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Quantum optics of lossy beam splitters
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The familiar input-output relations for an optical beam splitter are generalized to allow for linear absorption
by the medium forming the mirror. Beam-splitter losses generally affect the noise levels detectable in experi-
ments involving nonclassical light. When employed to investigate two-photon interference effects, a lossy
beam splitter can lead to apparent nonlinear absorption, which, in the most extreme case, leads to either both
or neither of the photons being absorbed. The degree of second-order coherence of antibunched light can be
maintained on transmission through the beam splitter but any amplitude squeezing in the incident light is
degraded[S1050-294®8)05303-7

PACS numbes): 42.50.Dv

Beam splitters play important roles in much of optical
physics. They are key elements in interferometers, both the . ~e N “t,
classical instruments whose fringes are controlled by first- [aj(@),bj(0’)]=0=[bj(w).aj(w")], 1D
order coherence and the Hanbury-Brown—Twiss variety used
in measurements of second-order coherefide They are
frequently used in the detection of nonclassical effects, inwith j representing either in or out.
cluding antibunching?2], squeezing3], and two-photon in- Almost all previous theoretical work is concerned with
terference[4]. They are also of fundamental importance in beam splitters in which none of the incident light is ab-
investigations of the nature of lighb]. An extensive and sorbed. For an ideal lossless beam splitter that is reciprocal
up-to-date account of these effects and others is givé@]in (invariant under time revergaand symmetri¢13], the pairs

A beam splitter superposes two incident or input fields toof input and output operators are related by a unitary trans-
produce two output fields. In its simplest form it may be formation of the form14—-14
thought of as a thin layer of dielectric with complex trans-
mission and reflection coefficients determined by the usual
boundary conditions on the electromagnetic field at (a)
dielectric—free-space interfaces. Such simple models have
been discussed in some defai+-10]. In this paper, however, Eaut(a))
we will be primarily concerned not with the forms of the
fields in and around the dielectric but rather with the rela-
tionships between the incident and outgoing fields far from
the beam splitter and with the effects of the superposition of
fields at the beam splitter on their quantum properties.

Figure Xa) depicts a beam splitter that superposes two
independent incident modes, with the continuum annihilation
operatorg 11,12 a;,(w) andb;,(w), to form two indepen-
dent outgoing modes, with the operatogg, (w) and
b.u{w). In addition to the square beam splitter, with propa-
gation directions at right angles, the theory that follows ap- (b)

a, (o)

&OIH ( w)

plies to any four-port device with two input and two output
ports, for example, the absorbing film shown in Figb)l . .
with light incident normally on both sides. The incident and a, (@) a,,(®)
output modes propagate in free space and their annihilation
and creation operators must satisfy the usual commutation -
relations ~ ~
b, (@) b, (@)
*Present address: INFM Dipartimento di Fisica dell’ Universita FIG. 1. Schematic diagrams @& a beam splitter andb) a

Milano, Via Celoria 16, Milano 20133, Italy. partially reflecting film.
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éout(w)=t(w)éin(w)+r(w)E)in(w), r(w)—0, as the frequencw tends to infinity. The absorp-
tion can be very small in any chosen spectral range, but
Boul @) =t(®)Din( @) +T ()& @) (1.2  significant absorption then occurs at other frequencies. The

presence of absorption means that some of the light incident
wherer(w) andt(w) are respectively the beam-splitter re- on the beam splitter does not escape. The free-space commu-
flection and transmission coefficients. These have a fretation relations(1.1) remain in force but the input-output
quency dependence that characterizes the construction of thelations(1.2) need to be generalized and the transmission
beam splitter. The formal requirement for unitarity imposesand reflection coefficients no longer satisfy the ideal beam-

two restrictions on the forms of the coefficients: splitter relations(1.3) or (1.4).
These relations can, however, be replaced by a pair of
[t(w)|?+|r(w)|?=1, inequalities. The first of these is
t(o)r*(w)+t* (0)r(w)=0 1.3 t(w)|2+|r(w)|?<1 (2.0

for all angular frequencies. These restrictions ensure that
the commutation relationd..1) are all satisfied; equivalently,
they guarantee the conservation of energy and the orthog
nality of the two outgoing modes, respectively. They can b
reexpressed in a variety of useful forms, for example, th
compact version

with the equality holding only for zero losses at the fre-
guencyw. The left-hand side of this inequality can be inter-
reted as the probability of survival for a single photon inci-
dent on the beam splitter.
€ A second inequality is derived by considering the effect
of the beam splitter on arbitrary input fields with classical or
It(w) = r(w)|2=1. (1.4 coherent amplitudea and 8. The requirement that the total
output intensity(or mean photon fluxshould be less than or

Of course, apart from constant-intensity monochromatic in€dual to that at the input then gives
cident light, most beams are time dependent and their poten-
tially complicated properties on transmission through the [t(®)a+r(w)B?+|t(w)B+1(w)al?’<|e|?*+|B|> (2.2
beam splitter must be determined by Fourier transformation
of the much simpler theory in frequency space. for any pair of complex numbers and 8. The equality again

In reality, beam splitters exhibit not only dispersive, or holds only if there are no absorption losses. For the special
frequency-dependent, reflection and transmission coefficientshoicesa= * 8, the inequality simplifies to
but also losses, and these two features are inter-related by
causal considerations embodied in the Kramers-Kronig rela- [t(w) =1 (w)]?<1 (2.3
tions[17]. Indeed, the presence of both dispersion and loss
plays an important role in the canonical quantization of the; 4 compination with Eq2.1) provides a bound on the real
field in the presence of dielectric medi@,18]. Despite this *

