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Control of quantized photon states with cascade phase conjugators by modulation pumping
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Squeezing properties of a quantized photon field interacting wditcadefour-wave-mixing materials
(phase conjugatorsare investigated theoretically by the transfer-matrix method. The controllability of the
quantum fluctuation of the photon field is improved with the use of modulation pumping, in which phases of
pumping beams of the phase conjugators are individually controlled even when their optical nonlinearity
and/or the pumping power are fixed. By choosing appropriate numbers of phase conjugators and phase differ-
ences of the pump beams, incident coherent light is transformed to quadrature-phase-aniQiR&ge
squeezed states and photon-number-squeezed states. Optimal squeezing of both the QPA and photon number
can be realized with this cascade system by modulation pumping. Radraia) reflection of light at surfaces
of the phase conjugators is shown quantitatively to suppress the squeezing. Comparison with an ordinary
method using a single-phase conjugator is also m&E50-294708)02603-1

PACS numbgs): 42.50.Dv, 42.50.Ar, 42.65.k

[. INTRODUCTION on the pump phase differences and on the number of phase
conjugators.

The generation of squeezed states, which have less noise This paper is organized as follows. In Sec. Il, our cascade
than the coherent state in one of the canonical conjugatmodel is introduced after a brief review of Yurke's model.
variables in an electromagnetic field still satisfying the mini-We employ the transfer-matrix method and analyze the cas-
mum uncertainty relatiofil], has been studied in many mod- cade systems generally to obtain the input-output relation of
els, especially using the nonlinear optical interactions, e.gg quantized photon field. Section Il is devoted to a discus-
parametric amplifierf2,3], four-wave mixinggFWM'’s) [4—  sion of the quantum fluctuations of the output light for par-
6], optical Kerr effect§7], and others. The squeezed state isticular cases as examples in terms of the QPA squeezing and
expected to have a potential for applications in quantum opthe photon-number squeezing. Effects of normal reflection at
tical communication or gravity-wave detectors. However,surfaces and interfaces of nonlinear media are studied in Sec.
these schemes require a very large optical nonlinearity of th&/.
materials and/or strong pumping power to obtain the
squeezed light. Thus we had poor controllability of the
squeezing of the photon field in actual experiments. A mair

point of this paper is to present a scheme for the generatio Bp® . Bo

of squeezed states with fine controllability. = “Nonlinear Medium
Yurke [8] proposed an improved scheme for generation ol () Resonance

the quadrature-phase amplitud®PA) squeezed state of — @

light, which makes use of the phase-conjugation process in -0 ; 55

cavity [9—-11]. His model consists of a cavity-containing i}

single FWM medium and a perfect mirror, which is called
the phase-conjugation cavitf?CO, and the squeezed light
is generated efficiently by the resonance effect in the cavit
FWM procesdFig. 1(a)]. Our proposed scheme is an exten-
sion of the Yurke’s model, cutting up the single FWM me-
dium into several pieces to foreascadephase conjugators,
as shown in Fig. () [12]. We will show that with our
scheme the controllability of the squeezing is improved by
introducing additional control parameters, phases of pump
ing beams of each nonlinear media, which are controllable .
independently. This is the method of modulation pumping ‘ Mirror

for controlling the squeezed states of light. We will investi-

gate theoretically in detail the squeezing of the QPA and of F|G. 1. Schematic drawing of two schemes for optical squeez-
the photon number by the transfer-matrix method. Generahg with the use of the phase-conjugation cay®RCO, which con-
formulas for the QPA variance and the Fano factor of arsists of one or more FWM media and a perfect miraj;Yurke's
output light are analytically given, which depend sensitivelymodel and(b) our model.

Mirror
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Il. CASCADE MODEL AND THE INPUT-OUTPUT 1.0
RELATIONS

A. Brief review of Yurke's model

Both Yurke’s model and our model make use of phase- &
conjugation processes in third-order optical nonlinear mate- & osf
rial(s). At first we shall review Yurke’s model corresponding 3
to the case of a single-phase conjugaits lengthl), as
shown in Fig. 1a). Two counterpropagating pump beams are
labeled by suffixed\ andB, and two signal beams by and
D. We assume that the pump beams are treated classically, 09 : s . .
and that photoabsorption in the media is negligible. Then the 00 05 10 15 20
FWM process in the nonlinear material is described by an O/
input-output relation; output lights from the nonlinear me-

d|um' éc(o) andéD(L), are represented by the |nput ||ghtS, FlG 2. The QPA VarlanceAE]gm) is plotted as a function of the
éc('—) and éD(O), as[8,17] nonlinear paramete® in Yurke’s model N=1).

