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Control of quantized photon states with cascade phase conjugators by modulation pumping
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Squeezing properties of a quantized photon field interacting withcascadefour-wave-mixing materials
~phase conjugators! are investigated theoretically by the transfer-matrix method. The controllability of the
quantum fluctuation of the photon field is improved with the use of modulation pumping, in which phases of
pumping beams of the phase conjugators are individually controlled even when their optical nonlinearity
and/or the pumping power are fixed. By choosing appropriate numbers of phase conjugators and phase differ-
ences of the pump beams, incident coherent light is transformed to quadrature-phase-amplitude~QPA!
squeezed states and photon-number-squeezed states. Optimal squeezing of both the QPA and photon number
can be realized with this cascade system by modulation pumping. Partial~normal! reflection of light at surfaces
of the phase conjugators is shown quantitatively to suppress the squeezing. Comparison with an ordinary
method using a single-phase conjugator is also made.@S1050-2947~98!02603-1#

PACS number~s!: 42.50.Dv, 42.50.Ar, 42.65.2k
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I. INTRODUCTION

The generation of squeezed states, which have less n
than the coherent state in one of the canonical conjug
variables in an electromagnetic field still satisfying the mi
mum uncertainty relation@1#, has been studied in many mod
els, especially using the nonlinear optical interactions, e
parametric amplifiers@2,3#, four-wave mixings~FWM’s! @4–
6#, optical Kerr effects@7#, and others. The squeezed state
expected to have a potential for applications in quantum
tical communication or gravity-wave detectors. Howev
these schemes require a very large optical nonlinearity of
materials and/or strong pumping power to obtain
squeezed light. Thus we had poor controllability of t
squeezing of the photon field in actual experiments. A m
point of this paper is to present a scheme for the genera
of squeezed states with fine controllability.

Yurke @8# proposed an improved scheme for generation
the quadrature-phase amplitude~QPA! squeezed state o
light, which makes use of the phase-conjugation process
cavity @9–11#. His model consists of a cavity-containin
single FWM medium and a perfect mirror, which is calle
the phase-conjugation cavity~PCC!, and the squeezed ligh
is generated efficiently by the resonance effect in the ca
FWM process@Fig. 1~a!#. Our proposed scheme is an exte
sion of the Yurke’s model, cutting up the single FWM m
dium into several pieces to formcascadephase conjugators
as shown in Fig. 1~b! @12#. We will show that with our
scheme the controllability of the squeezing is improved
introducing additional control parameters, phases of pum
ing beams of each nonlinear media, which are controlla
independently. This is the method of modulation pump
for controlling the squeezed states of light. We will inves
gate theoretically in detail the squeezing of the QPA and
the photon number by the transfer-matrix method. Gen
formulas for the QPA variance and the Fano factor of
output light are analytically given, which depend sensitive
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on the pump phase differences and on the number of ph
conjugators.

This paper is organized as follows. In Sec. II, our casca
model is introduced after a brief review of Yurke’s mode
We employ the transfer-matrix method and analyze the c
cade systems generally to obtain the input-output relation
a quantized photon field. Section III is devoted to a discu
sion of the quantum fluctuations of the output light for pa
ticular cases as examples in terms of the QPA squeezing
the photon-number squeezing. Effects of normal reflection
surfaces and interfaces of nonlinear media are studied in S
IV.

FIG. 1. Schematic drawing of two schemes for optical sque
ing with the use of the phase-conjugation cavity~PCC!, which con-
sists of one or more FWM media and a perfect mirror;~a! Yurke’s
model and~b! our model.
2105 © 1998 The American Physical Society
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II. CASCADE MODEL AND THE INPUT-OUTPUT
RELATIONS

A. Brief review of Yurke’s model

Both Yurke’s model and our model make use of pha
conjugation processes in third-order optical nonlinear ma
rial~s!. At first we shall review Yurke’s model correspondin
to the case of a single-phase conjugator~its length L), as
shown in Fig. 1~a!. Two counterpropagating pump beams a
labeled by suffixesA andB, and two signal beams byC and
D. We assume that the pump beams are treated classic
and that photoabsorption in the media is negligible. Then
FWM process in the nonlinear material is described by
input-output relation; output lights from the nonlinear m
dium, âC(0) andâD(L), are represented by the input light
âC(L) and âD(0), as@8,12#

âC~0!5mâC~L !1nâD
† ~0!, ~1!

