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Quantum optics of lossy beam splitters
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The familiar input-output relations for an optical beam splitter are generalized to allow for linear absorption
by the medium forming the mirror. Beam-splitter losses generally affect the noise levels detectable in experi-
ments involving nonclassical light. When employed to investigate two-photon interference effects, a lossy
beam splitter can lead to apparent nonlinear absorption, which, in the most extreme case, leads to either both
or neither of the photons being absorbed. The degree of second-order coherence of antibunched light can be
maintained on transmission through the beam splitter but any amplitude squeezing in the incident light is
degraded.@S1050-2947~98!05303-7#

PACS number~s!: 42.50.Dv
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I. INTRODUCTION

Beam splitters play important roles in much of optic
physics. They are key elements in interferometers, both
classical instruments whose fringes are controlled by fi
order coherence and the Hanbury-Brown–Twiss variety u
in measurements of second-order coherence@1#. They are
frequently used in the detection of nonclassical effects,
cluding antibunching@2#, squeezing@3#, and two-photon in-
terference@4#. They are also of fundamental importance
investigations of the nature of light@5#. An extensive and
up-to-date account of these effects and others is given in@6#.

A beam splitter superposes two incident or input fields
produce two output fields. In its simplest form it may b
thought of as a thin layer of dielectric with complex tran
mission and reflection coefficients determined by the us
boundary conditions on the electromagnetic field
dielectric–free-space interfaces. Such simple models h
been discussed in some detail@7–10#. In this paper, however
we will be primarily concerned not with the forms of th
fields in and around the dielectric but rather with the re
tionships between the incident and outgoing fields far fr
the beam splitter and with the effects of the superposition
fields at the beam splitter on their quantum properties.

Figure 1~a! depicts a beam splitter that superposes t
independent incident modes, with the continuum annihilat
operators@11,12# âin(v) and b̂in(v), to form two indepen-
dent outgoing modes, with the operatorsâout(v) and
b̂out(v). In addition to the square beam splitter, with prop
gation directions at right angles, the theory that follows a
plies to any four-port device with two input and two outp
ports, for example, the absorbing film shown in Fig. 1~b!
with light incident normally on both sides. The incident a
output modes propagate in free space and their annihila
and creation operators must satisfy the usual commuta
relations
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@ â j~v!,â j
†~v8!#5d~v2v8!5@ b̂ j~v!,b̂ j

†~v8!#

@ â j~v!,b̂ j
†~v8!#505@ b̂ j~v!,â j

†~v8!#, ~1.1!

with j representing either in or out.
Almost all previous theoretical work is concerned wi

beam splitters in which none of the incident light is a
sorbed. For an ideal lossless beam splitter that is recipr
~invariant under time reversal! and symmetric@13#, the pairs
of input and output operators are related by a unitary tra
formation of the form@14–16#

FIG. 1. Schematic diagrams of~a! a beam splitter and~b! a
partially reflecting film.
2134 © 1998 The American Physical Society
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57 2135QUANTUM OPTICS OF LOSSY BEAM SPLITTERS
âout~v!5t~v!âin~v!1r ~v!b̂in~v!,

b̂out~v!5t~v!b̂in~v!1r ~v!âin~v!, ~1.2!

where r (v) and t(v) are respectively the beam-splitter r
flection and transmission coefficients. These have a
quency dependence that characterizes the construction o
beam splitter. The formal requirement for unitarity impos
two restrictions on the forms of the coefficients:

ut~v!u21ur ~v!u251,

t~v!r * ~v!1t* ~v!r ~v!50 ~1.3!

for all angular frequenciesv. These restrictions ensure th
the commutation relations~1.1! are all satisfied; equivalently
they guarantee the conservation of energy and the orth
nality of the two outgoing modes, respectively. They can
reexpressed in a variety of useful forms, for example,
compact version

ut~v!6r ~v!u251. ~1.4!

Of course, apart from constant-intensity monochromatic
cident light, most beams are time dependent and their po
tially complicated properties on transmission through
beam splitter must be determined by Fourier transforma
of the much simpler theory in frequency space.

In reality, beam splitters exhibit not only dispersive,
frequency-dependent, reflection and transmission coeffici
but also losses, and these two features are inter-relate
causal considerations embodied in the Kramers-Kronig r
tions @17#. Indeed, the presence of both dispersion and l
plays an important role in the canonical quantization of
field in the presence of dielectric media@9,18#. Despite this
close relationship, and apart from some work on the an
gous fibre couplers@19#, there is very little published theor
on beam splitters with losses@20#. The lack of attention to
the quantum properties of lossy beam splitters is underst
able, as losses tend to suppress nonclassical features su
squeezing@21# and the beam splitters in the relevant expe
ments are designed to minimize the loss. There are, ne
theless, interesting nonclassical effects for which the p
ence of losses is necessary@22,23#.

In this paper we present a simple quantum theory of lo
beam splitters and apply it to model the effects of such
vices on nonclassical states of light. We find that pho
antibunching is unchanged by transmission through the b
splitter but that squeezing is, as expected, suppressed b
losses. More surprising is the modification of the famo
two-photon interference effect@4,24# by an apparent nonlin
ear absorption in the linear medium forming the beam sp
ter, which restores the photon coincidences between the
output modes that do not occur for a lossless beam split

II. LOSSY BEAM SPLITTERS

In practice, some of the light incident on a beam splitte
neither transmitted nor reflected but rather absorbed. Th
an inevitable consequence of the frequency dependenc
the transmission and reflection coefficients; the beam-spl
material must, for example, tend towards transparen
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r (v)→0, as the frequencyv tends to infinity. The absorp
tion can be very small in any chosen spectral range,
significant absorption then occurs at other frequencies.
presence of absorption means that some of the light incid
on the beam splitter does not escape. The free-space com
tation relations~1.1! remain in force but the input-outpu
relations~1.2! need to be generalized and the transmiss
and reflection coefficients no longer satisfy the ideal bea
splitter relations~1.3! or ~1.4!.

