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Enhanced second-harmonic generation in media with a weak periodicity

J. W. Haus, R. Viswanathan, M. Scalora,* A. G. Kalocsai,† J. D. Cole,† and J. Theimer‡

Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
~Received 4 February 1997!

First-order multiple-scale perturbation theory is used to derive a set of coupled-mode equations valid for
electromagnetic-wave propagation in a weakly periodic, nonlinear medium with periodicity on the order of a
wavelength. We apply this to a problem where the medium has ax (2) response and find that the second-
harmonic signal generated is enhanced when the fundamental is tuned near the band edge. Results are given for
a possible experiment with optical fibers.@S1050-2947~98!03703-2#

PACS number~s!: 42.65.2k, 42.65.An
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I. INTRODUCTION

Wave propagation in periodic dielectric materials is u
ful for developing a number of photonic devices@1#, such as
distributed feedback lasers@2# and Bragg grating filters@3#.
The transmission is characterized by large dispersion of
pulse and the appearance of stop bands when the Bragg
ditions are met. Recently, especially large group velocity
lays have been reported at the edge of the stop band w
the transmission is near unity and at the same time, the p
experiences no appreciable change in its shape@4#.

This paper is devoted to an analysis of second-harmo
frequency conversion in weakly periodic media with mater
periodicity chosen to be on the order of the fundamen
harmonic wavelength. The tools of our analysis are multi
scale perturbation theory@5# and we carry out the calcula
tions to demonstrate the potential for using a band edge r
nance in Bragg gratings. A second paper deals with the
merical computations for deep gratings@6#, but some of the
qualitative understanding gleaned from the present ana
carries over to the analysis of deep gratings. Phase matc
multiwave interactions by periodic structures was perh
first discussed some time ago by Armstronget al. @7# and by
Bloembergen and Sievers@8#.

Three types of phase matching were proposed by A
strong et al. @7# for efficient harmonic generation. Amon
them, it was proposed to periodically replace the nonlin
medium by its inversion image every coherence leng
which is proportional to the reciprocal of the phase misma
wave number. This is called quasi-phase-matching; the n
linear susceptibility changes sign, but the linear propertie
the medium are the same. Generally, the coherence leng
orders of magnitude longer than the fundamental wa
length. Theoretically, quasi-phase-matching preceded b
fringent phase matching, but it was not experimentally f
sible until recently, when periodic poling of the domains in
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ferroelectric crystal was developed@9#. Other concepts simi-
lar to phase matching were also proposed@10#. For quasi-
phase-matching to be efficient, the length scale of the m
rial periodicity is on the order of the coherence length;
this length scale periodically varying the nonlinear coe
cient is important.

However, there are some signaling problems where
material periodicity is on the order of a wavelength. Here
linear properties of the medium become important and
be used to reduce the phase mismatch arising from nonli
wave mixing. In this regime, because of the chosen peri
icity, only the spatial dc component of the~possibly! peri-
odically varying nonlinear coefficient is required. We du
this band-edge phase matching; it is distinct from oth
forms of phase matching, such as using a defect mode in
periodic structure@11,12#. Band-edge phase matching is s
chosen because the fundamental wavelength is near the
edge of the first stop band in the structure and forwa
backward wave coupling is resonant. Band-edge ph
matching can be considered the converse of quasi-ph
matching in terms of which medium properties are homo
neous or periodic. In quasi-phase-matching the linear m
dium appears homogeneous and the nonlinear medium
periodic with the period chosen to be of the order of t
coherence length. However, in band-edge phase matc
the linear medium is periodic and the nonlinear medium
pears homogeneous with the periodicity on the order o
wavelength.

As an application of a second-harmonic medium for t
processes discussed in this paper, we propose the us
silica glass fibers. Despite the disorder in glass, seco
harmonic generation was observed, first in fibers@13,14#,
then in bulk glasses@15#, as well. Conversion efficiency ap
proaches several percent.