ac(0)=puac(L)+vah(0), (1)
(A2 = mbdd?+ved?+ 2| udarbdd=1, (D)
ap(L)=pap(0)+vak(L), ©)

wheregou=aout a5, and Pou= (aou— al,)/i. Here the in-
where u=sec® and v=e'%tan ® characterize the nonlin- cident light is assumed to be the coherent state defined

earity of the FWM process. Here by aj,|a)=a|a), and the squeezing angiks, is chosen to
be
® =Re x'*JEAEsL, (3
an
b= ¢)pAump+ d)gump_ (4) Psa= % (arg /J«E:lc)c'*' arg V(Plc) = PR ®

The former is a phase angle describing the nonlinearity o P ~2 LA n2 ;
the phase conjuggtor, Whngh is determinged by the '[hird—o)r/de{r0 m|n|m|ze(_Aqou,) and henceA {0 MaximizeA oy - It_|s O_f
nonlinear susceptibility/®), the pumping strengtfEAEg, course possible to squeeze t]b!&,t component by adjustmg
and the interaction length. The latter is the sum of the %sa- However, when we discuss the QPA squeezing,
phases of pump beams, which are described by complex arqueezing for theg,,, component (Ag3)y<1) is always
plitudesE expioR"™) and Egexp(¢R'™), with real ampli- ~ considered by adjustings,. Here we note that these QPA
tudes,E, andEg. Here we note that the unitarity condition variances are independent of the number of incident photons,
|u|?—|v|?=1 is satisfied. |a|?, and the uncertainty product satisfies the minimum un-
At one end of the cavity in Fig. (&), we employ the certainly relation (Ag2,)(Ap3)=1. The QPA variance
boundary conditior&C(L) =ap(L), describing the effect of a (Aaﬁu,) is a function of the coupling constaé, as shown in
perfect mirror. The output beam from the PGG,=ac(0),  Fig. 2. In Yurke’s model{Ag2,) is minimized, to vanish
is given by the linear combination of the annihilation and(the infinite squeezing at ©=(2m+1)w/4 for
creation operatorsy,=ap(0) andal =al(0), of theinput m=0,1,2... .
beam as

B. Our model and the transfer-matrix method

2
A Lt a,+ 2v é%=éinse¢2®)+éﬁ16i $tan20) In our model, the cavity has more than oié=2) phase
2

2—u? 2—u conjugator, with the nonlinear coupling constants
(i=1,2,...N), as shown in Fig. (b). For fair comparison

Aout™

= pubd@n+ vedan. (5  with Yurke’s model, we set
N
This is the input-output relation for Yurke’s model. The uni- z 6,=0, 9)
tarity relation | u52d?—|v52d?=1 still holds. The fluctua- =1

tion of the normalized QPA'’s is then squeezed as

and 6;,= 6. This means that the total nonlinearity of many
<A&§u95<a|&§uJ a)—{a|qou a)?= | d?+ | vidd? nonlinear media is chosen to be the same as that in Yurke’s
D W model. Actually, we assume that [Ré¢>)] and the pumping
—2|ppéerped <1, (6)  powerE? are identical with one another fo¢ phase conju-
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gators, and they are also the same as those in Yurke’'s model. N=1
Hen_ceEiNzl!_izL is assumede.g., LE=L/N), wherelL,; is t{N=cog! o> 1(-1)" tarP"*1g
the interaction length of thith material. n=0

To analyze this model, the transfer-matrix method is em-

ployed. The FWM process in thé= 1)th nonlinear medium _2””
in Fig. 1(b) is described as XD, ex lmZ:1 (=)™ e,
aL:E’Lsecei_"é;reei(bitan b;, (10 =co gl tan 62 e —tarfe 2 el (di—dj+ W
i<j<k
br=agsecd,+ b e'*itan 6, (12)
+tarf 0 D, g djtdditém |
i<j<k<l<m
where ¢; is the sum of phases of two counterpropagating (16)
pump beams for thegh medium. Equation&l0) and(11) are
represented in matrix notation as where ¢y=0 and
é-L B 1 1 Vi BL i EanN (17)
a& - ;I —Vik 1 B; ! 12 i<j<
2n
or A=M;B with u;=sec#, andv;=€e'? tan 6;. In the case
whereN nonlinear media exist, as shown in Figb), Eq. k% ntl=N
(12) is extended to 2= ,~<,-E<... : (19)