. ; part oft(w)r*(w) of the form

close relationship, and apart from some work on the analo-
gous fibre couplergl9], there is very little published theory
on beam splitters with loss¢20]. The lack of attention to
the quantum properties of lossy beam splitters is understand-, ) )
able, as losses tend to suppress nonclassical features such{ both sides equal to zero for a lossless beam splitter.
squeezing21] and the beam splitters in the relevant experi- _1h€ commutation relation€l.1) between the output cre-
ments are designed to minimize the loss. There are, neveftion and annlhllatlon_ operators must remain valid in the
theless, interesting nonclassical effects for which the preg®resence of beam-splitter loss, as they represent basic prop-
ence of losses is necess#@2,23. emgs pf the free-space quantized fle.|dS. The|r forms are

In this paper we present a simple quantum theory of lossyn@intained by the presence of Langevin noise operators as-
beam splitters and apply it to model the effects of such desociated with _quctuatlng currents Wlthll_’] the _med|um forming
vices on nonclassical states of light. We find that photorfh® beam splittef9]. The general relationships between the
antibunching is unchanged by transmission through the beafffPut and output operators with the inclusion of losses are
splitter but that squeezing is, as expected, suppressed by t
losses. More surprising is the modification of the famous . ~
two-photon interference effe¢#,24] by an apparent nonlin- Agui( @) =t(w)aj(w) +r(w)bjy(w)+F4(w),
ear absorption in the linear medium forming the beam split-
ter, which restores the photon coincidences between the two
output modes that do not occur for a lossless beam splitter.

t(@)r* (@) +r(o)t* (o)|<1-[r(o)*-|tw)]? (2.4

Bout ©) =t(®)bin(@) + 1 () an(w) +Fp(w). (2.5

The input fields and the noise sources within the mirror are

required to be independent so that the input operators must
In practice, some of the light incident on a beam splitter iscommute with the output Langevin operators:

neither transmitted nor reflected but rather absorbed. This is

an inevitable consequence of the frequency dependence of[3,(w),Fl(w’)]=[an(w),Fi(®')]=[8n(®),Fa(w’)]

the transmission and reflection coefficients; the beam-splitter R

material must, for example, tend towards transparency, =[ajn(w),Fy(w’)]=0 (2.6

Il. LOSSY BEAM SPLITTERS
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and similarly for theb operators. Imposition of the commu-

1 -
tation relationg1.1) on the output mode operators then leads E:j(w)z — {éj(w)+ bj(w)},
to the requirements on the noise-operator commutation rela- V2
tions:
() = — {y(0)— &)} (212
. . (w)=— i(w)—a;(w)y, .
[Fa(0),Fi(0")]= 80— 0 ){1-|t()|*~|r()|} o :

=[Fp(w),Fi(o")], with j representing either in or out. These superposition

modes have the merit that they are not mixed by the action of

- - the beam splitter. The outgoing symmetric and antisymmet-
[Fa(w),Fi(0)]=—8(w— o ){t(o)r* (o) +r(0)t*(@)}  ric annihilation operators are related to their incident coun-

—[Eo(w) Fl(0)]. (27 |‘erPansby

Coul @) =[t(©) +1(0)]en(®) +Fe(w),
Note that these commutators are proportional to combina- ol @) =[t(@)+1(0)]Cn(w) +Fo(w)

tions of the transmission and reflection coefficients that are . . -
zero for the ideal beam splitter, according to E3). dou @) =[t(w)—r(w)]dip(w) +Fy(w), (2.13
At optical frequencies, the matter forming the beam split- _ _ N
ter can be considered to be in its ground state. We use the kethere we have introduced independent superposition Lange-
|0) to represent the composite ground state of the materialin noise operators
and the vacuum state of the incident electromagnetic modes,
so that it is a zero right eigenstate of the corresponding de- Fo={F,+Fp}/v2 and Fy={Fp,—F}/v2 (2.14
struction operators,
that satisfy the simple commutation relations
Fa(®)]|0)=Fp(®)[0)=aj,(w)|0)=bjr(@)|0)=0. (2.8 . .
[Fo(@),Fi(0")]= 80— o) {1-|t(w)+r(»)|?,
It follows from the input-output relation§2.5) that |0) is

also the vacuum state of the output electromagnetic modes, a St N B )
with [Fa(w),Fg(0)]=8w— o {1-|t(w)—r(w)|?},

R ~ - CT N1 O—TE TN
aout(w)|0>:bout(w)|o>zo- (2_9) [Fc(w),Fd(w )] 0 [Fd(a)),Fc(w )] (2-15)
) ) For a lossless beam splitter, the relati@m) shows that the

The quantum averages of the Langevin operators vanish, input-output relations(2.13 for the superposition modes
amount to no more than a phase shift. For lossy beam split-

(Fa(0))=(Fp(0))=(Fl(w))=(F(w))=0, (2.10 ters, the commutation relatiori@.15 are of precisely the
form required to restore the quantum fluctuations apparently
. reduced by the beam splitter and to retain the canonical com-
and the only nonzero ground-state expectation values o, iation relations between the outgoing annihilation opera-

products of pairs of noise operators are tors[12].
(Fa(@)Fi(0")=8(0—o"){1-[t(o)|*~|r(o)|?} IIl. QUANTUM INTERFERENCE EFFECTS
=(Fp(@)F(0")), A. Coherent input states