A fiber Bragg grating is an example of a weakly period
medium. They have a number of applications; filters, ta
and wavelength division multiplexers are a few exampl
but others have been demonstrated, such as laser wavele
control, mode conversion in fibers, and distributed Bra
reflectors@3#. Furthermore, chirped fiber Bragg gratings ha
been used to compress pulses broadened by self-p
modulation. For instance, pulses have been compressed
2 ps duration to less than 200 fs duration@16#.

Nonlinear optical mixing effects in fibers can incorpora
Bragg gratings to improve the optical conversion of rad
tion. The design features require good overlap of the opt
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,

ns-

cs
2120 © 1998 The American Physical Society



tin

ie
de
t

an
io

ne
ee
h
rm
b
d

ls
pe
tl
ro
y
is
v
a
as
s
m

riv
an
ith
r

in
g
d
b

m
on
ll’s

he

nd

u
th
x
th

all

-
ond-
also
but

The
ing

y

sis
of
ak,

he

-
am-

the
and

he

nc-
to

57 2121ENHANCED SECOND-HARMONIC GENERATION IN . . .
energy in the fiber grating; advantages are a reduced, gra
dependent group velocity to increase the interaction time
the waves in the grating, matching of the phase velocit
and band-edge resonance to increase the mode amplitu
the structure. The design of periodic structures will lead
higher conversion efficiency, more compact structures,
lower input power requirements. Enhancement of convers
efficiency in deep gratings has been numerically exami
@6#, but so far no complete analysis of the problem has b
made, nor has the problem been examined in fibers. T
paper is intended to place the previous findings on a fi
mathematical footing; in this we are partially successful
analyzing the case of weakly periodic gratings with perio
icity on the order of a wavelength.

In applying multiple scales to the time dependent pu
problem, we assume the medium to have chromatic dis
sion even at the lowest perturbative order. This is sligh
different from the usual Kronig-Penney model, where ch
matic dispersion is neglected@1#. Time-dependent secularit
conditions are different for chromatic dispersive and nond
persive problems and must be handled separately. Howe
for the time-independent cw problem, multiple scales c
handle both the chromatic dispersive and nondispersive c
at once, because secularity conditions reduce to those of
tial harmonic Fourier terms, provided the physical proble
can be reduced to a finite set of spatial oscillators. We de
evolution equations for the chromatic dispersion case;
for the continuous wave problem, we derive results w
chromatic dispersion and then show how the parameters
duce to the dispersionless case to illustrate what is obta
in Kronig-Penney-type models. Note that for band-ed
phase matching to occur, chromatic dispersion is require
order to be offset by the Bragg grating dispersion, as will
shown by first-order perturbation theory.

II. COUPLED-MODE EQUATIONS

We consider a wave incident upon a nonlinear mediu
The medium has a periodic modulation of the dielectric c
stant; for the one-dimensional case the form of Maxwe
equation is

]2E

]z2 2
1

c2

]2DL

]t2 5
4p

c2

]2PNL

]t2 . ~1!

DL is the linear displacement field, which is related to t
electric field by the following constitutive relation:

DL~z,t !5E
2`

t

e~z,t2t8!E~z,t8!dt8. ~2!

The functione(z,t) is the dielectric function; it is periodic in
z and the medium is dispersive.PNL is the nonlinear polar-
ization contribution, which for our present case is a seco
order nonlinearity.

PNL5lx~2!E2. ~3!

Herel is a parameter that multiplies a perturbative contrib
tion; there are five smaller parameters in our analysis and
parameter serves as a bookkeeping device. In this contel
is a dimensionless parameter that will be set to one after
g-
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perturbation analysis is carried out; it serves to identify
the contributions of a given perturbative order.

The coefficient x (2) governs three-wave-mixing pro
cesses, e.g., sum- and difference-frequency and sec
harmonic generation. The analysis given hereafter can
be applied to a number of three-wave-mixing processes,
we restrict our attention to second-harmonic generation.
analysis can also be extended to include four-wave mix
by introducing a third-order susceptibility.