gt

RTINS
11 XL

®
af In Eq. (14), the unitarity condition u{2d?—|v0d?=1 is
(13)  satisfied if each nonlinear medium satisfigs|?—|v;|?=1
Here we note that free propagation of the electromagnetic
] . A ] wave in the vacuum from one nonlinear medium to the
Using the boundary condition =X, the input-output rela-  nejghbor causes the phase change, described by the vacuum

tion becomes matrix
i,
~ l ~ 2t(N)t12 ~ T VIJ = eo elcl)?” . (19)
|t | |t(N)| “|n+ |t(N>| | (N)| >%in= MPCCaln
+V<N) (14) Here 3;=Kkoljj=2ml;; /\o, with the spatial separation be-

tween theith andj(=i=*1)th medial;;, and\o=27/K, is
the wavelength of the light in the vacuum. In the following,
This is one of the general results in this paper. The matrixwe do not have to take care of this phase change because the

elementgt{Y andt{y) are analytically given as phase changes of leftward-propagating and rightward-
propagating light are counteracted by each other due to the

perfect phase-conjugate reflection. Then insertiolpfinto

Nt Eq. (13) leads to no change i\ g2,) and(Ap2,).

(N =cod! 02 [(—1)”tar12”6
I1l. SQUEEZING PROPERTIES IN THE N=2 AND 3 CASES

* 2n
. A. Quadrature-phase amplitude (QPA) squeezing
XD, expgi —1)m+l
> p[ 2 (=)™ e,

In this section, we calculate the QPA variance of the pho-
ton field with the use of the general resiiqg. (14)] for the

e b N=2 and 3 cases as examples. In these c and
1—tarf 6, el(¢i— %) o p a863e

=cog' ¢ el
i<i updc are calculated as

sed 26

i (2) —r4(2)2_ (2) 27-1_
+tarft 6 edi=dith=d—...| (15 peec=LIt? 12— (652171 , (20
i<,-2k<| (19 1—tarf 26 cos ¢,




2108 TSUYOSHI FUKUO AND TETSUO OGAWA 57

sec 26

1—tar? 26[COS 1+ COS hyg— SEC D COK o+ hp3) + 2S€C B COS by COS og/sel 6]
(21)

L (U

where ¢;;=¢;— ¢; is the pump phase difference betweenbeams  reduces the QPA  variance for®
theith andjth phase conjugators. As shown in E¢&0) and e[ (4m+1)m/4,(4m+3)m/4]. In other words, stronger
(21), ¢i;'s work as additional control parameters, and appeasqueezing is possible than in Yurke’s model by the modula-
only in our model[i.e., ¢, for N=2 and ($21,¢29 for  tion pumping for such®. Otherwise [0<®<}m and
N=23]. One QPA variancéAq?,) is written in terms only of (4m+ 3)7w/4<®<(4m-+5)m/4]; however, QPA squeezing
uS as is suppressed by the modulation pumping. In the case of
N=3, similarly, when (6n+ 1) 7/4<® <(6m+5) /4 with
(AQZ ) =2|pbd?(1-V1-|ubdd > -1. (22 m=012...,(AG%,) for 0<¢y<m and 0< pyz<m is
smaller than that for¢,;=¢,3=0. In general, when
First, we shall consider the simplest casespef=0 for (2Nm+1)7/4<®<(2Nm+2N—-1)=7/4 with
N=2 and¢,;= ¢,3=0 for N=3, where all nonlinear media m=0,1,2 ..., we carobtain stronger QPA squeezing by the
have an identical coupling constant and the pump phases apgodulation pumping ¢ij#0) than that in thep;; =0 case.
the same as one anoth@o modulation pumping In these Figure 4a) shows(qugm) in theN=3 case as a function

cases, the squeezing parameters are reduced to of ¢p1 and ¢35 for 6= (i.e., ®=3m). In Fig. 4b), solid
w2 =sed40)=se¢20) for N=2, (23)

3 _ (a)

