŵ,e2i ŵC!u

3
dŵ

2p
d2CQc

ad~C!. ~3.28!

Since the point of this exercise is to construct a ph
measurement, we want ultimately to calculate some ph
fad(ŵ,C) from the sufficient statisticsŵ,C. We are not con-
strained to chooseŵ even though we have been using it
our estimated phase in the feedback loop. Therefore the
eral expression for the POM of our adaptive phase meas
ment is
r
me

e
se

n-
e-

Fad~f!5E
0

2p

dŵE E d2C Gad~ ŵ,C!d„f2fad~ ŵ,C!….

~3.29!

There are constraints on the functionfad(ŵ,C). Clearly if
the phase of the stater is rotated by some angleu, the
probability distributionPad(f)5Tr@rFad(f)# for f should
be shifted similarly. Now to rotate the phase of the state bu
is equivalent to rotating that of the POM by2u. This has the
effect of replacinguc̃(ei ŵ,e2i ŵC)& by

e2 iua†auc̃~ei ŵ,e2i ŵC!&5uc̃~ei ~ ŵ2u!,e2i ~ ŵ2u!C!&.
~3.30!

Thus the distributionPad(f) will shift by the desired amoun
if and only if fhet is given by

fhet~ ŵ,C!5ŵ1g~C!, ~3.31!

for some arbitrary real functiong of C. Furthermore, it can
be shown that forHmn to be real and positive we nee
g(C* )52g(C).

1. Adaptive mark I measurements

The simplest choice isg50. This corresponds to

f I5ŵ5argA. ~3.32!

That is, the phase estimateŵ used in the feedback loop i
also used as the final phase estimate. We call this the a
tive mark I measurement. In this case the POM is

F I~f!5E E d2C Gad~f,C!.

5E E d2CQc~C!uc̃~eif,e2ifC!&^c̃~eif,e2ifC!u.

~3.33!

This POM can be easily evaluated in the number st
basis using the definition~2.19!. The result is in the form of
Eq. ~2.4! with the matrixH given by

Hmn
I 5 (

p50

bm/2c

(
q50

bn/2c
gmpgnq^C

p~C* !q&Q , ~3.34!

5 (
p50

bm/2c

(
q50

bn/2c
gmpgnqM

p,q. ~3.35!

Here bm/2c is the integer part ofm/2 and

gmp5
Am!

2p~m22p!! p!
. ~3.36!

This is an exact expression since the momentsM p,q can be
calculated exactly. It is not obvious from this definitio
Hnn

I 51 for all n, but this can be verified computationally.
The matrix Hnn

I is plotted in Fig. 2~c!. It appears not
greatly different from that for the heterodyne measureme
One difference is thatH1,m

I 5H0,m
I for all m, and in particular
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that for n,m<1, Hn,m
I 51. This is identical to the canonica

measurement and as good as possible, as first reveale
Ref. @6#. This result shows that for very weak fields the ada
tive mark I measurement is significantly better than the st
dard heterodyne technique. For moderate fields it is not
nificantly better~as Fig. 2 shows!. As we will show later, for
large fields it is very much worse. Evidently the adapti
mark I scheme is not the scheme we would choose for m
practical situations in which the photon number per pulse
very large.

2. Adaptive mark II measurements

A generally better result can be obtained by considerin
final phase measurementsfad5ŵ1g(C) with g(C)Þ0. Re-
call the result Eq.~2.24! obtained above, that the probabilit
of obtaining a measurement result is proportional to
squared inner product of the system state with a squee
state

P~a,e!}u^a,euc&u2. ~3.37!

Herea,e are defined in terms ofA,B by Eqs.~2.21!, ~2.22!.
We are interested in the case when the stateuc& has a well-
defined~but unknown! phase. Since any physical state w
have a finite mean photon number this means that it m
have a large coherent amplitude. As argued in Sec. II C,
most likely that this coherent amplitude will be close toa.
Now in terms of the variablesŵ,C we have

a5
ei ŵ~11C!

12uCu2
. ~3.38!

This suggests the mark II phase estimate

f II5arga5ŵ1arg~11C!. ~3.39!

That is, we choose the functiong(C) so that

eig~C!5A 11C

11C*
. ~3.40!

With this choice

F II~f!5**d2C Gad@f2arg~11C!,C#. ~3.41!

The H matrix is therefore

Hmn
II 5 (

p50

bm/2c

(
q50

bn/2c
gmpgnqK S 11C

11C*
D ~n2m!/2

Cp~C* !qL
Q

.

~3.42!

Unfortunately@(11C)/(11C* )# (n2m)/2 is not a polynomial
in C andC* so we cannot obtain an exact answer in terms
the known momentsM p,q. However, from the definition
~3.22! it is apparent that the modulus of the random varia
C is strictly bounded by unity. In fact̂ C&Q5^C* &Q
5^C* C&Q51/3, and all higher moments are smaller. Hen
the MacLaurin series for@(11C)/(11C* )# (n2m)/2 will con-
verge rapidly and so can be well approximated by a poly
mial. Using an expansion to 100 terms, we have evalua
this POM matrix elements forn,m up to 100.
in
-
-

g-

st
is

a

e
ed

st
is

f

e

e

-
d

The matrixHmn
II for n,m up to 8 is shown in Fig. 2~d!.

