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Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers
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~Received 22 July 1997!

The polarization properties of semiconductor vertical-cavity lasers~VCSELs! are generally described with a
model introduced by San Miguel, Feng, and Moloney~SFM! in Phys. Rev. A52, 1728 ~1995!. We have
analyzed this SFM model from an experimentalist’s point of view, using the idea that under certain conditions,
which are satisfied by most practical VCSELs, the complicated spin dynamics can be adiabatically eliminated,
leading to a managable analytical description. We hereby obtain new physical insight and intuitive pictures.
One of the key results is the prediction that, via the spin dynamics, the presence of a strong lasing mode with
a certain polarization will effectively lead to a broadening and frequency shift of the weak nonlasing mode with
orthogonal polarization. This result gives a simple physical explanation for a polarization switch predicted by
the model, and leads to further predictions that can be experimentally verified. The analysis also shows how the
relaxation oscillations are related to the polarization dynamics and how they might be of crucial importance to
experimentally determine the various parameters in the SFM model. We then discuss how the spin elimination
reduces the SFM model to existing models for the polarization dynamics of class A~gas! lasers, with intuitive
pictures of the polarization evolution on the Poincare´ sphere. Finally we will show how, within the context of
adiabatic elimination, the cubic crystalline symmetry plays a special role in possible generalizations of the
SFM model.@S1050-2947~98!00703-3#

PACS number~s!: 42.55.2f
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I. INTRODUCTION

The polarization of semiconductor vertical-cavity surfac
emitting lasers~VCSELs! is an interesting subject to study
The cylindrical symmetry of most designs and the isotro
gain of the cubic material impose no restrictions on the
larization state of the laser. In principle one thus expe
these lasers to be indifferent to the polarization directi
The laser might, however, prefer linearly polarized emiss
over circular or vice versa, as thesaturationof the gain can
depend on polarization, even when the gain itself is isotro

In practice the cylindrical symmetry is broken by all kind
of anisotropies. The most dominant anisotropy has b
found to be linear birefringence, caused by~i! stress and
strain, acting via the elasto-optic effect@1#, and~ii ! internal
electric fields, acting via the electro-optic effect@2,3#. Appli-
cation of additional stress, in fact, allows one to manipul
the VCSEL polarization at will, either in a reversible wa
via a ‘‘hot-spot technique’’@1#, or in a permanent way, via
‘‘local burning’’ @4#. The electro-optically induced birefrin
gence can be manipulated, at least in optically pum
VCSELs, by varying the doping@2,3#. A coupled-mode de-
scription, based on linear birefringence in combination w
a generally small amount of linear dichroism~equal to the
difference in gain or loss!, allows for simple explanations o
practically all experimental data@5#.

Nevertheless, simple explanations in terms oflinear ef-
fects are bound to break down somewhere, due to the ac
nature of the laser and the possible polarization depend
of gain saturation. The simplest and still realistic model
describe the polarization aspects of thesenonlinear effects
for a semiconductor vertical-cavity laser is a rate equat
model introduced by San Miguel, Feng, and Moloney~SFM!
@6#. In this model, the active medium is separated in differ
spin classes, each interacting only with circularly polariz
571050-2947/98/57~3!/2080~11!/$15.00
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light of one specific handedness. Through saturation the fi
polarization codetermines the spin population, which th
acts back on the field via a spin-dependent gain and ref
tive index. The SFM model predicts, among others, the p
sible occurrence of a switch of the output polarization wh
the pump rate is increased. Polarization switches have ind
been observed experimentally@7–9#. Other predictions con-
cern all kinds of unstable and chaotic behavior for spec
situations at high pump rates@10–12#, instabilities that have
not yet been observed. Alternatively, such polarizat
switches may result from shifts in the relative tuning of t
cavity resonance with respect to the semiconductor g
spectrum, due to self-heating of the device@13#. In a recent
experiment, however, switches were in fact observed at c
stant device temperature, confirming that the nonlinear
fects are indeed able to induce polarization switching@14#.

Due to the generally complicated spin dynamics, the f
SFM model allows only numerical solutions, which limi
the amount of physical insight that can be obtained. T
influence of this spin dynamics is quantified by the dime
sionless parameterG, which is essentially the ratio of the
spin-flip rate and the population relaxation rate. In this pa
we analyze the SFM model in the regime of fast spin rel
ation, or largeG, and small to moderate linear anisotropi
~see Sec. II for a more precise definition!. We will show how
the adiabatic elimination of the fast spin dynamics then
lows for analytic solutions and how it in fact reduces t
polarization dynamics of the laser to that of a class A las
with a polarization-dependent saturation that reflects
original spin dynamics. The goal of this paper is to get mo
insight into the SFM model and to obtain simple predictio
for the way nonlinear effects will codetermine the VCSE
behavior in practical situations. We specifically look for si
natures of weak nonlinear anisotropies in the presence
usually stronger linear anisotropies. The strength of th
2080 © 1998 The American Physical Society
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57 2081PHYSICAL INSIGHT INTO THE POLARIZATION . . .
nonlinear signatures proves to be inversely proportional toG;
for G→` the polarization effects disappear as the opti
nonlinearity becomes polarization insensitive.

The crucial parameterG is not known accurately for prac
tical VCSELs. The first estimates@6# were based on time
resolved photoluminescence experiments with circularly
larized excitation, as found in the literature@15,16#.
However, it is unclear whether these experiments yield re
istic values forG in practical devices, as photoluminescen
experiments are generally performed at low temperature
much lower carrier densities than those encountered in p
tical devices. In particular in such experiments, the excito
versus free-carrier aspects will be rather different from th
in VCSELs. More realistic estimates ofG should be obtained
directly from operating devices. The first results in this c
egory yieldG.100, showing that the spin relaxation is in
deed very fast@17,18#. In hindsight, using the theoretica
analysis presented in this paper, this result is consistent
earlier experiments, where the nonlinear anisotropies w
observed to be weak@5#.

In Sec. II we introduce the SFM model, linearize arou
the stationary states, and discuss the stability regimes. A
the relation between the relaxation oscillations and the po
ization dynamics is discussed. In Sec. III we show how
linearized equations can be simplified in two different
gimes and how this provides physical explanations for
polarization instabilities predicted by the full model. In Se
IV we return to the original nonlinear equations to show h
adiabatic elimination of the fast spin dynamics simplifies
physics. The spin elimination is argued to have a broad
lidity range; it is shown to reduce the polarization dynam
of a vertical-cavity laser to that of a standard class A~gas!
laser. In Sec. V we show how the cubic crystalline symme
plays a special role in possible generalizations of the S
model within the spin-adiabatic limit. Finally, Sec. VI con
tains the summary.

