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Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers
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The polarization properties of semiconductor vertical-cavity la8é@&SELS9 are generally described with a
model introduced by San Miguel, Feng, and Molorn&FM) in Phys. Rev. A52, 1728 (1995. We have
analyzed this SFM model from an experimentalist’s point of view, using the idea that under certain conditions,
which are satisfied by most practical VCSELSs, the complicated spin dynamics can be adiabatically eliminated,
leading to a managable analytical description. We hereby obtain new physical insight and intuitive pictures.
One of the key results is the prediction that, via the spin dynamics, the presence of a strong lasing mode with
a certain polarization will effectively lead to a broadening and frequency shift of the weak nonlasing mode with
orthogonal polarization. This result gives a simple physical explanation for a polarization switch predicted by
the model, and leads to further predictions that can be experimentally verified. The analysis also shows how the
relaxation oscillations are related to the polarization dynamics and how they might be of crucial importance to
experimentally determine the various parameters in the SFM model. We then discuss how the spin elimination
reduces the SFM model to existing models for the polarization dynamics of clégasAasers, with intuitive
pictures of the polarization evolution on the Poincapbere. Finally we will show how, within the context of
adiabatic elimination, the cubic crystalline symmetry plays a special role in possible generalizations of the
SFM model.[S1050-294{@8)00703-3

PACS numbd(s): 42.55—f

[. INTRODUCTION light of one specific handedness. Through saturation the field
polarization codetermines the spin population, which then
The polarization of semiconductor vertical-cavity surface-acts back on the field via a spin-dependent gain and refrac-
emitting laserdVCSELS is an interesting subject to study. tive index. The SFM model predicts, among others, the pos-
The cylindrical symmetry of most designs and the isotropicsible occurrence of a switch of the output polarization when
gain of the cubic material impose no restrictions on the pothe pump rate is increased. Polarization switches have indeed
larization state of the laser. In principle one thus expectdeen observed experimentally—9]. Other predictions con-
these lasers to be indifferent to the polarization directioncern all kinds of unstable and chaotic behavior for specific
The laser might, however, prefer linearly polarized emissiorsituations at high pump rat¢0-12, instabilities that have
over circular or vice versa, as tisaturationof the gain can not yet been observed. Alternatively, such polarization
depend on polarization, even when the gain itself is isotropicswitches may result from shifts in the relative tuning of the
In practice the cylindrical symmetry is broken by all kinds cavity resonance with respect to the semiconductor gain
of anisotropies. The most dominant anisotropy has beeapectrum, due to self-heating of the devjd&]. In a recent
found to be linear birefringence, caused By stress and experiment, however, switches were in fact observed at con-
strain, acting via the elasto-optic effddi], and(ii) internal  stant device temperature, confirming that the nonlinear ef-
electric fields, acting via the electro-optic eff¢2t{3]. Appli-  fects are indeed able to induce polarization switcHitd.
cation of additional stress, in fact, allows one to manipulate Due to the generally complicated spin dynamics, the full
the VCSEL polarization at will, either in a reversible way, SFM model allows only numerical solutions, which limits
via a “hot-spot technique’{1], or in a permanent way, via the amount of physical insight that can be obtained. The
“local burning” [4]. The electro-optically induced birefrin- influence of this spin dynamics is quantified by the dimen-
gence can be manipulated, at least in optically pumpedionless parametdr, which is essentially the ratio of the
VCSELs, by varying the dopinf2,3]. A coupled-mode de- spin-flip rate and the population relaxation rate. In this paper
scription, based on linear birefringence in combination withwe analyze the SFM model in the regime of fast spin relax-
a generally small amount of linear dichroisimqual to the ation, or largel’, and small to moderate linear anisotropies
difference in gain or logs allows for simple explanations of (see Sec. Il for a more precise definitjokVe will show how
practically all experimental datd]. the adiabatic elimination of the fast spin dynamics then al-
Nevertheless, simple explanations in termslioéar ef-  lows for analytic solutions and how it in fact reduces the
fects are bound to break down somewhere, due to the actiyeolarization dynamics of the laser to that of a class A laser,
nature of the laser and the possible polarization dependeneéth a polarization-dependent saturation that reflects the
of gain saturation. The simplest and still realistic model tooriginal spin dynamics. The goal of this paper is to get more
describe the polarization aspects of thesmlinear effects  insight into the SFM model and to obtain simple predictions
for a semiconductor vertical-cavity laser is a rate equatiorfor the way nonlinear effects will codetermine the VCSELs
model introduced by San Miguel, Feng, and Moloi8#M)  behavior in practical situations. We specifically look for sig-
[6]. In this model, the active medium is separated in differennatures of weak nonlinear anisotropies in the presence of
spin classes, each interacting only with circularly polarizedusually stronger linear anisotropies. The strength of these
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nonlinear signatures proves to be inversely proportion&lito version isN.=N=*n; «, y, andy;=2y;+ v are the decay
for '~ the polarization effects disappear as the opticalrates of the optical field, the average inversion, and the in-
nonlinearity becomes polarization insensitive. version difference, respectively; the paramdtealready in-

The crucial parametdr is not known accurately for prac- troduced above, is given by=y;/v; w is the normalized
tical VCSELs. The first estimatd$] were based on time- pump parameter, being about 0 at thresh@dpending on
resolved photoluminescence experiments with circularly pothe strength of the dichroisw). The optical field is normal-
larized excitation, as found in the literaturgl5,16. ized with respect to the saturation field; in an ideal four-level
However, it is unclear whether these experiments yield reallaser|E. |2+ |E_|?=1 corresponds to equal rates of stimu-
istic values forl" in practical devices, as photoluminescencelated and spontaneous emissianis the linewidth enhance-
experiments are generally performed at low temperature angent factor, which for most semiconductor lasers is positive,
much lower carrier densities than those encountered in pra@s the refractive index generally decreases with increasing
tical devices. In particular in such experiments, the excitonigopulation inversiong and e are the linear phase and am-
versus free-carrier aspects will be rather different from thoselitude anisotropies in angular frequency units. We will
in VCSELs. More realistic estimates bfshould be obtained mainly concentrate on the case lofear birefringence and
directly from operating devices. The first results in this cat-linear dichroism in the same directipmne., the case where
egory yieldI">100, showing that the spin relaxation is in- the eigenmodes of the linear problem are linearly polarized.
deed very fas{17,18. In hindsight, using the theoretical When we choose the-y coordinate system to coincide with
analysis presented in this paper, this result is consistent witthis direction,o and e are both real valuedthe situation
earlier experiments, where the nonlinear anisotropies were>0 and e>0 corresponds withx-polarized light having
observed to be wedl5]. both the highest frequency and highest loss)ratethe more

