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Direct measurement of the quantum state of radiation field
from the resonance fluorescence spectrum
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We show that, for a pure state, the quantum state of the radiation field can be directly determined from the
resonance fluorescence spectrum when the quantized field serves as the driving field for the two-level atoms.
This happens when the vacuum Rabi frequency is much larger than the atomic decay rate. The proposed
method is insensitive to the detector efficient$1050-294{08)09102-1

PACS numbd(s): 42.50.Dv

[. INTRODUCTION The theoretical analysis of the problem of resonance fluo-
rescence by a quantized driving field is much more compli-

One of the conceptually simplest systems in quantum opeated as compared to the case when the driving field is taken
tics is a two-level atom interacting resonantly with a single-to be classical. The problem arises due to the fact that the
mode radiation field, such as in the resonance fluorescenatationarity condition is no longer valid. As the atom inter-
from a two-level atom. In this paper we show that the quan-acts with the quantized field, photons are gradually removed
tum state of the radiation field can Heectlyrecovered from from the field at the rate of the atomic decay rateWe
the spectrum of the resonance fluorescence from two-leveherefore need to calculate the nonstationary spectrum of the
atoms driven by the quantized field. fluorescent light.

A number of schemes has recently been proposed to ob- A necessary condition to recover the quantum statistics of
tain information about the quantum state of the radiatiorthe driving field from the resonance fluorescence spectrum is
field. These include methods based on dispersive atom-fielthat the vacuum Rabi frequency is much larger than the
coupling in a Ramsey method of separated oscillatory fieldatomic decay rate. This condition was satisfied in recent ex-
[1], atomic beam deflectiof2], quantum state tomography periments on vacuum Rabi splitting in optiddl2] and mi-

[3], conditional measurements on the atoms in a micromasarowave[13] regions. In addition we would require that at
set-up [4], quantum Rabi oscillation$5], Autler-Townes most one photon is emitted during the atom-field interaction.
spectroscopy6], homodyning 7], photon chopping8], and  This requires that the interaction timig which should be
photon countind9]. An interest in this subject stems from much larger than the vacuum Rabi frequengyshould be

the possibility of studying nonclassical states of the radiatioomuch smaller than the atomic decay r&teWe shall there-
field, such as the squeezed stdt@] and the so-called Schro fore consider the situation when the following inequalities
dinger cat statéwhich is a coherent superposition of two are satisfied:

coherent stateg11]. These states lead to oscillating photon

distribution functions. In this paper we show that a determi- g>yg>1UT>T, (1)
nation of the quantum state, and hence the photon distribu- . . S
tion function, ?rom the spectrum of the resoFr)lance ﬂuoresy"here”d is the half-band-width of the spectrometer which is
cence can lead to a direct observation of such nonclassicH?ed to measure the spectrum.

features.
The present scheme has two major advantages. First, the |- RESONANCE FLUORESCENCE SPECTRUM
photon number amplitudes of the field are recovered from AND QUANTUM STATE MEASUREMENT

the fluorescence spectrum directly, and no major numerical
computations are involved. Second, the proposed scheme
insensitive to the detector efficiency, which poses seriou
problems in observing the nonclassical aspects explicitly i

certain other schemes. Before calculating the resonance fluorescence spectrum,

| Tlhe prolposed scheme rEIiesllo'n the fr?Ct that the a:corr?iﬁ,e consider the essential features of the spectrum from a
evels display dynamic Stark splitting in the presence of thgj eqqed_state picture of the atom-field interaction. The inter-
driving field. The splitting is proportional to the associated jion picture Hamiltonian of a quantized field mode inter-

Rabi frequency. Thus the resonance fluorescence Spectruitiing resonantly with a two-level atom, in the rotating-wave
displays peaks whose heights are independent of the Ra bproximation, is

frequency, and which are displaced from the resonance by
the Rabi frequency. If the driving field is quantized, the as- H=#g(|a)(bla+ aT|b>(a|), 2)
sociated Rabi frequencies are distributed according to the

photon distribution function of the field and the resulting wherea anda' are the annihilation and creation operators of
spectrum would mimic the photon distribution function of the driving field, andg is the corresponding vacuum Rabi
the driving field. frequency. The eigenstates of the Hamiltonian are

e consider a system of two-level atoms with leviels
&hd |b) driven by a quantized field inside a high-cavity
14]. The driven atoms radiate spontaneously in all direc-
ions, and we look at the spectrum of the radiated light.
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—_— ) where
T Q, n + 1 quanta
—_—) -
N=38(0)|sg-1+ 2, S(0)|gg-(irsm- (6
Wab n=1
_— |+n-1) In the dressed-state picture we have not accounted for the
Y o, n quanta atomic decayl” from level|a) to level |b). A complete cal-
culation of the spontaneous emission spectf(ma) for the
—_—t |-n-] quantized driving field can be carried out by first finding the