From this it is apparent that the adaptive mark II scheme
generally much closer to a canonical measurement in
range than are either the heterodyne or adaptive ma
scheme. Indeed, all the matrix elements are above 0.7,
all are greater than or equal to the heterodyne matrix
ments. The only place where the adaptive mark II schem
inferior to the adaptive mark I scheme is for very low phot
numbers;H01

II ,1 unlike H01
I . We will show in the next sec-

tion that the superiority of the mark II scheme over the oth
two schemes continues for large photon numbers, as qu
fied by the measured phase variance of various states.

IV. PHASE VARIANCE

A. Phase variance andH mn

Because phase is a cyclic variable, the definitions of m
and variance that apply to the real line are not applicab
The sensible starting point for these two statistics for a cy
variable with distributionP(f) is

m5E eifP~f!df. ~4.1!

The mean phase can then be defined to be

f̄5argm, ~4.2!

and the phase variance

V5umu2221. ~4.3!

It can easily be verified that these definitions go over to
usual ones appropriate for the real line whenP(f) is suit-
ably localized~so that 12umu!1). There are of course othe
definitions of the variance in terms ofumu that would also
give the correct limit@13,14#. The advantage of the one pre
sented here is that it can be used to derive an uncerta
relation

4V>~^a†aa†a&2^a†a&^a†a&!21, ~4.4!

as shown by Holevo@15#. This inequality holds for the vari-
ance of anyP(f) arising from a phase measurement co
forming to the definition in Sec. II B.

Without loss of generality we can consider a system s

uc&5 (
n50

`

cnun&, ~4.5!

with real number state amplitudescn so that it is guaranteed
to have a mean phase of zero. The probability distribut
from a phase measurement described by a POM~2.4! with
matrix H is

P~f!5
1

2p (
n,m50

`

cmcneif~m2n!Hmn . ~4.6!

For such a system we have

m5 (
n,m50

`
1

2pE dfeif~m112n!cmcnHmn ~4.7!
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5 (
n50

`

cn11cnHn11,n . ~4.8!

Thus the only part ofH that contributes to the phase varian
is the subdiagonal

Hn11,n[12h~n!. ~4.9!

AlthoughhII(n) is not known exactly it was calculated t
a very good approximation forn up to 100, as explained
above. For heterodyne detection and adaptive mark I de
tion we have exact results and for a canonical phase m
surement of coursehcan(n)50. For large photon numbers
is more useful to have approximate asymptotic express
for h(n) for the three physically realizable schemes. The
can be derived using semiclassical dyne detection theory@7#.
The results are

hhet~m!.~8m!211O~m22!, ~4.10!

hI~m!.~8m1/2!211O~m21!, ~4.11!

hII~m!.~16m3/2!211O~m22!. ~4.12!

As will be shown in Secs. IV B and IV C this leads to a cle
superiority of the adaptive mark II scheme over the hete
dyne scheme, and of the latter over the mark I scheme,
measuring the phase of states with large photon numb
Furthermore, it is shown at the end of Appendix B that t
adaptive mark II scheme is the best scheme for measu
large fields given the feedback algorithm~3.12!.

B. Coherent states

1. Canonical

A coherent state of mean phase equal to zero has co
cients

cn5exp~2b2/2!
bn

An!
. ~4.13!

Thus for a canonical measurement we can use Eq.~4.8! with
Hmn51 to get

m5exp~2b2! (
n50

` Anb2n

bn!
. ~4.14!

By expandingAn in a Taylor series aboutn5b2 while rec-
ognizing the moments of a Poisson distribution we obtai

m512
1

8b2
2

7

128b4
1O~b26!. ~4.15!

Thus the variance from a canonical measurement of
phase of a coherent state is

Vcoh
can5

1

4b2
1

5

32b4
1O~b26!. ~4.16!

This can be regarded as the intrinsic phase variance
coherent state. In Fig. 3 we have plotted the exact re
c-
a-

ns
e

r
-

or
rs.
e
ng

ffi-

e

a
lt

obtained numerically from Eq.~4.14!, and the asymptotic
result Eq.~4.16! for b from 1 to 5. The latter corresponds t
a mean photon number of 25, which is evidently lar
enough for the asymptotic results to hold quite well.

2. Heterodyne

For heterodyne detection we can use the exact expres
Eq. ~3.10! to get

m5bexp~2b2! (
n50

` GS n1
3

2Db2n

G~n12!G~n11!
. ~4.17!

In terms of confluent hypergeometric functions, this is

m5bexp~2b2!

GS 3

2D
G~2! 1F1~ 3

2 ;2;b2!. ~4.18!