In Sec. Il we introduce the SFM model, linearize aroundgeneral situation of linear birefringence and dichroism mak-
the stationary states, and discuss the stability regimes. Alsing angles¢, and ¢, with respect to thex-axis the param-
the relation between the relaxation oscillations and the polareterso- and e become complex, having phase facters' ¢«
ization dynamics is discussed. In Sec. Il we show how theande™? %< in Eq. (1a ande? ¢+ ande® %< in Eq. (1b).
linearized equations can be simplified in two different re-
gimes and how this provides physical explanations for the
polarization instabilities predicted by the full model. In Sec. A. Stationary solutions
IV we return to the original nonlinear equations to show how  The stationary solutions of the above equations have been
adiabatic elimination of the fast spin dynamics simplifies thegiyen in several papers; for the situation of aligned birefrin-
physics. The spin elimination is argued to have a broad vagence and dichroism, there are two linearly polarized solu-
lidity range; it is shown to reduce the polarization dynamicstions and two elliptically polarized solution, the latter being
of a vertical-cavity laser to that of a standard clas$gAs  staple only in a very limited range of parameter spiid®-
laser. In Sec. V- we show how the cubic crystalline symmetry; 51 \we will limit ourselves to the region of parameter space
plays a special role in possible generalizations of the SFMyhere only the linearly polarized modes are stable. Without
model within the spin-adiabatic limit. Finally, Sec. VI con- |oss of generality we can further limit our treatment to the

tains the summary. x-polarized state, as the laser feels the difference between
andy only through the sign of- ande; an interchange of the
Il. THE SFM MODEL; STATIONARY STATES x andy axes is equivalent to a simultaneous sign change of
AND LINEARIZATION o ande. The stationary state is easily found to be
The field polarization in semiconductor vertical-cavity la- E,=E_=Qe 140t (29

sers is generally described by the SFM model, which in or-
dinary time units readf6,10,11

E.=—(e+io)E_+x(1-ia)[(N-1)+n]E,, (1a 27— f;;://:%ﬂ 2b)
E_.=—(e+io)E.+k(1—ia)[(N-1)—n]E_,
(1b) Neg=1+ ¢/, (20)
N=—9[(N=1—pu)+(|E,[?+|E_|)N
+(|E4[*=[E_[?)n], (10 Aw=0+ ae. (2d)

S _ 2 2
n=—yn—»[([E.|[*+[E_[)n Note that, in the presence 6fveak dichroism, the equilib-

+(|E4 |~ |E_|*N]. (1d) rium inversionNq is almost, but not exactly equal to 1. Via
the « factor this results in a small carrier-induced shift of the
The notation is as followsE, and E_ are the circularly cavity resonances from theN{,=1) values, which might
polarized components of thelowly varying optical field(a  show up as a shift of thebsolute optical frequenayhen the
factore™'“! has been separated gutl andn are the average laser switches from one polarization mode to another. As
inversion between the- and — spin transitions and half the |e|<« for all practical situations we will frequently use the
inversion difference, respectively, i.e., the spin-dependent inapproximation in Eq(2b).
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B. Linearization around the x-polarized state tion anisotropies. This fortunate result of course reflects the
common basis for the intensity and polarization dynamics.

In the spirit of San Miguekt al.[6] we can linearize the
P g 6] The three eigenvalues of the second set of equatidns

original equations around the stationampolarized state by

writing in terms of R and n, determine the polarization dynamics.
These eigenvalues are more difficult to find, being the roots
E.=(Q+a,)e A, (33  of the equation
E_=(Q+a_)e A« @b (AN 2Q%y)[(N—2€)*+407]
S=a,+a_, (30) +4kyQ%(1+elk)(N—2€+2a0)=0, (7)
R=a,—a_, (3d) which, apart from the sign of, is identical to Eq.(43) in
Ref.[12]. When we use the experimental resldt< « [5]
N=Ngst AN, (39  and set D2~ y, as in Eq.(2b), the above equation becomes

whereQ is real valued and. anda_ are complex. Linear- (\+ y;+ yu)[(A—2€)2+40%]+ 2k yu(A—2e+2a0)=0.
ization of the original equations results inrigorous sepa- (8)
ration into two decoupled sets; this helps a lot. ) ) )

The first set of equations describes the coupled time evolhe isotropic case =e=0) has been discussed [6].
lution of the complex optical amplitude of the vector field, asHere the three eigenvalues of E@) are A =0, associated
characterized bﬁ, and of the average popu'ation inversion with the diffusion of the pOlal‘Izatlon direction that arises

N: from the absence of anisotropy, and two others given by
S= —j Y3 Y3
S=2«(1-1a)QAN, N ST 2= (rf27- o},
AN=—y(1+2Q?%AN C)
€ where we have useglu<vy;. The real or imaginary charac-
—2yQ| 1+ —|RdS]. (4b)  ter of these eigenvalues is governed by the comparison be-

tween the spin relaxation ratg, and the relaxation oscilla-

The second set of equations describes the coupled fluctuéion frequency w,. We have recently shown the spin
tions of the polarization direction and ellipticity, character- relaxation ratey; to be quite large,y;~200—-1000 GHz

ized byR, and of the population differenae [17,18. Since the relaxation oscillation frequency is often
_ much smaller atvp<27X 10 GHz[21,22, we conclude that
R=2(e+ioc)R+2k(1—ia)Qn, (58  experiments are generally in the regimg>2w,. In this
regime the eigenvalues given above can be approximated as
. €
n:_(73+2Q27)n_27Q(1+;)RG[R]- A~y (1089
(5b)
2Kk
The three eigenvalues of the first set of equations are eas- Ao~— r - (100

ily found. The (=0) eigenvalue corresponds to phase dif-

fusion. The other two eigenvalues= —\gr*iwg corre- The related eigenstates show that the eigenvaluis asso-

spond to the relaxation oscillations in the laser, where ciated mainly with a deviation of the inversion difference
from equilibrium, whereas , is associated with a deviation