âD~L !5mâD~0!1nâC
† ~L !, ~2!

wherem[secQ and n[eiftan Q characterize the nonlin
earity of the FWM process. Here

Q5Re@x~3!#EAEBL, ~3!

f5fA
pump1fB

pump. ~4!

The former is a phase angle describing the nonlinearity
the phase conjugator, which is determined by the third-or
nonlinear susceptibilityx (3), the pumping strengthEAEB ,
and the interaction lengthL. The latter is the sum of the
phases of pump beams, which are described by complex
plitudesEAexp(ifA

pump) andEBexp(ifB
pump), with real ampli-

tudes,EA andEB . Here we note that the unitarity conditio
umu22unu251 is satisfied.

At one end of the cavity in Fig. 1~a!, we employ the
boundary conditionâC(L)5âD(L), describing the effect of a
perfect mirror. The output beam from the PCC,âout[âC(0),
is given by the linear combination of the annihilation a
creation operators,âin[âD(0) andâin

† [âD
† (0), of theinput

beam as

âout5
m2

22m2
âin1

2n

22m2
âin

† 5âinsec~2Q!1âin
† eiftan~2Q!

[mPCC
~1! âin1nPCC

~1! âin
† . ~5!

This is the input-output relation for Yurke’s model. The un
tarity relation umPCC

(1) u22unPCC
(1) u251 still holds. The fluctua-

tion of the normalized QPA’s is then squeezed as

^Dq̂out
2 &[^auq̂out

2 ua&2^auq̂outua&25umPCC
~1! u21unPCC

~1! u2

22umPCC
~1! nPCC

~1! u<1, ~6!
-
e-

lly,
e
n

f
er

m-

^D p̂out
2 &5umPCC

~1! u21unPCC
~1! u212umPCC

~1! nPCC
~1! u>1, ~7!

whereq̂out[âout1âout
† and p̂out[(âout2âout

† )/ i . Here the in-
cident light is assumed to be the coherent stateua&, defined
by âinua&5aua&, and the squeezing anglefSA is chosen to
be

fSA[ 1
2 ~arg mPCC

~1! 1arg nPCC
~1! !5

p

2
, ~8!

to minimize^Dq̂out
2 & and hence to maximizêD p̂out

2 &. It is of

course possible to squeeze thep̂out component by adjusting
fSA. However, when we discuss the QPA squeezi
squeezing for theq̂out component (̂Dq̂out

2 &<1) is always
considered by adjustingfSA. Here we note that these QP
variances are independent of the number of incident phot
uau2, and the uncertainty product satisfies the minimum u
certainly relation ^Dq̂out

2 &^D p̂out
2 &51. The QPA variance

^Dq̂out
2 & is a function of the coupling constantQ, as shown in

Fig. 2. In Yurke’s model,̂ Dq̂out
2 & is minimized, to vanish

~the infinite squeezing! at Q5(2m11)p/4 for
m50,1,2, . . . .

B. Our model and the transfer-matrix method

In our model, the cavity has more than one (N>2) phase
conjugator, with the nonlinear coupling constantsu i
( i 51,2, . . . ,N), as shown in Fig. 1~b!. For fair comparison
with Yurke’s model, we set

(
i 51

N

u i5Q, ~9!

and u i5u. This means that the total nonlinearity of man
nonlinear media is chosen to be the same as that in Yur
model. Actually, we assume that Re@x (3)# and the pumping
powerEi

2 are identical with one another forN phase conju-

FIG. 2. The QPA variancêDq̂out
2 & is plotted as a function of the

nonlinear parameterQ in Yurke’s model (N51).
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57 2107CONTROL OF QUANTIZED PHOTON STATES WITH . . .
gators, and they are also the same as those in Yurke’s m
Hence( i 51

N Li5L is assumed~e.g., Li5L/N), whereLi is
the interaction length of thei th material.