Classically, a beam splitter superposes the incident field
F Fllo N =—8(w— o)t () 4 t* amplltudes to_produce outgoing fields. If the amplitudes in-
(Fa(@)Fp(@") (0= }{t(@)r* (@) +r(w)t (o)} cident from directionsa;, and b;, for the frequencyw are
=(Fp(@)Fi(w")). (2.1)  ain(®) and Bix(w), respectively, then those leaving in the
A, and b, modes arey, (w) and B, (@) given by

These relations may also be derived on the basis of a fully
canonical one-dimensional theory applied to a dielectric slab
[9] as summarized in Appendix A, where results for the limit
of a very thin slab, the “delta-function mirror,” are also Boul @) =t(®) Bin(w) +1(w) ajn( ). (3.
presented.

The relationships derived above are sufficient to model This simple behavior survives in the quantum description
the effects of the lossy beam splitter on any given inputfor the (continuum coherent state$11,12 defined by a
states. It is useful, however, to describe its action on the pasimple generalization of the familiar discrete mode coherent
of superposition modes associated with the annihilation opstates[12,25. The combined state of the input modes and
erators the medium forming the beam splitter is then

aou @) =t(@) ain(@) +1(@) Bin(w),



57 QUANTUM OPTICS OF LOSSY BEAM SPLITTERS 2137

|{ain(w)}v{ﬁin(w)}>:exp{Jdw[ain(ﬁ))éin(w)_ai’;\(w)éin(w)]}exp{f dw[IBin(w)BiE(w)_Bi’F](w)Bin(w)] |0>1
(3.2

where|0) denotes the ground state defined in B@s8) and(2.9). The continuum coherent staf8.2) is the right eigenstate

of both a;,(w) andb;,(w), for all frequenciesy, with eigenvaluesy;,(w) and B;,(w), respectively. It is now straightforward
to show that this state is also a right eigenstate of the output annihilation operators,

éout(w’)Hain(w)}y{ﬁin(‘U)}>:{t(w’)ain(a”)+ r(w,),Bin(w’)}|{ain(w)}a{ﬂin(w)}>1
boul @) [{@in( @)} {Bin(@)})={t(0") Bin(@") 1 (0") (@)} {an(©)}{Bn(©)}). 3.9

It follows that the two output fields are also in coherent statesvhere |0) again denotes the electromagnetic vacuum state
with amplitudes given by the classical expressidBsl). and ground state of the medium forming the beam splitter.
These results look the same as for a lossless beam splittaf/ithout loss of generality we can choose the superposition
but of course the reflection and transmission coefficients thadmplitude ¢(w,,w}) to be symmetric under interchange of
appear in the output amplitudes are reduced by the loss its arguments. Normalization of the state vector then imposes
accordance with the inequalit®.1). the condition

The simplicity of these transmission characteristics is pe-
culiar to the coherent states and mixtures of th&g]. Other * <, 12
input states produce entangled outputs that cannot be factor- Zjo d“’afo dog$(wa,wy)[*=1. (3.5
ized into a product of separate states for the two outgoing
fields [27]. Such states can exhibit explicitly quantum ef- |t is convenient to introduce continuum number operators
fects. In the remainder of this section we consider two ex{12] for the two outputs. These have states of well-defined

amples of entangled outputs, we derive a general descriptiophoton number as their eigenstates and they may be ex-
of the state of the outgoing fields, and we discuss the effectgressed in the forms

of the beam splitter on nonclassical incident light.

) Na:f dwagut(w)é-out(w)a
B. Two-photon interference 0

A single photon incident on a lossless beam splitter, with . T R
frequency-independent transmission and reflection coeffi- Nb=J dob! (©)bgf @) (3.9
cientst andr, is transmitted Witg probabilitft|? and re- 0
flected with probabilitylr|*=1—|t|. A pair of photons ex- .
hibits a morpe interesi,!n|g beha|v!or. prthe th()) photons arefor t'he_aout gnd bo,e Modes, respectlv_ely. The probabilities
r{gr finding given numbers of photons in the outputs are then
obtained from the Kelley-Kleiner counting formula, special-
ized to unit quantum efficiency and infinite counting time
r[25]. In particular, the probability for finding two photons in
modea,, and none in modé,,, is

dentclassicalparticles in that the probabilities for both being
transmitted or both reflected afg* and|r|*, respectively,
while the probability for one being reflected and the othe
transmitted is §|?|r|2 [14]. This behavior has been demon-
;t;ﬁ;e[%suzgg parametric fluorescence as a source of photon P(2.,0,) = H(N(R,— 1)). 3.7
A somewhat different result occurs if the two photons
enter the beam splitter through different arms. Under suitabl
conditions the two photons can be made to leave in the same 1 -~ .
beam. This effect, which has been demonstrated experimen- P(0,,2,) = > (Np(Np—1)),
tally [4,30], arises from destructive interference between the
amplitudes for both photons to be reflected and for both pho-

eSimiIarIy, the remaining nonzero probabilities are

tons to be transmitted and it is a consequence of the bosonic P(1a,15) =(NaNy),

nature of the photong31]. In this section we examine the - ~ A ~ a

expected modifications of these effects when a lossy beam P(14,00) =(Na)=(Na(Na—1)) = (NaNp),

splitter is used. . A .
Consider a pair of photons incident in the same input arm P(0a,1p) =(Np) = (Np(Np— 1)) = (NaNy),

a;; while arm by, is left in its vacuum state. The general

(pure state can then be written in the form ~ ~ A ~ 1 ~ -
P P(04,00) =1 (Ng) (N +(NaNp) + 5 (No(Na— 1))