These relations can, however, be replaced by a pai
inequalities. The first of these is

ut~v!u21ur ~v!u2<1 ~2.1!

with the equality holding only for zero losses at the fr
quencyv. The left-hand side of this inequality can be inte
preted as the probability of survival for a single photon in
dent on the beam splitter.

A second inequality is derived by considering the effe
of the beam splitter on arbitrary input fields with classical
coherent amplitudesa andb. The requirement that the tota
output intensity~or mean photon flux! should be less than o
equal to that at the input then gives

ut~v!a1r ~v!bu21ut~v!b1r ~v!au2<uau21ubu2 ~2.2!

for any pair of complex numbersa andb. The equality again
holds only if there are no absorption losses. For the spe
choicesa56b, the inequality simplifies to

ut~v!6r ~v!u2<1 ~2.3!

and combination with Eq.~2.1! provides a bound on the rea
part of t(v)r * (v) of the form

ut~v!r * ~v!1r ~v!t* ~v!u<12ur ~v!u22ut~v!u2, ~2.4!

with both sides equal to zero for a lossless beam splitter
The commutation relations~1.1! between the output cre

ation and annihilation operators must remain valid in t
presence of beam-splitter loss, as they represent basic p
erties of the free-space quantized fields. Their forms
maintained by the presence of Langevin noise operators
sociated with fluctuating currents within the medium formi
the beam splitter@9#. The general relationships between t
input and output operators with the inclusion of losses
@9,20#

âout~v!5t~v!âin~v!1r ~v!b̂in~v!1F̂a~v!,

b̂out~v!5t~v!b̂in~v!1r ~v!âin~v!1F̂b~v!. ~2.5!

The input fields and the noise sources within the mirror
required to be independent so that the input operators m
commute with the output Langevin operators:

@ âin~v!,F̂a
†~v8!#5@ âin~v!,F̂b

†~v8!#5@ âin~v!,F̂a~v8!#

5@ âin~v!,F̂b~v8!#50 ~2.6!
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2136 57BARNETT, JEFFERS, GATTI, AND LOUDON
and similarly for theb operators. Imposition of the commu
tation relations~1.1! on the output mode operators then lea
to the requirements on the noise-operator commutation r
tions:

@ F̂a~v!,F̂a
†~v8!#5d~v2v8!$12ut~v!u22ur ~v!u2%

5@ F̂b~v!,F̂b
†~v8!#,

@ F̂a~v!,F̂b
†~v8!#52d~v2v8!$t~v!r * ~v!1r ~v!t* ~v!%

5@ F̂b~v!,F̂a
†~v8!#. ~2.7!

Note that these commutators are proportional to comb
tions of the transmission and reflection coefficients that
zero for the ideal beam splitter, according to Eq.~1.3!.

At optical frequencies, the matter forming the beam sp
ter can be considered to be in its ground state. We use th
u0& to represent the composite ground state of the mate
and the vacuum state of the incident electromagnetic mo
so that it is a zero right eigenstate of the corresponding
struction operators,

F̂a~v!u0&5F̂b~v!u0&5âin~v!u0&5b̂in~v!u0&50. ~2.8!

It follows from the input-output relations~2.5! that u0& is
also the vacuum state of the output electromagnetic mo
with

âout~v!u0&5b̂out~v!u0&50. ~2.9!

The quantum averages of the Langevin operators vanish

^F̂a~v!&5^F̂b~v!&5^F̂a
†~v!&5^F̂b

†~v!&50, ~2.10!

and the only nonzero ground-state expectation values
products of pairs of noise operators are

^F̂a~v!F̂a
†~v8!&5d~v2v8!$12ut~v!u22ur ~v!u2%

5^F̂b~v!F̂b
†~v8!&,

^F̂a~v!F̂b
†~v8!&52d~v2v8!$t~v!r * ~v!1r ~v!t* ~v!%

5^F̂b~v!F̂a
†~v8!&. ~2.11!

These relations may also be derived on the basis of a f
canonical one-dimensional theory applied to a dielectric s
@9# as summarized in Appendix A, where results for the lim
of a very thin slab, the ‘‘delta-function mirror,’’ are als
presented.

The relationships derived above are sufficient to mo
the effects of the lossy beam splitter on any given in
states. It is useful, however, to describe its action on the
of superposition modes associated with the annihilation
erators
s
a-

a-
e

-
ket
al
s,

e-

s,

or

ly
b
t

l
t
ir
-

ĉ j~v!5
1

&
$â j~v!1b̂ j~v!%,

d̂ j~v!5
1

&
$b̂ j~v!2â j~v!%, ~2.12!

with j representing either in or out. These superposit
modes have the merit that they are not mixed by the actio
the beam splitter. The outgoing symmetric and antisymm
ric annihilation operators are related to their incident cou
terparts by

ĉout~v!5@ t~v!1r ~v!# ĉin~v!1F̂c~v!,

d̂out~v!5@ t~v!2r ~v!#d̂in~v!1F̂d~v!, ~2.13!

where we have introduced independent superposition Lan
vin noise operators

F̂c5$F̂a1F̂b%/& and F̂d5$F̂b2F̂a%/& ~2.14!

that satisfy the simple commutation relations

@ F̂c~v!,F̂c
†~v8!#5d~v2v8!$12ut~v!1r ~v!u2%,

@ F̂d~v!,F̂d
†~v8!#5d~v2v8!$12ut~v!2r ~v!u2%,

@ F̂c~v!,F̂d
†~v8!#505@ F̂d~v!,F̂c

†~v8!#. ~2.15!