II. THE SFM MODEL; STATIONARY STATES
AND LINEARIZATION

The field polarization in semiconductor vertical-cavity l
sers is generally described by the SFM model, which in
dinary time units reads@6,10,11#

Ė152~e1 is!E21k~12 ia!@~N21!1n#E1 , ~1a!

Ė252~e1 is!E11k~12 ia!@~N21!2n#E2 ,
~1b!

Ṅ52g@~N212m!1~ uE1u21uE2u2!N

1~ uE1u22uE2u2!n#, ~1c!

ṅ52gJn2g@~ uE1u21uE2u2!n

1~ uE1u22uE2u2!N#. ~1d!

The notation is as follows:E1 and E2 are the circularly
polarized components of the~slowly varying! optical field~a
factore2 ivt has been separated out!; N andn are the average
inversion between the1 and2 spin transitions and half the
inversion difference, respectively, i.e., the spin-dependen
l
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version isN65N6n; k, g, andgJ52g j1g are the decay
rates of the optical field, the average inversion, and the
version difference, respectively; the parameterG, already in-
troduced above, is given byG5gJ /g; m is the normalized
pump parameter, being about 0 at threshold~depending on
the strength of the dichroisme). The optical field is normal-
ized with respect to the saturation field; in an ideal four-le
laser uE1u21uE2u251 corresponds to equal rates of stim
lated and spontaneous emission;a is the linewidth enhance
ment factor, which for most semiconductor lasers is positi
as the refractive index generally decreases with increa
population inversion;s and e are the linear phase and am
plitude anisotropies in angular frequency units. We w
mainly concentrate on the case oflinear birefringence and
linear dichroism in the same direction, i.e., the case where
the eigenmodes of the linear problem are linearly polariz
When we choose thex-y coordinate system to coincide wit
this direction,s and e are both real valued~the situation
s.0 and e.0 corresponds withx-polarized light having
both the highest frequency and highest loss rate!. In the more
general situation of linear birefringence and dichroism m
ing anglesfs andfe with respect to thex-axis the param-
eterss ande become complex, having phase factorse22ifs

ande22ife in Eq. ~1a! ande2ifs ande2ife in Eq. ~1b!.

A. Stationary solutions

The stationary solutions of the above equations have b
given in several papers; for the situation of aligned birefr
gence and dichroism, there are two linearly polarized so
tions and two elliptically polarized solution, the latter bein
stable only in a very limited range of parameter space@10–
12#. We will limit ourselves to the region of parameter spa
where only the linearly polarized modes are stable. With
loss of generality we can further limit our treatment to t
x-polarized state, as the laser feels the difference betwex
andy only through the sign ofs ande; an interchange of the
x andy axes is equivalent to a simultaneous sign change
s ande. The stationaryx state is easily found to be

E15E25Qe2 iDvt, ~2a!

2Q25
m2e/k

11e/k
'm, ~2b!

Neq511e/k, ~2c!

Dv5s1ae. ~2d!

Note that, in the presence of~weak! dichroism, the equilib-
rium inversionNeq is almost, but not exactly equal to 1. Vi
thea factor this results in a small carrier-induced shift of t
cavity resonances from the (Neq51) values, which might
show up as a shift of theabsolute optical frequencywhen the
laser switches from one polarization mode to another.
ueu!k for all practical situations we will frequently use th
approximation in Eq.~2b!.
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2082 57M. P. van EXTER, R. F. M. HENDRIKS, AND J. P. WOERDMAN
B. Linearization around the x-polarized state

In the spirit of San Miguelet al. @6# we can linearize the
original equations around the stationaryx-polarized state by
writing

E15~Q1a1!e2 iDvt, ~3a!

E25~Q1a2!e2 iDvt, ~3b!

S5a11a2 , ~3c!

R5a12a2 , ~3d!

N5Neq1DN, ~3e!

whereQ is real valued anda1 anda2 are complex. Linear-
ization of the original equations results in arigorous sepa-
ration into two decoupled sets; this helps a lot.

The first set of equations describes the coupled time e
lution of the complex optical amplitude of the vector field,
characterized byS, and of the average population inversio
N:

Ṡ52k~12 ia!QDN, ~4a!

ḊN52g~112Q2!DN

22gQS 11
e

k DRe@S#. ~4b!

The second set of equations describes the coupled fluc
tions of the polarization direction and ellipticity, characte
ized byR, and of the population differencen:

Ṙ52~e1 is!R12k~12 ia!Qn , ~5a!

ṅ52~gJ12Q2g!n22gQS 11
e

k DRe@R#.

~5b!

The three eigenvalues of the first set of equations are
ily found. The (l50) eigenvalue corresponds to phase d
fusion. The other two eigenvaluesl52lR6 ivR corre-
spond to the relaxation oscillations in the laser, where

lR5
g

2
~112Q2!'

g

2
~11m!, ~6a!

vR5Av0
22lR

2, ~6b!

v052QAkg~11 e/k!'A2kgm. ~6c!

We note that a fit of the experimentally observed relaxat
oscillation will thus provide for several important laser p
rameters. This makes it a very powerful experimental tool
particular, because the value of parameters likem, k, andg
is usually rather uncertain. Specifically, the damping ratelR
of the relaxation oscillations at low output power, once c
rected for the finite laser linewidth, yields the carrier dec
rate g @19,20#. The relaxation oscillation frequencyvR
yields the productkgm. We will find later on thatexactly the
same productenters the equations for the nonlinear polariz
o-
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tion anisotropies. This fortunate result of course reflects
common basis for the intensity and polarization dynamic

The three eigenvalues of the second set of equations~5!,
in terms ofR and n, determine the polarization dynamic
These eigenvalues are more difficult to find, being the ro
of the equation

~l1gJ12Q2g!@~l22e!214s2#

14kgQ2~11e/k!~l22e12as!50, ~7!

which, apart from the sign ofa, is identical to Eq.~43! in
Ref. @12#. When we use the experimental resultueu!k @5#
and set 2Q2'm, as in Eq.~2b!, the above equation become

~l1gJ1gm!@~l22e!214s2#12kgm~l22e12as!50.
~8!