9= [ doa [ doid(o 008l 0080 w0)0)

1 . .
(3.9 + 5 (Np(Np—1)). (3.9
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For a lossless beam splitter, the number of photons leaving popapility
the beam splitter is strictly equal to the number incident upon 1
it and the last three of the probabilities listed in E8.8) are

all zero. Inclusion of losses introduces a probability for ab-
sorption so that these probabilities need not vanish. The
probabilities can be calculated by using the relationships
(2.5) to express the output continuum number operat®® 0.6
in terms of the input continuum annihilation and creation a1
operators and then applying the commutation relatidnd.
Evaluations of some of the required photon-number factorial
moments are presented in Appendix B.

It is quite straightforward to calculate the moments for 0.2
any given forms of frequency dependence of the transmis-
sion and reflection coefficients. For simplicity, however, as
well as for each of comparison with earlier work, we restrict 0 0.2 04 ,.p 06 0.8 1
our discussion to coefficients that do not vary appreciably ] ]
over the bandwidth of the light, and can thus be approxi- FIG. 2. Plots of the prot_)abllltles of the various possml_e out-
mated as independent of frequency. With these restriction§°Mes for two photons incident from the same arm against the

we find the following forms for the required probabilities: single photon survival probability. We assume that the transmission
" and reflection coefficients have the same modulus. The bracketed

4 4 numbers show the elements of the output probability distribution in
P(24,00)=1t|*,  P(04,2,)=]r|* armsa andb to which the curves refer.

0.81

0.47

(2,0=(0,2)
(1,0)=(0,1)

P(1.,1,)=2|t|3r]|?, % o R -
(Lado) =211 9= | doa | “dongtosona(@abl(@n)0), 310

P(14,00) =2[t}*(1—[t[*=[r[?), , , ,

where there is no required symmetry for the function
B 204 1412 1e12 J(w,,w,). Normalization of the state vector imposes a nor-
P(0a,3p) =2|r[*(1 = [t[*=[r|%), malization ony(w,,w,) so that

(11412 [ |2\2 °° o

P(05,0)=(1—t[*=|r[*)2 (3.9 fo dwafo dwp| ¥ wy, wp)|2=1. (3.11
These results are fully consistent with the property noted for - . . .

a lossless beam splitter that the photons behave like indepefil'® Probabilities for finding given numbers of photons in the
dent classical particles. Thus each photon is transmitted witfV0 Outputs are obtained from E¢8.7) and(3.8) and they

probability |t|2, reflected with probabilityr|? and absorbed May be calculated by the method outlined in Appendix B. If
with probability 1—[t|2—|r|2. In particular, the probability we again specialize to reflection and transmission coeffi-

that precisely one photon survives is the sumPgtL,,0,) cients thgt may be approximated as frequency independent,
and P(0,,1,), with the value of twice the product of the then we find
probability 1—|t|>—|r|? that a single photon is absorbed

: o . ) =[t]?r|1+1]=
with the probability |[t|?+]r|? that a single photon is not P(20,0) = |tI5r[T1+11=P(0a2),

absorbed. Note that the probabilities in £§.9) are all in- —|1]4 4, 1420%2 1 202

dependent of the form of the superposition amplitude P(La o) = [t "+ [r[*+ [ r 551,
P(w,,w}) used in the stat€3.4). We illustrate Eq(3.9) in P(1 = ([t12+[F 12 (1= 1t12=r|2) = (tr* +rt*)2|
Fig. 2, which is a plot of the probabilities of obtaining four (22,0 = (It Ir [ (2=t =[r5 = )
possible outcomes for a two-photon input against the single- =P(0,,1,),

photon survival probability 2|2 for a symmetric lossy beam

splitter. The probability of obtaining no photons at either P(0,,0,)=(1—[t|2=]|r|®)2+ (rt* +tr*)2, (3.12

output, curve(0,0) in the figure, decays with increasing sur-

vival probability, while the probability of obtaining a photon Where we have introduced tfieea) overlap integral

in one of the output arms and none in the other, curve

(1,0=(0,1), vanishes at both ends of the range. The prob- _[” - %

abilities of obtaining one photon in each arm and of obtain- I fo dwafo dopplwa,wp) 7 (@p,0a). (313

ing both photons in one of the output arms, cur¢ed) and

(2,0)=(0,2), respectively, increase with the single photonThe probabilities in Eq(3.12 are now crucially dependent

survival probability. These results show that the naive ason the form of the superposition amplitugéw, ,wy) used

sumption that the photons behave as independent classidalthe statg3.10. If | =0, the photon amplitudes for the two

particles is adequate to explain their behavior in this case. input modes do not overlap in time at the beam splitter, and
We now turn to the case of two photons incident in dif- the probabilitieg3.12) reduce to the forms expected for two

ferent input arms, one in ar@,, and the other in arni;,. independent particles, each with probability for transmis-