Before deriving the coupled-mode equations, Eq.~2! is
rewritten by introducing the Fourier transform relation

e~z,t !5E ê~z,v!e2 ivtdv. ~4!

The functionê(z,v) is complex and its real and imaginar
parts are denoted by the subscriptsr and i , respectively. By
using the Taylor-series expansion ofê(z,v), Eq. ~2! can be
expressed in a local form:

DL~z,t !5 êS z,i
]

]t DE~z,t !. ~5!

This expression is well suited to the multiple-scale analy
given below. The real part of the dielectric function is
order unity, but the imaginary part is considered to be we
i.e., ê(v)5 ê r(v)1 ilê i(v). The function ê is a periodic
function inz. For a weakly periodic medium we assume t
form

ê~z,v!5 ê~v!1l2Dê~v!cos~2pz/d!. ~6!

Hered is the period of the dielectric variation andDê(v) is
the amplitude of the spatially periodic component.

A. Multiple-scale analysis

In the multiple-scale analysis@5# the space and time co
ordinates are expanded in a power series of a small par
eter that we denote asl; tn5lnt0 andzn5lnz0 . In the past
this method has been applied tox (2) materials without peri-
odic changes by two of the authors@17#; the procedure par-
allels that development, except that, here, we truncate
expansion at first-order perturbation theory. The spatial
temporal derivatives are

]

]t
5

]

]t0
1l

]

]t1
1••• ,

~7!

]

]z
5

]

]z0
1l

]

]z1
1••• .

Similarly, the electric field is also expanded in powers of t
perturbation parameter

E5E01lE11••• . ~8!

Orders of the perturbation parameterl are gathered to-
gether. Besides the spatial variations of the dielectric fu
tion, the nonlinearity and absorption are also considered
be weak, as noted above by the parameterl. The expansion
of the real part of the dielectric function to first order is
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ê r S i
]

]t D5 ê r S i
]

]t0
D1lê r8S i

]

]t0
D i

]

]t1
. ~9!

The prime denotes a derivative with respect to the argum
of the function, i.e., frequency. TheO(1) term in the expan-
sion is

L0E05F ]

]z0
22

1

c2

]2

]t0
2 ê r S i

]

]t0
D GE050. ~10!

The solution, when a plane wave is incident atz50 with a
frequencyv and 2v, is expressed as

E05
Af 1~z1 ,t1!

Ak1

ei ~k1z02vt0!1
Ab1~z1 ,t1!

Ak1

ei ~2k1z02vt0!

1
Af 2~z1 ,t1!

Ak2/2
ei ~k2z022vt0!1

Ab2~z1 ,t1!

Ak2/2
ei ~2k2z022vt0!

1c.c., ~11!

where the wave numbers (k1 ,k2) are obtained from the chro
matic dispersion properties of a bulk homogeneous medi
so that k1

25v2ê r(v)/c2 and k2
25(2v)2ê r(2v)/c2. In our

analysis the phase mismatch is also treated as small,
lDk5(k222k1). Note that lDkz05Dkz1 . Hence at the
first-order perturbation, the traditional three-wave proces
obtained where quadratic nonlinearities dominate. We av
large phase mismatch because that would lead to
asymptotic regime beyond three-wave mixing~or cascading!
@17#. The field amplitudes depend on the slower parame
(z1 ,t1) and the rapid variations of the field appear as a pl
wave solution of the wave equation. The amplitudes of
fundamental waves (Af 1 ,Ab1) and the second-harmoni
waves (Af 2 ,Ab2) are treated as order unity functions, whic
multiply the plane-wave solutions.