7 a7 from linear polarizatiorn(the smallness ok, lets SFM con-
A= 5 (1+2Q9) =5 (1t ), 63 Clude that IFi)near polarization is only “nﬁarginally stable”
[6]). For higher pump parameters the eigenvalué\ ;| de-
wR= \/woz—)\zR, (6b) creases and|\,| increases, until they coincide at
N1=\,=—1;/2. For even highe, in the experimentally
wo=2QVky(1+ el k)~ \2kyu. (60) hardly accessible regimea> vy;, the eigenvalues obtain

an imaginary part and become each other's complex conju-
We note that a fit of the experimentally observed relaxatiorgate. The damped oscillation associated with these eigenval-
oscillation will thus provide for several important laser pa- ues is then sometimes denoted as the “polarization relax-
rameters. This makes it a very powerful experimental tool, ination oscillation”[6].
particular, because the value of parameters likec, andy For the more general case#0 ande+0, exact expres-
is usually rather uncertain. Specifically, the damping ate sions for the eigenvalues of E() are quite complicated,
of the relaxation oscillations at low output power, once cor-being the roots of a third-order polynomial l Instead of
rected for the finite laser linewidth, yields the carrier decaygiving these exact expressions, we concentrate on the condi-
rate y [19,20. The relaxation oscillation frequencwg  tion that one or both linear polarizations are stable, a condi-
yields the produckyu. We will find later on thaexactly the tion that translates into the requirement that all three eigen-
same producenters the equations for the nonlinear polariza-values correspond to damped motion and thus satisfy
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FIG. 1. Stability diagram for the laser polarization in the, &)
plane in the absence of dichroisr= 0). The stabilities of the low-
and high-frequency polarization mode are denoted by the labels
“lo” and “hi,” respectively. The two solid lines are the stability

yJ /1200 —= |0|

high-frequency mode is stable; the notation “lo,hi” denotes
the regime of bistability where linearization around both the
o< 0 and thes>0 mode yields stability; the notation “dy-
namic” in the upper right-hand part of the figures denotes
that at high birefringence and high pump parameter the laser
polarization is never stable and that the emitted optical field
will show chaotic dynamic behavidd1,12.

The boundaries between the various stability regimes can
be found by either setting the® term in Eq.(8) equal to
zero, or by using. =iv as a trial solution. Foe=0 there are
two stability boundaries. The sloping line in Fig. 1 illustrates
that the low-frequency modeos<0) loses its stability at
pump parameters aboy#0,11]:

r
Meerit™ a_K|U| (11

boundaries. The vertically dashed area shows the parameter rangfe (almos) vertical line in Fig. 1 shows that the high-

in which adiabatic elimination of the spin dynamics is allowed; thefrequency moded>0) loses its stability for a birefringence
horizontally dashed area shows the range in which nonlinear effect‘l%lrger than(10,11]

can be treated in a perturbative way.

ocit=(vst ym)l(2a). (12

Re(\)<0. The results of such an analysis can be summa-

rized in a “stability plot,” which shows the stability of the A comparison of the two stability boundarigggs. (11) and
low- and high-frequency mode as a function of birefringencg(12)], using Eg.(6c), shows that they cross at the point
o and pump parameter [10-12. As we will need these wherewy~y;/a (for yu<1y;). As for semiconductor lasers
standard results in the rest of the paper we have presentedis appreciably larger than 1; this means that the polariza-

them as Fig. 1, fore=0, and Figs. &9 and 2b), for
€=0.020 and e=—0.02s, respectively. The notation “lo”

tion relaxation oscillations mentioned earlier exist only at
pump parameterg that lie (high) above this crossing point.

or “hi” denotes the regime where either the low- or the For nonzero|e|<|o| the stability boundary for the low-

(a)
H hi
}

e
. ,/
L,
dynamic L

Y (200 —= |0l

(®)

—

~
L
dynamic L

frequency mod¢Eq. (11) is hardly changed, as shown by the
sloping lines in Figs. @) and 2b). The stability boundary
for the high-frequency mode is seriously affected though; at
high pump parameters it still approximately satisfies Eq.
(12), but at low pump parameter it bends away towards low
or high birefringence fok/oc>0 ande/o<0, respectively.
We note that at low pump parameters, when nonlinear effects
are relatively unimportant, the only stable mode is obviously
the one with the lowest loss, being the low-frequency one for
€=0.02r and the high-frequency one fa= —0.02s [see
Figs. 2a) and Zb), respectively.

The dashed areas in Fig. 1 show in a schematic way the
two regimes in which the complicated polarization dynamics
predicted by the SFM model can be treated analytically. The
vertically striped area depicts the regime of small linear
anisotropies and not too high pump rats|(| €|,2wo<y;).

In this “adiabatic regime” we will simplify the polarization
rate equation$Egs. (1) and (5)] through adiabatic elimina-
tion of the inversion differenca. The horizontally striped
area depicts the regime of relatively low pump rate and not
too low birefringence[ ku/(ol’)<€1], where the linear
anisotropies dominate over the nonlinear ones. In this “per-
turbative regime” we will simplify the equations by treating
the nonlinear anisotropies as a relatively weak perturbation.
The solutions that we obtain are of course most simple in the

FIG. 2. Stability diagram for the laser polarization in the g) ©verlap regime” of the two approximations. Although this
plane for the case=0.02r (a) ande=—0.02r (b). Note how the ~ Cross-hatched area looks small in Fig. 1 its can have a large

stability boundary of the low-frequency modsloping line is  €xtentin both ther and theu direction for the experimental
hardly affected by the dichroism and how the stability of the high-Situation of large spin-flip rate, i.e., largg . We believe that
frequency mode is drastically changed. Note also that at low pumpnost experiments on VCSELs have in fact been performed
rate only the mode with the lowest linear loss is stable. in this overlap regime, since in the experiment one typically
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has 10 GHz<|o|<50 GHz, |¢|<3 GHz, wy<60 GHz, anisotropies act as a small perturbation and where the square
y~1 GHz, andy;~200-1000 GHz[5,17,18. In Sec. lll  root in Eqg.(16) can be approximated to give

we will discuss the simplifications that are possible in the
various regimes and give physical reasons for the stability
boundaries in Figs. 1,(8), and 2Zb).