The generalpure state can be written in the form sion, |r|? for reflection and * |t|?—|r|? for absorption. At
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the opposite extreme, fdr=1, the photon amplitudes over- famous Hong-Ou-Mandel interference effdéf] thus sur-
lap completely in time and the probability for finding pre- vives for a lossy beam splitter provided that the complex

cisely one photon in each of the two outputs is andr remain orthogonal.
It is interesting to note that the quantum interference ef-
P(1,1p)=]t2+r?2 (3.14  fects embodied in the overlap integlagenerally affect the

probabilities for one or two of the photons to be absorbed. In
This quantity vanishes fdr=*ir, when the second equality particular, the probabilities for two, one, or no photons to
in Eq. (1.3 is satisfied even in the presence of loss. Thesurvive are

P(2 survive =P(2,,0,) + P(04,2)) + P(1,1,) = ([t|?+|r|?)2+ (tr* +rt*)?,
P(1 survive$=P(1,,0,)+P(0,1)=2(|t|>+|r|?)(1—|t|>=|r|®)—2(tr* +rt*)2l,

P(0 survive=P(0,,0,)=(1—[t|?—|r|?)2+ (tr* +rt*)2l. (3.15

These are the same as the probabilities found for two phceonsidering the superposition modes E2112). When writ-
tons incident in the same input onlyli=0 or if t andr are  ten in terms of these modes, the input state becomes
orthogonal(tr* pure imaginary. In all other cases, the two-

photon interference affects the survival probabilities. This . . 1

means that an apparenbnlinear absorptionoccurs in the — ~gaf at

linear medium forming the beam splitter. It takes its most ) fo dwafo dpi(wa,op) 2 {Cin( @a)Cn( )
extreme form when the overlap is ideal so thatl and the ~+ ~t

transmission and reflection coefficients are equal or opposite —dip(0a)din(@p)}|0), (3.17
(t==r). It then follows from the inequality2.3) that the

maximum values of the moduli of the transmission and re- .
. o .~ where we have used the symmetryydfow, , with respect
flection coefficients ardt|=|r|=1/2. Under these condi- y wa, ) b

i th bability that isel f the ohot to interchange of its arguments when 1. The input state in
lons, the probability that preciSely one ot the pholons SUlyyq -455e has both photons in one or other of the two super-
vives is zero. The complete set of output photon-numbe

babilities | bositions of the input fields. The output annihilation opera-
Probabilities 1S tors for the superposition modes are related to the input op-
erators by Eq(2.13. For the conditions under consideration,

P(2,.0,) 1 P(0.2,) with t==+r and|t|=1/2, light in one of the two superposi-
a 8 ach/s tion modes is completely absorbed while that in the other
1 superposition merely undergoes a phase shift. It again fol-
P(1,1,)= 2 lows, therefore, that either both or neither of the photons is

absorbed by the beam splitter.
P(14,0,)=0=P(04,1,),

1 e
P(Oa,Ob) _ E (3.16) Probflbnhty

Clearly either both photons are absorbed or neither is, and 087
this occurs even though the absorption is a linear process.
Figure 3 is a plot of the survival probabilities for various 0.61

numbers of photong3.15, after propagation through the ©
beam splitter, against the survival probability for single in-
dependent photons. It assumes complete overlap of the twc 941 )

photons at the beam splitter, and equal or opposite reflection
and transmission coefficients. The probability that no pho-

: Kk . 0.21 Q)

tons survive, curvé0), decreases from a maximum of unity
at 2/t|2=0 to 0.5 at 2t|2=0.5, and the probability that both
photons survive, curv€?), increases from zero to 0.5. The 0 01 02 > 0.3 04 05

o - : 2itl
probability that only one of the photons survives, shown in
curve (1), increases to a maximum aftf=0.25 and then FIG. 3. Plots of the survival probabilities for two photons inci-
decreases to zero again 4t|2=0.5. This right-hand end of dent in different input arms, with full overlap between them and
the plot corresponds to the results in E8§.16). reflection and transmission coefficients related sy+r. The num-

The apparent two-photon absorption is, in fact, a manifesbers of surviving photons are shown in brackets adjacent to the
tation of quantum interference as may be demonstrated byppropriate curves.
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C. General quantum statistical description continuum annihilation and creation operators. These mo-

All the measurable statistical properties of the fields carfM€nts are conveniently expressed in terms of the normally
be expressed in terms of normally ordered moments of therdered characteristic functional, with the form

Xl E(w,), n(wp)]= < exl{ J:dwag(wa)él(wa)

exp[ | donntonblcan

EX[{ - J:dwag* (wa) éik( wa)

X exp{ - f:dwbn*(wb)ﬁk(wb)

> , (3.18

where k denotes either in or out. Any normally ordered moment of the creation and annihilation operators is found by
functional differentiatior{ 12,32—34, for example,

(al(@)bf(@")b (@b (")) = i i 0 0 Xl E(@,), 7(wp)] : (3.19
kL9 5k 5é(w) on(w') S7* (") 57* (") a) o

We can write the characteristic functional for the outputs in terms of that for the inputs by using the reatpnogether
with the fact that the normally ordered moments of the Langevin noise operators are zero in the ground state of the absorbing
medium. The required relationship is then

Xoul £(wa), 7(wp)]= Xin[{t* (wa) (wa) +1* (wa) P(wa) } {t* (wp) H(wp) +1* (wp) {(wp)}]. (3.20

The characteristic functional for the outputs can thus be constructed from that of the inputs when the form of the input state
is specified.