Uwpic—se¢60)=se¢20) for N=3. (24

As they should be, these are the same as the result of Yurke'’s
model; that is, without the modulation pumping, the cascade (AgZ,,)
configuration of the phase conjugators plays no role in the 1
enhancement of the QPA squeezing under the condition of o
Eq. (9). o
Next, we shall investigate the role of the modulation %
pumping, i.e., nonzerg;;’s, in the QPA squeezing. In ex-
periments, one can independently control the phase differ-
ences) ¢, and¢,,. Figure 3 showgAqg2,) as a function of
¢, and O=20 for the N=2 case. When
(4m+1)w/4<O<(4m+3)w/4  with m=0,12...,
(Ag2,) for 0<¢,;<m (with the modulation pumpingis
smaller than that for,,=0 (without the modulation pump-
ing). Therefore, the finite phase difference of the pumping
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FIG. 4. (a) The QPA variancéAg>,,) is plotted as a function of
two pump phase differences,; and ¢,3 in the case oN=3. The
nonlinear parameter is fixed to @=3m, i.e., 6=£m. (b) The
FIG. 3. The QPA variancéAq?,) is plotted as a function of the ~ solid lines indicate a set of,; and ¢,3, for which the infinite

nonlinear paramete® and the pump phase differende, in the squeezing((Af:]5m)=O) takes place, corresponding to the bottom of
case ofN=2. the ravines ina).
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FIG. 5. The Fano factdf in theN=1 case(Yurke’'s mode] is
plotted as a function of the nonlinear paramefefor several val-
ues of the squeezing angiesa=0, 3, and 3 . The initial mean
photon number is chosen to bbg=25.

lines indicate a set ofd,q1,®,3) which yields the infinite

squeezing Ag?,)=0. One finds that the QPA variance var-

ies from zero to unity by controllingd,4,¢,3) even when
®=3¢=3m is fixed. Here we recall that Yurke's model
results in no QPA squeezingXq?,)=0) for ® =3}. This

is an advantage of our scheme for the fine controllability of *
the QPA squeezing. As a consequence of this finding, when

©=1%7, the infinite squeezing(Qg3,)=0) is always pos-
sible by choosing appropriate pump phase differenggss
#0) and the number of phase conjugati¥sz 2.

B. Photon-number squeezing
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FIG. 6. The Fano factor is calculated on the plane ®f;( ¢23)

in the case oN=3 for ® =3, no=25, and¢sa= 2. In dotted
regions, the photon statistics is of sub-Poissonian tfpe1). The
Fano factor becomes minimum on the solid lines. A set of

(¢21.629 minimizing F differs from that minimizing(Ag2,).
Compare with Fig. &).

_ no(lppdd = VIkpdd?— 1+ 2| updd (| npdd*— 1)

Mol bed = Vinbdd®— 1)*+|npdd®~ 1

(28)

whereny=|a|? is the mean photon number of the incident
light. We note that in general the Fano factor becomes
smaller for largemy.

The Fano factor in our cascade modBl=2) is readily
obtained by replacingu&,lgC in Eq. (28) by M(PNc)c given in

We shall show that our scheme is also able to create thegs (14), (15), and(16). In the case oN=3 with ny=25

photon-number squeezed states. When the incident light is in

the coherent stathr), the mean photon numbén,,) and

the Fano factoF of the output light from the PCC are de-

scribed, respectively, by 0. and v{Y as

<ﬁout>E<a|é$utéoutla>:|B|2+|V§3NC) 2, (25

(Angy) _ [[mbed* B+ vhdB*|*+ 2| wpecvped?
(Noup |:8|2+|Vg\(l:) 2

F=

(26)

where 8= u8a+ v{a*. In the following, we pay atten-

tion only to the Fano factofF to discuss the photon-number

squeezing.

and ¢sa= 3, the Fano factor is calculated as a function of

¢o1 and ¢,5 for ® =37 (A= £ 7). A sub-Poissonian photon
statistics £<<1) is possible in the dotted regions of Fig. 6.
One finds that the photon statistics can be controlled from
sub-Poissonian {<1) to super-PoissonianF¢>1) types
simply by changing the pump phase differences.

Comparing Fig. &) with Fig. 6, there seems to exist a
relation between the QPA squeezing and the photon-number
squeezing. Actually, the mean photon number and the Fano

factor can be written in terms @f\g2,) andn,, that is,

(1-(AG%,))?