Kua

20+ T) (17)

KW .
= —_—t
)\112 2€ T gl

The physical insight comes from the interpretation of the
above eigenvalues. These eigenvalues characterize the la-
A. The adiabatic regime ser’s response to small excursions from the linearly polarized

In the adiabatic regime the linearized polarization ratestationary state, excursions that are driven by the random

equations[Egs. (5)] can be simplified through adiabatic fluctuating force of spontaneous emission. In the opt_lc_al
elimination of the inversion differenca(t). Inspection of spectrum of the laser these perpetual excursions are visible

Eq. (5b) shows that this is allowed when the variation of the asa V_Vef?"‘ additipna_l spectral peak that d‘ff?rs. from t_he main
field polarization, or more specificall) R4 R], is slow as peak in its _poIanzann a_nd generally also in its opt|c_al fre-
compared to the relaxation ratg, of the spin dynamics, qguency. This weak peak is often denoted the “nonlasing po-

which translates into the criteridn|,| e|,2w5< v, . This cor- larization mode,” in contrast to the strong “lasing polariza-

responds to the vertically striped area in Fig. 1. Adiabatic'®" mode” [1,4,9. Close to threshold(small x) the

elimination of n, using the obvious inequalitiesy®?< y; nonlinear effefcfts are weak anq,2§26t|20, SO t.hat the .
and e<«, gives frequency splitting between the lasing and nonlasing mode is

a direct measure for the linear birefringenggewhereas the
2Q difference between their spectral widths gives the linear di-
n=- 1 RER]. (13)  chroisme. In practice this proves to be a good assumption,
making the polarization-resolved optical spectrum a crucial
tool to analyze the laser’s anisotrop[és4,5). The above Eq.
(17) now shows how the nonlinear interaction in the VCSEL,
related to the dynamics of, affects this spectrum and how it
gives an additional nonlinear contribution to the damping

Ill. SIMPLIFYING THE LINEARIZED RATE EQUATIONS

Inserting this in Eq(5a), using 2%~ u, we obtain the fol-
lowing equation for the polarization fluctuations:

. ] 2km ) . ) 7
R=2(e+io)R— T(l_m)Re{R], (14) rate and optical frequency of the nonlasing mode of magni-
tude
where the first term on the right-hand side represents the K w%
linear (cavity-related anisotropies, whereas the second term, A Ynonlasing™ 7 g (183
J

being proportional to the pump paramejer represents the

nonlinear(medium-relateganisotropy. « w2
The eigenvalues of Eq14) are easily found by separating A®nonfasing= — okt __ 20 (18b)
this complex equation into two real-valued equations for r 2;

Rd R] and InfR]. For yu<vy; these eigenvalues are given

by the equation This set of equations is a key result of the present paper.

Equation (189 shows hownonlinear effects increase the
damping of the nonlasing modenonlinear effects can
0 (15 thereby stabilize the lasing mode, even when it has the larg-
est linear loss, and cause phenomena like bistability and po-
larization switching. Equatiofi18b) shows that thenonlas-
ing mode is effectively redshifted with respect to the lasing
5 mode This follows directly from Eq(17), which shows that
Ny = 2e— ﬂiiZa\/lﬂLaﬂ— E(ﬂ) (16) the frequency of the polarization beat will increase when the
: r ol' 4\ol high-frequency mode lasesr-0) and when we linearize
around this mode, whereas it will decrease when the low-
We note that the same result could have been obtained matfrequency mode lasesr0). In both cases the nonlasing
ematically by a separation of time scales in E8); in the  mode is effectively redshifted. Note that by rewriting the
adiabatic regime one eigenvale= — y; is much larger than “nonlinear damping and frequency shift” in terms of the
the other two eigenvalues so that division fyin combina-  relaxation oscillation frequency, we have effectively re-
tion with the requiremenf\; J <y; reduces the third-order moved all(badly known device parameters, except for the
equation(8) into the second-order equatigf5. We also  spin relaxation ratey;.
note that the eigenvalug46) evolve continuously from the To visualize the origin of the nonlinear contributions to
A=0 and\=—2«u/T" eigenvalues found earlier for the iso- dichroism and birefringence, Fig. 3 gives a graphical repre-
tropic case. sentation of the time evolution of the “polarization devia-
The important dimensionless parameter in Bd) is the  tion” R(t) in (a 90° rotated version pthe complex plane.
ratio ku/(oT')=w3/(20y;), which quantifies the relative The linear term 2é+ioc)R in Eq. (14 makes
strength of the nonlinear anisotropies as compared to th€Rd R],Im[R]) rotate around the stationary poi(tt,0), spi-
linear ones. Whencu/(oI')<1 we end up in the cross- raling inward or outward depending on the signeofin the
hatched “overlap regime” in Fig. 1, where the nonlinear meantime the nonlinear term in E{.4), depicted as arrows

KU

2k
(A—2¢€)%+ TM()\—ZE)+4O'2+4CYU' T

with solutions
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linear damping and indeed the mentioned value is not unrea-
sonable for the damping predicted by E#&8a. This semi-
quantitative analysis points in the direction of relatively fast
spin relaxation ['=100), consistent with recent experiments
that address the spin relaxation explicifly7,18].

B. The perturbative regime

We will next consider the perturbative regime
[ku/(oT)<<1], i.e., the horizontally striped area in Fig. 1.
In this regime the nonlinear anisotropies act as a small per-
turbation to the polarization dynamics and simple expres-
sions for this dynamics can be found even for large linear
anisotropies, where the adiabatic elimination roforeaks

FIG. 3. The evolution around a linearly polarized stationarydown. In the perturbative approach we will first neglect the
state, expressed in the deviationg Reand InfR]. Linear birefrin- ~ nonlinear term in Eq(5a), by settingQ=0, to obtain
gence alone will mak® rotate around the stationary point, whereas Ae+ion
linear dichroism will push it away or pull it towards this point. The R(t)=Rge : (19
action of the last term in Eq14) is presented by the arrows in the
figure; they show how the nonlinear anisotropy does not averag
out over a full round trip, but effectively pullR towards the sta-
tionary state, while also giving it additional spin. The nonlinear
term thus acts as effective dichroism and birefringence.