As a special case of these relations, consider an experiment in which the inputbmdgl@ its vacuum state, when the
second and fourth moments of thg, output mode are

(&l (@) A @) =t* (0)t(w }Al(®)an(e")) (3.2
and
(A6 ((@)a! (@) Ao @) Ao @) =t* (0)t* (0" )t(0")t (0" ) (El(0) Al (0")an(©")an(™)). (3.22

The degree of second-order coherence ofahgoutput is obtained by division of the fourth moment by the square of the
second moment, with both moments Fourier transformed to the time domain. These time-domain moments can in principle be
calculated for given input states and known frequency variations of the beam-splitter transmission cogfég¢ieHbwever,

it is seen from the forms of Eq$3.21) and(3.22) that the output degree of second-order coherence equals that of the input in
cases wher¢(w) varies by a negligible amount over the bandwidth of the input state. In particular, any photon antibunching

in the input state, measured by a deviation of the degree of second-order coherence below unity, survives with the same
magnitude in the output state in such cases, even with loss in the beam splitter.

D. Homodyne detection of squeezed light

Besides its role as an integral component in quantum interference experiments, the beam splitter is also essential to the
homodyne detection scheme. This is the preferred method for the detection of squeezed light, as the moments of the difference
photocount distribution obtained at the detectors are proportional to the moments of the electric field distribution. The basic
scheme uses the beam splitter shown in Hg). IThe signal light to be investigated falls upon the beam splitter from input arm
ain, Where it is mixed with an intense coherent local oscillator from bgm The output light falls upon two detectors, and the
difference photocount between armg,; andb, is obtained. The measurement is represented by the operator

0= f T°dr[é3m< )aou 7) — bl Iboud ], (3.23
0

where the time-dependent operafgy( ) is the Fourier transform od, (), and so on, and, is the detector integration
time. The measurement operator is thus expressed in terms of the frequency-dependent input operators with the(2$ of Eq.
as
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6=fOT°dTJ dwj do’ exdi(o—o’)7H{[t* (0)al(0)+1* ()bl () +Fi(o)[t(e)an(e’)+1 (e )bpn(e)+Fa(e’)]

—[t* (0)bf(@) +1* (0)af(0) +Fi(0)[t(e)bin(0' )+ (0 )apn(e’)+Fp(o’)]. (3.24

Expectation values of this operator determine the moments of the difference photocount distribution.

In order to take things further, we assume that the local oscillator is a large-amplitude coherent beam at the central
squeezing frequency, and that the reflection and transmission coefficients of the beam splitter are equal in magnitude and
constant at the frequencies of interest. The noise fields of the beam-splitter medium are taken to be in the ground state, as
before, and expectation values that involve only the two noise operator products then vanish. Also, products of noise operators
with the local oscillator dominate those with the signal, so the latter may be ignored. The homodyne detection operator reduces
to

Aok _pwpye12 [0 oo ; 3 i w2 [0 ; ;
O=(t*r—r*p)f{ fo dr{a;(nexdi(¢.— wer)]—an(r)exd —i(¢.— wr) ]} + i Jo drf do exgi(wo—wy)7—id]

X[r*F(w)—t* Fyo(w)]+H.c., (3.25

wheref | is the photon flux of the local oscillator of frequeney and phaseb, . The detection operator consists of two parts,
one of which depends on the electric field of the input, the other on the noise operators.
The input field is now assumed to be in a squeezed vacuum state, with expectation values

(&l (w)ap(w'))=sint? s(w)(w—o'),

(3.2
(ain(w)aip(@"))=exp(i f)coshs(w)sinhs(w) (o —2we+ o).
The expectation value of the homodyne oper&®25 vanishes and its normally ordered variance is
R - 1 . 1
(:0%)—(O)Y2=4[Im(t*r)]?f Ty e~ 2 c0§< b5 0 +e?s S|n2( =3 9) -1], (3.27

where s=s(wg), and we have assumed that the squeezingcription by suppressing the frequency dependences in the
bandwidth is large compared withTl/. The expression in transmission and reflection coefficients and in the annihila-
the large brackets on the right-hand side vanishes for a cdion and creation operators, and by replacing the continuum
herent signal witts=0, while it takes negative values for a commutation relations by their discrete analogues. In par-
squeezed signal witk>0 and appropriate values of the local ticular, the incident and output mode operators satisfy the
oscillator phase. The prefactor of n(t*r)? in Eq. (3.27)  commutation relations
equals unity for a lossless beam splitter with reflection and
transmission coefficients of equal magnitude, but the factor [ ,é_’r]zlz[ﬁj b1,
is smaller than unity in the presence of loss and it represents : : 4.9
a reduction in the observed squeezing with respect to the A N4 A n At
lossless case. If Eq2.4) is satisfied as an equality, then this [a;.by]=0=[b; a1,
factor is the square of the one-photon absorption probability = . ) . ) )
and we recover the reduction in detected squeezing noted Byith j representing either in or out. The relationships be-
Lai et al.[19]. Of course the magnitude of the negative vari- tWeen the operators for the_output and incident modes are the
ance is reduced further if the squeezing covers a range éfatural analogues of equatio(&5) so that
frequencies for which the Langevin noise fields are excited. L