Using the analog to Euler’s formula, 4.2~1! of @16#
asymptotic expansion

m512
1

4b2
2

3

32b4
1O~b26!. ~4.19!

Thus the phase variance from a heterodyne measureme

Vcoh
het5

1

2b2
1

3

8b4
1O~b26!. ~4.20!

To first ~and almost to second! order this is twice that of
the canonical phase variance. The reason for this is appa
from the expression Eq.~3.9! for the heterodyne POM. The
probability distribution for a heterodyne phase measurem
is

FIG. 3. Plot of the exact~points! and asymptotic~lines! expres-
sions for the phase varianceVcoh of a coherent state of amplitudeb
vs b under the four schemes: canonical (* and solid line!, hetero-
dyne (s and dotted line!, adaptive mark I~1 and dash-dotted line!,
and adaptive mark II (3 and dashed line!.
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Phet
coh~f!5E

0

`

uAu d~ uAu! ^buFhet~ uAueif!ub& ~4.21!

5
1

pE0

`

r dr u^bureif&u2. ~4.22!

For f close to the mean value of 0 the integrand will
strongly peaked atr .b@1. Thus

Pcoh
het~f!}u^bubeif&u2. ~4.23!

In other words, this distribution is approximately the conv
lution of the intrinsic phase distributions of two cohere
states of amplitudeb. Thus we expect the distribution to b
approximately Gaussian, with a variance double that o
canonical measurement. The exact result from Eq.~4.18! and
the asymptotic result Eq.~4.20! are plotted on Fig. 3. The
excess phase noise in the heterodyne result is becaus
measurement is not as good as the canonical result. In
we have

Vcoh
het2Vcoh

can.
1

4b2
.2hhet~b2!, ~4.24!

where h(m) is the asymptotic expression forHm,m1121
given in Eq.~4.10!. The quantity in Eq.~4.24!, which we will
call the excess phase variance, is plotted in Fig. 4. From
~4.8! it follows that, for states with a well-defined cohere
amplitude, the excess phase variance for any scheme is
proximately 2h(b2).

3. Mark I adaptive

It was shown in Ref.@7# that for a coherent state of am
plitude b@1 the adaptive mark I phaseŵ can be approxi-
mated by a Gaussian random variable of mean zero and
ance

FIG. 4. Plot of the exact~points! and asymptotic~lines! expres-
sions for the excess phase varianceVcoh2Vcoh

can of a coherent state o
amplitudeb vsb under the three dyne schemes: heterodyne (s and
dotted line!, adaptive mark I~1 and dash-dotted line!, and adaptive
mark II (3 and dashed line!.
-
t

a

the
ct,

q.

ap-

ri-

Vcoh
I 5

1

4b
1O~b22!. ~4.25!

This is plotted in Fig. 3 along with the exact result calculat
from Eqs.~4.8! and ~3.34! truncated atn5100. This result
shows that the adaptive mark I is far worse than a heterod
measurement for largeb. Indeed, to the order calculated, th
phase variance is entirely due to the excess phase varia

Vcoh
I 2Vcoh

can5
1

4b
1O~b22!. ~4.26!

This was the result used to obtain

hI~b2!5
1

2
@Vcoh

I 2Vcoh
can#5

1

8b
1O~b22!, ~4.27!

as recorded above in Eq.~4.11!. The asymptotic result~4.26!
and its exact value are plotted in Fig. 4. This shows that
small coherent states, with amplitude less than about 2,
mark I measurement introduces less excess noise than
heterodyne measurement. Forb55 the asymptotic result is
already a very good approximation.

4. Adaptive mark II

For our final scheme we again used semiclassical te
niques in Ref.@7# to show thatPcoh

II (f) was approximately
Gaussian with a variance

Vcoh
II 5

1

4b2
1

1

8b3
1O~b24!. ~4.28!

Like the canonical result, this is dominated by the intrins
phase noise of the coherent state. This asymptotic result,
the exact result from Eqs.~4.8! and~3.42!, are plotted in Fig.
3. The excess phase noise in this case is

2hII~b2!5Vcoh
II 2Vcoh

can5
1

8b3
1O~b24!, ~4.29!

which is far below that of the other two dyne schemes. T
asymptotic result, and the exact excess phase variance
plotted in Fig. 4. Once again, the asymptotic behavior
evident forb55.

C. Phase-optimized states

From the coherent state results, the marked superiorit
the adaptive mark II measurement over the standard te
niques is apparent only from considering the excess ph
variance. A more direct measure is theminimumphase vari-
ance for each measurement scheme. In this measure, the
is optimized for each scheme, and is subject to the constr
of having a maximum photon numberN. That is to say we
have to optimize the unit-norm real vector (c0 ,c1 , . . . ,cN)
so as tomaximize

m5 (
n50

N

cn11cn@12h~n!#. ~4.30!

This can be rewritten as
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m5
1

2 (
m,n50

N

cmJmncn , ~4.31!

where

Jmn5
1

2
@12h~n!#dm,n111

1

2
@12h~m!#dm,n21 .