Substitution of this first-order result into Eq5b), using
le|<|o|,k and yu<1y;, yields

. (20

Ro _
~ 2(e+io)t
n(t) 2Q7Re{—n+2ige

in Fig. 3, will pull (R§R],ImR]) towards the line
(RdR]=0), while at the same time, far>0, giving it a
leftward push above this line and a rightward push below

this line. When the nonlinear term is small as compared to we thus_ find tha_t at reIatn_/er Iar_ge _blre_fnngence
. A . T : where the field polarization varies rapidly in timg(t) has
the linear one, i.e., in the “overlap regime,” its pushing and

pulling can be averaged over a full rotation. Averaging the difficulties following and acquires a phase lag, of the order

shows how it effectively helps to pull (RR],IM[R]) to- n20'/y3, with respect tdR(t). The consequences of this phase

wards the origin and how it leads to an increase or decreas!"é‘g’ and of the nonlinear effects in general, are found by

. ) ) . Substituting Eq.(20) back into Eq.(53). When we express
of the rotation _frequency, dependmg on the S'gmo.w'th. ._the resulting corrections by introducing a time dependence
respect toa. Figure 3 thus gives an elegant and intuitive

explanation for the effective frequency shift and dampingfor Ro(t) and averaging over a full rotation, using the
induced by the nonlinear effects, i.e., the mechanism behing tating-wave approximation by keeping only the positive

Eqgs. (18). fequency terms, we obtain

The nonlinear contributions to dichroism and birefrin-
gence, as predicted by Eq4d.8), give quantitative explana- . kpw l-ia
tions for the deviations observed in earlier experiments on Ro(t)~— 7 mRo(t)- (21)
VCSEL anisotropies[5]. In these experiments linear J
anisotropies were found to dominate the VCSEL's polariza-
tion state and a simplélinean coupled-mode description For|a|<y; we recover from Eq(21) the earlier result Eq.
was sufficient to explain almost all experimental observa{18) that relatively small nonlinear effects result in an effec-
tions. The small deviations that remained were already tertive dichroism and birefringence of magnitude./I" and
tatively attributed to nonlinear effec{$]. With the theory axu/I', respectively; for larger birefringence it shows how
developed here, we can be more specific. Figure 4 in[Bgf. the phase lag experienced hyt) is translated into a redis-
indicates that the measured frequency splitting between lagribution and possible reduction of the nonlinear dichroism
ing and nonlasing modes is slightly larger than the linearmand birefringence.
birefringence in the VCSEL. With the present knowledge we When we do not use the rotating-wave approximation we
attribute this to a redshift of the nonlasing mode induced byfind a small counter-rotating terfmegative frequengy with
nonlinear effects. The offset of 0.2 GHz mentioned in Ref.a magnitude that is determined by the relative strength of the
[5] is a reasonable value for the redshift that is predicted byonlinear anisotropies as compared to that of the linear ones.
Eq. (18b) and the sign agrees with the observation that theThis term shows that, due to the nonlinear anisotropR¢s)
high-frequency mode was lasing. Figure 7 in R&f.shows does not evolve around perfect circles or spirals, but instead
another deviation: the width of the nonlasing mode wasaround elliptical trajectories. Hoffman and Hd23] have
found to be larger than could be expected on the basis of theecently predicted how the counter-rotating term will show
measured linear dichroism, and, although part of this disup as a, generally very weak, four-wave-mixing peak in the
crepancy could be attributed to the finite width of the lasingoptical spectrum, being a mirror image of the nonlasing peak
mode, about 0.2 GHz remained unexplained. We now atwith respect to the strong lasing peak. Very recently, this
tribute this additional damping of the nonlasing mode to nonpeak has been observed experimentgliy].
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C. Physical explanations for the stability boundaries ization dynamics of gas lasers, we will now return to the
v\priginal nonlinear equation€gs.(1)] and try to solve these

via adiabatic elimination. A rigorous adiabatic elimination of
both the inversion difference and the average inversiow

With the simplified expressions derived above we are no
able to give physical explanations for the instability bound-

aries in Figs. 1, @), and Zb). The first boundaries to be

discussed are the sloping lines in these figures, which shoi\;/‘d"jISS A" elimination) has been described in a recent paper
ping . gures, y Travagninet al.[24]. The assumptions used in that elimi-
how the low-frequency mode loses its stability at pump pa-

rameters above. . To be more precise. numerical calcu- nation are that the optical field fluctuates slowly as compared
Bl - P ' to both population decay rateg and y;, that y<<vy;, and

lations based upon the SFM model predict that When tthhat the laser operates close to threshdfl,(+ |E . [2<1).
low-frequency mode lases at low pump parameter, this mOd‘Ia'his leads to a set of rate equations for the fi;&ds and

will become elliptically polarized g, and lose its stabil- E_, which are a polarization variant of third-order Lamb

ity at slightly higher pump parameter, leading to a polariza- . .
tion switch; when the high-frequency mode initially Iases,theory [25] and which have as key parameter the ratio of

: . : : cross- and self-saturation of the circularly polarized fields,
nothing special occurkl1,12. The explanation we give for . . - .
this phenomenon is the following: Inspection of E4), for ]EgrAJWh'Ch the expressiof1—(1/1)}/[1+ (1] is found
the practical case:>1, shows that when the low-frequency 'I:he adiabatic elimination of the average inversidns
mode lases < 0), the frequency splitting between the two 9

modes will decrease with increasing pump parameter up tglsputable, because the relaxation ratis generally not fast,

aboutu;;, where the frequencies will coincide. Beyond this and in fact then slow, as compared to thg tlmg evqlu.'uon. of

: : : : : the optical field. On the other hand, the adiabatic elimination
point the eigenvalues will quickly acquire large real parts f the inversion difference from the original rate equations
and the polarization becomes unstable. On the other han s.(1) is generally allowed. The crite?ion for thisqelimina-
when the high-frequency mode lases*0) the nonlinear tign .is thatgthe “dri¥/in forcé” in Eq.(1d), i.e., the product
effects will lead to an increase of the mode splitting and N(E. |2~ |E_|) var?es slowl asq.com, éréa o tFr)we relax-
nothing special is expected to happen. A measurement of th;étion r;te Klariations inN a>r/e intrinsigall slow due to
polarization frequency splitting versys can thus decide Y3 y

. . . B _lN .
whether the observed polarization switch is induced by nonEhe relatively long carrier lifetime “~1 ng, but coupling

linear effects, or by a shift in detuning of the cavity reSO_with the intracavity field via stimulated emission speeds up

nance with respect to the semiconductor gain spectrum E}Qese fluctuation§_ to the relaxatio_n pscillation freque%y
induced by self-heatinfL3] ' 'So that the condition for slow variations M translates into