For a lossless beam splitter, the relation~1.4! shows that the
input-output relations~2.13! for the superposition mode
amount to no more than a phase shift. For lossy beam s
ters, the commutation relations~2.15! are of precisely the
form required to restore the quantum fluctuations appare
reduced by the beam splitter and to retain the canonical c
mutation relations between the outgoing annihilation ope
tors @12#.

III. QUANTUM INTERFERENCE EFFECTS

A. Coherent input states

Classically, a beam splitter superposes the incident fi
amplitudes to produce outgoing fields. If the amplitudes
cident from directionsain and bin for the frequencyv are
a in(v) and b in(v), respectively, then those leaving in th
aout andbout modes areaout(v) andbout(v) given by

aout~v!5t~v!a in~v!1r ~v!b in~v!,

bout~v!5t~v!b in~v!1r ~v!a in~v!. ~3.1!

This simple behavior survives in the quantum descript
for the ~continuum! coherent states@11,12# defined by a
simple generalization of the familiar discrete mode coher
states@12,25#. The combined state of the input modes a
the medium forming the beam splitter is then
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u$a in~v!%,$b in~v!%&5expH E dv@a in~v!âin
† ~v!2a in* ~v!âin~v!#J expH E dv@b in~v!b̂in

† ~v!2b in* ~v!b̂in~v!#J u0&,

~3.2!

whereu0& denotes the ground state defined in Eqs.~2.8! and ~2.9!. The continuum coherent state~3.2! is the right eigenstate
of both âin(v) andb̂in(v), for all frequenciesv, with eigenvaluesa in(v) andb in(v), respectively. It is now straightforward
to show that this state is also a right eigenstate of the output annihilation operators,

âout~v8!u$a in~v!%,$b in~v!%&5$t~v8!a in~v8!1r ~v8!b in~v8!%u$a in~v!%,$b in~v!%&,

b̂out~v8!u$a in~v!%,$b in~v!%&5$t~v8!b in~v8!1r ~v8!a in~v8!%u$a in~v!%,$b in~v!%&. ~3.3!
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It follows that the two output fields are also in coherent sta
with amplitudes given by the classical expressions~3.1!.
These results look the same as for a lossless beam sp
but of course the reflection and transmission coefficients
appear in the output amplitudes are reduced by the los
accordance with the inequality~2.1!.

The simplicity of these transmission characteristics is
culiar to the coherent states and mixtures of them@26#. Other
input states produce entangled outputs that cannot be fa
ized into a product of separate states for the two outgo
fields @27#. Such states can exhibit explicitly quantum e
fects. In the remainder of this section we consider two
amples of entangled outputs, we derive a general descrip
of the state of the outgoing fields, and we discuss the eff
of the beam splitter on nonclassical incident light.

B. Two-photon interference

A single photon incident on a lossless beam splitter, w
frequency-independent transmission and reflection co
cients t and r , is transmitted with probabilityutu2 and re-
flected with probabilityur u2512utu2. A pair of photons ex-
hibits a more interesting behavior. If the two photons a
incident in the same beam, then they behave like indep
dentclassicalparticles in that the probabilities for both bein
transmitted or both reflected areutu4 and ur u4, respectively,
while the probability for one being reflected and the oth
transmitted is 2utu2ur u2 @14#. This behavior has been demo
strated using parametric fluorescence as a source of ph
pairs @28,29#.

A somewhat different result occurs if the two photo
enter the beam splitter through different arms. Under suita
conditions the two photons can be made to leave in the s
beam. This effect, which has been demonstrated experim
tally @4,30#, arises from destructive interference between
amplitudes for both photons to be reflected and for both p
tons to be transmitted and it is a consequence of the bos
nature of the photons@31#. In this section we examine th
expected modifications of these effects when a lossy b
splitter is used.

Consider a pair of photons incident in the same input a
ain while arm bin is left in its vacuum state. The gener
~pure! state can then be written in the form

uf&5E
0

`

dvaE
0

`

dva8f~va ,va8!âin
† ~va!âin

† ~va8!u0&,

~3.4!
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where u0& again denotes the electromagnetic vacuum s
and ground state of the medium forming the beam split
Without loss of generality we can choose the superposi
amplitudef(va ,va8) to be symmetric under interchange
its arguments. Normalization of the state vector then impo
the condition

2E
0

`

dvaE
0

`

dva8uf~va ,va8!u251. ~3.5!

It is convenient to introduce continuum number operat
@12# for the two outputs. These have states of well-defin
photon number as their eigenstates and they may be
pressed in the forms

N̂a5E
0

`

dvâout
† ~v!âout~v!,

N̂b5E
0

`

dvb̂out
† ~v!b̂out~v! ~3.6!

for the aout and bout modes, respectively. The probabilitie
for finding given numbers of photons in the outputs are th
obtained from the Kelley-Kleiner counting formula, specia
ized to unit quantum efficiency and infinite counting tim
@25#. In particular, the probability for finding two photons i
modeaout and none in modebout is

P~2a,0b!5 1
2 ^N̂a~N̂a21!&. ~3.7!

