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Direct measurement of the quantum state of radiation field
from the resonance fluorescence spectrum

M. Suhail Zubairy
Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan

~Received 7 August 1997!

We show that, for a pure state, the quantum state of the radiation field can be directly determined from the
resonance fluorescence spectrum when the quantized field serves as the driving field for the two-level atoms.
This happens when the vacuum Rabi frequency is much larger than the atomic decay rate. The proposed
method is insensitive to the detector efficiency.@S1050-2947~98!09102-1#

PACS number~s!: 42.50.Dv
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I. INTRODUCTION

One of the conceptually simplest systems in quantum
tics is a two-level atom interacting resonantly with a sing
mode radiation field, such as in the resonance fluoresce
from a two-level atom. In this paper we show that the qu
tum state of the radiation field can bedirectly recovered from
the spectrum of the resonance fluorescence from two-l
atoms driven by the quantized field.

A number of schemes has recently been proposed to
tain information about the quantum state of the radiat
field. These include methods based on dispersive atom-
coupling in a Ramsey method of separated oscillatory fie
@1#, atomic beam deflection@2#, quantum state tomograph
@3#, conditional measurements on the atoms in a microma
set-up @4#, quantum Rabi oscillations@5#, Autler-Townes
spectroscopy@6#, homodyning@7#, photon chopping@8#, and
photon counting@9#. An interest in this subject stems from
the possibility of studying nonclassical states of the radiat
field, such as the squeezed state@10# and the so-called Schro¨-
dinger cat state~which is a coherent superposition of tw
coherent states! @11#. These states lead to oscillating phot
distribution functions. In this paper we show that a determ
nation of the quantum state, and hence the photon distr
tion function, from the spectrum of the resonance fluor
cence can lead to a direct observation of such nonclas
features.

The present scheme has two major advantages. First
photon number amplitudes of the field are recovered fr
the fluorescence spectrum directly, and no major numer
computations are involved. Second, the proposed schem
insensitive to the detector efficiency, which poses seri
problems in observing the nonclassical aspects explicitly
certain other schemes.

The proposed scheme relies on the fact that the ato
levels display dynamic Stark splitting in the presence of
driving field. The splitting is proportional to the associat
Rabi frequency. Thus the resonance fluorescence spec
displays peaks whose heights are independent of the
frequency, and which are displaced from the resonance
the Rabi frequency. If the driving field is quantized, the a
sociated Rabi frequencies are distributed according to
photon distribution function of the field and the resultin
spectrum would mimic the photon distribution function
the driving field.
571050-2947/98/57~3!/2066~6!/$15.00
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The theoretical analysis of the problem of resonance fl
rescence by a quantized driving field is much more com
cated as compared to the case when the driving field is ta
to be classical. The problem arises due to the fact that
stationarity condition is no longer valid. As the atom inte
acts with the quantized field, photons are gradually remo
from the field at the rate of the atomic decay rateG. We
therefore need to calculate the nonstationary spectrum of
fluorescent light.

A necessary condition to recover the quantum statistic
the driving field from the resonance fluorescence spectrum
that the vacuum Rabi frequency is much larger than
atomic decay rate. This condition was satisfied in recent
periments on vacuum Rabi splitting in optical@12# and mi-
crowave@13# regions. In addition we would require that a
most one photon is emitted during the atom-field interacti
This requires that the interaction timeT, which should be
much larger than the vacuum Rabi frequencyg, should be
much smaller than the atomic decay rateG. We shall there-
fore consider the situation when the following inequaliti
are satisfied:

g@gd@1/T@G, ~1!

wheregd is the half-band-width of the spectrometer which
used to measure the spectrum.

II. RESONANCE FLUORESCENCE SPECTRUM
AND QUANTUM STATE MEASUREMENT

We consider a system of two-level atoms with levelsua&
and ub& driven by a quantized field inside a high-Q cavity
@14#. The driven atoms radiate spontaneously in all dire
tions, and we look at the spectrum of the radiated light.