The isotropic case (s5e50) has been discussed in@6#.
Here the three eigenvalues of Eq.~8! are l50, associated
with the diffusion of the polarization direction that arise
from the absence of anisotropy, and two others given by

l1,2'2
gJ

2
6A~gJ/2!222kgm52

gJ

2
6A~gJ/2!22v0

2,

~9!

where we have usedgm!gJ . The real or imaginary charac
ter of these eigenvalues is governed by the comparison
tween the spin relaxation rategJ and the relaxation oscilla
tion frequency v0. We have recently shown the spi
relaxation rategJ to be quite large,gJ'20021000 GHz
@17,18#. Since the relaxation oscillation frequency is ofte
much smaller atv0<2p310 GHz@21,22#, we conclude that
experiments are generally in the regimegJ@2v0. In this
regime the eigenvalues given above can be approximate

l1'2gJ , ~10a!

l2'2
2km

G
. ~10b!

The related eigenstates show that the eigenvaluel1 is asso-
ciated mainly with a deviation of the inversion differencen
from equilibrium, whereasl2 is associated with a deviatio
from linear polarization~the smallness ofl2 lets SFM con-
clude that linear polarization is only ‘‘marginally stable
@6#!. For higher pump parametersm, the eigenvalueul1u de-
creases and ul2u increases, until they coincide a
l15l252gJ/2. For even higherm, in the experimentally
hardly accessible regime 2v0.gJ , the eigenvalues obtain
an imaginary part and become each other’s complex co
gate. The damped oscillation associated with these eigen
ues is then sometimes denoted as the ‘‘polarization re
ation oscillation’’ @6#.

For the more general case,sÞ0 andeÞ0, exact expres-
sions for the eigenvalues of Eq.~8! are quite complicated
being the roots of a third-order polynomial inl. Instead of
giving these exact expressions, we concentrate on the co
tion that one or both linear polarizations are stable, a con
tion that translates into the requirement that all three eig
values correspond to damped motion and thus sat
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57 2083PHYSICAL INSIGHT INTO THE POLARIZATION . . .
Re(l),0. The results of such an analysis can be summ
rized in a ‘‘stability plot,’’ which shows the stability of the
low- and high-frequency mode as a function of birefringen
s and pump parameterm @10–12#. As we will need these
standard results in the rest of the paper we have prese
them as Fig. 1, fore50, and Figs. 2~a! and 2~b!, for
e50.02s and e520.02s, respectively. The notation ‘‘lo’’
or ‘‘hi’’ denotes the regime where either the low- or th

FIG. 1. Stability diagram for the laser polarization in the (s,m)
plane in the absence of dichroism (e50). The stabilities of the low-
and high-frequency polarization mode are denoted by the la
‘‘lo’’ and ‘‘hi,’’ respectively. The two solid lines are the stability
boundaries. The vertically dashed area shows the parameter r
in which adiabatic elimination of the spin dynamics is allowed; t
horizontally dashed area shows the range in which nonlinear eff
can be treated in a perturbative way.

FIG. 2. Stability diagram for the laser polarization in the (s,m)
plane for the casee50.02s ~a! ande520.02s ~b!. Note how the
stability boundary of the low-frequency mode~sloping line! is
hardly affected by the dichroism and how the stability of the hig
frequency mode is drastically changed. Note also that at low pu
rate only the mode with the lowest linear loss is stable.
a-

e

ted

high-frequency mode is stable; the notation ‘‘lo,hi’’ denot
the regime of bistability where linearization around both t
s,0 and thes.0 mode yields stability; the notation ‘‘dy
namic’’ in the upper right-hand part of the figures deno
that at high birefringence and high pump parameter the la
polarization is never stable and that the emitted optical fi
will show chaotic dynamic behavior@11,12#.

The boundaries between the various stability regimes
be found by either setting thel0 term in Eq. ~8! equal to
zero, or by usingl5 in as a trial solution. Fore50 there are
two stability boundaries. The sloping line in Fig. 1 illustrat
that the low-frequency mode (s,0) loses its stability at
pump parameters above@10,11#:

mcrit'
G

ak
usu. ~11!

The ~almost! vertical line in Fig. 1 shows that the high
frequency mode (s.0) loses its stability for a birefringenc
larger than@10,11#

scrit5~gJ1gm!/~2a!. ~12!

A comparison of the two stability boundaries@Eqs.~11! and
~12!#, using Eq. ~6c!, shows that they cross at the poi
wherev0'gJ /a ~for gm!gJ). As for semiconductor laser
a is appreciably larger than 1; this means that the polar
tion relaxation oscillations mentioned earlier exist only
pump parametersm that lie ~high! above this crossing point
For nonzeroueu!usu the stability boundary for the low-
frequency mode@Eq. ~11! is hardly changed, as shown by th
sloping lines in Figs. 2~a! and 2~b!. The stability boundary
for the high-frequency mode is seriously affected though
high pump parameters it still approximately satisfies E
~12!, but at low pump parameter it bends away towards l
or high birefringence fore/s.0 ande/s,0, respectively.
We note that at low pump parameters, when nonlinear effe
are relatively unimportant, the only stable mode is obviou
the one with the lowest loss, being the low-frequency one
e50.02s and the high-frequency one fore520.02s @see
Figs. 2~a! and 2~b!, respectively#.

The dashed areas in Fig. 1 show in a schematic way
two regimes in which the complicated polarization dynam
predicted by the SFM model can be treated analytically. T
vertically striped area depicts the regime of small line
anisotropies and not too high pump rates (usu,ueu,2v0!gJ).
In this ‘‘adiabatic regime’’ we will simplify the polarization
rate equations@Eqs. ~1! and ~5!# through adiabatic elimina-
tion of the inversion differencen. The horizontally striped
area depicts the regime of relatively low pump rate and
too low birefringence @km/(sG)!1#, where the linear
anisotropies dominate over the nonlinear ones. In this ‘‘p
turbative regime’’ we will simplify the equations by treatin
the nonlinear anisotropies as a relatively weak perturbat
The solutions that we obtain are of course most simple in
‘‘overlap regime’’ of the two approximations. Although thi
cross-hatched area looks small in Fig. 1 its can have a la
extent in both thes and them direction for the experimenta
situation of large spin-flip rate, i.e., largegJ . We believe that
most experiments on VCSELs have in fact been perform
in this overlap regime, since in the experiment one typica
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has 10 GHz,usu,50 GHz, ueu,3 GHz, v0,60 GHz,
g'1 GHz, andgJ'20021000 GHz@5,17,18#. In Sec. III
we will discuss the simplifications that are possible in t
various regimes and give physical reasons for the stab
boundaries in Figs. 1, 2~a!, and 2~b!.

