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Enhanced second-harmonic generation in media with a weak periodicity
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First-order multiple-scale perturbation theory is used to derive a set of coupled-mode equations valid for
electromagnetic-wave propagation in a weakly periodic, nonlinear medium with periodicity on the order of a
wavelength. We apply this to a problem where the medium hg&laresponse and find that the second-
harmonic signal generated is enhanced when the fundamental is tuned near the band edge. Results are given for
a possible experiment with optical fibef§1050-2947%8)03703-3

PACS numbeps): 42.65-k, 42.65.An

I. INTRODUCTION ferroelectric crystal was developéd]. Other concepts simi-
lar to phase matching were also propo$&@]. For quasi-
Wave propagation in periodic dielectric materials is use-Phase-matching to be efficient, the length scale of the mate-
ful for developing a number of photonic deviddd, such as  fal periodicity is on the order of the coherence length; for
distributed feedback lase[&] and Bragg grating filter§3]. this length scale periodically varying the nonlinear coeffi-
The transmission is characterized by large dispersion of thE/€Nt IS Important. o
pulse and the appearance of stop bands when the Bragg cop-1OWeVver. there are some signaling problems where the
ditions are met. Recently, especially large group velocity de_r_natenal penqdmty is on the prder ofa wayelength. Here the
I h b ' ' d’ t the ed f the stop band wh linear properties of the medlum become important and_can
ays have been reported at the edge ot tne stop ba he used to reduce the phase mismatch arising from nonlinear

the tra_msmission is hear unity and at f[he_ same time, the pu"‘?ﬁave mixing. In this regime, because of the chosen period-
experiences no appreciable change in its shdpe

. ) X Jicity, only the spatial dc component of tipossibly peri-
This paper is devoted to an analysis of second-harmoniggically varying nonlinear coefficient is required. We dub

frequency conversion in weakly periodic media with materialthis pand-edge phase matching; it is distinct from other
periodicity chosen to be on the order of the fundamentatorms of phase matching, such as using a defect mode in the
harmonic wavelength. The tools of our analysis are multipleperiodic structurd11,12. Band-edge phase matching is so
scale perturbation theorjp] and we carry out the calcula- chosen because the fundamental wavelength is near the band
tions to demonstrate the potential for using a band edge resedge of the first stop band in the structure and forward-
nance in Bragg gratings. A second paper deals with the nusackward wave coupling is resonant. Band-edge phase
merical computations for deep gratinffd, but some of the matching can be considered the converse of quasi-phase-
qualitative understanding gleaned from the present analysisatching in terms of which medium properties are homoge-
carries over to the analysis of deep gratings. Phase matchingeous or periodic. In quasi-phase-matching the linear me-
multiwvave interactions by periodic structures was perhapglium appears homogeneous and the nonlinear medium is
first discussed some time ago by Armstrartaal.[7] and by  periodic with the period chosen to be of the order of the
Bloembergen and Sievef8]. coherence length. However, in band-edge phase matching
Three types of phase matching were proposed by Armthe linear medium is periodic and the nonlinear medium ap-
strong et al. [7] for efficient harmonic generation. Among pears homogeneous with the periodicity on the order of a
them, it was proposed to periodically replace the nonlineawavelength.
medium by its inversion image every coherence length, As an application of a second-harmonic medium for the
which is proportional to the reciprocal of the phase mismatctprocesses discussed in this paper, we propose the use of
wave number. This is called quasi-phase-matching; the norsilica glass fibers. Despite the disorder in glass, second-
linear susceptibility changes sign, but the linear properties ofharmonic generation was observed, first in fibgt8,14],
the medium are the same. Generally, the coherence lengthtisen in bulk glassegl5], as well. Conversion efficiency ap-
orders of magnitude longer than the fundamental waveproaches several percent.
length. Theoretically, quasi-phase-matching preceded bire- A fiber Bragg grating is an example of a weakly periodic
fringent phase matching, but it was not experimentally feamedium. They have a number of applications; filters, taps,
sible until recently, when periodic poling of the domains in aand wavelength division multiplexers are a few examples,
but others have been demonstrated, such as laser wavelength
control, mode conversion in fibers, and distributed Bragg
*Permanent address: U.S. Army Missile Command, Weapons Scireflectorq 3]. Furthermore, chirped fiber Bragg gratings have
ences Directorate, AMSMI-RD-WS-ST Redstone Arsenal,been used to compress pulses broadened by self-phase
AL 35898-5248. modulation. For instance, pulses have been compressed from
"Permanent address: Department of Mathematical Sciences, Rer2-ps duration to less than 200 fs duratidr].
selaer Polytechnic Institute, Troy, NY 12180-3590. Nonlinear optical mixing effects in fibers can incorporate
*Permanent address: Rome Laboratory, RL/OCPA, 25 ElectronicBragg gratings to improve the optical conversion of radia-
Parkway, Rome, NY 13441-4515. tion. The design features require good overlap of the optical
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energy in the fiber grating; advantages are a reduced, gratingerturbation analysis is carried out; it serves to identify all
dependent group velocity to increase the interaction time ofhe contributions of a given perturbative order.