Before calculating the resonance fluorescence spectr
we consider the essential features of the spectrum fro
dressed-state picture of the atom-field interaction. The in
action picture Hamiltonian of a quantized field mode inte
acting resonantly with a two-level atom, in the rotating-wa
approximation, is

H5\g~ ua&^bua1a†ub&^au!, ~2!

wherea anda† are the annihilation and creation operators
the driving field, andg is the corresponding vacuum Ra
frequency. The eigenstates of the Hamiltonian are
2066 © 1998 The American Physical Society



te
es

u
um
t
t

f

-

th
ri
nc

the

he
nd

-

lly
d

n
re-
or-
ion

ix

-

eld

57 2067DIRECT MEASUREMENT OF THE QUANTUM STATE OF . . .
u6,n&5
1

A2
~ ua,n&6ub,n11&), ~3!

with eigenvalues1\Vn/2 and2\Vn/2, respectively, where
the ‘‘generalized’’ Rabi frequency is defined byVn

52gAn11. Therefore, the previously degenerate sta
ua,n& and ub,n11& are split into a doublet of dressed stat
separated byVn as shown in Fig. 1. For a classical field (n
@1), these dynamical Stark split doublets have almost eq
spacing, thus leading to the well-known three-peak spectr

For a quantized field, there are four single-photon spon
neous emission lines~see Fig. 1!. These lines are located a

v5vab6~Vn6Vn21!/2,
~4!

5vab6g~An116An!.

Thus a plot of the fluorescence spectrumS(v) versusd/g
~with d5v2vab) would yield four peaks for each value o
n located at6(An116An) distributed according to the
photon distribution functionp(n). However, it may be noted
that the peaks forn50 will be degenerate, and will be lo
cated atd/g561. We therefore expect the peaks atd/g5
61 to have double heights as compared to the peaks at o
values ofd/g. Thus we should be able to recover the dist
bution function of the field from the resonance fluoresce
spectrum via the relation

ps~n!5H 1

NS~v!ud/g5~An111An! when n.0

1

2NS~v!ud/g51 when n50,

~5!

FIG. 1. Splitting of the atomic levels in the dressed-atom-fi
picture.
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where

N5 1
2 S~v!ud/g511 (

n51

`

S~v!ud/g5~An111An! . ~6!

In the dressed-state picture we have not accounted for
atomic decayG from level ua& to level ub&. A complete cal-
culation of the spontaneous emission spectrumS(v) for the
quantized driving field can be carried out by first finding t
two-time field correlation function of the scattered light a
then taking the Fourier transform.

The physical spectrumS(v) of the nonstationary fluores
cent light at some suitably chosen pointr in the far field
is obtained by taking the Fourier transform of the norma
ordered correlation function of the fiel
^E(2)(r ,t1)E(1)(r ,t2)& @15#, i.e.,

S~v!52gdE
0

T

dt1E
0

T

dt2e2~gd2 iv!~T2t1!e2~gd1 iv!~T2t2!

3^E~2 !~r ,t1!E~1 !~r ,t2!&. ~7!

As the field operatorE(1) is proportional to the atomic low-
ering operators2 at a retarded time, we obtain

^E~2 !~r ,t1!E~1 !~r ,t2!&5I 0~r !^s1~ t1!s2~ t2!&, ~8!

whereI 0(r ) is a constant. The two-time correlation functio
^s1(t1)s2(t2)& can be calculated by using the quantum
gression theorem if we know the appropriate single-time c
relation function. We are thus interested in the expectat
value of the interaction picture dipole operator^s2(t)&.

The equation of motion for the various atom-field matr
elements can be written in a compact matrix form as

Ṙ~n,m!52M ~n,m!R~n,m!1B~n,m!, ~9!

where R(n,m) is a column vector with elementsR1
(n,m)

5ran,am , R2
(n,m)5rbn11,am , R3

(n,m)5ran,bm11, R4
(n,m)

5rbn11,bm11, B(n,m) is a column vector whose only nonva
nishing element isB4

(n,m)5Grn11,m11, and
M ~n,m!5F G igAn11 2 igAm11 0

igAn11 G/2 0 2 igAm11

2 igAm11 0 G/2 igAn11

0 2 igAm11 igAn11 G

G . ~10!
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In writing this equation, we used

ran,am1rbn,bm5rn,m , ~11!

wherern,m represents the matrix elements for the field o
erator only. A solution of Eq.~9! can be found as~with t2
.t1)

R~n,m!~ t2!5e2M ~n,m!~ t22t1!R~n,m!~ t1!