Aou=1ajn+ rbjp+Fy,

IV. DISCRETE-MODE MODEL bout:tbin+réin+ F. 4.2
It is often sufficient to work with single discrete modes

rather than the full continuum used in the preceding sectionsThe remaining operator properties may be obtained from
This simplification is especially useful if the mirror transmis- Eqgs.(2.6) to (2.11) by suppressing the frequency dependence
sion and reflection coefficients may be approximated byand replacing frequency delta functions by unity. These
frequency-independent quantities and the input modes angroperties are sufficient to calculate all the statistical proper-
perfectly overlapping. The quantum statistics associated witties of the two output modes for any given state of the two
discrete-mode models have been discussed in some detaput modes.
[19] and we present only an outline of the theory. The The discrete-mode normally ordered characteristic func-
discrete-mode model is obtained from the continuum detion is
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Y€, 7) = (exp(£a])exp( ngbexp(_g* a)exp — 7* Bk», loss is associated with the existence of noise sources in the
(4.3 ~ beam-splitter material, which are here modeled by Langevin

operators. The output fields thus acquire Langevin noise

wherek denotes either in or out. We can express the noreomponents in addition to the transmitted and reflected con-
mally ordered characteristic function for the output modes irtributions from the input fields. The magnitudes of the output

terms of that for the input modes as noise components are such as to maintain the necessary free-
. . e . space values of the commutators of the output field opera-
Xoul &, 7) = Xin(t* E+ 1", t* p+r1* ), (44 tors, which would otherwise be reduced by the removal of

intensity from the input fields.

which is analogous to E(3.20 for the continuum modes. The effective temperatures of the noise sources can be

The characteristic function provides a complete descrlptloqaken equal to zero for experiments with visible light, and the

of the state and so Ed@4.4) allows us to calculate any de- : .

sired property of the output modes if we know the characterpuf{put noise does not contrl_bute to normally ordered Expec-

istic function for the input modes. As a simple example con-tatlon values of the output .f|e|d operators. Sugh expectation

sider the state values are, however, modified by the cha_mges in transmission
and reflection caused by the loss. Loss is particularly impor-

|\P>=éﬂ16;‘|0), (4.5 tant in experiments that detect nonclassical properties of

" light, where beam splitters usually play crucial roles in the

in which each input mode contains precisely one photon. Théeasurements. We have evaluated the reductions caused by

normally ordered characteristic function for this state is ~ beam-splitter loss in the detectable squeezing and in the
photon-number factorial moments tha determine the photon

Xin(€,7)=1—|&]?—| 9|2+ | &n|>. (4.6)  antibunching, although the ratio of moments that occurs in
the degree of second-order coherence is unchanged by beam-
The photon-number factorial moments for the output modesplitter transmission.

can be found by using equati@¢#.4) to obtain the character-  The most striking loss-related phenomena occur, how-
istic function for the output modes and then calculate derivaever, in the two-photon interference effect. The orthogonality
tives[12]. The nonzero factorial moments are of t(w) andr () in the lossless beam splitter is sufficient to
2 produce this well-known interference, in which a pair of
<é_T Ao = — X t(§,77)‘ =|t|2+]r |2, photons mmdgnt in different input arms can only leave the
outou gEaex "o P beam splitter in the same output arm. The removal of the
orthogonality constraint in the presence of loss allows a more
Sy &2 ) ) varied range of interference effects to occur. Thus the stan-
(boubouy = _W Xou(§,7) =[t[*+[r[%, dard two-photon interference survives if the transmission and
£=n=0 4.7 reflection coefficients remain orthogonal even after the intro-
I TP U S, duction of loss. However, it is also possible in principle for
(BouPoubouou) =[t*+17%, the coefficients of a lossy beam splitter to be equal or oppo-
At222 \ s ft2no site, and we have shown that an apparent nonlinear behavior
(@guBouy = 4[tr[“=(bo b5y can then occur, in which both photons are absorbed or nei-

ther is absorbed. The beam splitter thus acts as an effective

These are of the same form as the factorial moments CaICLf\'/vo—photon absorber, despite the linear optical properties as-

lated in Appendix B usmg_the continuum modes with perfeCtsumed in its construction, and the observation of this pre-
overlap between the two input photons so thatl.

dicted effect would add a new kind of interference experi-

ment to the range of measured quantum-optical phenomena.
V. CONCLUSION

The electric-field amplitude transmission and reflection ACKNOWLEDGMENTS
coefficients of a lossless beam splitter at a given frequency . ) )
are constrained by the requirements of unitarity, or equiva- This work was supported by the UK Engineering and
lently energy conservation between the output and inpuf’hysical Sciences Research Council and by the European
beams, to satisfy the relations given in E.3). These rela- Community Human Capital and Mobility Programme.
tions show that(w) andr(w) are orthogonal numbers in the
complex plane and that they form two sides of a right-angled APPENDIX A: DIELECTRIC SLAB
triangle with unit hypotenuse. AND DELTA-FUNCTION MIRROR

We have calculated the effects of loss in a beam splitter
on the transmission and reflection coefficients and on the We indicate how the general beam-splitter formalism de-
relations between the output and input fields, expressed ifived in the present paper applies to the quantized normally
terms of the continuous-mode frequency-dependent outpiificident electromagnetic fields derived previougdy (this
and input annihilation and creation operators. The losgaper and its equations are identified by the abbreviation
causes reductions in the magnitudes of the transmission adLBJ) for the absorbing dielectric slab illustrated in Fig.
reflection coefficients below their values for a lossless beard(b). The notation used here differs from that of MLBJ, but
splitter, so that the sum of their square moduli is less tharthe annihilation operator input-output relations in MLBJ
unity. The requirement that(w) and r(w) should be or- (5.1 and(5.15 are essentially the same as those given here
thogonal complex numbers is also removed. The presence af Eq. (2.5), except that the output noise operatérg )
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and IEb(w) in the former are expressed in terms of spatialand
integrals over the slab thickness. ZT'he integrands in these

output noise operators include the complex refractive indexg ( ):IE ()= ! (Im M(w))llzf' dx Af(x )
n(w) of the slab material, function¥(w) and W(w) that a b 1-ip(w) I - T
describe the multiply reflected fields in the slab, and a dis- (A4)
tributed Langevin noise operatd(x,w), whose commuta-
tion relation is given by MLBJ3.10 as where