~4.32!

The problem of maximizingm thus reduces to that of findin
the largest eigenvaluelmax of the real symmetric matrixJ.
Since we haveh(n) for all schemes up ton5100 this can be
done for a maximum photon numberN up to 100.

For the canonical case withh(m)50 the eigenvalue can
be found exactly to be

lmax5cosS p

N12D ~4.33!

so that

Vmin
can5tan2S p

N12D5
p2

N2
24

p2

N3
1O~N24!. ~4.34!

For the dyne measurements there is no analytical solution
a numerical solution is easily obtained. The results are p
ted in Fig. 5. This clearly shows the same order as es
lished for coherent states with large photon numbers:
adaptive mark II measurement is best, followed by hete
dyne, followed by adaptive mark I.

Also plotted in Fig. 5 are the asymptotic results for t
three dyne measurements. These were obtained in Ref@7#
using the asymptotic results forh(n) of Eqs.~4.10!–~4.12!.
The results are most easily expressed by noting that th
functionsh(n) can all be written as

hdyne~n!5cn2p ~4.35!

FIG. 5. Plot of the exact~points! and asymptotic~lines! expres-
sions for the minimum phase varianceVmin of the optimal state with
at most N photons vsN11 under the four schemes: canonic
(* and solid line!, heterodyne (s and dotted line!, adaptive mark I
~1 and dash-dotted line!, and adaptive mark II (3 and dashed line!.
ut
t-
b-
e
-

se

for some positive powerp>1/2 and positive coefficientc of
order unity. From this we got

Vmin
dyne'2cN2p1~2z1!~2cp!2/3N22~11p!/3, ~4.36!

werez1'22.338 is the first zero of the Airy function. Th
leading term here is simply equal to 2h(N). This is essen-
tially the excess noise introduced by the measurement,
as 2hdyne(b2) was for the coherent state. In this case t
intrinsic noise~the second term! varies between the differen
schemes because the state is optimized for each mea
ment.

From Fig. 5 it is apparent that the exact numerical resu
are approaching this asymptotic result for the heterodyne
mark I measurements. However, the mark II exact results
a long way from the asymptotic results even withN5100.
This is actually not surprising. A simple calculation carrie
out in Ref. @7# suggested that the asymptotic results wou
only become valid for

N*Nas5S 103

2cpD 1/~22p!

. ~4.37!

For an adaptive mark I measurement we haveNas5400; for
heterodyneNas54000; and for adaptive mark IINas'3
3107. Evidently these requirements are overly conservat
~as noted in our earlier paper!. Nevertheless, it does explai
why the minimum adaptive mark II phase variance is a lo
way from reaching its asymptote forN5100. This under-
lines the usefulness of the approximate asymptotic resu
An exact numerical solution withN5107 would be severely
impractical. It also points out the danger of trying to deri
power laws such as Eq.~4.36! from numerical data for mod-
erate photon numbers of a few hundred, as done by D’Aria
and Paris in Ref.@17#. A detailed comparison with their re
sults for heterodyne detection for optimized states with
fixed mean photon number will appear in a future paper.

V. PHASE PROBABILITY DISTRIBUTIONS

A. P„f… for coherent states

Although the semiclassical theory of Ref.@7# has proven
invaluable for calculating the asymptotic phase variance
states of large photon number, it cannot readily yield
total phase distributionP(f). This is the quantity that is
needed for a proper analysis of optical communication ba
on encoding information in the phase of single-mode puls
For a communication system there are certain phases
one would be expecting to receive, so what matters is not
mean-square error in the phase measurement, but the p
ability for mistaking one phase for another. This depends
the totalP(f), which requires knowledge of the full matri
Hmn :

P~f!5
1

2p (
n,m50

`

rmne
if~m2n!Hmn , ~5.1!

wherermn is the density matrix for the system state in t
photon number basis.

Before calculating probabilities of error it is informativ
simply to plotP(f) for the various schemes with the syste
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in a coherent state. In Fig. 6 we plot logPcoh(f) versusf for
various values of coherent amplitudeb. One thing is clear:
the canonicalP(f) is best by any definition. For small co
herent amplitudes the adaptive mark I case is the best d
measurement, and is almost indistinguishable from the
nonical measurement. Asb becomes larger the peak o
Pcoh

het(f) becomes sharper and taller than that ofPcoh
I (f).

The peak ofPcoh
II (f) becomes sharper and taller still, and fo

moderateb is indistinguishable from that ofPcoh
can(f). All of

the curves are inverted parabolas for smallf, indicating that
the distributionsP(f) are approximately Gaussian.

All of these features could be predicted from the abo
results. What is unexpected is the shape of the tails of
curves. First, asb increases,Pcoh

can(f) ceases to fall mono-
tonically with distance fromf50, but suddenly reverses a
f'1 and has a broad local maximum atf5p. The hetero-
dyne distribution has no such reversal, but nevertheless
els out and approaches the canonical value atf5p. The
adaptive mark I case is also apparently smooth, but has m
higher tails than the canonical heterodyne distributions. T
big surprise is the adaptive mark II distribution. Like th
canonical distribution it reverses~although smoothly! and
has a broad local maximum atf5p. But the value of
Pcoh

II (p) is actually the largest of all four schemes. In fac
for largeb, Pcoh

II (p) closely followsPcoh
can(f) until it reaches

a floor, which is roughly the same as that ofPcoh
I (f).