To analyze this model, the transfer-matrix method is e
ployed. The FWM process in the (i 51)th nonlinear medium
in Fig. 1~b! is described as

âL5b̂Lsecu i1âR
†eif itan u i , ~10!

b̂R5âRsecu i1b̂L
†eif itan u i , ~11!

where f i is the sum of phases of two counterpropagat
pump beams for thei th medium. Equations~10! and~11! are
represented in matrix notation as

S âL

âR
† D 5

1

m i
S 1 n i

2n i* 1 D S b̂L

b̂R
† D , ~12!

or A5M iB with m i[secu i andn i[eif i tan u i . In the case
whereN nonlinear media exist, as shown in Fig. 1~b!, Eq.
~12! is extended to

S âL

âR
† D [A5F)

i 51

N

M i GX[TX5S t11
~N! t12

~N!

t21
~N! t22

~N!D S x̂L

x̂R
† D .

~13!

Using the boundary conditionx̂L5 x̂R , the input-output rela-
tion becomes

âout5
1

ut11
~N!u22ut12

~N!u2
âin1

2t11
~N!t12

~N!

ut11
~N!u22ut12

~N!u2
âin

† [mPCC
~N! âin

1nPCC
~N! âin

† . ~14!

This is one of the general results in this paper. The ma
elementst11

(N) and t12
(N) are analytically given as

t11
~N!5cosN u (

n50

N21 H ~21!ntan2nu

3(
*

expF i (
m50

2n

~21!m11fmG J
5cosN uF12tan2 u(

i , j
ei ~f i2f j !

1tan4 u (
i , j ,k, l

ei ~f i2f j 1fk2f l !2•••G , ~15!
el.

-

g

ix

t12
~N!5cosN u (

n50

N21 H ~21!n tan2n11u

3(
**

expF i (
m51

2n11

~21!m11fmG J
5cosN uF tan u(

i
eif i2tan3u (

i , j ,k
ei ~f i2f j 1fk!

1tan5 u (
i , j ,k, l ,m

ei ~f i2f j 1fk2f l1fm!2•••G ,

~16!

wheref050 and

~17!

~18!

In Eq. ~14!, the unitarity conditionumPCC
(N) u22unPCC

(N) u251 is
satisfied if each nonlinear medium satisfiesum i u22un i u251.

Here we note that free propagation of the electromagn
wave in the vacuum from one nonlinear medium to t
neighbor causes the phase change, described by the va
matrix

V i j [S eiq i j 0

0 eiq i j D . ~19!

Here q i j 5k0l i j 52p l i j /l0 , with the spatial separation be
tween thei th and j (5 i 61)th medial i j , andl052p/k0 is
the wavelength of the light in the vacuum. In the followin
we do not have to take care of this phase change becaus
phase changes of leftward-propagating and rightwa
propagating light are counteracted by each other due to
perfect phase-conjugate reflection. Then insertion ofV i j into
Eq. ~13! leads to no change in̂Dq̂out

2 & and ^D p̂out
2 &.