Aou =Mo AAou ~2
(Now = Nof{ Ay + 2AR

: (29

First we consider the dependence of the Fano factor in

Yurke’s model on the squeezing angbg, [Eg. (8)] and the
nonlinear paramete®. In Yurke’s model, the Fano factor is
expressed by three parameters;, ,uf;lgc= sec(d), and
¢sa- The Fano factor is plotted in Fig. 5 as a function®f
for several values ofbs underny=25. We find that the
Fano factor forgga= 3 is smaller than that fothga# 3 7.
Thus we set¢pgp=37 in the discussion of the photon-
number squeezing. Whenis assumed to be real arfl;, is
chosen to bg m, (Ny,) andF are reduced to

(Nowd =No(|pdd = VIupdd?—1)2+|npdd?— 1, (27)

_ 8n0<Aa§ut>4+(1_<Aagut>2)2
8NG(A0%)3+2(A02 (1 (AG2Y)?

This relationship is independent of the details @f and
Kbl

Figure 7 shows the relation between the QPA variance
(Ag?,) and the Fano factdf for several values ofiy. One
finds that the Fano factor diverges to infinitif o) for
excessive QPA squeezingXg3,)—0), and only the Pois-
sonian statistics k=1) is possible for(Ag2,)—1. Then
moderate QPA squeezing is required to vyield optimal

(30



2110 TSUYOSHI FUKUO AND TETSUO OGAWA 57

05+

0.0 02 0.4 06 08 1.0
2
<Aqout >

FIG. 7. Relation between the Fano factorand the QPA vari-
ance(Aq?,) for various values ofiy: ny=1, 25, and 100. Here the

squeezing anglég, is fixed to%w.

photon-number squeezing, i.e., to minimizeThere exists a
lower bound for in Fig. 7. The Fano factor reaches a mini-

mum whenn, and(Ag?,) satisfy

32o(AG5u) (1= (AQ5) + No(AG2H?) — 1206(AG3,)>

X(1_<Aac2)ut>4)_(1+<Aa§ut>)(1_<Aa§ut>)5

=0.
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FIG. 8. The minimum value of the Fano factor is plotted as a
function of (a) the initial mean photon number,, and (b) the

(31)

nonlinear paramete® under an appropriate choice bf and ¢;; .

In (b), three cases fany=1, 25, and 100 are plotted.

FIG. 9. Definition of the operators in the case of finite partial
reflection at surfaces of the materials. The prime stands for the
photon operators inside the medium.

The minimum value of the Fano factor, given by a local
minimum in Fig. 7, is plotted as a function of, in Fig. 8a),

and of® in Fig. 8b). These show thd becomes smaller as
ng increases. Recalling that the QPA squeezing is indepen-
dent ofng, simultaneously optimaqueezing of the QPA and
the photon number is always possible for givenand ©

with use of the modulation pumping.

IV. EFFECTS OF SURFACE REFLECTION

In previous sections, we assumed perfect phase-conjugate
reflection, i.e., no normal reflection of light at surfaces of the
phase conjugators. In actual experiments, however, the inci-
dent light is partly reflected at interfaces between vacuum
and the nonlinear media before the light experiences the op-
tical nonlinearities in the materials. In this section, we will
take this effect into account, which can also be treated by the
transfer-matrix method.

We shall first consider the single phase-conjugator model
(Yurke’'s mode] for simplicity; we pay attention only to the
ith material. At a surface, as shown in Fig. 9, the operator
relations become

L) _ 1 L 32
a) TR L&)

b, 1 1 —\R b, @3

be) VTR 6

where 0=<T=<1 and O<R=1-T=1 are the transmittance
and reflectivity at a surface, respectively. We further assume
that T andR are the same for all surfaces of all phase con-
jugators. Equatioril?2) is now changed to

( al >_i L ( Bﬁ) (34)
taggt) w0 bt/

We use 4<4 matrices to describe the input-output rela-
tion of the single-phase conjugator, taking into account the
surface reflection as