B . . 2_ 2 . . . .
In Fig. 3 the instability mentioned above occurs when the®0<73- Variations in (E+! [E-[9), i.e., in the elliptical .
omponent of the laser field, are also slow under certain

nonlinear terms, depicted as arrows, are strong enough i . : o
effectively stop the rotation induced by the linear birefrin- conditions. A typical time scale for these ellipticity fluctua-
fions is not the cavity loss rate, but rather a time scale

gence. The flow pattern around the stationary state will the e . ) i .

deviate considerably from the nonsaturated pati¢here related to polarization anisotropies. When the linear anisotro-

will be, among others, a strong counter-rotating teamd at pies dominate over the nonlinear ones, the field polarization
’ ' |evolves approximately with a “frequency” 2(—ie) [see

high enough pump rates it will open up to destroy the stabi ; o . A
itygof this gtat%. P P P y Eqg. (14)], making the condition for adiabatic elimination
The other stability boundaries in Figs. 1(a2 and Zb) equivalent to|a|,|e|<y;. When the linear anisotropies are

show how the high-frequency mode loses its stability at large® weak that the nonlinear effects dominate, the elimination
birefringence. The explanation for these boundaries lies ifS 8!S0 allowed as long as the latter are weak, a condition that
the breakdown of the validity of the adiabatic elimination of €OTTESPONS t@ <7y, . As discussed in Secs. Il and IIl both
the spin dynamics. For the perturbative regime &) al-  conditions, i.e.|o},|¢|<y, and wp<y,, are quite reason-
ready showed how this breakdown leads to a shifted balanc@!€ for practical VCSELSs; together they correspond to the
between the absorptive and dispersive nonlinear terms. In thgtically striped area in Fig. 1.

graphical representation of Fig. 3 this phase lag corresponds USing the inequalities

to a rotation of the arrows in a clockwise or counterclock-

wise way for the high- or the low-frequency mode, respec- (N-1)<1, (229
tively. For the case=0 the effective damping and stabili-
zation of the high-frequency moder£0) is thereby lost at |E.|?+|E_|?<T (22b)

valueso> v;/(2«), where the arrows have crossed the hori-

zontal direction and point away from the equator instead ofn Eq. (1d), the adiabatically eliminated becomes
towards it. This inequality agrees with the stability boundary

of Eq. (12). For the cases#0 the stability of the high- 1

frequency mode is lost when the damping due to nonlinear n=— F(|E+|2—|E,|2). (23
effects becomes equal to the linear dampiénghis criterion

reproduces the curved stability boundaries in Figa) and . ) ) .
2(b). Note that to obtain this result we did not need the assumption

of “operation close to threshold,” i.e|E . |?+|E_|?<1, as
was the case for the full class A elimination, but only the
much weaker assumptidi_ |+ |E_|?<T; this assumption
To get a broader view on the physics behind the SFMs enough to validate the third-order Lamb theory for the
model, and to compare it with existing models for the polar-field polarization. Note also that the inequality { 1)<<1 is

IV. ADIABATIC ELIMINATION OF SPIN DYNAMICS
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naturally satisfied in semiconductor lasers wheeey, and  the saturation, and, as a measure for the dispersive nature
where small deviations fronN=1 already lead to large of the saturation. In Eq$258 and(25b) the linear anisotro-
variations of the laser field. pies are of course also a special case as we restricted the
At this point it is convenient to separate the optical inten-treatment to linear birefringence and dichroism in the same
sity and polarization by introducing the so-called Stokes vecdirection. However, because of the mentioned equivalence,

S we can now use the result that Van Haering28] found for
or $=(51,52,55) as[12,26,21 the general class Aga9 laser to obtain the polarization rate
s;=2 RGE*E_]=1 cos 2 cos 2p, (243 equations for a spin-eliminated VCSEL with arbitrary linear

and circular birefringence and dichroism. By rewriting Van
Haeringen’s anisotropy functions;(y,¢) and hy(x, ) in

— * _ H
S;=2ImELE_]=1 cos % sin 24, our notation we find

(24b)
Y=0 Sin A¢p— ,)+ € sin 2y cosA p— ¢,)+ €. COS
SSI|E+|2_|E,|2:| SinZX, (24C) X 2(¢ ¢ ) X Zd) ¢) Cc 2’(
—(kl/T")sin 2y cos %, (269
wherel is the optical intensity, and where the angjesnd ) )
¢ represent the polarization state. The angle@<w char- - _ _ sin 2Xcos Ad—b,)+ 65"1 Ad—dbe) -
acterizes the polarization direction; it is the angle betweeﬁﬁ Cos 7 CoS % ¢
the long axis of the polarization ellipse and thexis. The
g & poianzaton etip X! — a(kI/T)sin 2y, (26b)

angle — w/4<y<mw/4 characterizes the ellipticity of the

light; x=0 corresponds to linearly polarized light, whereas\yhere the angles, and ¢, denote the orientation of the
x= = /4 corresponds to circularly polarized light. Using the inear birefringence and linear dichroism with respect to the
angles (%,2¢) as spherical coordinates, the polarizationx axis, and where the symbals. ande, are possible circular
state can be conveniently depicted as a single point on thigirefringence and dichroism, respectively.

Poincaresphere 26]. As the polarization rate equations of a spin-eliminated
Substitution of the adiabatic value of[Eq. (23)] into the  vertical-cavity VCSEL and a class @a9 laser are identical,
original Egs.(1) yields three equations in termsBf., E_,  within the context of third-order Lamb theory, this should in
andN. Rewritten in terms of){,1, x, ¢) we get the following  principle allow for an easy comparison between the two la-
spin-eliminated version of the SFM model: sers. In practice, the polarization dynamics might still be
quite different as the lasers operate in a different parameter
Y=o sin 26+ € sin 2y cos 26— («1/T)sin 2y cos 2, regime of the same set of equations. First of all, the ideal

(253 isotropic gas laser generally shows a strong preference for
either linear or circular emission, whereas the ideal isotropic
sin 2y sin VCSEL is expected to show only a mild preference for lin-
—a(kl/T)sin 2y, early polarized emission, due to the relatively large spin flip
cos % rate; for gas lasers typically <10, whereas VCSELs have
(25D I'>100[17,19. As a consequence, Van Haerind@8] has
. ] to work with the adiabatic intensity(y, ), which might
I =2k(N—1)I—2el cos 2 cos 2p—2I(«I/T)sin 2y, depend strongly oy and ¢, where for VCSELSs one is often
(250 allowed to use a constant intensity Secondly, the gain
spectrum of gas lasers generally has a symmetric Voigt-type
profile, whereas that of semiconductor lasers is highly asym-
metric. As a consequence, the gain maximum in the gas cor-
responds to zero detuning, whereas that in the semiconductor
which is identical to Eqs(34a, (34¢), and(34d) in the erra-  still contains “intrinsic detuning” that is reflected in a non-
tum of Ref.[11], if the population difference is eliminated  zero« factor and that breaks the symmetry between low and
there. high optical frequencies.