III. SIMPLIFYING THE LINEARIZED RATE EQUATIONS

A. The adiabatic regime

In the adiabatic regime the linearized polarization r
equations@Eqs. ~5!# can be simplified through adiabat
elimination of the inversion differencen(t). Inspection of
Eq. ~5b! shows that this is allowed when the variation of t
field polarization, or more specificallyQ Re@R#, is slow as
compared to the relaxation rategJ of the spin dynamics,
which translates into the criterionusu,ueu,2v0!gJ . This cor-
responds to the vertically striped area in Fig. 1. Adiaba
elimination of n, using the obvious inequalities 2gQ2!gJ
ande!k, gives

n52
2Q

G
Re@R#. ~13!

Inserting this in Eq.~5a!, using 2Q2'm, we obtain the fol-
lowing equation for the polarization fluctuations:

Ṙ52~e1 is!R2
2km

G
~12 ia!Re@R#, ~14!

where the first term on the right-hand side represents
linear ~cavity-related! anisotropies, whereas the second ter
being proportional to the pump parameterm, represents the
nonlinear~medium-related! anisotropy.

The eigenvalues of Eq.~14! are easily found by separatin
this complex equation into two real-valued equations
Re@R# and Im@R#. For gm!gJ these eigenvalues are give
by the equation

~l22e!21
2km

G
~l22e!14s214as

km

G
50 ~15!

with solutions

l1,252e2
km

G
6 i2sA11a

km

sG
2

1

4S km

sG D 2

. ~16!

We note that the same result could have been obtained m
ematically by a separation of time scales in Eq.~8!; in the
adiabatic regime one eigenvaluel'2gJ is much larger than
the other two eigenvalues so that division bygJ in combina-
tion with the requirementul1,2u!gJ reduces the third-orde
equation~8! into the second-order equation~15!. We also
note that the eigenvalues~16! evolve continuously from the
l50 andl522km/G eigenvalues found earlier for the iso
tropic case.

The important dimensionless parameter in Eq.~16! is the
ratio km/(sG)5v0

2/(2sgJ), which quantifies the relative
strength of the nonlinear anisotropies as compared to
linear ones. Whenkm/(sG)!1 we end up in the cross
hatched ‘‘overlap regime’’ in Fig. 1, where the nonline
ty

e

c

e
,

r

th-

e

anisotropies act as a small perturbation and where the sq
root in Eq.~16! can be approximated to give

l1,252e2
km

G
6 i S 2s1

kma

G D . ~17!

The physical insight comes from the interpretation of t
above eigenvalues. These eigenvalues characterize th
ser’s response to small excursions from the linearly polari
stationary state, excursions that are driven by the rand
fluctuating force of spontaneous emission. In the opti
spectrum of the laser these perpetual excursions are vis
as a weak additional spectral peak that differs from the m
peak in its polarization and generally also in its optical fr
quency. This weak peak is often denoted the ‘‘nonlasing
larization mode,’’ in contrast to the strong ‘‘lasing polariz
tion mode’’ @1,4,5#. Close to threshold~small m) the
nonlinear effects are weak andl1,2'2e6 i2s, so that the
frequency splitting between the lasing and nonlasing mod
a direct measure for the linear birefringences, whereas the
difference between their spectral widths gives the linear
chroisme. In practice this proves to be a good assumpti
making the polarization-resolved optical spectrum a cruc
tool to analyze the laser’s anisotropies@1,4,5#. The above Eq.
~17! now shows how the nonlinear interaction in the VCSE
related to the dynamics ofn, affects this spectrum and how
gives an additional nonlinear contribution to the dampi
rate and optical frequency of the nonlasing mode of mag
tude

Dgnonlasing5
km

G
5

v0
2

2gJ
, ~18a!

Dvnonlasing52a
km

G
52a

v0
2

2gJ
. ~18b!

This set of equations is a key result of the present pa
Equation ~18a! shows hownonlinear effects increase th
damping of the nonlasing mode; nonlinear effects can
thereby stabilize the lasing mode, even when it has the la
est linear loss, and cause phenomena like bistability and
larization switching. Equation~18b! shows that thenonlas-
ing mode is effectively redshifted with respect to the las
mode. This follows directly from Eq.~17!, which shows that
the frequency of the polarization beat will increase when
high-frequency mode lases (s.0) and when we linearize
around this mode, whereas it will decrease when the lo
frequency mode lases (s,0). In both cases the nonlasin
mode is effectively redshifted. Note that by rewriting th
‘‘nonlinear damping and frequency shift’’ in terms of th
relaxation oscillation frequencyv0 we have effectively re-
moved all~badly known! device parameters, except for th
spin relaxation rategJ .

To visualize the origin of the nonlinear contributions
dichroism and birefringence, Fig. 3 gives a graphical rep
sentation of the time evolution of the ‘‘polarization devi
tion’’ R(t) in ~a 90° rotated version of! the complex plane.
The linear term 2(e1 is)R in Eq. ~14! makes
(Re@R#,Im@R#) rotate around the stationary point~0,0!, spi-
raling inward or outward depending on the sign ofe. In the
meantime the nonlinear term in Eq.~14!, depicted as arrows
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57 2085PHYSICAL INSIGHT INTO THE POLARIZATION . . .
in Fig. 3, will pull (Re@R#,Im@R#) towards the line
(Re@R#50), while at the same time, fora.0, giving it a
leftward push above this line and a rightward push bel
this line. When the nonlinear term is small as compared
the linear one, i.e., in the ‘‘overlap regime,’’ its pushing a
pulling can be averaged over a full rotation. Averaging th
shows how it effectively helps to pull (Re@R#,Im@R#) to-
wards the origin and how it leads to an increase or decre
of the rotation frequency, depending on the sign ofs with
respect toa. Figure 3 thus gives an elegant and intuiti
explanation for the effective frequency shift and damp
induced by the nonlinear effects, i.e., the mechanism beh
Eqs.~18!.