the waves in the grating, matching of the phase velocities, The coefficient y(?) governs three-wave-mixing pro-
and band-edge resonance to increase the mode amplitudedesses, e.g., sum- and difference-frequency and second-
the structure. The design of periodic structures will lead toharmonic generation. The analysis given hereafter can also
higher conversion efficiency, more compact structures, antie applied to a number of three-wave-mixing processes, but
lower input power requirements. Enhancement of conversiomwe restrict our attention to second-harmonic generation. The
efficiency in deep gratings has been numerically examinednalysis can also be extended to include four-wave mixing
[6], but so far no complete analysis of the problem has beeby introducing a third-order susceptibility.

made, nor has the problem been examined in fibers. This Before deriving the coupled-mode equations, E2).is
paper is intended to place the previous findings on a firnrewritten by introducing the Fourier transform relation
mathematical footing; in this we are partially successful by
analyzing the case of weakly periodic gratings with period-
icity on the order of a wavelength.

In applying multiple scales to the time dependent pulse R
problem, we assume the medium to have chromatic disperFhe functione(z, ) is complex and its real and imaginary
sion even at the lowest perturbative order. This is slightlyparts are denoted by the subscriptandi, respectively. By
different from the usual Kronig-Penney model, where chro-using the Taylor-series expansion €fiz, ), Eq. (2) can be
matic dispersion is neglectg¢d]. Time-dependent secularity expressed in a local form:
conditions are different for chromatic dispersive and nondis-
persive problems and must be handled separately. However,
for the time-independent cw problem, multiple scales can
handle both the chromatic dispersive and nondispersive cases
at once, because secularity conditions reduce to those of spahis expression is well suited to the multiple-scale analysis
tial harmonic Fourier terms, provided the physical problemgiven below. The real part of the dielectric function is of
can be reduced to a finite set of spatial oscillators. We deriverder unity, but the imaginary part is considered to be weak,
evolution equations for the chromatic dispersion case; ande., €(w)=¢€(w)+ik€(w). The functione is a periodic
for the continuous wave problem, we derive results withfunction inz. For a weakly periodic medium we assume the
chromatic dispersion and then show how the parameters réorm
duce to the dispersionless case to illustrate what is obtained . . .
in Kronig-Penney-type models. Note that for band-edge €(2,0)=é(w) + N2Ae(w)cog27Z/d). (6)
phase matching to occur, chromatic dispersion is required in ) ) ) ) o )
order to be offset by the Bragg grating dispersion, as will be1€red is the period of the dielectric variation ade(w) is
shown by first-order perturbation theory. the amplitude of the spatially periodic component.