Similarly, the remaining nonzero probabilities are

P~0a,2b!5
1

2
^N̂b~N̂b21!&,

P~1a,1b!5^N̂aN̂b&,

P~1a,0b!5^N̂a&2^N̂a~N̂a21!&2^N̂aN̂b&,

P~0a,1b!5^N̂b&2^N̂b~N̂b21!&2^N̂aN̂b&,

P~0a,0b!512^N̂a&2^N̂b&1^N̂aN̂b&1
1

2
^N̂a~N̂a21!&

1
1

2
^N̂b~N̂b21!&. ~3.8!
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For a lossless beam splitter, the number of photons lea
the beam splitter is strictly equal to the number incident up
it and the last three of the probabilities listed in Eq.~3.8! are
all zero. Inclusion of losses introduces a probability for a
sorption so that these probabilities need not vanish.
probabilities can be calculated by using the relationsh
~2.5! to express the output continuum number operators~3.6!
in terms of the input continuum annihilation and creati
operators and then applying the commutation relations~1.1!.
Evaluations of some of the required photon-number facto
moments are presented in Appendix B.

It is quite straightforward to calculate the moments
any given forms of frequency dependence of the transm
sion and reflection coefficients. For simplicity, however,
well as for each of comparison with earlier work, we restr
our discussion to coefficients that do not vary apprecia
over the bandwidth of the light, and can thus be appro
mated as independent of frequency. With these restricti
we find the following forms for the required probabilities:

P~2a,0b!5utu4, P~0a,2b!5ur u4,

P~1a,1b!52utu2ur u2,

P~1a,0b!52utu2~12utu22ur u2!,

P~0a,1b!52ur u2~12utu22ur u2!,

P~0a,0b!5~12utu22ur u2!2. ~3.9!

These results are fully consistent with the property noted
a lossless beam splitter that the photons behave like inde
dent classical particles. Thus each photon is transmitted
probability utu2, reflected with probabilityur u2 and absorbed
with probability 12utu22ur u2. In particular, the probability
that precisely one photon survives is the sum ofP(1a,0b)
and P(0a,1b), with the value of twice the product of th
probability 12utu22ur u2 that a single photon is absorbe
with the probability utu21ur u2 that a single photon is no
absorbed. Note that the probabilities in Eq.~3.9! are all in-
dependent of the form of the superposition amplitu
f(va ,va8) used in the state~3.4!. We illustrate Eq.~3.9! in
Fig. 2, which is a plot of the probabilities of obtaining fou
possible outcomes for a two-photon input against the sin
photon survival probability 2utu2 for a symmetric lossy beam
splitter. The probability of obtaining no photons at eith
output, curve~0,0! in the figure, decays with increasing su
vival probability, while the probability of obtaining a photo
in one of the output arms and none in the other, cu
(1,0)5(0,1), vanishes at both ends of the range. The pr
abilities of obtaining one photon in each arm and of obta
ing both photons in one of the output arms, curves~1,1! and
(2,0)5(0,2), respectively, increase with the single phot
survival probability. These results show that the naive
sumption that the photons behave as independent clas
particles is adequate to explain their behavior in this cas

We now turn to the case of two photons incident in d
ferent input arms, one in armain and the other in armbin .
The general~pure! state can be written in the form
g
n

-
e
s

l

r
s-
s
t
y
i-
s,

r
n-

th

e

e-

r

e
-
-

-
cal

uc&5E
0

`

dvaE
0

`

dvbc~va ,vb!âin
† ~va!b̂in

† ~vb!u0&, ~3.10!

where there is no required symmetry for the functi
c(va ,vb). Normalization of the state vector imposes a no
malization onc(va ,vb) so that

E
0

`

dvaE
0

`

dvbuc~va ,vb!u251. ~3.11!

The probabilities for finding given numbers of photons in t
two outputs are obtained from Eqs.~3.7! and ~3.8! and they
may be calculated by the method outlined in Appendix B
we again specialize to reflection and transmission coe
cients that may be approximated as frequency independ
then we find

P~2a,0b!5utu2ur u2@11I #5P~0a,2b!,

P~1a,1b!5utu41ur u41@ t2r * 21r 2t* 2#I ,

P~1a,0b!5~ utu21ur u2!~12utu22ur u2!2~ tr * 1rt * !2I

5P~0a,1b!,

P~0a,0b!5~12utu22ur u2!21~rt * 1tr * !2I , ~3.12!

where we have introduced the~real! overlap integral

I 5E
0

`

dvaE
0

`

dvbc~va ,vb!c* ~vb ,va!. ~3.13!

The probabilities in Eq.~3.12! are now crucially dependen
on the form of the superposition amplitudec(va ,vb) used
in the state~3.10!. If I 50, the photon amplitudes for the tw
input modes do not overlap in time at the beam splitter, a
the probabilities~3.12! reduce to the forms expected for tw
independent particles, each with probabilityutu2 for transmis-
sion, ur u2 for reflection and 12utu22ur u2 for absorption. At

FIG. 2. Plots of the probabilities of the various possible o
comes for two photons incident from the same arm against
single photon survival probability. We assume that the transmiss
and reflection coefficients have the same modulus. The brack
numbers show the elements of the output probability distribution
armsa andb to which the curves refer.
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the opposite extreme, forI 51, the photon amplitudes over
lap completely in time and the probability for finding pr
cisely one photon in each of the two outputs is

P~1a,1b!5ut21r 2u2. ~3.14!

This quantity vanishes fort56 ir , when the second equalit
in Eq. ~1.3! is satisfied even in the presence of loss. T
h

-
hi

s

s

re
-
u
be

an
es
s

e
in
tw
ti

ho
ty
h
e
in

f

es
e

famous Hong-Ou-Mandel interference effect@4# thus sur-
vives for a lossy beam splitter provided that the complet
and r remain orthogonal.