These features are not easy to explain from the ma
elementsHmn . For example, the ratio of the probability den
sity at f5p to that atf50 is given by

P~p!

P~0!
5

(
mn

Hmn~21!m2nbm1n/An!m!

(
mn

Hmnb
m1n/An!m!

. ~5.2!

FIG. 6. Plot of the exact expressions for the log of the probab
ity distribution Pcoh(f) for coherent states under the four scheme
canonical ~solid line!, heterodyne~dotted line!, adaptive mark I
~dash-dotted line!, and adaptive mark II~dashed line!. The coherent
amplitude is~a! b51, ~b! b52, ~c! b53.5, ~d! b55.
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Evidently this ratio depends crucially on the relative valu
of the matrix elementsHmn for m,n;b2. In particular, just
becauseHmn

a >Hmn
b ; m,n it does not follow thatPa(p)

<Pb(p). That is, a measurement with a POM closer to t
canonical POM, in the sense of having all elements ofHmn
closer to unity, does not guarantee an unambiguously be
phase probability distribution.

1. Heterodyne measurements

For heterodyne detection we can find an expression
P(p) analytically. Recall that in this case the POM is

Gcoh8 ~a!d2a5
1

p
ua&^aud2a, ~5.3!

where ua& is a coherent state and the phase estimate if
5arga. Clearly then the probability to obtainf5p is

Pcoh
het~p!5

1

pE0

`

rdr u^bu2r &u2 ~5.4!

5
1

pE0

`

rdrexp@2~b1r !2#.

~5.5!

This integral can be evaluated in terms of the error functi
but for b@1 it is well approximated by

Pcoh
het~p!5

1

4pb2
exp~2b2!. ~5.6!

It can be verified from Fig. 6 that this is a very good appro
mation even forb55. For very largeb the most important
contribution is the exp(2b2) term. This scaling can be ex
pressed as

lnPcoh
het~p!.2b2. ~5.7!

2. Adaptive measurements

For the adaptive measurements we can also determ
P(p) by returning to the POM

Gad~ ŵ,C! dŵ d2C5
dŵ

2p
d2CQc~C!

3uc̃~ei ŵ,e2i ŵC!&^c̃~ei ŵ,e2i ŵC!u,

~5.8!

where

uc̃~ei ŵ,e2i ŵC!&5exp~ 1
2 e2i ŵCa†21ei ŵa†!u0&. ~5.9!

For a coherent stateub& with b real the probability density is

l-
:
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Pcoh
ad ~ ŵ,C!5

Qc~C!

2p
z^buc̃~ei ŵ,e2i ŵC!& z2

5
Qc~C!

2p
exp~2b21Re@e2i ŵCb212ei ŵb#!.

~5.10!

Consider first the adaptive mark I scheme for whichf

5ŵ. The ratio ofPcoh
I (p) to Pcoh

I (0) is

Pcoh
I ~p!

Pcoh
I ~0!

5

E E d2CPcoh
ad ~p,C!

E E d2CPcoh
ad ~0,C!

~5.11!

5

E E d2CQc~C!exp~2b21Re@Cb2#22b!

E E d2CQc~C!exp~2b21Re@Cb2#12b!

5exp~24b!. ~5.12!

Now since Pcoh
I (f) is approximately Gaussian we hav

Pcoh
I (0)5(2pVcoh

I )21/25(p/4b)21/2, so that

Pcoh
I ~p!.A4bpexp~24b!. ~5.13!

This agrees excellently with the numerical result plotted
Fig. 6 for b55. For very largeb the dominant term is ob
viously the exponential, which we can express by the eq
tion

lnPcoh
I ~p!.24b. ~5.14!

For the adaptive mark II scheme we expect the tail of
distribution to be at least as high as that for the adap
mark I case, which is what is indeed seen. That is becau

f5ŵ1arg~11C!, ~5.15!

and arg(11C) lies between2p/2 andp/2. Thus irrespec-
tive of C, a resultŵ'p in the tail of the distribution of the
mark I measurement must also give a resultf in the tail of
the mark II measurement. By this crude argument we wo
also expect the log of the tail of the distribution of the ma
II measurement to scale in the same way:

lnPcoh
II ~p!.24b. ~5.16!

Clearly the relative disparity between the height of tails
the adaptive measurements and those of the heterodyn
canonical measurements will continue to increase asb in-
creases. A discussion about the reason for this disparity
be found in Appendix B.