To first order inl the equations of motion are

L0E15
1

c2 F ]2

]t0
2 i ê i S i

]

]t0
DE0G22F ]2

]z0]z1
E0

2
1

c2

]2

]t1]t0
ê r S i

]

]t0
DE0G1

1

c2

]2

]t0
2 ê r8S i

]

]t0
D i

]E0

]t1

1
2 cos~2pz0 /d!

c2

]2

]t0
2 Dê r S i

]

]t0
DE0

1
4px~2!

c2

]2

]t0
2 E0

2. ~12!

The chromatic dispersive secular terms are eliminated f
the right hand side of Eq.~12!, as shown in Refs.@5,17#. We
also choose the grating periodicityd so that it is close to
one-half of the fundamental harmonic wavelength. The
viation from this condition is denoted by 2ld52p/d22k1
and from that we observe 2ldz052dz1 . At the fundamental
frequency, forward-backward waves are coupled becaus
the choice of grating periodicityd. The equations of motion
for the fundamental frequency envelope functions are gi
by
nt

,
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]Af 1

]z1
1

1

vg1

]Af 1

]t1
52

p

d

a1

2
Af 11 i

p

d
kAb1ei2dz1

1 i
p

d
NAf 2Af 1* eiDkz1,

~13!

2
]Ab1

]z1
1

1

vg1

]Ab1

]t1
52

p

d

a1

2
Ab11 i

p

d
kAf 1e2 i2dz1

1 i
p

d
NAb2Ab1* e2 iDkz1.

The group velocity at the fundamental frequency isvg1
5dv/dk1 ; at this first-order perturbation level, the grou
velocity on the left hand side is that of the homogeneo
medium, because of the corresponding wave numberk1 that
was defined earlier. The expansion procedure of multi
scales does not allow anything else@17#. The normal-
ized absorption coefficient isa15(d/p)(v0

2/k1c2) ê i(v0)
and the normalized grating strength coefficient isk
5(d/p)Dêv0

2/(2k1c2). The scaled nonlinear coefficient i
N5(d/p)v0

24px (2)/(k1c2Ak2/2).
The second-harmonic equations are given by

]Af 2

]z1
1

1

vg2

]Af 2

]t1
52

p

d

a2

2
Af 21 i

p

d
NAf 1

2 e2 iDkz1,
~14!

2
]Ab2

]z1
1

1

vg2

]Ab2

]t1
52

p

d

a2

2
Ab21 i

p

d
NAb1

2 eiDkz1,

where the group velocity at the second harmonic isvg2
5d(2v)/dk2 , where again, at first-order perturbatio
theory, this is the group velocity of the homogeneous m
dium and the normalized absorption coefficient isa2

5(d/p) (4v0
2/k2c2) ê i(2v0). The forward and backward

waves at the second harmonic are not coupled in the we
grating limit, unless a second sinusoidal variation of the
electric function is added so that 2p l /d22k2;O(l), where
l is an integer.

To simplify the equations we scale the length:z1
→(p/d)z1 and the field amplitudes are scaled to the nonl
ear coefficient, so that af 15NAf 1e2 ipd1z1 /d, ab1
5NAb1eipd1z1 /d, af 25NAf 2eipd2z1 /d, and ab2
5NAb2e2 ipd2z1 /d. Here d15(d/p)d and d25(d/p)Dk
22d1 . The scaled form of the equations of motion for th
fundamental fields are

]af 1

]z1
1

d

pvg1

]af 1

]t1
52

a1

2
af 12 id1af 11 ikab11 ia f 2af 1* ,

~15!

2
]ab1

]z1
1

d

pvg1

]ab1

]t1
52

a1

2
ab12 id1ab11 ikaf 1

1 iab2ab1* .

The scaled equations for the second harmonic becom

]af 2

]z1
1

d

pvg2

]af 2

]t1
52

a2

2
af 21 id2af 21 ia f 1

2 , ~16!
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2
]ab2

]z1
1

d

pvg2

]ab2

]t1
52

a2

2
ab21 id2ab21 iab1

2 .