e(Z,t)=j e(z,w)e "“'dw. 4

DL(z,t)=E(z,i %) E(zt). (5)

Il. COUPLED-MODE EQUATIONS A. Multiple-scale analysis

We consider a wave incident upon a nonlinear medium, In the multiple-scale analys&] the space and time co-

The medium has a periodic modulation of the dielectric Con_ordmates are expanded in a power series of a small param-

—\n —\n
stant; for the one-dimensional case the form of Maxwell'sSte" that we denote as t,=A"t a)ndzn A"Zy. In the past
this method has been applied ¥’ materials without peri-

equation is odic changes by two of the authdrk7]; the procedure par-
PE 1 D, 4w §*PN- allels that development, except that, here, we truncate the
— =— . (1)  expansion at first-order perturbation theory. The spatial and

9% ¢ 9>  c? at?

temporal derivatives are
D, is the linear displacement field, which is related to the

L . o . J J d
electric field by the following constitutive relation: )
ot dty oty @
t

DL(z,t):fﬁxe(z,t—t’)E(z,t’)dt’. (2

The functione(z,t) is the dielectric function; it is periodic in
z and the medium is dispersivé’.NL is the nonlinear polar- Similarly, the electric field is also expanded in powers of the
ization contribution, which for our present case is a secondperturbation parameter
order nonlinearity.
PNL=)\ y(?PE2, ®)

Orders of the perturbation parameterare gathered to-
Here\ is a parameter that multiplies a perturbative contribu-gether. Besides the spatial variations of the dielectric func-
tion; there are five smaller parameters in our analysis and thison, the nonlinearity and absorption are also considered to
parameter serves as a bookkeeping device. In this coRtextbe weak, as noted above by the paramgteFhe expansion
is a dimensionless parameter that will be set to one after thef the real part of the dielectric function to first order is
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~ . J ~ ) J +)\A, ) J . J 9 aAfl 1 (7Af1 ar CY]_A + ar A 252
i —|=€l|i =— =i =. —t— == = i = 1
e\ o) T ) TN Gt oty © 9z, vg d 2 "ty KAn®
The prime denotes a derivative with respect to the argument +i ™ NAA* gl dkz
of the function, i.e., frequency. THe(1) term in the expan- d f21 ’
sion is (13
dA 1 /A T T :
P 1P S o T d 2 At RAne
LoEo=|—=— = — i —||Ep=0. 1 1 1 ol
oBo=| 527 2 72 |1 ) |Fo~0 (10 ’
- . , 4i T ONALAK e idkzy
The solution, when a plane wave is incidentzatO with a d b27%p1 '

frequencyw and 2w, is expressed as
The group velocity at the fundamental frequencyuig
~ An(zg,ty) (kyzo— o) Api(z1,t) {(—Kyzo— wto) =dw/dk,; at this first-order perturbation level, the group
O_T e + —k € velocity on the left hand side is that of the homogeneous
1 1 medium, because of the corresponding wave nurkpehat
Az ty) was defined earlier. The expansion procedure of multiple
+ ————= gllkezo=20to) scales does not allow anything el$&7]. The normal-
Vk,/2 Vi,/2 ized absorption coefficient ise; = (d/7)(w2/k,c?)&(wo)
tcc., (11) and the normalized grating strength coefficient is
=(d/w)A%wS/(2k102). The scaled nonlinear coefficient is
where the wave numberk{,k,) are obtained from the chro- N=(d/m) wgdmx @1 (kic?\k,/2).
matic dispersion properties of a bulk homogeneous medium, The second-harmonic equations are given by
so thatki= w?e,(w)/c? and k3= (2w)%&,(2w)/c?. In our