It is interesting to note that the quantum interference
fects embodied in the overlap integralI generally affect the
probabilities for one or two of the photons to be absorbed
particular, the probabilities for two, one, or no photons
survive are
P~2 survive!5P~2a,0b!1P~0a,2b!1P~1a,1b!5~ utu21ur u2!21~ tr * 1rt * !2I ,

P~1 survives!5P~1a,0b!1P~0a,1b!52~ utu21ur u2!~12utu22ur u2!22~ tr * 1rt * !2I ,

P~0 survive!5P~0a,0b!5~12utu22ur u2!21~ tr * 1rt * !2I . ~3.15!
per-
ra-
op-
n,
-
her
fol-
is

i-
nd

the
These are the same as the probabilities found for two p
tons incident in the same input only ifI 50 or if t andr are
orthogonal~tr * pure imaginary!. In all other cases, the two
photon interference affects the survival probabilities. T
means that an apparentnonlinear absorptionoccurs in the
linear medium forming the beam splitter. It takes its mo
extreme form when the overlap is ideal so thatI 51 and the
transmission and reflection coefficients are equal or oppo
(t56r ). It then follows from the inequality~2.3! that the
maximum values of the moduli of the transmission and
flection coefficients areutu5ur u51/2. Under these condi
tions, the probability that precisely one of the photons s
vives is zero. The complete set of output photon-num
probabilities is

P~2a,0b!5
1

8
5P~0a,2b!,

P~1a,1b!5
1

4
,

P~1a,0b!505P~0a,1b!,

P~0a,0b!5
1

2
. ~3.16!

Clearly either both photons are absorbed or neither is,
this occurs even though the absorption is a linear proc
Figure 3 is a plot of the survival probabilities for variou
numbers of photons~3.15!, after propagation through th
beam splitter, against the survival probability for single
dependent photons. It assumes complete overlap of the
photons at the beam splitter, and equal or opposite reflec
and transmission coefficients. The probability that no p
tons survive, curve~0!, decreases from a maximum of uni
at 2utu250 to 0.5 at 2utu250.5, and the probability that bot
photons survive, curve~2!, increases from zero to 0.5. Th
probability that only one of the photons survives, shown
curve ~1!, increases to a maximum at 2utu250.25 and then
decreases to zero again at 2utu250.5. This right-hand end o
the plot corresponds to the results in Eq.~3.16!.

The apparent two-photon absorption is, in fact, a manif
tation of quantum interference as may be demonstrated
o-

s

t

ite

-

r-
r

d
s.

-
o
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-
by

considering the superposition modes Eq.~2.12!. When writ-
ten in terms of these modes, the input state becomes

uc&5E
0

`

dvaE
0

`

dvbc~va ,vb!
1

2
$ĉin

† ~va!ĉin
† ~vb!

2d̂in
† ~va!d̂in

† ~vb!%u0&, ~3.17!

where we have used the symmetry ofc(va ,vb) with respect
to interchange of its arguments whenI 51. The input state in
this case has both photons in one or other of the two su
positions of the input fields. The output annihilation ope
tors for the superposition modes are related to the input
erators by Eq.~2.13!. For the conditions under consideratio
with t56r and utu51/2, light in one of the two superposi
tion modes is completely absorbed while that in the ot
superposition merely undergoes a phase shift. It again
lows, therefore, that either both or neither of the photons
absorbed by the beam splitter.

FIG. 3. Plots of the survival probabilities for two photons inc
dent in different input arms, with full overlap between them a
reflection and transmission coefficients related byt56r . The num-
bers of surviving photons are shown in brackets adjacent to
appropriate curves.
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C. General quantum statistical description

All the measurable statistical properties of the fields c
be expressed in terms of normally ordered moments of
n
e

continuum annihilation and creation operators. These m
ments are conveniently expressed in terms of the norm
ordered characteristic functional, with the form
nd by

bsorbing

ut state

e

the
nciple be

put in
nching
he same

tial to the
difference
e basic

arm
he

f Eq.
xk@j~va!,h~vb!#5K expF E
0

`

dvaj~va!âk
†~va!GexpF E

0

`

dvbh~vb!b̂k
†~vb!GexpF2E

0

`

dvaj* ~va!âk~va!G
3expF2E

0

`

dvbh* ~vb!b̂k~vb!G L , ~3.18!

where k denotes either in or out. Any normally ordered moment of the creation and annihilation operators is fou
functional differentiation@12,32–34#, for example,

^âk
†~v!b̂k

†~v8!b̂k~v9!b̂k~v-!&5
d

dj~v!

d

dh~v8!

2d

dh* ~v9!

2d

dh* ~v-!
xk@j~va!,h~vb!#U

j5h50

. ~3.19!

We can write the characteristic functional for the outputs in terms of that for the inputs by using the relations~2.5!, together
with the fact that the normally ordered moments of the Langevin noise operators are zero in the ground state of the a
medium. The required relationship is then

xout@j~va!,h~vb!#5x in@$t* ~va!j~va!1r * ~va!h~va!%,$t* ~vb!h~vb!1r * ~vb!j~vb!%#. ~3.20!

The characteristic functional for the outputs can thus be constructed from that of the inputs when the form of the inp
is specified.

As a special case of these relations, consider an experiment in which the input modebin is in its vacuum state, when th
second and fourth moments of theaout output mode are

^âout
† ~v!âout~v8!&5t* ~v!t~v8!^âin

† ~v!âin~v8!& ~3.21!

and

^âout
† ~v!âout

† ~v8!âout~v9!âout~v-!&5t* ~v!t* ~v8!t~v9!t~v-!^âin
† ~v!âin

† ~v8!âin~v9!âin~v-!&. ~3.22!