The above equations were derived for pulses in stron
chromatic dispersive media. For the cw envelope, it does
matter whether the medium is chromatic or achromatic,
cause the spatial-dependent equations remain the same~ex-
cept thatDk50 for achromatic media!. However, for pulses
in weakly dispersive or achromatic materials, the evolut
equations are quite different and the above equations do
apply. The above equations were derived under the assu
tion that grating dispersion is used to compensate chrom
dispersion.

B. Band-edge phase matching

The weak grating differs from the homogeneous medi
through the addition of two parameters (d1 ,k), as shown in
Eqs. ~15! and ~16!. Harmonic enhancement is obtained
careful choices of these parameters, and based on the di
sion properties of the material. Note that in this model ch
matic dispersion dominates grating dispersion and the res
obtained here are different from the usual Kronig-Penn
models@1#, which neglects chromatic dispersion.

It must be mentioned that the parameters (d1 ,d2) can be
related to the frequency detuningv2v05lD. Here v0
5pc/dn(v0), which is the scaled frequency for the cent
of the first stop band. From the previous definitions
(d1 ,k1) we find

d

p
k1~v!512ld15

d

p

v

c
n~v!. ~17!

Expanding in a Taylor series aboutv0 we obtain

d

p
k1~v0!511lDF 1

v0
1

n8~v0!

n~v0! G . ~18!

The prime denotes a derivative with respect to angular
quency. Therefore, the scaled deviation parameterd1 be-
comes

d152DF 1

v0
1

n8~v0!

n~v0! G . ~19!

For a material with no chromatic dispersion, i.e.,n(v)
5const, only the first term is relevant in Eq.~19! and

d

p
k1~v0!511

lD

v0
. ~20!

This is expected in the Kronig-Penney-type models.
From Eq.~19!, d1 is proportional to the frequency detun

ing D multiplied by a function ofv0 . The parameterd2 is
the difference between the phase mismatchDk and 2d1 and
is given as

d25
d

p
Dk22d1 . ~21!
ly
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The band-edge phase matching is obtained by choosingd2
50. We choosed1 to offset the phase mismatchDk due to
chromatic dispersion. This implies the alternate condition

n~2v!2n~v!5
pcd1

vd
. ~22!

At v0 this is approximately

n~2v0!2n~v0!1lD@2n8~2v0!2n8~v0!#5
pcd1

d~v01lD!
.

~23!

If the dispersion is such that 2n8(2v0)2n8(v0);O(l),
then it may be neglected. We defineV5v01lD. Under
these approximations the band-edge phase matching co
tion becomes

n~2v0!2n~v0!5
pcd1

dV
. ~24!

There are two cases when the band-edge phase matc
condition cannot be obtained. These occur whenDk50 or
d150, independently. The first case denotes the materia
chromatically nondispersive; from Eqs.~19! and~21!, we see
that d2522d152D/v0 . Here we have a Kronig-Penney
type model with only a Bragg grating and there is no ch
matic dispersion to offset. The second case shows thad2
5dDk/p. Here the material is chromatic, but the detuni
from the band gap center frequency is zero because of
~19!. Here the transmission is attenuated and the seco
harmonic generation is not efficient.

To get the most out of band-edge phase matching,
have to utilize the two independent grating paramet
(d1 ,k). The best value ford1 may be inferred without solv-
ing Eqs.~15! and~16!, but adjustingk requires the examina
tion of solutions. By imposing the conditiond250, the chro-
matic dispersion can be compensated by the dispersion o
Bragg grating, i.e., adjustingd1 . At the band edge the phase
introduced by forward and backward wave coupling chan
the phases of the waves in the material and this condition
longer assures the best conversion efficiency, as will be
lustrated below.k can be adjusted by changing the modu
tion depthDê, so that the best phase matching is conc
rently coincident with a transmission resonance of
grating. The transmission resonances, discussed below
further evidence of strong forward-backward wave coupl
and this leads to a an enhancement of the second-harm
field.