+ AbZ(Zl 1tl) ei(_kzzo_zwto)

analysis the phase mismatch is also treated as small, i.e., Az 1 dAp ZQA 4 m NAZ o idkz
= f2 f1 .
NAk=(k,—2k;). Note thatAAkzy=Akz,. Hence at the 0z, vgp Mty d 2 d (14
first-order perturbation, the traditional three-wave process is
obtained where quadratic nonlinearities dominate. We avoid dAp, 1 A T ) T iAke
large phase mismatch because that would lead to an ~ 57 T, gt~ g 2 fbetlg NAe ™™,
1 g2 U

asymptotic regime beyond three-wave mixifg cascading

[17]. The field amplitudes depend on the slower parametergnere the group velocity at the second harmonic js
(z4,t1) and the rapid variations of the field appear as a plane-q(2)/dk,, where again, at first-order perturbation
wave solution of the wave equation. The amplitudes of theheory, this is the group velocity of the homogeneous me-
fundamental waves A;;,Ap;) and the second-harmonic giym and the normalized absorption coefficient ds
waves (rz,Apz) are treated as order unity functions, which — (g, ) (4wilk,c) &(2w0). The forward and backward

multiply the plane-wave solutions. , waves at the second harmonic are not coupled in the weak-
To first order in\ the equations of motion are grating limit, unless a second sinusoidal variation of the di-
1742 P 2 eI_ectric_function is added so thati2/d—2k,~O(\), where
LoE1=— | =2 i%i<i _) Eo|— E, | is an integer.
c” | atg dty dz2pdzy To simplify the equations we scale the length;
1 5 p 1 2 PRGS —(mld)z, {md the field amplitudes are scaled t% the nonlin-
- — %r<i _) Eol+ = —3 ”er’(i —)i =0 ear coefficient, so thataj;=NApe "4/l ay,
c* dtidtg atg Cc (9t0 atg oty :NAble'775lzl/d' afZ:NAfze'W(SZZl/d, and ap
) =NAp,e 'm%22/d Here §,=(d/m)é and 8,=(d/7)Ak
+ w a_z Ae (i i) E, —26;. The scaled form of the equations of motion for the
c gty '\ dto fundamental fields are
4arx'? &2
+ Cz Eg Eg (12) ﬁafl‘l‘ d aaflz_ ﬂ afl—i61afl+i;<abl+iaf2a?1,
&Zl U g1 (9t1 2
’ (15)
The chromatic dispersive secular terms are eliminated from Ja d sa o
the right hand side of Eq12), as shown in Refg5,17]. We _ Iobl o g —i6,a,+ika
also choose the grating periodicity so that it is close to 021 mug 4y 2
one-half of the fundamental harmonic wavelength. The de- _
viation from this condition is denoted byA®=27/d— 2k, +iapag; -

and from that we observex®z,=2 6z, . At the fundamental

frequency, forward-backward waves are coupled because of The scaled equations for the second harmonic become
the choice of grating periodicitg. The equations of motion

for the fundamental frequency envelope functions are given ars n d dap_  a

- _“ +. +. 2
by Jzy  mugy Iy 5> antidaptiag, (16)
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dap, d da,, a, _ . The band-edge phase matching is obtained by choogjng
- Y apptidraptiag;. =0. We choose’; to offset the phase mismatchk due to
chromatic dispersion. This implies the alternate condition

&Zl mu g2 ﬁtl B

The above equations were derived for pulses in strongly
chromatic dispersive media. For the cw envelope, it does not nN(2w)—n(w)=
matter whether the medium is chromatic or achromatic, be- wd
cause the spatial-dependent equations remain the &xne o )
cept thatAk=0 for achromatic medja However, for pulses At @o this is approximately
in weakly dispersive or achromatic materials, the evolution
equations are quite different and the above equations do n _ , o _
apply. The above equations were derived under the assum?)%-(zwc’) N(wo) +AA[2N"(20) =" (wo)] d(wo+NA)
tion that grating dispersion is used to compensate chromatic (23
dispersion.