The degree of second-order coherence of theaout output is obtained by division of the fourth moment by the square of
second moment, with both moments Fourier transformed to the time domain. These time-domain moments can in pri
calculated for given input states and known frequency variations of the beam-splitter transmission coefficientt(v). However,
it is seen from the forms of Eqs.~3.21! and~3.22! that the output degree of second-order coherence equals that of the in
cases wheret(v) varies by a negligible amount over the bandwidth of the input state. In particular, any photon antibu
in the input state, measured by a deviation of the degree of second-order coherence below unity, survives with t
magnitude in the output state in such cases, even with loss in the beam splitter.

D. Homodyne detection of squeezed light

Besides its role as an integral component in quantum interference experiments, the beam splitter is also essen
homodyne detection scheme. This is the preferred method for the detection of squeezed light, as the moments of the
photocount distribution obtained at the detectors are proportional to the moments of the electric field distribution. Th
scheme uses the beam splitter shown in Fig. 1~a!. The signal light to be investigated falls upon the beam splitter from input
ain , where it is mixed with an intense coherent local oscillator from armbin . The output light falls upon two detectors, and t
difference photocount between armsaout andbout is obtained. The measurement is represented by the operator

Ô5E
0

T0
dt@ âout

† ~t!âout~t!2b̂out
† ~t!b̂out~t!#, ~3.23!

where the time-dependent operatorâout(t) is the Fourier transform ofâout(v), and so on, andT0 is the detector integration
time. The measurement operator is thus expressed in terms of the frequency-dependent input operators with the use o~2.5!
as
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Ô5E
0

T0
dtE dvE dv8 exp@ i ~v2v8!t#$@ t* ~v!âin

† ~v!1r * ~v!b̂in
† ~v!1F̂a

†~v!#@ t~v8!âin~v8!1r ~v8!b̂in~v8!1F̂a~v8!#

2@ t* ~v!b̂in
† ~v!1r * ~v!âin

† ~v!1F̂b
†~v!#@ t~v8!b̂in~v8!1r ~v8!âin~v8!1F̂b~v8!#. ~3.24!

Expectation values of this operator determine the moments of the difference photocount distribution.
In order to take things further, we assume that the local oscillator is a large-amplitude coherent beam at the

squeezing frequencyv0 and that the reflection and transmission coefficients of the beam splitter are equal in magnitu
constant at the frequencies of interest. The noise fields of the beam-splitter medium are taken to be in the ground
before, and expectation values that involve only the two noise operator products then vanish. Also, products of noise
with the local oscillator dominate those with the signal, so the latter may be ignored. The homodyne detection operato
to

Ô5~ t* r 2r * t ! f L
1/2E

0

T0
dt$âin

† ~t!exp@ i ~fL2v0t!#2âin~t!exp@2 i ~fL2v0t!#%1 f L
1/2E

0

T0
dtE dv exp@ i ~v2v0!t2 ifL#

3@r * F̂a~v!2t* F̂b~v!#1H.c., ~3.25!

wheref L is the photon flux of the local oscillator of frequencyv0 and phasefL . The detection operator consists of two par
one of which depends on the electric field of the input, the other on the noise operators.

The input field is now assumed to be in a squeezed vacuum state, with expectation values

^âin
† ~v!âin~v8!&5sinh2 s~v!d~v2v8!,

~3.26!

^âin~v!âin~v8!&5exp~ iu!coshs~v!sinh s~v!d~v22v01v8!.

The expectation value of the homodyne operator~3.25! vanishes and its normally ordered variance is

^:Ô2:&2^Ô&254@ Im~ t* r !#2f LT0Fe22s cos2S fL2
1

2
u D1e2s sin2S fL2

1

2
u D21G , ~3.27!
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wheres5s(v0), and we have assumed that the squeez
bandwidth is large compared with 1/T0 . The expression in
the large brackets on the right-hand side vanishes for a
herent signal withs50, while it takes negative values for
squeezed signal withs.0 and appropriate values of the loc
oscillator phase. The prefactor of 4@ Im(t* r)#2 in Eq. ~3.27!
equals unity for a lossless beam splitter with reflection a
transmission coefficients of equal magnitude, but the fac
is smaller than unity in the presence of loss and it repres
a reduction in the observed squeezing with respect to
lossless case. If Eq.~2.4! is satisfied as an equality, then th
factor is the square of the one-photon absorption probab
and we recover the reduction in detected squeezing note
Lai et al. @19#. Of course the magnitude of the negative va
ance is reduced further if the squeezing covers a rang
frequencies for which the Langevin noise fields are excit

IV. DISCRETE-MODE MODEL

It is often sufficient to work with single discrete mode
rather than the full continuum used in the preceding sectio
This simplification is especially useful if the mirror transmi
sion and reflection coefficients may be approximated
frequency-independent quantities and the input modes
perfectly overlapping. The quantum statistics associated w
discrete-mode models have been discussed in some d
@19# and we present only an outline of the theory. T
discrete-mode model is obtained from the continuum
g

o-

d
r
ts
e

ty
by
-
of
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s.

y
re
th
tail

-

scription by suppressing the frequency dependences in
transmission and reflection coefficients and in the annih
tion and creation operators, and by replacing the continu
commutation relations by their discrete analogues. In p
ticular, the incident and output mode operators satisfy
commutation relations

@ â j ,â j
†#515@ b̂ j ,b̂ j

†#,
~4.1!