o ] ] ~two-time field correlation function of the scattered light and
_ FIG. 1. Splitting of the atomic levels in the dressed-atom-field, -, taking the Fourier transform.
picture. The physical spectrurB(w) of the nonstationary fluores-
1 cent light at some suitably chosen pointin the far field
is obtained by taking the Fourier transform of the normally
B E(|a,n>i b.n+1)), ) ordered correlation function of the field
(EC(r,t) E(r ) [15], i.e.,
with eigenvalues+ 7 ,/2 and— 7%, /2, respectively, where
the ‘“generalized” Rabi frequency is defined by,
=2gyn+1. Therefore, the previously degenerate states . .
a,n) and|b,n+1) are split into a doublet of dressed states _ —(yg—io)(T—ty) o= (yg+iw)(T—t
|sepe>1rated| by, a>s shown in Fig. 1. For a classical field ( S(w)—Zydfo dtlfo dtge” (7aTiNT e (il
>1), these dynamical Stark split doublets have almost equal
spacing, thus leading to the well-known three-peak spectrum. X(EC(r t)EF(r ). @)
For a quantized field, there are four single-photon sponta-

neous emission linesee Fig. 1 These lines are located at ] Ry ] ]
As the field operatoE(*) is proportional to the atomic low-

ering operatolr _ at a retarded time, we obtain
wIwabi(QniQn,l)/Z, (4)

= waprg(Vn+1=n). (TNt E (b)) =lo(r)(o (o (),  (8)

Thus a plot of the fluorescence spectr@fw) versusd/g

(with 6= w— w,p) would yield four peaks for each value of
n located at*(y/n+1=n) distributed according to the
photon distribution functiop(n). However, it may be noted

that the peeﬂ<ifon=0 will be degenerate, and will be_lo- value of the interaction picture dipole operater_(t)).
cated atd/g==1. We therefore expect the peaksaiy= The equation of motion for the various atom-field matrix

+1 to have double heights as compared to the peaks qt Ot_hsfements can be written in a compact matrix form as
values ofé/g. Thus we should be able to recover the distri-

bution function of the field from the resonance fluorescence

wherel o(r) is a constant. The two-time correlation function

(o, (ty)o_(t,)) can be calculated by using the quantum re-
gression theorem if we know the appropriate single-time cor-
relation function. We are thus interested in the expectation

spectrum via the relation RV — _ M (mR(M) 4 g(nm) )
! here RM™™ | tor with el tR{"™
/T/S(“’)|5/g:<\fM+ @ Wwhen n>0 where (rl]sm)a column vec((zrm)m elemen L

ps(n)= (5) =pPanam: Ry =ppniiam: R =panpmi1, Ry’

= pont 1omr 1 B™™ is a column vector whose only nonva-

1
ﬁfs(w)b/g:l when n=0, nishing element i8{"™=Tp, 1 m+1, and

r igvyn+1 —igym+1 0

M) igyn+1 rr2 0 —igym+1 10
| —igym+1 0 /2 igyn+1 |’ 19

0 —igym+1 igyn+1 r
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" . . o
In writing this equation, we used Pons 1an(ty) = (& Mty co(612)| w2

—m(nn)

+(e 11),,c0q 6/2)sin( BI2)w,w*, e'¢

Pan,am™ Pbnbm= Pn,m> (11

—Mm(nMy, : —ig
where p,, ,, represents the matrix elements for the field op- +(e )23C0g 6/2)Sin( 0/2)w,, W, e

erator only. A solution of Eq(9) can be found aswith t,
>t,)

—m(nn)

+(e 1) 5,SINP( 0/2)| W 4] % (18)

(n,m) — a= MMMt —t ) 5(n,m)
RET(t)=e AY On substituting forpa, an(t1) and ppnt1an(ts) from Egs.

2w (17) and(18) into Eg. (15), we obtain the two-time correla-
+J e (27B"™dt’. (12 tion function (o (t;)o_(ty)) for t,>t,. The correlation
E function for t;>t, can be obtained by taking the complex

When inequalitieg1) are satisfied, we can ignore the secondcPnjugate and interchangirig andt,.

term in Eq.(12), and obtain The matrix elementgexp(—M™™t)]; can be determined
' by expanding in terms of the eigenstates of the matrix
RVM(1,)~e M "™ WRnm) ¢ ) 13 M®™™. For example,

The interaction picture dipole operatfs_(t,)) is now
given by 0.6 (a)
(0-(12))=Tr(p|b)(a))= 2, panpn(tz)e™ et 0.4
% p(n)
=1
:nzo [(e™™ (27) 3ppns 1n(te) 0.2
—MMN= D, —tg)
+(e 2 l)33pan,bn(tl) 00 5 . : 5 = 75
—mnn=1) n
+(e™™ 271) 3pp s 1an—1(t1)
+(e_M(n’nil)(tz_tl))?,lpan,anfl(tl)]e_iwabtz- 4
(14) (b)