The nonlinear contributions to dichroism and birefri
gence, as predicted by Eqs.~18!, give quantitative explana
tions for the deviations observed in earlier experiments
VCSEL anisotropies @5#. In these experiments linea
anisotropies were found to dominate the VCSEL’s polari
tion state and a simple~linear! coupled-mode description
was sufficient to explain almost all experimental obser
tions. The small deviations that remained were already
tatively attributed to nonlinear effects@5#. With the theory
developed here, we can be more specific. Figure 4 in Ref@5#
indicates that the measured frequency splitting between
ing and nonlasing modes is slightly larger than the lin
birefringence in the VCSEL. With the present knowledge
attribute this to a redshift of the nonlasing mode induced
nonlinear effects. The offset of 0.2 GHz mentioned in R
@5# is a reasonable value for the redshift that is predicted
Eq. ~18b! and the sign agrees with the observation that
high-frequency mode was lasing. Figure 7 in Ref.@5# shows
another deviation: the width of the nonlasing mode w
found to be larger than could be expected on the basis o
measured linear dichroism, and, although part of this d
crepancy could be attributed to the finite width of the las
mode, about 0.2 GHz remained unexplained. We now
tribute this additional damping of the nonlasing mode to n

FIG. 3. The evolution around a linearly polarized stationa
state, expressed in the deviations Re@R# and Im@R#. Linear birefrin-
gence alone will makeR rotate around the stationary point, where
linear dichroism will push it away or pull it towards this point. Th
action of the last term in Eq.~14! is presented by the arrows in th
figure; they show how the nonlinear anisotropy does not aver
out over a full round trip, but effectively pullsR towards the sta-
tionary state, while also giving it additional spin. The nonline
term thus acts as effective dichroism and birefringence.
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linear damping and indeed the mentioned value is not un
sonable for the damping predicted by Eq.~18a!. This semi-
quantitative analysis points in the direction of relatively fa
spin relaxation (G>100), consistent with recent experimen
that address the spin relaxation explicitly@17,18#.

B. The perturbative regime

We will next consider the perturbative regim
@km/(sG)!1#, i.e., the horizontally striped area in Fig. 1
In this regime the nonlinear anisotropies act as a small p
turbation to the polarization dynamics and simple expr
sions for this dynamics can be found even for large lin
anisotropies, where the adiabatic elimination ofn breaks
down. In the perturbative approach we will first neglect t
nonlinear term in Eq.~5a!, by settingQ50, to obtain

R~ t !5R0e2~e1 is!t. ~19!

Substitution of this first-order result into Eq.~5b!, using
ueu!usu,k andgm!gJ , yields

n~ t !'22QgReF R0

gJ12is
e2~e1 is!tG . ~20!

We thus find that at relatively large birefringences,
where the field polarization varies rapidly in time,n(t) has
difficulties following and acquires a phase lag, of the ord
2s/gJ , with respect toR(t). The consequences of this pha
lag, and of the nonlinear effects in general, are found
substituting Eq.~20! back into Eq.~5a!. When we express
the resulting corrections by introducing a time depende
for R0(t) and averaging over a full rotation, using th
rotating-wave approximation by keeping only the positi
frequency terms, we obtain

Ṙ0~ t !'2
km

G

12 ia

112is/gJ
R0~ t !. ~21!

For usu!gJ we recover from Eq.~21! the earlier result Eq.
~18! that relatively small nonlinear effects result in an effe
tive dichroism and birefringence of magnitudekm/G and
akm/G, respectively; for larger birefringence it shows ho
the phase lag experienced byn(t) is translated into a redis
tribution and possible reduction of the nonlinear dichrois
and birefringence.

When we do not use the rotating-wave approximation
find a small counter-rotating term~negative frequency!, with
a magnitude that is determined by the relative strength of
nonlinear anisotropies as compared to that of the linear o
This term shows that, due to the nonlinear anisotropies,R(t)
does not evolve around perfect circles or spirals, but inst
around elliptical trajectories. Hoffman and Hess@23# have
recently predicted how the counter-rotating term will sho
up as a, generally very weak, four-wave-mixing peak in
optical spectrum, being a mirror image of the nonlasing pe
with respect to the strong lasing peak. Very recently, t
peak has been observed experimentally@18#.
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C. Physical explanations for the stability boundaries

With the simplified expressions derived above we are n
able to give physical explanations for the instability boun
aries in Figs. 1, 2~a!, and 2~b!. The first boundaries to be
discussed are the sloping lines in these figures, which s
how the low-frequency mode loses its stability at pump
rameters abovemcrit . To be more precise, numerical calc
lations based upon the SFM model predict that when
low-frequency mode lases at low pump parameter, this m
will become elliptically polarized atmcrit , and lose its stabil-
ity at slightly higher pump parameter, leading to a polariz
tion switch; when the high-frequency mode initially lase
nothing special occurs@11,12#. The explanation we give fo
this phenomenon is the following: Inspection of Eq.~16!, for
the practical casea@1, shows that when the low-frequenc
mode lases (s,0), the frequency splitting between the tw
modes will decrease with increasing pump parameter u
aboutmcrit , where the frequencies will coincide. Beyond th
point the eigenvalues will quickly acquire large real pa
and the polarization becomes unstable. On the other h
when the high-frequency mode lases (s.0) the nonlinear
effects will lead to an increase of the mode splitting a
nothing special is expected to happen. A measurement o
polarization frequency splitting versusm can thus decide
whether the observed polarization switch is induced by n
linear effects, or by a shift in detuning of the cavity res
nance with respect to the semiconductor gain spectrum
induced by self-heating@13#.

In Fig. 3 the instability mentioned above occurs when
nonlinear terms, depicted as arrows, are strong enoug
effectively stop the rotation induced by the linear birefri
gence. The flow pattern around the stationary state will t
deviate considerably from the nonsaturated pattern~there
will be, among others, a strong counter-rotating term! and at
high enough pump rates it will open up to destroy the sta
ity of this state.