TmC 51

(22

’7TC61

If the dispersion is such thatn2(2wg) —n’'(wg) ~O(N\),

then it may be neglected. We defife= wy+N A. Under

these approximations the band-edge phase matching condi-
The weak grating differs from the homogeneous mediuntion becomes

through the addition of two parameterg,(«), as shown in

Egs. (15 and (16). Harmonic enhancement is obtained by mC O,

careful choices of these parameters, and based on the disper- N(2wo) —N(wo) = da

sion properties of the material. Note that in this model chro-

matic dispersion dominates grating dispersion and the results There are two cases when the band-edge phase matching

obtained here are different from the usual Kronig-Penneyondition cannot be obtained. These occur wida=0 or

models[1], which neglects chromatic dispersion. 5,=0, independently. The first case denotes the material is
It must be mentioned that the parametefs,,) can be  chromatically nondispersive; from Eqd.9) and(21), we see

related to the frequency detuning—wo=MNA. Here wy  that §,=—26,=2A/w,. Here we have a Kronig-Penney-

=mc/dn(wo), which is the scaled frequency for the centertype model with only a Bragg grating and there is no chro-

of the first stop band. From the previous definitions ofmatic dispersion to offset. The second case shows dhat

B. Band-edge phase matching

(29)

(61,k1) we find =dAk/ . Here the material is chromatic, but the detuning
q q from the band gap center frequency is zero because of Eq.
e kl(w)=1—)\51=—2 n(w). (17) (19). nge the tra}nsmission i§ 'attenuated and the second-
™ T C harmonic generation is not efficient.

To get the most out of band-edge phase matching, we
Expanding in a Taylor series abowt, we obtain have to utilize the two independent grating parameters
(61,k). The best value fob; may be inferred without solv-
ing Egs.(15) and(16), but adjusting« requires the examina-
: (18 tion of solutions. By imposing the conditiaf,= 0, the chro-
matic dispersion can be compensated by the dispersion of the

The prime denotes a derivative with respect to angular frelSragg grating, i.e., adjusting, . Atthe band edge the phases

- introduced by forward and backward wave coupling change
23;1?' Therefore, the scaled deviation paraméigeibe- the phases of the waves in the material and this condition no

longer assures the best conversion efficiency, as will be il-

lustrated belowx can be adjusted by changing the modula-
(19 tion depthAe, so that the best phase matching is concur-

rently coincident with a transmission resonance of the

grating. The transmission resonances, discussed below, are
For a material with no chromatic dispersion, i.@(w) further evidence of strong forward-backward wave coupling
=const, only the first term is relevant in EQ.9) and and this leads to a an enhancement of the second-harmonic
field.

1 n’
i (wo)

d
o K0 =1+AA| ot s

1  n'(wo)
0y N(wg) |

51: _A

d NA

- Ki(wo)=1+ wo (20 C. Steady-state, nondepleted solutions

o . _ The equations can be solved for the nondepleted pump

This is expected in the Kronig-Penney-type models. and steady-state fields. This case illustrates the essential de-
~ From Eq.(19), 4, is proportional to the frequency detun- sirable features of the grating that enhance the nonlinear re-

ing A multiplied by a function ofwy. The parameteb, is  sponse of the material. Absorption is also neglected.

the difference between the phase mismai¢hand 25, and The steady-state equations for the fundamental field am-
is given as plitude are
d Bt isan+ia (25
522; Ak—26;. (21 iz, 1811 bls
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= 0 T
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L J Z (in units of 10007)
0 t : t L .
0.999 1.000 1.001 FIG. 3. The forward- and backward-propagating field intensi-

frequency ties, when the detuning is set at the first transmission maximum on
the lower band edge, as a function of positiarin units of 710°).
FIG. 1. Transmission vs frequency for a*lfleriod gratinglor ~ For parameter details see Fig. 1.
in scaled unitsL=710% with a dielectric variation ofAe=5