Using the quantum regression theorem, we can simply cal-
culate (o, (t)o_(tp)) by employing paon(ty) o (ty) in- S @)
stead ofp,ion(t1) in EQ. (14). The resulting expression for

(o4 (t)o_(ty) is

“MO gy A A
(o4(t)o(tp)y=2 [(e™" 127 W)guppn 1 an(ty) 0
n=0 0 2 4 6 8
(nn-1) o
+(e_M ' (tz_tl))33Pan,an(t1)]
X @ twaplt2~t), (15
0.6 (c)
We assume that the atom is initially in a coherent superpo-
sition of states, i.e.,
. 4 pm)"*
|#a(0))=cod 6/2)|a)+sin( 6/2)€'?|b), (16) s
wheredg is a relative phase and the state of the field is given 0.2
by =,wp|n). We then obtain
_m(n,n) 0
Panan(ty)=(e""" ") ,c08( 6/2)|w,|? 0 2 ! n6 s 10 12
+(e_M(n'n)t1)lzcos( 0/2)sin( 6/2)anf1‘+1ei"S FIG. 2. (a) Photon distribution functiorp(n) for a squeezed

. . _ vacuum state witli=1. (b) The spontaneous emission spectr8m
+(e”M71) 1 ,c09 0/2)sin(6/2)wy WieT'? (in arbitrary unit§ vs /g for y4/g=0.1, gT=100, andI'/g

. =0.001.(c) The photon distribution functiopg(n) recovered from
+(eM""M) SirR(612)| Wi 4|2, (170 (b) according to Eq(5).
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_m(n,n=1)
t)34:|2l (eM t)34E|TE|

7}\|(n,n71

Yab)*dy,, (19

M =

e
I

1

whereE, is the eigenstate of the mati (™"~ with eigen-
valuer("""Y  The eigenstates, (I=1, 2, 3, and #form a
complete set provided all the eigenvaqu‘@“’l) are non-
degenerate. The eIementsquarea} (j=1,2,3,and 4 All

the matrix elements in Eq$15), (17), and(18) have nonde-
generate eigenvalues excepfexpM© Yt)];, and

[expM(®~Dt)]55 in Eq. (15). So the procedure described

2069

however, clear from the expression of the two-time correla-
tion function(15) combined with Eqs(17) and(18) that the
spectrum will depend on the quantum state of the initial field
inside the cavity.

The main features of the spectrum can be understood by
looking at the eigenvalues of the matix""~ %), which are
given by

3r
A&?é”’”zzii Vo2(Vn+1+m2-T216, (20

3r
Aé”4n’1)=7ti Vo?(Ynt 1—Vn2-T216. (21)

above is valid for all elements except these two. Now the _ _
matrix M (©~1) is a simple matrix with X 2 blocks along the ~Thus it follows from Eq.(15) that, forg>T", the eigenvalues

diagonal, and the matrix elements of edf:"1t) can be
determined in a straightforward manner.

A% and " Y give rise to peaks at (yVn+1+ \n)
and =+ (yn+1— n), respectively, whei$ is plotted against

The power spectrum of the emitted field can now be cal-6/g. The width of all the peaks will, however, be equal to

culated by taking the Fourier transform & (t1)o_(t,))

vq/g when inequality(1) is satisfied. Under assumptigh),

according to Eqs(7) and (8). The resulting expression is a simplified expression of the spectru8fw, 8,¢) can be
rather cumbersome, and will not be reproduced here. It ispbtained:

S w,0,¢)=1

\

where

1

L(X)= .
=5

(23

r ®
?Z}{E[5+g(\/n+ 1+ VM ]+ L[ 6+g(Vn+1—Jn) ]+ L[6—g(Vn+1+n) ]+ L[6—g(Vn+1—Jn)]}

X [coZ(6/2)|wp|2+ cog 0/2)sin( 012) (Ww?, €' +w,, . Wk e '?)+sir?(2)|wy.4|°], when n>0

%Zo [L(5+Q)+ L(6—9)][co(8/2)|wp|?+ cog 6/2)sin 6/2) (Waw?, 18' P+ W, W e %) + sin?(812)| Wi, 1?]

when n=0,
(22

wherer is the squeezing parameter. This photon distribution
is highly oscillatory as shown in Fig.(&. The correspond-
ing spontaneous emission spectrugivs 6/g) as given by
Eq. (15) is shown in Fig. ) for y4/g=0.1,gT=100, and
I'/g=0.001. It shows peaks located &+ 1+ \/n. The only