B. M -ary encoding with coherent states

As stated above, one reason for wishing to know the co
plete phase probability distributions, including the tails,
for calculating the effectiveness of the various schemes
digital communication using phase encoding. The canon
a-

e
e
e

ld

f
or
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and heterodyne POMs have been examined before by
and Fuss@18#. Here we follow their approach, and consid
M -ary encoding; that is, the transmission of data as the st
of M -ary digits $0,1, . . . ,M21%. Each digit is represented
by a rotated version of some single quantum stateuc& whose
phase distribution is peaked about zero. The digitn is en-
coded as exp@(2inp/M)a†a#uc&. The receiver makes a phas
measurement~as defined in Sec. II B! on this state and infers
from the result which digit was sent. That is, a resultf in the
interval 2pn/M6p/M is interpreted as the digitn.

The essential measure of any mode of digital commu
cation is the probability that an error occurs. For each of
four measurement schemes we have calculated the min
probability of error that may be achieved for each of tw
types of transmitted states. The first type is coherent sta
These are important because, with the exception of sque
states@11#, they are perhaps the only pure single-mode qu
tum states that can be produced readily enough to be con
ered for communication applications.

Under the decoding scheme described above the prob
ity of error is independent of the digit encoded. For the ze
state it is

E5E
p/M

2p2p/M

P~f!df. ~5.17!

It is easy to see thatE is the expectation value of the positiv
operatorFE512FC where

FC5 (
n,m50

`
sin@p~m2n!/M #

p~m2n!
Hm,num&^nu. ~5.18!

Using this operator, the expansion of a coherent state
terms of number states, and the values ofHm,n for 0<m,n
<100 computed earlier, one may easily determine the pr
ability of error for coherent states with smallb.

We can find approximate asymptotic analytic expressi
for E by returning to Eq.~5.17!. The logarithm ofE will be
well approximated by the logarithm of the largest value
the integrand in Eq.~5.17!. SinceP(f) for coherent states is
approximately monotonically decreasing fromf50 to f
5p for all schemes, we can thus say

lnEcoh' lnPcoh~p/M !. ~5.19!

To proceed further we make the approximation thatPcoh(f)
is Gaussian until it hits the floor valueP(p). That is,

lnPcoh~f!'max$2f2/2Vcoh,lnPcoh~p!%, ~5.20!

so that

lnEcoh'2minH p2

2M2Vcoh

,lnPcoh~p!J . ~5.21!

From the results of Sec. IV B and Sec. V A we can eva
ate this expression for the probability of error for the vario
schemes.

lnEcoh
can'2b2min$2~p/M !2,1%, ~5.22!
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lnEcoh
het'2b2min$~p/M !2,1%, ~5.23!

lnEcoh
I '2bmin$2~p/M !2,4%, ~5.24!

lnEcoh
II '2bmin$2b~p/M !2,4%. ~5.25!

As long asb.2(M /p)2 we have the simple results tha
2 lnE scales quadratically withb for canonical and hetero
dyne measurements, and linearly withb for the two adaptive
measurements. Forb,2(M /p)2 the adaptive mark II mea
surement scales quadratically.

From Fig. 6 it is evident that the approximation ofP(f)
as a Gaussian plus a constant tail is poorest for the he
dyne measurement. Thus we would not expect the expres
~5.23! to be particularly good. However, for this measur
ment scheme we can find the following expression forE:

12Ecoh
het5

1

pE0

`E
0

ay

e2~b2x!22y2
dxdy, ~5.26!

wherea5cot(p/M). After quite some effort this yields the
asymptotic expression

ln~Ecoh
het!.2b2/~11a2!1 lnS ~11a2!52a10

Ap~11a2!9/2D 1 ln~b!

1O~b21!. ~5.27!

The leading term of this differs from the above result~5.23!
by at most 25%~for M53) and approaches it for largeM .
The full expression~5.27!, and the above approximate e
pressions~5.22!, ~5.24!, and~5.25! are plotted as a function
of b in Fig. 7 forM54. Also plotted are the exact numeric
calculations of the probability of error. The expression~5.27!
is evidently a very good approximation. The other analyti
expressions match quite well the slopes of the curves, bu
displaced vertically. For largeb the slope is of course th

FIG. 7. Plot of the exact~points! and asymptotic~lines! expres-
sions for the log of the probability of errorEcoh for quaternary
phase encoding using coherent states of amplitudeb vs b under the
four schemes: canonical (* and solid line!, heterodyne (s and dot-
ted line!, adaptive mark I~1 and dash-dotted line!, and adaptive
mark II (3 and dashed line!.
ro-
ion
-

l
re

more important feature, and it is interesting that Eq.~5.25!
does correctly predict the change from quadratic to linea
behavior of lnEcoh

II at b'2(4/p)2'3.24.
From the asymptotic results it is clear that for largeb the

adaptive mark II measurement has a higher probability o
error than heterodyne detection. Specifically, forM.3 the
crossover point is at

b'4~M /p!2. ~5.28!

For M54 this is b'6.48, which agrees well with the nu-
merical data in Fig. 7. At this point the error is

lnEcoh'216~M /p!2. ~5.29!