1E
t1

t2
e2M ~n,m!~ t22t8!B~n,m!dt8. ~12!

When inequalities~1! are satisfied, we can ignore the seco
term in Eq.~12!, and obtain

R~n,m!~ t2!.e2M ~n,m!~ t22t1!
R~n,m!~ t1! . ~13!

The interaction picture dipole operator^s2(t2)& is now
given by

^s2~ t2!&5Tr~rub&^au!5 (
n50

`

ran,bn~ t2!e2 ivabt2

5 (
n50

`

@~e2M ~n,n21!~ t22t1!!34rbn11,bn~ t1!

1~e2M ~n,n21!~ t22t1!!33ran,bn~ t1!

1~e2M ~n,n21!~ t22t1!!32rbn11,an21~ t1!

1~e2M ~n,n21!~ t22t1!!31ran,an21~ t1!#e2 ivabt2.

~14!

Using the quantum regression theorem, we can simply
culate ^s1(t1)s2(t2)& by employing ratom(t1)s1(t1) in-
stead ofratom(t1) in Eq. ~14!. The resulting expression fo
^s1(t1)s2(t2)& is

^s1~ t1!s2~ t2!&5 (
n50

`

@~e2M ~n,n21!~ t22t1!!34rbn11,an~ t1!

1~e2M ~n,n21!~ t22t1!!33ran,an~ t1!#

3e2 ivab~ t22t1!. ~15!

We assume that the atom is initially in a coherent super
sition of states, i.e.,

ucA~0!&5cos~u/2!ua&1sin~u/2!eifub&, ~16!

wheref is a relative phase and the state of the field is giv
by (nwnun&. We then obtain

ran,an~ t1!5~e2M ~n,n!t1!11cos2~u/2!uwnu2

1~e2M ~n,n!t1!12cos~u/2!sin~u/2!wnwn11* eif

1~e2M ~n,n!t1!13cos~u/2!sin~u/2!wn11wn* e2 if

1~e2M ~n,n!t1!14sin2~u/2!uwn11u2, ~17!
-

l-

-

n

rbn11,an~ t1!5~e2M ~n,n!t1!21cos2~u/2!uwnu2

1~e2M ~n,n!t1!22cos~u/2!sin~u/2!wnwn11* eif

1~e2M ~n,n!t1!23cos~u/2!sin~u/2!wn11wn* e2 if

1~e2M ~n,n!t1!24sin2~u/2!uwn11u2. ~18!

On substituting forran,an(t1) and rbn11,an(t1) from Eqs.
~17! and ~18! into Eq. ~15!, we obtain the two-time correla
tion function ^s1(t1)s2(t2)& for t2.t1. The correlation
function for t1.t2 can be obtained by taking the comple
conjugate and interchangingt1 and t2.

The matrix elements@exp(2M(n,m)t)#ij can be determined
by expanding in terms of the eigenstates of the ma
M (n,m). For example,

FIG. 2. ~a! Photon distribution functionp(n) for a squeezed
vacuum state withr 51. ~b! The spontaneous emission spectrumS
~in arbitrary units! vs d/g for gd /g50.1, gT5100, and G/g
50.001.~c! The photon distribution functionps(n) recovered from
~b! according to Eq.~5!.
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~e2M ~n,n21!t!345(
l 51

4

~e2M ~n,n21!t!34El
†El

5(
l 51

4

e2l l
~n,n21!t~a3

l !* a4
l , ~19!

whereEl is the eigenstate of the matrixM (n,n21) with eigen-
valuel l

(n,n21) . The eigenstatesEl ( l 51, 2, 3, and 4! form a
complete set provided all the eigenvaluesl l

(n,n21) are non-
degenerate. The elements ofEl area j

l ( j 51, 2, 3, and 4!. All
the matrix elements in Eqs.~15!, ~17!, and~18! have nonde-
generate eigenvalues except@exp(M(0,21)t)#34 and
@exp(M (0,21)t)#33 in Eq. ~15!. So the procedure describe
above is valid for all elements except these two. Now
matrix M (0,21) is a simple matrix with 232 blocks along the
diagonal, and the matrix elements of exp(M (0,21)t) can be
determined in a straightforward manner.