In the special case when the atoms are injected either in thdSiPle peaks corresponding ta/ii+1 - Jn) are located at

excited state §=0) or in the ground stated= ), the fluo-

6/g=1 and 0.41 corresponding to=0 and 1, respectively,

rescence spectrum depends only on the photon statistics aHt¢ rest being too close ta/g=0. The photon distribution
does not depend upon the off-diagonal elements of the ders(n) can now be recovered according to Ef), and the

sity operator.

resulting distribution is shown in Fig.(®. The agreement

We now consider an example to illustrate how the photorPetween the original photon distribution and the recovered

statisticsp(n) can be determined from the spectriBtw)
[Eqg. (15)] via relation (5). We consider the case wheh
=0.

distribution is excellent. Thus direct evidence of the oscilla-
tory photon distribution can be obtained using this method.
So far we have shown how the diagonal elements of the

We assume that the driving field is in a squeezed vacuurfield density matrix can be determined from the spontaneous

state whose photon distribution function is given by

p(n)

B (cosh)‘ln![(n/2)!]‘2( %tanh)” whenn is even
0, whenn is odd,
(29

emission spectrum when the atom initially in the leje)
interact with the field. However, a complete determination of
the field state requires, in addition to the diagonal density-
matrix elements, the off-diagonal elements as well. In par-
ticular, we need to find the amplitudes, for all values ofn.

This can also be done if the atoms are prepared in a symmet-
ric coherent superposition of statgs) and |b), i.e., for 6

= /2. The real and imaginary valueswfw}_ , can then be
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obtained by determining the spectrum for four choices of thehe realization of “one-dimensional” atorfil7], a ratio of

phaseg, namely,¢=0, 7/2, , and 3r/4, and forming the g/I" of 8 has also been reported.

combinations R(w)=[S(w,7)—S(w,0)] and [(w) We also emphasize that the proposed scheme has the ad-

=[S(w,37/2)—S(w,m/2)]. A determination ofR(w) and vantage of being independent of the detector efficiency. The

| (w) yields the values of,,=w,w?_, in the same way as detector inefficiency places a limit on the observation of non-

before. The probability amplitudes, can now be deter- classical features of light in schemes such as optical homo-

mined (apart from an arbitrary and uninteresting phase facdyne tomography18]. In such schemes, the phase quadra-

tor) from the recursion relation tures are measured in a balanced homodyne detection setup
in which the input field is superimposed on the field from a
local oscillator at a lossless beam splitter. The two outputs

a, are directed to detectors whose quantum efficiency is less
Wn:W* . (25  than unity. The photocount mean and variances are different
n—-1

from the photon-number mean and variances. Nonideal de-
- ; tection is therefore a considerable source of noise in homo-
Herew, can be determined by taking the root@(0) and dyne detection. The present scheme, which requdissct

the rest ofw, can be found from this recursion relation. Thus : i C
the full state is determined to within an arbitrary phase fac detection of the scattered field, is independent of the detector

tor. However, this procedure is possible only if none of thegg'tg'stg%y diseatg?hceozgai(ida:analbga:?unrce)ri?'tr-:—glcjzi?etltfeggj rpsh?/rlznclgn
amplitudeswy, is zero. Unfortunately, such is not the case for; nore that particular measurement and proceed with ’the next
a squeezed vacuum state. In such cases where the amplitud%s P P

are zero for alternate, a two-photon process may be re- measurement. .
quired ' The present method can be used to determine the photon

statistics for arbitrary states, pure or mixed. However it is
limited to finding the complete quantum state of the radiation
field for a pure state from the recursion relati@b) only if

In an experiment to measure the photon statistics usingone of the amplitudes, is zero. For states where some of
the proposed method, a number of conditifinsaddition to ~ the amplitudes are zero, multiphoton process may be used.
inequalities (1)] need to be satisfied. In order to resolve We also note that the present method can only determine the
clearly the various peaks associated with different values ofiagonal and first off-diagonal elemenig, andpn .1 of a
n, we also require that\in+2—yn)>y4/g. For largen, mixed state as seen from I_Ec(ﬁ?) and (18). In orde_r to
this reduces to<(g/yg)2. Thus the present method would determlne the higher .off-dlag.onall eler_nents,. muItlpho}on
be valid for states with small number of photons. In thetransmon§ may be required. This point will be discussed in a
cavity configuration, the photon lifetime inside the cavity ~later publication.
should also be much larger thdi *. All these conditions
can be achieved in recent experiments on single-atom micro-
maser[14]. For example, in the microwave regiog= 2 The author would like to thank Samuel Braunstein, Wolf-
X 17 kHz, 7o '=27X 6 kHz, and[ =27 X5 Hz has been gang Schleich, and Krysztof Wodkiewicz for helpful discus-
reported[16]. In recent experiments in the optical region on sions concerning the subject matter of this paper.

Ill. CONCLUDING REMARKS
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