K:leilREEMTE, (35)

whereA=Y(a, ,a| ,ar,ar), B='(b_,b] ,bg,bl):
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FIG. 10. The QPA variancéAq?,y is plotted as a function of FIG. 11. The Fano factor is calculated on the planeds;( ¢»2)
two pump phase differenceg,; and ¢>2_3, in the case oN=3 for in the case oN=3 for ® = %77, No=25, andpea= %77. The reflec-
(@ R=0.2 and(b) R=0.5. The nonlinear parameter and IC’hasetivity is chosen to béda) R=0.2 and(b) R=0.5. In dotted regions,

changes are chosen to b&®=37 (e, 6=g5m) and  the photon statistics is sub-Poissoni&<(1). The Fano factor be-
Y1,= ¥p3=2mm, respectively. comes minimum on the solid lines. The phase changes are chosen to
be 91,= ¥,3=2mr.
1 0 JrR O
0 1 0o R When the normal reflection at surfaces is involved, a out-
1 put beam becomes a mixture of the phase-conjugate-
IL__T JR 0 1 o0 (38 refiection light and the normal-reflection one. Therefore, the
0o VR O 1 input-output characteristics depend on the phase chapge

due to free propagation in the vacuum betweenitheand
j(=i=1)th phase conjugators. This is in contrast to the dis-
cussion in Sec. Il without the surface reflection. Thus we

-
o
S

1 1 v 0 have to insert the A4 vacuum matrix\7ij into effective
M=—| o -, 1 ol (37)  matrices,M} and M}, whenN=2. HereV;, which de-
Mi ! scribes the free propagation, is written explicitly as
- 0 0 1
e 0 0 0
1 0 —-JyrR O 0 e i 0 0
1] o 1 0 —\R Vii=| o 0 e o0 | (39)
|R_\/_f -JR O 1 o |- (38 0 0 0 e
0 —-JyrR O 1

WhenN=2 in our cascade model, the totak4} transfer

Here mi* means an effective matrix describing the FWM matrix T of the total syvstem is given by aIternaterBroducing
nonlinearity in theith material. the effective matriced;* and the vacuum matricés; as
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N _ N~ _ tion of the phase differences,; and ¢,3. Comparing these
T= MV i1 M= 11 [ MRV i1 [ILMylR. figures with Fig. 4a), one finds that the QPA variance be-
=1 =1 (40) comes largefworse squeezingvhenR increases. However,

we can still obtain the infinite QPA squeezingd@Z,) =0)

Here we assumed that the free space betweeiNthghase by choosing appropriate pump phase differences even when
conjugator at the right end and the perfect mirror is ne-R>0. The photon-number squeezing can also be obtained,
glected. When%;;=2m= (m=0,1,2 .. .), inparticular, Eq. Figs. 1Xa) and 11b) indicate the possibility of sub-
(40) becomes a simpler form of Poissonian statistics even whx0.

. (1) V. CONCLUSIONS

N
=1, 1_[1 M
j=
We proposed an improved scheme for generation of the
and then we can evaluate the transfer matrices analyticallysqueezed states, extending Yurke’s single-phase-conjugator
Without loss of generality, we assunik; =2m= hereafter model to the cascade one. It was shown theoretically that not
becaused;; # 2mm merely shifts the origin ot;; leading to only QPA squeezing of light but also photon-number squeez-
no qualitative change in the squeezing properties. ing take place in our cascade model, and the fluctuation char-
If the (i,j) component of the % 4 transfer matrixT is  acteristics were analytically discussed. In particular, we in-
written as (]:)ij :’J["i(jN) fori,j=1,... 4, theinput-output re- vestigated in detail the dependence of squeezing features on
lation is expressed as the phases_of the pumping beams and on the number of
FWM materials, clarifying differences from Yurke’s results.

(NP (N)7% __(N)p _(N)7% (N)_(N)__(N) (N) We stress that the pumping phase differences, which are new

~ i Kl e I 'Rl N T2 T3 7 T1 T4~y control ; ; ; 3
Agu= ai, al parameters easily tunable in actual experiments, ef
|79V |2— | 7V)2 |7V 12— | 7V)2 fectively alter the squeezing characteristics. Thus finer con-
_=a LT At trollability of the sque_ezing Characteristics_ is obtained by our

= tpcinT Vpclin» (42) cascade phase-conjugator scheme with the modulation
pumping technique. Moreover, normal reflection of light at

AV=TN+1Y, (43)  surfaces of phase-conjugate materials is shown to reduce the

squeezing. Even for the case of finite normal reflection, the
T(zN)ET(lg)+T(1§), (44) infinite QPA squeezing is still possible with the best use of

the modulation pumping. Thus we can independently control

T<3N)E’{<3T)+’t‘(3§), (45) the QPA squeezing and the photon-number squeezing to

yield the simultaneously optimal squeezing in terms of both.
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