C. Steady-state, nondepleted solutions

The equations can be solved for the nondepleted pu
and steady-state fields. This case illustrates the essentia
sirable features of the grating that enhance the nonlinea
sponse of the material. Absorption is also neglected.

The steady-state equations for the fundamental field
plitude are

]af 1

]z1
52 id1af 11 ikab1 , ~25!
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]ab1

]z1
5 id1ab12 ikaf 1 . ~26!

DefiningD15Ad1
22k2, which is the effective wave numbe

for the envelope on thez1 scale, one can obtain the corr
sponding grating group velocity~for the infinite medium!

VG5D1 /d1 . ~27!

This is not the same as the group velocities appearing on
left hand side of Eqs.~15! and ~16!, but a correction to the
homogeneous medium group velocity in second-order p
turbation theory, which is not developed here but done
@17# for other effective wave numbers for the envelope. T
solutions to the above equations are

af 1~z!5S cos~D1z1!2
id1

D1
sin~D1z1! Daf 1~0!

1
ik

D1
sin~D1z1!ab1~0!, ~28!

FIG. 1. Transmission vs frequency for a 104 period grating~or
in scaled unitsL5p104! with a dielectric variation ofDê55
31024. The mode-coupled results and the transfer matrix calc
tions are indistinguishable.

FIG. 2. Transmission vs frequency for a structure with 2
3104 periods, i.e.,L52.5p3104. See Fig. 1 for parameters.
he

r-
n
e

ab1~z!5S cos~D1z1!1
id1

D1
sin~D1z1! Dab1~0!

2
ik

D1
sin~D1z1!af 1~0!. ~29!

We consider a medium withN periods; in scaled units the
sample length isL5pN. The input fieldaf 1(0) is normal-
ized to 1, and applying the boundary condition that the ba
ward field vanishes atL, gives the reflected field amplitude

ab1~0!5
ik sin~D1L !

D1 cos~D1L !1 id1 sin~D1L !
. ~30!

The transmittance through the structure is simplyT
5uaf 1(L)u2.

The results are illustrated by considering the followi
index variation Dê5531024, with e151 and e251
12Dê. The average dielectric constant is 1.0005. Figure
and 2 are plots of the transmissionuaf 1(L)u2/uaf 1(0)u2 ver-
sus frequency forL5p104 andL52.5p3104, respectively.
The analytically calculated curves are indistinguishable fr
those generated by a transfer matrix routine with a step in
profile whose first Fourier coefficient is identical toDê. We
note that the center of the gap is displaced from unity
cause the average refractive index is not unity.

The transmission oscillations at the band edges are ca
transmission resonances. They have a close correspond

-

FIG. 3. The forward- and backward-propagating field inten
ties, when the detuning is set at the first transmission maximum
the lower band edge, as a function of position~z in units ofp103!.
For parameter details see Fig. 1.

FIG. 4. The forward- and backward-propagating field inten
ties, when the detuning is set at the first transmission maximum
the lower band edge, as a function of position~z in units ofp103!.
The chosen parameters correspond to Fig. 2.
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FIG. 5. Forward-propagating second-harmonic intensity in the medium vs position and phase matching frequency for a 104 period
structure. The vertical axis has been scaled by 8. The side panel shows the transmission spectrum for the fundamental wave.
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with Fabry-Pe´rot-like resonances of the envelope functio
in the structure. The field amplitudes corresponding to
first transmission resonances at the lower edge of the
band are plotted in Figs. 3 and 4; these display the chang
the amplitude by increasing the number of periods. As wo
be found for the lowest transmission resonance in a Fa
Pérot etalon, the field amplitude has one maximum. The d
ference here is that the Fabry-Pe´rot resonance is half a wave
length, while for the Bragg grating, field amplitude is slow
varying over the scale of the wavelength. The input field
normalized to unity. The forward- and backward-propagat
amplitudes have a single extremum and their maxima exc
the input field value. The maximum value increases as
number of periods,N, increases. The maximum field amp
tude is proportional toDê and increases with this paramet
e
op
of
d
y-
-

s
g
ed
e

as well. For large dielectric contrast between the layers o
a few layers suffice to enhance the field beyond its in
value @6#. This can be used to design compact frequen
conversion structures.