III. SQUEEZING PROPERTIES IN THE N52 AND 3 CASES

A. Quadrature-phase amplitude „QPA… squeezing

In this section, we calculate the QPA variance of the ph
ton field with the use of the general result@Eq. ~14!# for the
N52 and 3 cases as examples. In these cases,mPCC

(2) and
mPCC

(3) are calculated as

mPCC
~2! [@ ut11

~2!u22ut12
~2!u2#215

sec2 2u

12tan2 2u cosf21

, ~20!
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mPCC
~3! [@ ut11

~3!u22ut12
~3!u2#215

sec3 2u

12tan2 2u@cosf211cosf232sec 2u cos~f211f23!12sec 2u cosf21 cosf23/sec2 u#
,

~21!
en

ea

s
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e
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where f i j [f i2f j is the pump phase difference betwe
the i th andj th phase conjugators. As shown in Eqs.~20! and
~21!, f i j ’s work as additional control parameters, and app
only in our model@i.e., f21 for N52 and (f21,f23) for
N53#. One QPA variancêDq̂out

2 & is written in terms only of
mPCC

(N) as

^Dq̂out
2 &52umPCC

~N! u2~12A12umPCC
~N! u22!21. ~22!

First, we shall consider the simplest cases off2150 for
N52 andf215f2350 for N53, where all nonlinear media
have an identical coupling constant and the pump phase
the same as one another~no modulation pumping!. In these
cases, the squeezing parameters are reduced to

mPCC
~2! 5sec~4u!5sec~2Q! for N52, ~23!

mPCC
~3! 5sec~6u!5sec~2Q! for N53. ~24!

As they should be, these are the same as the result of Yur
model; that is, without the modulation pumping, the casc
configuration of the phase conjugators plays no role in
enhancement of the QPA squeezing under the conditio
Eq. ~9!.

Next, we shall investigate the role of the modulati
pumping, i.e., nonzerof i j ’s, in the QPA squeezing. In ex
periments, one can independently control the phase dif
ence~s! f21 andf23. Figure 3 showŝDq̂out

2 & as a function of
f21 and Q52u for the N52 case. When
(4m11)p/4,Q,(4m13)p/4 with m50,1,2, . . . ,

^Dq̂out
2 & for 0,f21,p ~with the modulation pumping! is

smaller than that forf2150 ~without the modulation pump
ing!. Therefore, the finite phase difference of the pump

FIG. 3. The QPA variancêDq̂out
2 & is plotted as a function of the

nonlinear parameterQ and the pump phase differencef21 in the
case ofN52.
r
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e’s
e
e
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beams reduces the QPA variance forQ
P@(4m11)p/4,(4m13)p/4#. In other words, stronge
squeezing is possible than in Yurke’s model by the modu

tion pumping for suchQ. Otherwise @0,Q, 1
4 p and

(4m13)p/4,Q,(4m15)p/4#; however, QPA squeezing
is suppressed by the modulation pumping. In the case
N53, similarly, when (6m11)p/4,Q,(6m15)p/4 with
m50,1,2, . . . , ^Dq̂out

2 & for 0,f21,p and 0,f23,p is
smaller than that forf215f2350. In general, when
(2Nm11)p/4,Q,(2Nm12N21)p/4 with
m50,1,2, . . . , we canobtain stronger QPA squeezing by th
modulation pumping (f i j Þ0) than that in thef i j 50 case.

Figure 4~a! shows^Dq̂out
2 & in theN53 case as a function

of f21 andf23 for u5 1
6 p ~i.e., Q5 1

2 p). In Fig. 4~b!, solid

FIG. 4. ~a! The QPA variancêDq̂out
2 & is plotted as a function of

two pump phase differencesf21 andf23 in the case ofN53. The

nonlinear parameter is fixed to beQ5
1
2 p, i.e., u5

1
6 p. ~b! The

solid lines indicate a set off21 and f23, for which the infinite

squeezing (̂Dq̂out
2 &50) takes place, corresponding to the bottom

the ravines in~a!.
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lines indicate a set of (f21,f23) which yields the infinite
squeezinĝ Dq̂out

2 &50. One finds that the QPA variance va
ies from zero to unity by controlling (f21,f23) even when

Q53u5 1
2 p is fixed. Here we recall that Yurke’s mode

results in no QPA squeezing (^Dq̂out
2 &50) for Q5 1

2 p. This
is an advantage of our scheme for the fine controllability
the QPA squeezing. As a consequence of this finding, w

Q> 1
4 p, the infinite squeezing (^Dq̂out

2 &50) is always pos-
sible by choosing appropriate pump phase differences (f i j ’s
Þ0) and the number of phase conjugators,N>2.