The other stability boundaries in Figs. 1, 2~a!, and 2~b!
show how the high-frequency mode loses its stability at la
birefringence. The explanation for these boundaries lies
the breakdown of the validity of the adiabatic elimination
the spin dynamics. For the perturbative regime Eq.~21! al-
ready showed how this breakdown leads to a shifted bala
between the absorptive and dispersive nonlinear terms. In
graphical representation of Fig. 3 this phase lag correspo
to a rotation of the arrows in a clockwise or countercloc
wise way for the high- or the low-frequency mode, resp
tively. For the casee50 the effective damping and stabil
zation of the high-frequency mode (s.0) is thereby lost at
valuess.gJ /(2a), where the arrows have crossed the ho
zontal direction and point away from the equator instead
towards it. This inequality agrees with the stability bounda
of Eq. ~12!. For the caseeÞ0 the stability of the high-
frequency mode is lost when the damping due to nonlin
effects becomes equal to the linear dampinge; this criterion
reproduces the curved stability boundaries in Figs. 2~a! and
2~b!.

IV. ADIABATIC ELIMINATION OF SPIN DYNAMICS

To get a broader view on the physics behind the S
model, and to compare it with existing models for the pol
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ization dynamics of gas lasers, we will now return to t
original nonlinear equations@Eqs.~1!# and try to solve these
via adiabatic elimination. A rigorous adiabatic elimination
both the inversion differencen and the average inversionN
~‘‘class A’’ elimination! has been described in a recent pap
by Travagninet al. @24#. The assumptions used in that elim
nation are that the optical field fluctuates slowly as compa
to both population decay ratesg and gJ , that g!gJ , and
that the laser operates close to threshold (uE1u21uE2u2!1).
This leads to a set of rate equations for the fieldsE1 and
E2 , which are a polarization variant of third-order Lam
theory @25# and which have as key parameter the ratio
cross- and self-saturation of the circularly polarized fiel
for which the expression@12(1/G)#/@11(1/G)# is found
@24#.

The adiabatic elimination of the average inversionN is
disputable, because the relaxation rateg is generally not fast,
and in fact often slow, as compared to the time evolution
the optical field. On the other hand, the adiabatic eliminat
of the inversion differencen from the original rate equation
Eqs.~1! is generally allowed. The criterion for this elimina
tion is that the ‘‘driving force’’ in Eq.~1d!, i.e., the product
gN(uE1u22uE2u2) varies slowly as compared to the rela
ation rategJ . Variations inN are intrinsically slow due to
the relatively long carrier lifetime (g21'1 ns!, but coupling
with the intracavity field via stimulated emission speeds
these fluctuations to the relaxation oscillation frequencyv0,
so that the condition for slow variations inN translates into
v0!gJ . Variations in (uE1u22uE2u2), i.e., in the elliptical
component of the laser field, are also slow under cert
conditions. A typical time scale for these ellipticity fluctua
tions is not the cavity loss ratek, but rather a time scale
related to polarization anisotropies. When the linear aniso
pies dominate over the nonlinear ones, the field polariza
evolves approximately with a ‘‘frequency’’ 2(s2 i e) @see
Eq. ~14!#, making the condition for adiabatic eliminatio
equivalent tousu,ueu!gJ . When the linear anisotropies ar
so weak that the nonlinear effects dominate, the eliminat
is also allowed as long as the latter are weak, a condition
corresponds tov0!gJ . As discussed in Secs. II and III bot
conditions, i.e.,usu,ueu!gJ and v0!gJ , are quite reason-
able for practical VCSELs; together they correspond to
vertically striped area in Fig. 1.

Using the inequalities

~N21!!1, ~22a!

uE1u21uE2u2!G ~22b!

in Eq. ~1d!, the adiabatically eliminatedn becomes

n52
1

G
~ uE1u22uE2u2!. ~23!

Note that to obtain this result we did not need the assump
of ‘‘operation close to threshold,’’ i.e.,uE1u21uE2u2!1, as
was the case for the full class A elimination, but only t
much weaker assumptionuE1u21uE2u2!G; this assumption
is enough to validate the third-order Lamb theory for t
field polarization. Note also that the inequality (N21)!1 is
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naturally satisfied in semiconductor lasers wherek@g, and
where small deviations fromN51 already lead to large
variations of the laser field.

At this point it is convenient to separate the optical inte
sity and polarization by introducing the so-called Stokes v
tor sW5(s1 ,s2 ,s3) as @12,26,27#

s152 Re@E1* E2#5I cos 2x cos 2f, ~24a!

s252 Im@E1* E2#5I cos 2x sin 2f,
~24b!

s35uE1u22uE2u25I sin 2x, ~24c!

whereI is the optical intensity, and where the anglesx and
f represent the polarization state. The angle 0<f<p char-
acterizes the polarization direction; it is the angle betwe
the long axis of the polarization ellipse and thex axis. The
angle 2p/4<x<p/4 characterizes the ellipticity of th
light; x50 corresponds to linearly polarized light, where
x56p/4 corresponds to circularly polarized light. Using th
angles (2x,2f) as spherical coordinates, the polarizati
state can be conveniently depicted as a single point on
Poincare´ sphere@26#.

Substitution of the adiabatic value ofn @Eq. ~23!# into the
original Eqs.~1! yields three equations in terms ofE1 , E2 ,
andN. Rewritten in terms of (N,I ,x,f) we get the following
spin-eliminated version of the SFM model:

ẋ5s sin 2f1e sin 2x cos 2f2~kI /G!sin 2x cos 2x,
~25a!

ḟ52s
sin 2x

cos 2x
cos 2f1e

sin 2f

cos 2x
2a~kI /G!sin 2x,

~25b!

İ 52k~N21!I 22eI cos 2x cos 2f22I ~kI /G!sin 22x,
~25c!

Ṅ52gF ~N212m!1IN2
I 2

G
sin2 2xG , ~25d!

which is identical to Eqs.~34a!, ~34c!, and~34d! in the erra-
tum of Ref.@11#, if the population differenced is eliminated
there.

A further adiabatic elimination of the average inversionN
would obviously reduce the above set of equations to a s
cial case of the class A~gas! laser@28#. However, even with-
out the elimination ofN, the first two equations@Eqs.
~25a!,~25b!#, which describe the polarization evolution of
spin-eliminated VCSEL, are already equivalent to those o
class A laser. The mathematical argument is that the ave
inversionN simply does not appear in these equations. T
physical argument is that a deviation ofN from equilibrium
will lead to equal gain or loss for all Stokes parameters a
thus cannot affect the field polarization.