[F(x,0),FH(x" 0)]=dx—x")d(w—w'). (A) m(w)=w In(w)?/c (AS)

MLBJ verified that their output operators satisfy the commu-is a dimensionless parameter that characterizes the optical
tation relationg1.1) and it is straightforward to show that the properties of the lossy dielectric slab. The transmission and
output noise operators also have the ground-state expectatié@flection coefficients in this case satisfy
values given by Eq(2.11). The dielectric slab quantization ) ) . .
of MLBJ thus conforms fully with the general beam-splitter 1~ [t(@)][“=[r(®)|*= —t(o)r* (o) —r (o)t* (o)
theory presented here.

A useful special case of the dielectric slab is that of the
“delta-function mirror,” obtained by letting the slab thick-

ness tend to zero as its complex refractive index tends to, . , . . . . . .
P which is zero only if the imaginary part of the dielectric

B 2Im u(w)
S 1+21m p(w)+u(w)]?’

(A6)

infinity constantg (w) =n?(w), is zero, corresponding to no absorp-
21—0, tion. It is easy to verify with the use of E¢A1) that the

noise operators of E@¢A4) satisfy the commutation relations
N(w)— o (A2) in Eq. (2.7), and Eq.(A6) clearly reduces to Eq1.3) in the

absence of loss.
such that 2 Ing)? is finite. Such slabs have been used to

model the mirrors of Fabry-Pet cavities for normally inci- APPENDIX B: CALCULATION OF PHOTON-NUMBER

der)t Iight t_)eam$35] and the_ theory has been extended to FACTORIAL MOMENTS
oblique incidence for photonic crystal structures made from
arrays of delta-function mirrof86]. However, the refractive In our discussion of two-photon interference effects we

index is assumed to be real in this previous work. For a lossyieeded the form of the first and second photon-number fac-
delta-function mirror with normal incidence, the limits in Eq. torial moments for the two output fields given the input
(A2) are readily taken in the expressions of MLBJ. The re-states(3.4) and(3.10. These may be evaluated by using the
sulting input-output relations are the same as in 95  relationship between the input and output fiel@s5), the

with the identifications action of the annihilation operators on the vacuum or ground
) state(2.8), and the commutation relatio%.1). Consider, for
t(w)= 1 F(w)= ip(w) (A3) example, the action of the operai@g,(w) on the statee)
1-ip(w)’ 1-iu(w) defined in Eq(3.4):

Boul ©)] ) ={t(©)&in( ) + 1 (0)bip( ) + F o)} f:dwa f:dwgqs(wa,w;>éL<wa>éL<w;>|0>

=t(o) f “da, f oo d(0q 0L BN 0 An(0) + 80— 0 ah(})]0)
0 0

=t(w) J'wdwafmdwz;(ﬁ(wa ,wé){b‘(a)— wa)é-it]( wé\) +6(w— wé)é%(wa)}|0>
0 0

=2t(w)fwdwa¢(wa,w)é;(wa)|o>. (B1)

0
It then follows that the expectation value of the continuum number open:batdm
(N~ | "o 18k 0)aaud )| 6)=4 | dolt(@)]? | donl o wa, 001 ®2
0 0 0

If we consider cases where the transmission coefficient is approximately constant over the range of frequencies for which
|$(w,,w)]| is significant, then this first moment reduces with the use of(B&) to (N,)=2|t|2.
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Higher-order moments can be calculated by the sametant values then this second moment reduces|to/?21
method. Consider, for example, the action of the operators-1), with | given by Eq.(3.13. The complete set of non-

Ao @) anday,(w') on the statdy) defined in Eq.(3.10:
Bou( ©") Aol )| 1) ={t(0)T (@")&in(@)bin(@)
(") (@) an(0")bin(©)}¢)
={t(w) (o) }o,0")
+t(o) (o) (o' ,0)}0), (B3

zero factorial moments used in Sec. llI B is
(Na)=2t]%, (Np)=2[r|?,

(NaNp)=2[t[?|r[?,

where only those terms making a nonzero contribution have <Na(l§]a—1)>=2|t|4, <Nb(Nb—1)>:2|r|4 (B5)

been retained in the expansionaf(w')ay( ). It follows
that the second factorial moment Nf, is

(Na(Na—1)>=f:dwf:dw’(ﬂégu[(w)
Xé‘gut(wl)éout(w,)éout(w)|l/’>
= JOcdwfxdw’|t(w)r(a)')¢(w,w’)
0 0

+t(w’)r(a))tﬂ(w',w)|2. (B4)

for |¢) and
(Na)=[t|>+[r[>=(Ny),
(NGNp) = [t]4+|r |4+ t2r* 2+ 1*2r2]1,

(Na(Na—1))=2[tr[Z[1+1]=(Np(Npy—1))  (B6)

If we again specialize to situations for which the transmis-
sion and reflection coefficients may be approximated by confor |¢).
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