The second-harmonic fields are simply solved by app
ing the Laplace transform technique to Eq.~16!; in general,
the solutions are complicated and we do not present th
here. In the following sections we will analyze the solutio
in detail.

III. RESULTS

The second-harmonic fields at the transmission maxim
are enhanced by the transmission resonance of the fu
mental field. In homogeneous media the fields are ph
FIG. 6. Backward-propagating second-harmonic intensity in the medium vs position and phase matching frequency for a 104 period
structure. The vertical axis has been scaled by 8. The side panel shows the transmission spectrum for the fundamental wave.
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FIG. 7. The plot of the forward-propagating second-harmonic intensity in the medium vs phase matching and detuning for a3104

period structure. The vertical axis has been scaled by 16. The side panels show the transmission spectrum for the fundamental
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matched, i.e.,Dk50, to assure that the best conversion e
ciency is achieved. However, as mentioned above, the o
mal condition for conversion is not identical to the pha
matching condition without the backward propagating fie
which are coupled by the grating period and lead to the
rameter 2d1 compensating forDk. The interplay of forward
and backward fields gives additional position-depend
phase shifts to the complex amplitudes.

Figures 5 and 6 display the behavior of the seco
harmonic fields in the medium as a function of frequen
but assumingd250 at each frequency, i.e.,V is the fre-
quency of the fundamental field. The forward, secon
harmonic field in Fig. 5 is zero at the input, but increases
the output, a maximum increase occurs when the ph
matching frequency corresponds to the maximum of
transmission curve, which is also drawn on the side pan

The output second-harmonic intensity has been scale
the second harmonic generated from a perfectly ph
matched homogeneous medium of the same length and
linear response. The enhancement of the forwa
propagating output at the maximum is about 16 times tha
the homogeneous case. The second harmonic is roughly
portional to the square of the intensity, so the large sec
harmonic can be mainly attributed to the enhanced fi
harmonic field at the transmission resonance, which is ne
a factor of 4. For a 2.53104 period grating, the enhanceme
is about 400 times above the homogeneous medium, w
the fields are phase matched. Note we remain within
nondepleted pump approximation and the second harm
is still weak compared to the fundamental.

The second-harmonic backward wave is also enhance
about a factor of 4 above the homogeneous medium. Ag
by reference to Fig. 3 this is consistent with the enhan
fundamental-harmonic backward field inside the mediu
The forward and backward fields form a standing-wave p
tern in the sample at the transmission resonance and alth
the fundamental field is absent in the reflection at the tra
mission peak, the backward second-harmonic has a m
-
ti-
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mum there. The backward-propagating second-harmonic
tensity is a probe of the backward fundamental field in
medium, just as the forward-propagating second harmo
probes its fundamental field.

Finally, the sharpness of the response with phase ma
ing is gauged from Figs. 7 and 8 for the forward- a
backward-propagating second-harmonic fields, respectiv
The fields have been scaled by a factor of 16 and the
panels display the transmission curves for the fundamen
The maximum for a given value ofd1 occurs at the first
transmission maximum; the output is sharply peaked at
frequency with a spectral width about as wide as the tra
mission resonance. This occurs for both the forward and
backward fields. The forward propagating, second-harmo
field is the strongest, since it has the largest field at the tra
mission resonance, as previously discussed. Since the fi
are not phase matched at the upper transmission maxim
there is no perceptible output on this scale of intensiti
Also, drawing attention to the side panel on theV axis, we
note the maximum conversion does not occur whend250 at
the first transmission maximum; instead, the best convers
efficiency occurs ford250 at the second transmission max
mum. This is a consequence of the additional phase cha
due to presence of both forward and backward fields in
medium. The weak secondary maxima observed in both
ures is due to the resonance at the second transmission m
mum. Including medium dispersion in the analysis is an i
portant aspect of designing efficient conversion devices.