B. Photon-number squeezing

We shall show that our scheme is also able to create
photon-number squeezed states. When the incident light
the coherent stateua&, the mean photon number^n̂out& and
the Fano factorF of the output light from the PCC are de
scribed, respectively, bymPCC

(N) andnPCC
(N) as

^n̂out&[^auâout
† âoutua&5ubu21unPCC

~N! u2, ~25!

F[
^Dn̂out

2 &

^n̂out&
5

u@mPCC
~N! #* b1nPCC

~N! b* u212umPCC
~N! nPCC

~N! u2

ubu21unPCC
~N! u2

,

~26!

whereb[mPCC
(N) a1nPCC

(N) a* . In the following, we pay atten-
tion only to the Fano factorF to discuss the photon-numbe
squeezing.

First we consider the dependence of the Fano facto
Yurke’s model on the squeezing anglefSA @Eq. ~8!# and the
nonlinear parameterQ. In Yurke’s model, the Fano factor i
expressed by three parameters:n0, mPCC

(1) 5sec(2Q), and
fSA. The Fano factor is plotted in Fig. 5 as a function ofQ
for several values offSA under n0525. We find that the

Fano factor forfSA5 1
2 p is smaller than that forfSAÞ 1

2 p.

Thus we setfSA5 1
2 p in the discussion of the photon

number squeezing. Whena is assumed to be real andfSA is
chosen to be1

2 p, ^n̂out& andF are reduced to

^n̂out&5n0~ umPCC
~1! u2AumPCC

~1! u221!21umPCC
~1! u221, ~27!

FIG. 5. The Fano factorF in the N51 case~Yurke’s model! is
plotted as a function of the nonlinear parameterQ for several val-
ues of the squeezing anglefSA50, 1

3 p, and 1
2 p. The initial mean

photon number is chosen to ben0525.
f
n

e
in

in

F5
n0~ umPCC

~1! u2AumPCC
~1! u221!412umPCC

~1! u2~ umPCC
~1! u221!

n0~ umPCC
~1! u2AumPCC

~1! u221!21umPCC
~1! u221

,

~28!

wheren0[uau2 is the mean photon number of the incide
light. We note that in general the Fano factor becom
smaller for largern0.

The Fano factor in our cascade model (N>2) is readily
obtained by replacingmPCC

(1) in Eq. ~28! by mPCC
(N) given in

Eqs. ~14!, ~15!, and ~16!. In the case ofN53 with n0525

andfSA5 1
2 p, the Fano factor is calculated as a function

f21 andf23 for Q5 1
2 p (u5 1

6 p). A sub-Poissonian photon
statistics (F,1) is possible in the dotted regions of Fig.
One finds that the photon statistics can be controlled fr
sub-Poissonian (F,1) to super-Poissonian (F.1) types
simply by changing the pump phase differences.

Comparing Fig. 4~b! with Fig. 6, there seems to exist
relation between the QPA squeezing and the photon-num
squeezing. Actually, the mean photon number and the F
factor can be written in terms of^Dq̂out

2 & andn0, that is,

^n̂out&5n0^Dq̂out
2 &1

~12^Dq̂out
2 &!2

4^Dq̂out
2 &

, ~29!

F5
8n0^Dq̂out

2 &41~12^Dq̂out
2 &2!2

8n0^Dq̂out
2 &312^Dq̂out

2 &~12^Dq̂out
2 &!2

. ~30!