Thus depending on whether the acceptable error level is le
than or greater than this amount, the best dyne measureme
scheme to use~in the sense of requiring the least energy
\vb2 per pulse! will be heterodyne or adaptive mark II,
respectively.

C. M -ary encoding with optimal states

In this section we consider the probability of error for
optimized states subject to a maximum-photon-number con
straint. Since the probability of error is

E5^cu12FCuc&, ~5.30!

it is readily seen that the problem of finding the minimal
probability of error for states of the form(n50

Ncnun& is
precisely that of finding the largest eigenvalue of the matrix
formed by truncating the number-state matrix forFC of Eq.
~5.18!. For smallN this eigenvalue problem can be solved
using MATLAB and theHmn matrices computed earlier.

Figure 8 depicts the results for quaternary (M54) encod-
ing. It is clear from this graph that the log of theEopt for
optimized states has the same sort of dependence of t
maximum photon numberN as the log ofEcoh has on the

FIG. 8. Plot of the exact~points! expressions for the log of the
minimum probability of errorEcoh for quaternary phase encoding
using the optimal state with at mostN photons vsN under the four
schemes: canonical(*), heterodyne (s), adaptive mark I~1!, and
adaptive mark II (3).
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mean photon numberb2. That is, for largeN, the heterodyne
and canonical measurements scale linearly withN ~with the
latter having the greater slope! while the adaptive measure
ments scale as the square root ofN ~with the adaptive mark
II having the greater slope!. Once again the adaptive mark
measurement is the best realizable measurement for mo
ateN, while the heterodyne measurement becomes supe
for largeN. We would expect the crossover point to scale
M4, and for M54 the numerical data show that it is atN
'64'25(M /p)4.

VI. DISCUSSION

In this paper we have presented the exact quantum th
of two adaptive phase measurements. From this we h
confirmed the semiclassical results obtained in Ref.@7#. In
particular, the phase variance from our adaptive mark
phase measurement is always less than that from a stan
phase measurement~such as heterodyne detection!. We have
also applied our theory to an area inaccessible to the s
classical theory, that is the complete shape of the probab
distribution for the measured resultsf. We find that the
adaptive measurement phase probability distributions h
surprisingly high tails. This has the consequence that
adaptive measurement is not necessarily better than stan
phase measurements when it comes to communication u
M -ary encoding of data in the phase of states.

The fact that the adaptive phase measurement is not
essarily superior to the standard phase measuremen
M -ary phase encoding does not mean that it is a poor ph
measurement, or that adaptive measurements in genera
not useful. After all the situation ofM -ary encoding does no
really call for a phase measurement; rather it calls for a m
surement which can distinguish as well as possible betwe
finite number of known different~but not orthogonal! states.
For the case of binary phase encoding using coherent s
~with phases 0 andp), there is an adaptive measureme
which has been known for some time@19# which distin-
guishes these possible states as well as quantum mech
allows. It is only whenM;N, whereN is the mean photon
number of the states, that the measurement required is r
a phase measurement. In this limit the variance of the dis
bution is the important factor, and the adaptive mark II ph
measurement always gives a lower error rate than stan
detection.

Although the asymptotics for the phase variance of
adaptive schemes were already known from the semiclas
theory of Ref.@7# the quantum theory presented here sh
knew light on these results and allows us to probe new
sues. For example, what is the ultimate limit on the ph
noise introduced by an adaptive phase measurement
other words, how closely is it possible to approximate a
nonical phase measurement by using a measurement in
ing dyne measurements~that is measurements using phot
detection and a local oscillator with arbitrary time-varyin
phase!? Although we cannot answer this question at t
stage, we can show that there is a lower bound on the am
of excess noise. This lower bound is not due to imperfecti
such as a finite local oscillator or inefficient detectors, bu
a fundamental limitation of the method of measurement
er-
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photodetection. We proceed by using the analysis in App
dix B.

It was shown in Appendix B that the probability for ob
taining a particular phasef is determined largely by the
maximum overlap between the system state and any of
pure states which contribute to the probability operatorF(f)
for that phase. For dyne measurements, these pure state
squeezed states. As a result of this, the variance of the m
sured phase probability distribution will be~to a good ap-
proximation! equal to the true~canonical! phase variance o
the system plus the phase variance of the maximum-ove
pure state. Furthermore, it was shown in Appendix B tha
order to obtain a large overlap, the maximum-overl
squeezed state must have a well-defined coherent ampl
roughly equal to the coherent amplitude of the system.

From these considerations we can conclude that if
system has roughlyN photons, then the excess phase va
ance will be approximately that of a squeezed state wit
mean photon number ofN. Now the minimum~canonical!
phase variance of a squeezed state with a mean photon
ber ofN has been investigated by Collett@20#, who found the
asymptotic result

Vss
can>

lnN

4N2
. ~6.1!

This represents a lower bound on the excess phase vari
introduced by any dyne measurement. So, for example,N
is sufficiently large then the minimum measured phase v
ance for a state with at mostN photons would be

Vmin
dyne>

lnN

4N2
. ~6.2!