@ â j ,b̂ j
†#505@ b̂ j ,â j

†#,

with j representing either in or out. The relationships b
tween the operators for the output and incident modes are
natural analogues of equations~2.5! so that

âout5tâin1rb̂ in1F̂a ,

b̂out5tb̂in1râ in1F̂b . ~4.2!

The remaining operator properties may be obtained fr
Eqs.~2.6! to ~2.11! by suppressing the frequency dependen
and replacing frequency delta functions by unity. The
properties are sufficient to calculate all the statistical prop
ties of the two output modes for any given state of the t
input modes.

The discrete-mode normally ordered characteristic fu
tion is
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xk~j,h!5^exp~jâk
†!exp~hb̂k

†!exp~2j* âk!exp~2h* b̂k!&,
~4.3!

wherek denotes either in or out. We can express the n
mally ordered characteristic function for the output modes
terms of that for the input modes as

xout~j,h!5x in~ t* j1r * h,t* h1r * j!, ~4.4!

which is analogous to Eq.~3.20! for the continuum modes
The characteristic function provides a complete descrip
of the state and so Eq.~4.4! allows us to calculate any de
sired property of the output modes if we know the charac
istic function for the input modes. As a simple example co
sider the state

uC&5âin
† b̂in

† u0&, ~4.5!

in which each input mode contains precisely one photon.
normally ordered characteristic function for this state is

x in~j,h!512uju22uhu21ujhu2. ~4.6!

The photon-number factorial moments for the output mo
can be found by using equation~4.4! to obtain the character
istic function for the output modes and then calculate deri
tives @12#. The nonzero factorial moments are

^âout
† âout&52

]2

]j]j*
xout~j,h!U

j5h50

5utu21ur u2,

^b̂out
† b̂out&52

]2

]h]h*
xout~j,h!U

j5h50

5utu21ur u2,

~4.7!

^âout
† b̂out

† b̂outâout&5ut21r 2u2,

^âout
†2âout

2 &54utr u25^b̂out
†2b̂out

2 &.

These are of the same form as the factorial moments ca
lated in Appendix B using the continuum modes with perf
overlap between the two input photons so thatI 51.

V. CONCLUSION

The electric-field amplitude transmission and reflect
coefficients of a lossless beam splitter at a given freque
are constrained by the requirements of unitarity, or equi
lently energy conservation between the output and in
beams, to satisfy the relations given in Eq.~1.3!. These rela-
tions show thatt(v) andr (v) are orthogonal numbers in th
complex plane and that they form two sides of a right-ang
triangle with unit hypotenuse.

We have calculated the effects of loss in a beam spli
on the transmission and reflection coefficients and on
relations between the output and input fields, expresse
terms of the continuous-mode frequency-dependent ou
and input annihilation and creation operators. The l
causes reductions in the magnitudes of the transmission
reflection coefficients below their values for a lossless be
splitter, so that the sum of their square moduli is less th
unity. The requirement thatt(v) and r (v) should be or-
thogonal complex numbers is also removed. The presenc
r-
n
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loss is associated with the existence of noise sources in
beam-splitter material, which are here modeled by Lange
operators. The output fields thus acquire Langevin no
components in addition to the transmitted and reflected c
tributions from the input fields. The magnitudes of the outp
noise components are such as to maintain the necessary
space values of the commutators of the output field ope
tors, which would otherwise be reduced by the removal
intensity from the input fields.

The effective temperatures of the noise sources can
taken equal to zero for experiments with visible light, and t
output noise does not contribute to normally ordered exp
tation values of the output field operators. Such expecta
values are, however, modified by the changes in transmis
and reflection caused by the loss. Loss is particularly imp
tant in experiments that detect nonclassical properties
light, where beam splitters usually play crucial roles in t
measurements. We have evaluated the reductions cause
beam-splitter loss in the detectable squeezing and in
photon-number factorial moments tha determine the pho
antibunching, although the ratio of moments that occurs
the degree of second-order coherence is unchanged by b
splitter transmission.

The most striking loss-related phenomena occur, ho
ever, in the two-photon interference effect. The orthogona
of t(v) andr (v) in the lossless beam splitter is sufficient
produce this well-known interference, in which a pair
photons incident in different input arms can only leave t
beam splitter in the same output arm. The removal of
orthogonality constraint in the presence of loss allows a m
varied range of interference effects to occur. Thus the s
dard two-photon interference survives if the transmission
reflection coefficients remain orthogonal even after the int
duction of loss. However, it is also possible in principle f
the coefficients of a lossy beam splitter to be equal or op
site, and we have shown that an apparent nonlinear beha
can then occur, in which both photons are absorbed or
ther is absorbed. The beam splitter thus acts as an effec
two-photon absorber, despite the linear optical properties
sumed in its construction, and the observation of this p
dicted effect would add a new kind of interference expe
ment to the range of measured quantum-optical phenom
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APPENDIX A: DIELECTRIC SLAB
AND DELTA-FUNCTION MIRROR

We indicate how the general beam-splitter formalism d
rived in the present paper applies to the quantized norm
incident electromagnetic fields derived previously@9# ~this
paper and its equations are identified by the abbrevia
MLBJ! for the absorbing dielectric slab illustrated in Fi
1~b!. The notation used here differs from that of MLBJ, b
the annihilation operator input-output relations in MLB
~5.11! and~5.15! are essentially the same as those given h
in Eq. ~2.5!, except that the output noise operatorsF̂a(v)
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and F̂b(v) in the former are expressed in terms of spa
integrals over the slab thickness 2l . The integrands in thes
output noise operators include the complex refractive in
n(v) of the slab material, functionsV(v) and W(v) that
describe the multiply reflected fields in the slab, and a d
tributed Langevin noise operatorf̂ (x,v), whose commuta-
tion relation is given by MLBJ~3.10! as

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!. ~A1!