This relationship is independent of the details ofm and
mPCC

(N) .
Figure 7 shows the relation between the QPA varian

^Dq̂out
2 & and the Fano factorF for several values ofn0. One

finds that the Fano factor diverges to infinity (F→`) for
excessive QPA squeezing (^Dq̂out

2 &→0), and only the Pois-

sonian statistics (F51) is possible for^Dq̂out
2 &→1. Then

moderate QPA squeezing is required to yield optim

FIG. 6. The Fano factor is calculated on the plane of (f21,f23)

in the case ofN53 for Q5
1
2 p, n0525, andfSA5

1
2 p. In dotted

regions, the photon statistics is of sub-Poissonian type (F,1). The
Fano factor becomes minimum on the solid lines. A set

(f21,f23) minimizing F differs from that minimizing^Dq̂out
2 &.

Compare with Fig. 4~b!.
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photon-number squeezing, i.e., to minimizeF. There exists a
lower bound forF in Fig. 7. The Fano factor reaches a min
mum whenn0 and ^Dq̂out

2 & satisfy

32n0^Dq̂out
2 &4~12^Dq̂out

2 &1n0^Dq̂out
2 &2!212n0^Dq̂out

2 &2

3~12^Dq̂out
2 &4!2~11^Dq̂out

2 &!~12^Dq̂out
2 &!5

50. ~31!

FIG. 8. The minimum value of the Fano factor is plotted as
function of ~a! the initial mean photon numbern0, and ~b! the
nonlinear parameterQ under an appropriate choice ofN andf i j .
In ~b!, three cases forn051, 25, and 100 are plotted.

FIG. 7. Relation between the Fano factorF and the QPA vari-

ance^Dq̂out
2 & for various values ofn0: n051, 25, and 100. Here the

squeezing anglefSA is fixed to 1
2 p.
The minimum value of the Fano factor, given by a loc
minimum in Fig. 7, is plotted as a function ofn0 in Fig. 8~a!,
and ofQ in Fig. 8~b!. These show thatF becomes smaller a
n0 increases. Recalling that the QPA squeezing is indep
dent ofn0, simultaneously optimalsqueezing of the QPA and
the photon number is always possible for givenn0 and Q
with use of the modulation pumping.

IV. EFFECTS OF SURFACE REFLECTION

In previous sections, we assumed perfect phase-conju
reflection, i.e., no normal reflection of light at surfaces of t
phase conjugators. In actual experiments, however, the i
dent light is partly reflected at interfaces between vacu
and the nonlinear media before the light experiences the
tical nonlinearities in the materials. In this section, we w
take this effect into account, which can also be treated by
transfer-matrix method.

We shall first consider the single phase-conjugator mo
~Yurke’s model! for simplicity; we pay attention only to the
i th material. At a surface, as shown in Fig. 9, the opera
relations become

S âL

âR
D 5

1

AT
S 1 AR

AR 1 D S âL8

âR8
D , ~32!

S b̂L8

b̂R8
D 5

1

AT
S 1 2AR

2AR 1 D S b̂L

b̂R
D , ~33!

where 0<T<1 and 0<R512T<1 are the transmittance
and reflectivity at a surface, respectively. We further assu
that T andR are the same for all surfaces of all phase co
jugators. Equation~12! is now changed to

S âL8

@ âR8 #†D 5
1

m i
S 1 n i

2n i* 1 D S b̂L8

@ b̂R8 #†D . ~34!

We use 434 matrices to describe the input-output rel
tion of the single-phase conjugator, taking into account
surface reflection as

Ã5ILM̃ i IRB̃[M̃ i* B̃, ~35!

whereÃ5 t(âL ,âL
† ,âR ,âR

†), B̃5 t(b̂L ,b̂L
† ,b̂R ,b̂R

†):

FIG. 9. Definition of the operators in the case of finite part
reflection at surfaces of the materials. The prime stands for
photon operators inside the medium.
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IL5
1

AT S 1 0 AR 0

0 1 0 AR

AR 0 1 0

0 AR 0 1
D , ~36!

M̃ i5
1

m i S 1 0 0 n i

0 1 n i* 0

0 2n i 1 0

2n i* 0 0 1
D , ~37!