IV. CONCLUDING REMARKS

The fields are affected by several factors at the band e
First, there is a Fabry-Pe´rot-type resonance in the field am
plitudes, which leads to higher conversion efficiencies ins
the structure. The field amplitude is large over a major p
tion of the volume. Second, the transmission is large, so
all the fundamental field will enter the structure, i.e., there
no impedance mismatch. Third, the grating group velocity
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FIG. 8. Plot of the backward-propagating second-harmonic intensity in the medium vs phase matching and detuning for a 104 period
structure. The vertical axis has been scaled by 16. The side panel shows the transmission spectrum for the fundamental wave.
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the band edge is small and the fundamental field under
propriate conditions described by higher-order perturba
theory or deep gratings may spend more time inside
structure leading to greater conversion efficiency. In o
model, the grating group velocity is dominated by that
homogeneous chromatic media. Our results are quite dis
from quasi-phase-matching, which involves a differe
length scale; the medium periodicity is chosen on the or
of a coherence length and modulating the nonlinear coe
cient is important. The contrast with band-edge phase ma
ing is apparent; since the grating periodicity is on the or
of a wavelength, the linear properties of the medium
utilized to reduce the phase mismatch, as described by
parameterd2 .

There are design parameters whose determination is
portant for applications of this analysis. The phase match
condition is not easily defined here due to the interaction
the forward and backward waves; nevertheless, there are
timal values ofd1 that provide enhanced conversion. T
matching frequency and the transmission maxima should
tuned for the best results. This means that for a given am
tude, Dê, there is an optimum number of layers that w
achieve this condition. The number of layers should be la
enough to result in an increased conversion efficiency; on
other hand, the maximum number of layers is set by tech
logical limits, but the larger the number of periods, t
sharper the transmission resonances in frequency s
~compare Figs. 1 and 2!. This sets a lower limit on the puls
duration, since if the pulse is too short, then its spectr
extends over several transmission maxima, which lead
pulse dispersion, reflection, and reshaping in the structu

Second-harmonic fields have been generated in g
hosts, despite the fact that it is on the average centrosym
ric. This centrosymmetry can be broken by adding a st
external field or by defects seeded in the medium during
p-
n
e
r
f
ct
t
r
-
h-
r
e
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-
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p-

e
li-

e
e
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to
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three-wave-mixing process. Fiber Bragg gratings written i
prepared fibers could be used to demonstrate the reson
enhancement concept. The conversion is already good fo
prepared fiber and it could be further increased by writin
Bragg grating into the fiber. The index change in the co
could be of order 0.01@18# and the overlap of a mode with
the core is typically around 75%, so that the efficiency of t
coupling is not significantly reduced@19#.

Finally, the results here apply to a number of nonline
conversion phenomena. The sum- and difference-freque
generation problems are amenable to the analysis given h
The coupled-mode equations are similar, but now dep
linearly on the fundamental field. Third-order processes
also be treated by the same approach; the third-harm
generation process depends on the cube of the fundam
field and greater efficiency can be achieved by the band-e
resonance; there is an additional gap near the third-harm
frequency that provides a further resonance condition.
wavelengths below about 400 nm though, absorption w
have to be included in the analysis. Other nonlinear p
cesses can also be optimally designed at the band-edg
instance, the stimulated Raman scattering could be s
pressed by tuning the fundamental field to the upper ba
edge resonance or the amplification of fields and quan
coherence between the Stokes and anti-Stokes fields@20#
could be managed by band-edge changes in the electrom
netic density of states.
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