When comparing the polarization dynamics of a sp
eliminated VCSEL with that of a general class A gas las
we note that the VCSEL is a special case because of
specific form of its nonlinear anisotropies, which is det
mined byG, as a measure for the polarization anisotropy
-
-

n

he

e-

a
ge
e

d

-
r,
he
-
f

the saturation, anda, as a measure for the dispersive natu
of the saturation. In Eqs.~25a! and~25b! the linear anisotro-
pies are of course also a special case as we restricted
treatment to linear birefringence and dichroism in the sa
direction. However, because of the mentioned equivalen
we can now use the result that Van Haeringen@28# found for
the general class A~gas! laser to obtain the polarization rat
equations for a spin-eliminated VCSEL with arbitrary line
and circular birefringence and dichroism. By rewriting Va
Haeringen’s anisotropy functionsh1(x,f) and h2(x,f) in
our notation we find

ẋ5s sin 2~f2fs!1e sin 2x cos2~f2fe!1ec cos2x

2~kI /G!sin 2x cos 2x, ~26a!

ḟ52s
sin 2x

cos 2x
cos 2~f2fs!1e

sin 2~f2fe!

cos 2x
1sc

2a~kI /G!sin 2x, ~26b!

where the anglesfs and fe denote the orientation of the
linear birefringence and linear dichroism with respect to
x axis, and where the symbolssc andec are possible circular
birefringence and dichroism, respectively.

As the polarization rate equations of a spin-eliminat
vertical-cavity VCSEL and a class A~gas! laser are identical,
within the context of third-order Lamb theory, this should
principle allow for an easy comparison between the two
sers. In practice, the polarization dynamics might still
quite different as the lasers operate in a different param
regime of the same set of equations. First of all, the id
isotropic gas laser generally shows a strong preference
either linear or circular emission, whereas the ideal isotro
VCSEL is expected to show only a mild preference for li
early polarized emission, due to the relatively large spin
rate; for gas lasers typicallyG,10, whereas VCSELs hav
G.100 @17,18#. As a consequence, Van Haeringen@28# has
to work with the adiabatic intensityI (x,f), which might
depend strongly onx andf, where for VCSELs one is often
allowed to use a constant intensityI . Secondly, the gain
spectrum of gas lasers generally has a symmetric Voigt-t
profile, whereas that of semiconductor lasers is highly asy
metric. As a consequence, the gain maximum in the gas
responds to zero detuning, whereas that in the semicondu
still contains ‘‘intrinsic detuning’’ that is reflected in a non
zeroa factor and that breaks the symmetry between low a
high optical frequencies.

To obtain some more insight into the polarization ra
equations~25a! and ~25b! we will present them graphically
in terms of flow lines on the Poincare´ sphere@29,30#. Figure
4 gives graphical representations of the action of the f
driving mechanisms that can be distinguished in these
equations. Figure 4~a! shows how the combined linear an
circular birefringence alone will make the Stokes vectosW

rotate at a uniform rate uVW u around the vector
VW 5(scos2fs ,ssin2fs ,sc). Figure 4~b! shows how the
combined linear and circular dichroism makes the Sto
vectorsW decay towards the vector (e cos 2fe ,e sin 2fe ,ec).
Figure 4~c! shows how the ‘‘absorptive’’ nonlinear effec
i.e., the effect that is independent ofa, will pull the Stokes
vectorsW towards the equator with a force proportional to t
optical intensityI multiplied by sin 4x, i.e., twice the devia-
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tion from the equator for smallx. Figure 4~d! shows how the
‘‘dispersive’’ nonlinear effect, i.e., the one that scales w
a, causes a rotation around the north pole with a stren
that once more scales with the productI sin 4x.

Whereas the action of the individual driving mechanis
is easily understandable in the graphical representation
Fig. 4, it is their combined action that makes the phys
interesting. As a first example of interesting behavior
mention the case where the nonlinear effects are fully iso
pic (G→`), making the last term in Eqs.~26a! and ~26b!
equal to zero. For this simple case, the combined action
just linear birefringence and dichroism in different directio
already makes the stationary states elliptically polarized; i
fact produces two elliptical eigenstates with the same ha
edness, as also follows from a linear coupled-mode desc
tion @6#. As a second example we mention the case
aligned linear birefringence and linear dichroism that for
the heart of this paper. For small deviations from the linea
polarized stationary state this case was described in Sec
with Eq. ~14! and graphically represented as Fig. 3. We n
understand that Fig. 3 is just a head-on view of the Poinc´
sphere~Fig. 4!, where Re@R# and Im@R# correspond tox and
2f, respectively, while the line (Re@R#50) corresponds
with the equator of that sphere.

V. ROLE OF CRYSTALLINE SYMMETRY

In the previous sections we have shown how adiab
elimination of the inversion differencen reduces the polar
ization dynamics of a VCSEL to that of a class A laser.
similar elimination will be possible for other fast variable
that are introduced to the problem, as, for instance, a fur
separation of the spin populations in electrons and hole
one retains the rotational symmetry of the saturation proc
the introduction of these new variables will then produce

FIG. 4. Graphical representation on the Poincare´ sphere of the
polarization evolution due to the four driving mechanisms:~a! only
birefringence (s,0), ~b! only dichroism (e,0), ~c! only ‘‘absorp-
tive’’ nonlinear effects~for a50), ~d! only ‘‘dispersive’’ nonlinear
effects~effect of aÞ0 only!.
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new physics, but only lead to a different value and a som
what different interpretation ofG. The reason is that for a
class A laser with rotation-symmetric saturation one ne
only one parameterG to describe the polarization depen
dence of the saturation; this parameter is essentially the r
of self-saturation and cross saturation of the circularly po
ized modes, or the ratio of the saturation power for circula
polarized light as compared to that for linearly polariz
light. Within the adiabatic limit, the only way to really gen
eralize the SFM model is therefore the removal of the ro
tional symmetry of the saturation process by the introduct
of the cubic crystalline symmetry of the III-V semiconduct
material on which most VCSELs are based. The hard wa
introduce the crystalline axes into the problem is by exte
ing the microscopic ‘‘atomic’’ four-level model of SFM into
a full band structure, i.e., by performing an extensive cal
lation of the kW -dependent densities of states and transit
moments@31#. The easy way is to eliminate these micr
scopic variables from the start and to restrict the discuss
to the symmetry of the macroscopic problem.