IR5
1

AT S 1 0 2AR 0

0 1 0 2AR

2AR 0 1 0

0 2AR 0 1
D . ~38!

Here M̃ i* means an effective matrix describing the FW
nonlinearity in thei th material.

FIG. 10. The QPA variancêDq̂out
2 & is plotted as a function of

two pump phase differences,f21 andf23, in the case ofN53 for
~a! R50.2 and ~b! R50.5. The nonlinear parameter and pha

changes are chosen to beQ5
1
2 p ~i.e., u5

1
6 p) and

q125q2352mp, respectively.
When the normal reflection at surfaces is involved, a o
put beam becomes a mixture of the phase-conjug
reflection light and the normal-reflection one. Therefore,
input-output characteristics depend on the phase changeq i j
due to free propagation in the vacuum between thei th and
j (5 i 61)th phase conjugators. This is in contrast to the d
cussion in Sec. II without the surface reflection. Thus
have to insert the 434 vacuum matrixṼ i j into effective
matrices,M̃ i* and M̃ j* , when N>2. Here Ṽ i j , which de-
scribes the free propagation, is written explicitly as

Ṽ i j 5S eiq i j 0 0 0

0 e2 iq i j 0 0

0 0 e2 iq i j 0

0 0 0 eiq i j
D . ~39!

WhenN>2 in our cascade model, the total 434 transfer
matrix T̃ of the total system is given by alternately produci
the effective matricesM̃ i* and the vacuum matricesṼ i j as

FIG. 11. The Fano factor is calculated on the plane of (f21,f23)

in the case ofN53 for Q5
1
2 p, n0525, andfSA5

1
2 p. The reflec-

tivity is chosen to be~a! R50.2 and~b! R50.5. In dotted regions,
the photon statistics is sub-Poissonian (F,1). The Fano factor be-
comes minimum on the solid lines. The phase changes are chos
be q125q2352mp.
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T̃5F )
i 51

N21

M̃ i* Ṽ i ,i 11GM̃N* 5F )
i 51

N21

ILM̃ i IRṼ i ,i 11G ILM̃NIR .

~40!

Here we assumed that the free space between theNth phase
conjugator at the right end and the perfect mirror is n
glected. Whenq i j 52mp (m50,1,2, . . . ), in particular, Eq.
~40! becomes a simpler form of

T̃5ILF)
i 51

N

M̃ i G IR , ~41!

and then we can evaluate the transfer matrices analytic
Without loss of generality, we assumeq i j 52mp hereafter
becauseq i j Þ2mp merely shifts the origin off i j leading to
no qualitative change in the squeezing properties.

If the (i , j ) component of the 434 transfer matrixT̃ is
written as (T̃) i j 5 t̃ i j

(N) for i , j 51, . . . ,4, theinput-output re-
lation is expressed as

âout5
t1

~N!@t3
~N!#* 2t2

~N!@t4
~N!#*

ut3
~N!u22ut4

~N!u2
âin1

t2
~N!t3

~N!2t1
~N!t4

~N!

ut3
~N!u22ut4

~N!u2
âin

†

[m̃PCC
~N! âin1 ñ PCC

~N! âin
† , ~42!

t1
~N![ t̃ 11

~N!1 t̃ 13
~N! , ~43!

t2
~N![ t̃ 12

~N!1 t̃ 14
~N! , ~44!

t3
~N![ t̃ 31

~N!1 t̃ 33
~N! , ~45!

t4
~N![ t̃ 32

~N!1 t̃ 34
~N! . ~46!