A further adiabatic elimination of the average inversibn To obtain some more insight into the polarization rate
would obviously reduce the above set of equations to a speequations(253 and (25h) we will present them graphically
cial case of the class Agag laser[28]. However, even with- in terms of flow lines on the Poincaspherg 29,30 Figure
out the elimination ofN, the first two equationdEqs. 4 gives graphical representations of the action of the four
(259,(25b)], which describe the polarization evolution of a driving mechanisms that can be distinguished in these rate
spin-eliminated VCSEL, are already equivalent to those of &quations. Figure (4) shows how the combined linear and
class A laser. The mathematical argument is that the averaggrcular birefringence alone will make the Stokes vecior
inversionN simply does not appear in these equations. Th‘?otate at a uniform rate |Q| around the vector

physical argument is that a deviation Mffrom equilibrium Cﬁ=(ocos2ﬁg,asin2¢g,ac). Figure 4b) shows how the

will lead to equal gain or loss for all Stokes parameters an . g : . )
thus cannot affect the field polarization. combined linear and circular dichroism makes the Stokes

When comparing the polarization dynamics of a spin-Vectors decay towards the vectoe (cos 2p,, € sin 2¢. ;).
eliminated VCSEL with that of a general class A gas laserfigure 4c) shows how the “absorptive” nonlinear effect,
we note that the VCSEL is a special case because of thee., the effect that is independent @f will pull the Stokes
specific form of its nonlinear anisotropies, which is deter-vectors towards the equator with a force proportional to the
mined byI", as a measure for the polarization anisotropy ofoptical intensityl multiplied by sin 4, i.e., twice the devia-

2
N=—r (N—l—,u,)+IN—Fsin2 2x!, (250
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new physics, but only lead to a different value and a some-
what different interpretation of. The reason is that for a
class A laser with rotation-symmetric saturation one needs
only one parametel’ to describe the polarization depen-
dence of the saturation; this parameter is essentially the ratio
of self-saturation and cross saturation of the circularly polar-
ized modes, or the ratio of the saturation power for circularly
polarized light as compared to that for linearly polarized
light. Within the adiabatic limit, the only way to really gen-
eralize the SFM model is therefore the removal of the rota-
tional symmetry of the saturation process by the introduction
of the cubic crystalline symmetry of the 111-V semiconductor
material on which most VCSELs are based. The hard way to
introduce the crystalline axes into the problem is by extend-
ing the microscopic “atomic” four-level model of SFM into

a full band structure, i.e., by performing an extensive calcu-

lation of the k-dependent densities of states and transition
moments[31]. The easy way is to eliminate these micro-
scopic variables from the start and to restrict the discussion
to the symmetry of the macroscopic problem.

FIG. 4. Graphical representation on the Poincsphere of the To discuss the symmetry we will follow a general ap-
polarization evolution due to the four driving mechanisiag:only ~ Proach in nonlinear optics in which the dynamic response of
birefringence ¢<0), (b) only dichroism €<0), (c) only “absorp-  the active medium is completely contained in the frequency
tive” nonlinear effects(for a=0), (d) only “dispersive” nonlinear ~ dependence of the third-order susceptibility terjS&,33
effects(effect of a# 0 only).

©)

m

Xi(j3k)|(w1+w2+w3;w1,w2'ws): 27

tion from the equator for smaj}. Figure 4d) shows how the . L ) )
“dispersive” nonlinear effect, i.e., the one that scales withWherei,j.k,I are Cartesian indices, being eithery, or z.
a, causes a rotation around the north pole with a strengtf© describe the laser dynamics with this formalism, one
that once more scales with the produicin 4. needs to known the frequency behavior of & tensor for -

Whereas the action of the individual driving mechanismsoptical frequencies, i.e., in the neighborhood of the point
is easily understandable in the graphical representation g1~ @2~ ~ @3~ Wjaser. SYMMElry iMposes strong restric-
Fig. 4, it is their combined action that makes the physicgions on the number of independent coefficients of the 81-
interesting. As a first example of interesting behavior weelementy® tensor. Most textbooks on nonlinear optics con-
mention the case where the nonlinear effects are fully isotrot@in tables that show the number of independent elements of
pic (I'—), making the last term in Eq$26a and (26b) thg abovg tensor to pe only_4 in cubic crystalline med@\ and
equal to zero. For this simple case, the combined action of in rotation-symmetric medigsee, e.g[32]) For the special
just linear birefringence and dichroism in different directionsCasew;=w,= — w3 the number of independent elements re-
already makes the stationary states elliptically polarized; it ifiuces even further to 3 and 2, respectively. For an isotropic
fact produces two elliptical eigenstates with the same handda@in medium the two independent elements are essentially
edness, as also follows from a linear coupled-mode descrighe saturation power for circularly polarized light and that for
tion [6]. As a second example we mention the case ofinearly polarized light. The ratio of these two is the only
aligned linear birefringence and linear dichroism that formsParameter that determines the laser’s polarization dynamics;
the heart of this paper. For small deviations from the linearlyit is basically the parameter of the SFM model, or the
polarized stationary state this case was described in Sec. IparameterS of Van Haeringen. Only for a nonrotationally
with Eq. (14) and graphically represented as Fig. 3. We nowSymmetric cubic crystalline gain medium will there be an
understand that Fig. 3 is just a head-on view of the Poincaradditional (third) degree of freedom left, being the coeffi-
spheregFig. 4), where RER] and InfR] correspond toe and ~ cient A that describes the “cubic’{1+A cos(4p)] angle
— ¢, respectively, while the line (R&]=0) corresponds dependence of the saturation power for linearly polarized