To discuss the symmetry we will follow a general a
proach in nonlinear optics in which the dynamic response
the active medium is completely contained in the frequen
dependence of the third-order susceptibility tensor@32,33#

x i jkl
~3! ~v11v21v3 ;v1 ,v2 ,v3!, ~27!

where i , j ,k,l are Cartesian indices, being eitherx, y, or z.
To describe the laser dynamics with this formalism, o
needs to known the frequency behavior of thex (3) tensor for
optical frequencies, i.e., in the neighborhood of the po
v1'v2'2v3'v laser. Symmetry imposes strong restric
tions on the number of independent coefficients of the
elementx (3) tensor. Most textbooks on nonlinear optics co
tain tables that show the number of independent element
the above tensor to be only 4 in cubic crystalline media a
3 in rotation-symmetric media~see, e.g.,@32#! For the special
casev15v252v3 the number of independent elements r
duces even further to 3 and 2, respectively. For an isotro
gain medium the two independent elements are essent
the saturation power for circularly polarized light and that f
linearly polarized light. The ratio of these two is the on
parameter that determines the laser’s polarization dynam
it is basically the parameterG of the SFM model, or the
parameterS of Van Haeringen. Only for a nonrotationall
symmetric cubic crystalline gain medium will there be
additional ~third! degree of freedom left, being the coeffi
cient A that describes the ‘‘cubic’’@11A cos(4f)# angle
dependence of the saturation power for linearly polariz
light.

Whether or not one is allowed to limit the treatment
terms ofx (3) to the pointv15v252v3, thereby reducing
the system to a class A laser, depends on the frequency
pendence ofx (3) as compared to the various optical freque
cies that play a role. The answer to this question is gener
different for the isotropic and anisotropic component ofx (3),
which describe the polarization-independent a
polarization-dependent parts of the saturation, respectiv
The frequency dependence of the former reflects the dyn
ics of the overall inversion of the active medium and as
latter is slow, the isotropic part ofx (3) will vary strongly
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57 2089PHYSICAL INSIGHT INTO THE POLARIZATION . . .
with frequency. One is therefore not allowed to treat t
isotropic saturation, and related intensity fluctuations,
terms of a simple class A model. The anisotropic part ofx (3),
on the other hand, varies much less with frequency, du
the fast response of the active medium to polarizat
changes. For the anisotropic part ofx (3) one might therefore
just as well use only the value at the exact po
v15v252v3, at least when the relevant optical freque
cies differ much less than the inverse response time of
medium to polarization changes. This will then~again! re-
duce the polarization rate equations of the VCSEL to th
of a class A laser.

We note that the symmetry argument given above d
not only apply to a bulk piece of cubic crystalline materi
but also to any vertical-cavity structure engineered from t
material, when the overall device symmetry is 4m̄. It is thus
in particular valid for quantum well VCSELs grown on
~100! substrate, which is by far the most common ca
Again, in these lasers the polarization-dependent satura
can be fully described by one or two parameters, depend
on whether one assumes rotation symmetric saturation
includes the cubic crystalline symmetry in the form of
orientation-dependent saturation power. The fact that
practice the exact symmetry of the laser is broken
anisotropies, like the linear birefringence mentioned in
Introduction, will hardly change this saturation behavior
these anisotropies are generally very small (!1024 in terms
of the complex refractive index!.

VI. SUMMARY

The key results obtained in this theoretical overview
VCSEL polarization are as follows. Through adiabatic elim
nation of the spin or inversion differencen we have derived
simple expressions for the nonlinear contribution to the m
sured spectrum of the lasing and nonlasing mode. The va
ity range of these expressions is quite large; they rem
valid as long as the optical field varies slowly as compared
the medium response to polarization changes, which tra
lates intousu,ueu,2v0!gJ , i.e., to the vertically striped are
in Fig. 1, wheres and e are the linear birefringence an
dichroism, respectively,v0 is the relaxation oscillation fre
quency, andgJ is related to the spin-flip rate. A further re
striction to the case where the linear anisotropies domin
over the nonlinear ones, i.e., the cross-hatched area in Fi
provides the result that is most useful for current expe
ments. Equations~18! show how nonlinear effects are pre
dicted to result in~i! an extra damping of the nonlasing mod
by an amountmk/G, and ~ii ! a redshift of the frequency o
the nonlasing mode by an amounta(mk/G). We have ar-
gued that most experiments are indeed performed in
‘‘overlap regime’’ as typical values for the various param
eters are 10 GHz,usu,50 GHz, ueu<3 GHz @6#, v0<60
GHz @21,22#, andgJ'20021000 GHz@17,18#. To facilitate
a
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the comparison between theory and experiment we prop
to study the relaxation oscillations, as these should prov
for an easy experimental approach to quantify several imp
tant laser parameters.

We have discussed several experiments in which the
fective frequency shift and broadening, which are predic
to arise from the nonlinear effects, have been observed
will be observable@5,18#. We have also discussed the phys
cal origin of the two types of polarization instabilities o
VCSELs. One of these instabilities was attributed to the
fective redshift of the nonlasing mode, making the frequen
of this mode, at some pump rate, overlap with that of
lasing mode. The second instability could be associated w
a breakdown of the validity of the adiabatic elimination
the spin dynamics.

We have shown how the ‘‘SFM model’’ for semicondu
tor lasers reduces to the ‘‘Van Haeringen model’’ for g
lasers, when the population inversion is adiabatically elim
nated. The polarization rate equations of the two mod
were found to be already fully equivalent when only t
population differencen is eliminated. This allows for an eas
comparison between polarization effects in VCSELs and
lasers.

Finally, we have shown how the cubic crystalline symm
try plays a special role in possible generalizations of
SFM model within the context of adiabatic spin eliminatio
Keeping the rotation symmetry of the saturation, the
proves to be only one parameter that describes the pola
tion dependence of the saturation process, being the pa
eter G in the SFM model and the ratio of self- and cros
saturation of the circularly polarized modes in the class
model. Possible generalizations can therefore only affect
value and interpretation of this parameter. Within the cont
of adiabatic elimination, the only way to introduce a ne
parameter into the problem is to explicitly account for t
cubic crystalline symmetry since this breaks the rotat
symmetry of the saturation.

For completeness we add that our~and SFM’s! model of a
VCSEL assumes that the device is spatially and spectr
uniform, i.e., effects due to spatial and spectral hole burn
are neglected. Although so far the model has been quite
cessful we suspect that these complications will ultimat
limit its validity.

Note added in proof. After completion of this work the
nonlinear redshift and damping given by Eqs.~18a! and
~18b! were also discussed in Ref.@34#.
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