X 10~ %, The mode-coupled results and the transfer matrix calcula- 61 .
tions are indistinguishable. ap1(z)=| cogA,z;) + A, Sin(A12;) |ap1(0)
dap1 _. - R i 0 29
?:|5lab1_|Kaf1. (26) Al sin( lzl)afl( ) (29
1

We consider a medium withN periods; in scaled units the
Defining A= \/521—K2, which is the effective wave number sample length id. = 7N. The input fieldas,(0) is normal-
for the envelope on the; scale, one can obtain the corre- ized to 1, and applying the boundary condition that the back-
sponding grating group velocitffor the infinite medium ward field vanishes dt, gives the reflected field amplitude

VA ls ) _ i sin(A;L)
e T ol 1(0)= X oqa, D +io, sma, ) 0

This is not the same as the group velocities appearing on thene transmittance through the structure is simply
left hand side of Eqs(15) and (16), but a correction to the =l|as (L)%

homogeneous medium group velocity in second-order per- The results are illustrated by considering the following
turbation theory, which is not developed here but done inpdex variation Ae=5x10"4, with e=1 and e,=1
[17] for other effective wave numbers for the envelope. The, 24 ¢, The average dielectric constant is 1.0005. Figures 1
solutions to the above equations are and 2 are plots of the transmissitax;(L)|%|as;(0)|? ver-
sus frequency fok = 710* andL =2.57x 10°, respectively.
i6, The analytically calculated curves are indistinguishable from
ai1(z2)=|cogA,z;)— AL sin(A4z,) |as1(0) those generated by a transfer matrix routine with a step index
L profile whose first Fourier coefficient is identical A. We
i K note that the center of the gap is displaced from unity be-
+ 7 Sin(A421)a5,(0), (28)  cause the average refractive index is not unity.
! The transmission oscillations at the band edges are called
transmission resonances. They have a close correspondence

1.2
18
e o I
2 =
[7]
(] c s
‘E0.6 + 2 9 I
% £
&
-
0 T
0 12.5 25
0.0 1 Z (in units of 1000x)
0.999 1 1.001
frequency FIG. 4. The forward- and backward-propagating field intensi-

ties, when the detuning is set at the first transmission maximum on
FIG. 2. Transmission vs frequency for a structure with 2.5the lower band edge, as a function of positiarin units of 710°).
X 10* periods, i.e.L=2.57x 10*. See Fig. 1 for parameters. The chosen parameters correspond to Fig. 2.
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FIG. 5. Forward-propagating second-harmonic intensity in the medium vs position and phase matching frequency* foerad.0
structure. The vertical axis has been scaled by 8. The side panel shows the transmission spectrum for the fundamental wave.

with Fabry-Peot-like resonances of the envelope functionsas well. For large dielectric contrast between the layers only
in the structure. The field amplitudes corresponding to the few layers suffice to enhance the field beyond its input
first transmission resonances at the lower edge of the stogalue [6]. This can be used to design compact frequency
band are plotted in Figs. 3 and 4; these display the change @bnversion structures.

the amplitude by increasing the number of periods. As would The second-harmonic fields are simply solved by apply-
be found for the lowest transmission resonance in a Fabrying the Laplace transform technique to E6); in general,
Paot etalon, the field amplitude has one maximum. The dif-the solutions are complicated and we do not present them
ference here is that the FabrysBeresonance is half a wave- here. In the following sections we will analyze the solutions
length, while for the Bragg grating, field amplitude is slowly in detail.
varying over the scale of the wavelength. The input field is
normalized to unity. The forward- and backward-propagating
amplitudes have a single extremum and their maxima exceed

the input field value. The maximum value increases as the The second-harmonic fields at the transmission maximum
number of periodslN, increases. The maximum field ampli- are enhanced by the transmission resonance of the funda-
tude is proportional ta\ € and increases with this parameter mental field. In homogeneous media the fields are phase

/

IIl. RESULTS

=
—

=

o

o

LIS |

o
(=]
(=]
o
2
(o]
=
=
/
—

~
Z

FIG. 6. Backward-propagating second-harmonic intensity in the medium vs position and phase matching frequency fmriadl0
structure. The vertical axis has been scaled by 8. The side panel shows the transmission spectrum for the fundamental wave.