with the equator of that sphere. light. . - .
Whether or not one is allowed to limit the treatment in

terms of x(®) to the pointw;=w,= — w3, thereby reducing
the system to a class A laser, depends on the frequency de-
In the previous sections we have shown how adiabati@endence ok® as compared to the various optical frequen-
elimination of the inversion difference reduces the polar- cies that play a role. The answer to this question is generally
ization dynamics of a VCSEL to that of a class A laser. Adifferent for the isotropic and anisotropic componenj6?,
similar elimination will be possible for other fast variables which  describe  the polarization-independent and
that are introduced to the problem, as, for instance, a furthgpolarization-dependent parts of the saturation, respectively.
separation of the spin populations in electrons and holes. [fhe frequency dependence of the former reflects the dynam-
one retains the rotational symmetry of the saturation procegss of the overall inversion of the active medium and as the
the introduction of these new variables will then produce ndatter is slow, the isotropic part of® will vary strongly

V. ROLE OF CRYSTALLINE SYMMETRY
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with frequency. One is therefore not allowed to treat thethe comparison between theory and experiment we propose
isotropic saturation, and related intensity fluctuations, into study the relaxation oscillations, as these should provide
terms of a simple class A model. The anisotropic pang@t, ~ for an easy experimental approach to quantify several impor-
on the other hand, varies much less with frequency, due téant laser parameters.

the fast response of the active medium to polarization We have discussed several experiments in which the ef-

changes. For the anisotropic partydf) one might therefore fecti\{e frequency shift .and broadening, which are predicted
just as well use only the value at the exact pointto arise from the nonlinear effects, have been observed or

©,=w,=— w3, at least when the relevant optical frequen-Wi” be observablg5,18]. We have also discussed the physi-

: { - ; al origin of the two types of polarization instabilities of
cies differ much less than the inverse response time of th ; " .
medium to polarization changes. This will théagair) re- CSELs. One of these instabilities was attributed to the ef-

duce the polarization rate equations of the VCSEL to thos%ic,:mg rrﬁgzzmeﬁf égfngog{?rilg %;[1’: dg\’/;glgn\,%izﬂigzqgf ?ﬁg
of a class A laser. lasing mode. The second instability could be associated with

not onlv applv to a bulk biece of cubic crvataliine material 3 breakdown of the validity of the adiabatic elimination of
y apply P y ’ the spin dynamics.

but also to any vertical-cavity structure engineered from this We have shown how the “SEM model” for semiconduc-

matzrr'sé'uﬁ?e\?altgefgyerﬁgrﬂﬁmca:ﬁwg?gsm'4:0'\‘7’Wghgrs1 a tor lasers reduces to the “Van Haeringen model” for gas
b q 9 lasers, when the population inversion is adiabatically elimi-

,(Aloaoi)n S?nb?;r:;i' l:’;gf; ﬂ']se b)(I)IL?irzgt]iinr-Tc]jZSterﬁgznngtucgstﬁ)hated' The polarization rate equations of the two models
gain, P p Were found to be already fully equivalent when only the

can be fully described by one or two parameters, depend"lﬁopulation difference is eliminated. This allows for an easy

on whether one assumes rotation Sym”.‘e”'c saturation comparison between polarization effects in VCSELs and gas
includes the cubic crystalline symmetry in the form of an lasers

orien_tation-dependent saturation power. The_ fact that in Finally, we have shown how the cubic crystalline symme-
practice fche exact symmetry Of. the laser IS brokgn bytry plays a special role in possible generalizations of the
anisotropies, like the linear birefringence mentioned in th

Introduction, will hardly change this saturation behavior aESFM _model within t_he context of adiabatic spin eIi_mination.
these anisot,ropies are generally very smedllg—* in terms Keeping the rotation symmetry of the saturation, the_re
of the complex refractive index proves to be only one parameter that describes the polariza-
tion dependence of the saturation process, being the param-
eterI" in the SFM model and the ratio of self- and cross-
V1. SUMMARY saturation of the circularly polarized modes in the class A
The key results obtained in this theoretical overview ofmodel. Possible generalizations can therefore only affect the
VCSEL polarization are as follows. Through adiabatic e"mi_value.and .inter.pr(.etati.on of this parameter. Within the context
nation of the spin or inversion differencewe have derived of adlabat|g elimination, the _only way tp introduce a new
simple expressions for the nonlinear contribution to the meaParameter into the problem is to explicitly account for the
sured spectrum of the lasing and nonlasing mode. The valigtubic crystalline symmetry since this breaks the rotation
ity range of these expressions is quite large; they remai§ymmetry of the saturation.
valid as long as the optical field varies slowly as compared to _For completeness we add that ¢and SFM’g model of a
the medium response to polarization changes, which trans/CSEL assumes that the device is spatially and spectrally
lates into| o] €],20o<y;, i.e., to the vertically striped area uniform, i.e., effects due to spatial and spectral hole burning
in Fig. 1, whereo and € are the linear birefringence and '€ neglected. Although so far the mo_del _has be_en quite suc-
dichroism, respectivelye, is the relaxation oscillation fre- €€ssful we suspect that these complications will ultimately
quency, andy, is related to the spin-flip rate. A further re- limit its validity. _ _
striction to the case where the linear anisotropies dominate NOte added in proofAfter completion of this work the
over the nonlinear ones, i.e., the cross-hatched area in Fig. fionlinear redshift and damping given by Ed283 and
provides the result that is most useful for current experi—(igb) were also discussed in R¢B4].
ments. Equation$18) show how nonlinear effects are pre-
dicted to result in(i) an extra damping of the nonlasing mode
by an amounju«/I", and(ii) a redshift of the frequency of We thank M. San Miguel and J. Martin-Regalado for use-
the nonlasing mode by an amoua{ux/I"). We have ar- ful discussions. We further acknowledge the support of the
gued that most experiments are indeed performed in thiStichting voor Fundamenteel Onderzoek der Matéf@M),
“overlap regime” as typical values for the various param-the European Union ESPRIT Project No. 20029
eters are 10 GHz |o|<50 GHz,|e|<3 GHz[6], wy<60 (ACQUIRE), and the TMR network Grant Nos. ERB4061
GHz[21,22, andy;~200- 1000 GHz[17,18. To facilitate  and PL951021Microlasers and Cavity QED
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