This lower bound should is a long way below the varian
achieved by the adaptive mark II scheme presented here
which

Vmin
II .

1

8N3/2
, ~6.3!

which itself is a long way below the variance achieved
standard measurements, namely,

Vmin
het .

1

4N
. ~6.4!

In fact, the lower bound~6.2! is very close to the absolut
lower limit set by canonical measurement@21#

Vmin
can.

p2

N2
. ~6.5!

Exactly how close one can come to the lower bound~6.1! by
using a different feedback algorithm is a matter for futu
research.
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APPENDIX A: THE OSTENSIBLE MOMENTS OF C

Following the text, we denote the ostensible moments
C as

M v
n,m5^Cv

nCv*
m&Q . ~A1!

Using the rules of Itoˆ calculus to evaluate

dMv
n,m5^~Cv1dCv!n~Cv* 1dCv* !m2Cv

nCv*
m& ~A2!

we find from Eq.~3.24!

dMv
n,m

dv
52

2~n2m!2

v
M v

n,m1nMv
n21,m1mMv

n,m21 .

~A3!

SinceM v
0,0[1 these equations may be solved recursively

find

Mn,m5
nMn21,m1mMn,m21

2~n2m!21n1m
. ~A4!

Recall that by conventionMn,m5M1
n,m . For n or m equal to

zero this recurrence relation can be solved to get

Mn,05M0,n5
1

~2n11!~2n21!•••1
5

1

~2n11!!!
.

~A5!

These boundary values allow us to rapidly compute all
desired momentsMn,m.

APPENDIX B: THE TAILS OF THE DISTRIBUTIONS

The reason for the different scaling of the tails of t
adaptive measurements compared to the heterodyne
surement can be understood as follows. For heterodyne
tection the dominant term is the inner product of the syst
stateb with the coherent stateu2r & for r 502. This maxi-
mizes the overlap while still maintainingf5argr 5p:

lnPcoh
het~0!. lnu^bu0&u252b2. ~B1!

For the adaptive mark I technique the overlap will be with
squeezed stateua,e&, where~usingf5ŵ5p)

a52
11C

12uCu2
, ~B2!

e52
CatanhuCu

uCu
. ~B3!

The problem is to determine the value ofC that maximizes
this overlap.

It is not difficult to see that the value ofC we seek will be
real and positive. In this case
f

o

e

ea-
e-

a52~12C!21, ~B4!

e52atanhC . ~B5!

This describes a squeezed state centered atx522/(12C)
with an x variance

exp~22e!5
11C

12C
. ~B6!

The overlap betweenub& and ua,e& is

z^bua,e& z25
exp@2~11tanhe!~b1a!2#

coshe
~B7!

.
exp$2~12C!@b11/~12C!#2%

A12C2
. ~B8!

Ignoring the negligibleA12C2, this expression is maxi-
mized for

12C5b21. ~B9!

This impliesa52b and exp(22e).2b. Substituting this in
Eq. ~B8! gives

lnPcoh
I ~p!. lnz^bua,e& z2.24b, ~B10!

as obtained in the body of the paper.
This derivation in this appendix shows that the reason

the high tails of the adaptive distributions is the largex vari-
ance of the squeezed stateua,e&, giving it a much larger
overlap withub& than hasu0& ~from the heterodyne measure
ment!. Although this large squeezing is responsible for t
high tails, it is also what allows the narrow peak of the ada
tive mark II measurement. This can be seen as follows.

The most likely result for the adaptive mark II case isf

5ŵ1arg(11C)50. This is obviously most likely to occu
for ŵ50, in which case the only difference is that

a5
11C

12uCu2
. ~B11!

Once again it is easy to see that the maximum overlap
be for C'1. The overlap in this case is

lnz^bua,e& z2.2~12C!S b2
1

12CD 2

. ~B12!

This is maximized~with a value of zero! at exactly the same
C512b21. This givesa5b as expected, and the samex
variance.

In this case what is of more interest is they variance

exp~2e!.~2b!21. ~B13!

The intrinsic phase variance of this squeezed state is thu

Vss.
^y2&

^x&2
5

exp~2 ē !

~2b!2
.

1

8b3
. ~B14!
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This is precisely equal to the asymptotic expression for
excess variance

Vcoh
II 2Vcoh

can.
1

8b3
. ~B15!

The reason for this is that the measured phase distributio
at least as wide as a convolution of the true~canonical! phase
distribution of the state with the true phase distribution of
ys

.

ry

e

e

is

e

most likely POM. This is completely analogous to the arg
ment centered around Eq.~4.23! for the heterodyne case. Fo
the adaptive mark I measurement the measured distribu
is actually much wider, but the above calculation shows t
for the adaptive mark II measurement all of the introduc
noise is due to the quantum uncertainty in the states ma
up the POM. Thus the mark II phase estimate is, for la
fields, the best possible estimate given the feedback a
rithm ~3.12!.
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