2126 J. W. HAUS et al. 57

08 1.0

T
0.6

0.4

0.2

0.99960 ~
0.99956
0.99952

0.99948

0.00045
0.00000 0.00015 0.00030

8

FIG. 7. The plot of the forward-propagating second-harmonic intensity in the medium vs phase matching and detuning<f@tt 2.5
period structure. The vertical axis has been scaled by 16. The side panels show the transmission spectrum for the fundamental wave.

matched, i.e.Ak=0, to assure that the best conversion effi-mum there. The backward-propagating second-harmonic in-
ciency is achieved. However, as mentioned above, the opttensity is a probe of the backward fundamental field in the
mal condition for conversion is not identical to the phasemedium, just as the forward-propagating second harmonic
matching condition without the backward propagating fieldsprobes its fundamental field.

which are coupled by the grating period and lead to the pa- Finally, the sharpness of the response with phase match-
rameter ; compensating foAk. The interplay of forward ing is gauged from Figs. 7 and 8 for the forward- and
and backward fields gives additional position-dependenbackward-propagating second-harmonic fields, respectively.
phase shifts to the complex amplitudes. The fields have been scaled by a factor of 16 and the side

Figures 5 and 6 display the behavior of the secondpanels display the transmission curves for the fundamental.
harmonic fields in the medium as a function of frequency,The maximum for a given value of; occurs at the first
but assumings,=0 at each frequency, i.eQ) is the fre- transmission maximum; the output is sharply peaked at that
quency of the fundamental field. The forward, second{requency with a spectral width about as wide as the trans-
harmonic field in Fig. 5 is zero at the input, but increases atnission resonance. This occurs for both the forward and the
the output, a maximum increase occurs when the phadeackward fields. The forward propagating, second-harmonic
matching frequency corresponds to the maximum of thdield is the strongest, since it has the largest field at the trans-
transmission curve, which is also drawn on the side panel. mission resonance, as previously discussed. Since the fields

The output second-harmonic intensity has been scaled tare not phase matched at the upper transmission maximum,
the second harmonic generated from a perfectly phasthere is no perceptible output on this scale of intensities.
matched homogeneous medium of the same length and noAdso, drawing attention to the side panel on fieaxis, we
linear response. The enhancement of the forwardnote the maximum conversion does not occur whgr O at
propagating output at the maximum is about 16 times that ofhe first transmission maximum; instead, the best conversion
the homogeneous case. The second harmonic is roughly prefficiency occurs fos,=0 at the second transmission maxi-
portional to the square of the intensity, so the large seconchum. This is a consequence of the additional phase changes
harmonic can be mainly attributed to the enhanced firstdue to presence of both forward and backward fields in the
harmonic field at the transmission resonance, which is nearlgnedium. The weak secondary maxima observed in both fig-
a factor of 4. For a 2.8 10* period grating, the enhancement ures is due to the resonance at the second transmission maxi-
is about 400 times above the homogeneous medium, whemum. Including medium dispersion in the analysis is an im-
the fields are phase matched. Note we remain within th@ortant aspect of designing efficient conversion devices.
nondepleted pump approximation and the second harmonic
is still weak compared to the fundamental.