MLBJ verified that their output operators satisfy the comm
tation relations~1.1! and it is straightforward to show that th
output noise operators also have the ground-state expect
values given by Eq.~2.11!. The dielectric slab quantizatio
of MLBJ thus conforms fully with the general beam-splitt
theory presented here.

A useful special case of the dielectric slab is that of
‘‘delta-function mirror,’’ obtained by letting the slab thick
ness tend to zero as its complex refractive index tend
infinity

2l→0,

n~v!→` ~A2!

such that 2 ln(v)2 is finite. Such slabs have been used
model the mirrors of Fabry-Pe´rot cavities for normally inci-
dent light beams@35# and the theory has been extended
oblique incidence for photonic crystal structures made fr
arrays of delta-function mirrors@36#. However, the refractive
index is assumed to be real in this previous work. For a lo
delta-function mirror with normal incidence, the limits in E
~A2! are readily taken in the expressions of MLBJ. The
sulting input-output relations are the same as in Eq.~2.5!
with the identifications

t~v!5
1

12 im~v!
, r ~v!5

im~v!

12 im~v!
~A3!
l

x

-

-

ion

e

to

y

-

and

F̂a~v!5F̂b~v!5
i

12 im~v! S Im m~v!

l D 1/2E
2 l

l

dx f̂~x,v!,

~A4!

where

m~v!5v ln~v!2/c ~A5!

is a dimensionless parameter that characterizes the op
properties of the lossy dielectric slab. The transmission
reflection coefficients in this case satisfy

12ut~v!u22ur ~v!u252t~v!r * ~v!2r ~v!t* ~v!

5
2 Im m~v!

112 Im m~v!1um~v!u2 , ~A6!

which is zero only if the imaginary part of the dielectr
constant,«(v)5n2(v), is zero, corresponding to no absor
tion. It is easy to verify with the use of Eq.~A1! that the
noise operators of Eq.~A4! satisfy the commutation relation
in Eq. ~2.7!, and Eq.~A6! clearly reduces to Eq.~1.3! in the
absence of loss.

APPENDIX B: CALCULATION OF PHOTON-NUMBER
FACTORIAL MOMENTS

In our discussion of two-photon interference effects
needed the form of the first and second photon-number
torial moments for the two output fields given the inp
states~3.4! and~3.10!. These may be evaluated by using t
relationship between the input and output fields~2.5!, the
action of the annihilation operators on the vacuum or grou
state~2.8!, and the commutation relations~1.1!. Consider, for
example, the action of the operatorâout(v) on the stateuf&
defined in Eq.~3.4!:
or which
âout~v!uf&5$t~v!âin~v!1r ~v!b̂in~v!1F̂a~v!%E
0

`

dvaE
0

`

dva8f~va ,va8!âin
† ~va!âin

† ~va8!u0&

5t~v!E
0

`

dvaE
0

`

dva8f~va ,va8!$âin
† ~va!âin~v!1d~v2va!%âin

† ~va8!u0&

5t~v!E
0

`

dvaE
0

`

dva8f~va ,va8!$d~v2va!âin
† ~va8!1d~v2va8!âin

† ~va!%u0&

52t~v!E
0

`

dvaf~va ,v!âin
† ~va!u0&. ~B1!

It then follows that the expectation value of the continuum number operatorN̂a is

^N̂a&5E
0

`

dv^fuâout
† ~v!âout~v!uf&54E

0

`

dvut~v!u2E
0

`

dvauf~va ,v!u2. ~B2!

If we consider cases where the transmission coefficient is approximately constant over the range of frequencies f
uf(va ,v)u is significant, then this first moment reduces with the use of Eq.~3.5! to ^N̂a&52utu2.
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Higher-order moments can be calculated by the sa
method. Consider, for example, the action of the opera
âout(v) and âout(v8) on the stateuc& defined in Eq.~3.10!:

âout~v8!âout~v!uc&5$t~v!r ~v8!âin~v!b̂in~v8!

1t~v8!r ~v!âin~v8!b̂in~v!%uc&

5$t~v!r ~v8!c~v,v8!

1t~v8!r ~v!c~v8,v!%u0&, ~B3!

where only those terms making a nonzero contribution h
been retained in the expansion ofâout(v8)âout(v). It follows
that the second factorial moment ofN̂a is

^N̂a~N̂a21!&5E
0

`

dvE
0

`

dv8^cuâout
† ~v!

3âout
† ~v8!âout~v8!âout~v!uc&

5E
0

`

dvE
0

`

dv8ut~v!r ~v8!c~v,v8!

1t~v8!r ~v!c~v8,v!u2. ~B4!

If we again specialize to situations for which the transm
sion and reflection coefficients may be approximated by c
tt

-

ys
.

rd

li
an
tio
A

un
e
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e

-
-

stant values then this second moment reduces to 2utr u2(1
1I ), with I given by Eq.~3.13!. The complete set of non
zero factorial moments used in Sec. III B is

^N̂a&52utu2, ^N̂b&52ur u2,

^N̂aN̂b&52utu2ur u2,

^N̂a~N̂a21!&52utu4, ^N̂b~N̂b21!&52ur u4 ~B5!

for uf& and

^N̂a&5utu21ur u25^N̂b&,

^N̂aN̂b&5utu41ur u41@ t2r * 21t* 2r 2#I ,

^N̂a~N̂a21!&52utr u2@11I #5^N̂b~N̂b21!& ~B6!

for uc&.
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