Explicit forms of these matrix elements will be given els
where. This is another general formula obtained in this
per. The unitarity conditionum̃PCC

(N) u22u ñ PCC
(N) u251 also holds

in this case. Then, usingm̃PCC
(N) , we can evaluate, e.g., th

QPA variancê Dq̂out
2 & and the Fano factorF to discuss the

squeezing properties in the case of finite surface reflecti
Figures 10~a! and 10~b! show the normalized QPA vari

ance^Dq̂out
2 & in theN53 case forR50.2 and 0.5 as a func
.

o

F

F

-

ly.

-

.

tion of the phase differencesf21 andf23. Comparing these
figures with Fig. 4~a!, one finds that the QPA variance be
comes larger~worse squeezing! whenR increases. However
we can still obtain the infinite QPA squeezing (^Dq̂out

2 &50)
by choosing appropriate pump phase differences even w
R.0. The photon-number squeezing can also be obtain
Figs. 11~a! and 11~b! indicate the possibility of sub-
Poissonian statistics even whenR.0.

V. CONCLUSIONS

We proposed an improved scheme for generation of
squeezed states, extending Yurke’s single-phase-conjug
model to the cascade one. It was shown theoretically that
only QPA squeezing of light but also photon-number sque
ing take place in our cascade model, and the fluctuation c
acteristics were analytically discussed. In particular, we
vestigated in detail the dependence of squeezing feature
the phases of the pumping beams and on the numbe
FWM materials, clarifying differences from Yurke’s result
We stress that the pumping phase differences, which are
control parameters easily tunable in actual experiments,
fectively alter the squeezing characteristics. Thus finer c
trollability of the squeezing characteristics is obtained by o
cascade phase-conjugator scheme with the modula
pumping technique. Moreover, normal reflection of light
surfaces of phase-conjugate materials is shown to reduce
squeezing. Even for the case of finite normal reflection,
infinite QPA squeezing is still possible with the best use
the modulation pumping. Thus we can independently con
the QPA squeezing and the photon-number squeezing
yield the simultaneously optimal squeezing in terms of bo

ACKNOWLEDGMENTS

In the early stage of this work the authors were indeb
to N. Hatakenaka for initiation of these kinds of problem
The authors also thank S. Kurihara, K. Nakamura, Y. T
kane, and T. Maki for fruitful discussions. This work wa
supported by a Grant-in-Aid for Scientific Research on P
ority Areas, ‘‘Mutual Quantum Manipulation of Radiatio
Field and Matter,’’ from the Ministry of Education, Scienc
Sports and Culture of Japan.
A

@1# See, e.g., P. Meystre and M. Sargent III,Elements of Quantum
Optics ~Springer-Verlag, Berlin, 1991!; D. F. Walls and G. J.
Milburn, Quantum Optics~Springer-Verlag, Berlin, 1994!.

@2# L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev
Lett. 57, 2520~1986!.

@3# E. S. Polzik, J. Carray, and H. J. Kimble, Appl. Phys. B: Ph
tophys. Laser Chem.55, 279 ~1992!.

@4# H. P. Yuen and J. H. Shapiro, Opt. Lett.4, 334 ~1979!.
@5# R. E. Slusher, L. Hollberg, B. Yurke, J. C. Mertz, and J.

Valley, Phys. Rev. A31, 3512~1985!.
@6# R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J.
-

.

.

Valley, Phys. Rev. Lett.55, 2409~1985!.
@7# M. Kitagawa and Y. Yamamoto, Phys. Rev. A34, 3974

~1986!.
@8# B. Yurke, Phys. Rev. A29, 408 ~1984!.
@9# J. Bajer and J. Perina, Opt. Commun.85, 261 ~1991!.

@10# G. S. Agarwal, A. L. Gaeta, and R. W. Boyd, Phys. Rev. A47,
597 ~1993!.

@11# M. Y. Lanzerotti, A. L. Gaeta, and R. W. Boyd, Phys. Rev.
51, 3182~1995!.

@12# N. Hatakenaka, T. Ogawa, and S. Kurihara, Phys. Lett. A204,
223 ~1995!.