The second-harmonic backward wave is also enhanced by
about a factor of 4 above the homogeneous medium. Again The fields are affected by several factors at the band edge.
by reference to Fig. 3 this is consistent with the enhancedFirst, there is a Fabry-Pat-type resonance in the field am-
fundamental-harmonic backward field inside the mediumplitudes, which leads to higher conversion efficiencies inside
The forward and backward fields form a standing-wave patthe structure. The field amplitude is large over a major por-
tern in the sample at the transmission resonance and althougjbn of the volume. Second, the transmission is large, so that
the fundamental field is absent in the reflection at the transall the fundamental field will enter the structure, i.e., there is
mission peak, the backward second-harmonic has a maxito impedance mismatch. Third, the grating group velocity at

IV. CONCLUDING REMARKS



57 ENHANCED SECOND-HARMONIC GENERATIONN . .. 2127

0.75 1.00

I T
0.50

0.25

0.99960 ~

.0.00030 ’ 8,

FIG. 8. Plot of the backward-propagating second-harmonic intensity in the medium vs phase matching and detuning periadL0
structure. The vertical axis has been scaled by 16. The side panel shows the transmission spectrum for the fundamental wave.

the band edge is small and the fundamental field under aghree-wave-mixing process. Fiber Bragg gratings written into
propriate conditions described by higher-order perturbatiomprepared fibers could be used to demonstrate the resonance
theory or deep gratings may spend more time inside thenhancement concept. The conversion is already good for the
structure leading to greater conversion efficiency. In ourprepared fiber and it could be further increased by writing a
model, the grating group velocity is dominated by that ofBragg grating into the fiber. The index change in the core
homogeneous chromatic media. Our results are quite distineould be of order 0.0118] and the overlap of a mode with
from quasi-phase-matching, which involves a differentthe core is typically around 75%, so that the efficiency of the
length scale; the medium periodicity is chosen on the ordecoupling is not significantly reducdd9].
of a coherence length and modulating the nonlinear coeffi- Finally, the results here apply to a number of nonlinear
cient is important. The contrast with band-edge phase matclconversion phenomena. The sum- and difference-frequency
ing is apparent; since the grating periodicity is on the ordelgeneration problems are amenable to the analysis given here.
of a wavelength, the linear properties of the medium arelThe coupled-mode equations are similar, but now depend
utilized to reduce the phase mismatch, as described by thHmearly on the fundamental field. Third-order processes can
parameterd, . also be treated by the same approach; the third-harmonic
There are design parameters whose determination is imgeneration process depends on the cube of the fundamental
portant for applications of this analysis. The phase matchindield and greater efficiency can be achieved by the band-edge
condition is not easily defined here due to the interaction ofesonance; there is an additional gap near the third-harmonic
the forward and backward waves; nevertheless, there are ofrequency that provides a further resonance condition. For
timal values of §; that provide enhanced conversion. Thewavelengths below about 400 nm though, absorption will
matching frequency and the transmission maxima should bkave to be included in the analysis. Other nonlinear pro-
tuned for the best results. This means that for a given amplieesses can also be optimally designed at the band-edge for
tude, A€, there is an optimum number of layers that will instance, the stimulated Raman scattering could be sup-
achieve this condition. The number of layers should be larg@ressed by tuning the fundamental field to the upper band-
enough to result in an increased conversion efficiency; on thedge resonance or the amplification of fields and quantum
other hand, the maximum number of layers is set by technosoherence between the Stokes and anti-Stokes f{@dk
logical limits, but the larger the number of periods, thecould be managed by band-edge changes in the electromag-
sharper the transmission resonances in frequency spacetic density of states.
(compare Figs. 1 and)2This sets a lower limit on the pulse
duration, since if the pulse is too short, then its spectrum
extends over several transmission maxima, which leads to
pulse dispersion, reflection, and reshaping in the structure.
Second-harmonic fields have been generated in glass This research was partially supported by NSF Grant Nos.
hosts, despite the fact that it is on the average centrosymmebPMS-9510728 and ECS-9630068, and J.W.H. was sup-
ric. This centrosymmetry can be broken by adding a statiported by Rome Laboratories through Grant No. F30602-96-
external field or by defects seeded in the medium during th@-0056.
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