The power spectrum of the emitted field can now be c
culated by taking the Fourier transform of^s1(t1)s2(t2)&
according to Eqs.~7! and ~8!. The resulting expression i
rather cumbersome, and will not be reproduced here. I
t
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however, clear from the expression of the two-time corre
tion function~15! combined with Eqs.~17! and~18! that the
spectrum will depend on the quantum state of the initial fi
inside the cavity.

The main features of the spectrum can be understood
looking at the eigenvalues of the matrixM (n,n21), which are
given by

l1,2
~n,n21!5

3G

4
6 iAg2~An111An!22G2/16, ~20!

l3,4
~n,n21!5

3G

4
6 iAg2~An112An!22G2/16. ~21!

Thus it follows from Eq.~15! that, forg@G, the eigenvalues
l1,2

(n,n21) and l3,4
(n,n21) give rise to peaks at6(An111An)

and6(An112An), respectively, whenS is plotted against
d/g. The width of all the peaks will, however, be equal
gd /g when inequality~1! is satisfied. Under assumption~1!,
a simplified expression of the spectrumS(v,u,f) can be
obtained:
S~v,u,f!55
gd

4 (
n50

`

$L@d1g~An111An!#1L@d1g~An112An!#1L@d2g~An111An!#1L@d2g~An112An!#%

3@cos2~u/2!uwnu21cos~u/2!sin~u/2!~wnwn11* eif1wn11wn* e2 if!1sin2~u/2!uwn11u2#, when n.0

gd

2 (
n50

`

@L~d1g!1L~d2g!#@cos2~u /2!uwnu21cos~u/2!sin~u/2!~wnwn11* eif1wn11wn* e2 if!1sin2~u/2!uwn11u2#

when n50,
~22!
ion

,

red
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L~x!5
1

gd
21x2

. ~23!

In the special case when the atoms are injected either in
excited state (u50) or in the ground state (u5p), the fluo-
rescence spectrum depends only on the photon statistics
does not depend upon the off-diagonal elements of the d
sity operator.

We now consider an example to illustrate how the pho
statisticsp(n) can be determined from the spectrumS(v)
@Eq. ~15!# via relation ~5!. We consider the case whenu
50.

We assume that the driving field is in a squeezed vacu
state whose photon distribution function is given by

p~n!

5H ~coshr !21n! @~n/2!! #22~ 1
2 tanhr !n whenn is even

0, when n is odd,

~24!
he

nd
n-

n

m

wherer is the squeezing parameter. This photon distribut
is highly oscillatory as shown in Fig. 2~a!. The correspond-
ing spontaneous emission spectrum (S vs d/g) as given by
Eq. ~15! is shown in Fig. 2~b! for gd /g50.1, gT5100, and
G/g50.001. It shows peaks located atAn116An. The only
visible peaks corresponding to (An112An) are located at
d/g51 and 0.41 corresponding ton50 and 1, respectively
the rest being too close tod/g.0. The photon distribution
ps(n) can now be recovered according to Eq.~5!, and the
resulting distribution is shown in Fig. 2~c!. The agreement
between the original photon distribution and the recove
distribution is excellent. Thus direct evidence of the oscil
tory photon distribution can be obtained using this metho

So far we have shown how the diagonal elements of
field density matrix can be determined from the spontane
emission spectrum when the atom initially in the levelua&
interact with the field. However, a complete determination
the field state requires, in addition to the diagonal dens
matrix elements, the off-diagonal elements as well. In p
ticular, we need to find the amplitudeswn for all values ofn.
This can also be done if the atoms are prepared in a sym
ric coherent superposition of statesua& and ub&, i.e., for u
5p/2. The real and imaginary values ofwnwn11* can then be
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obtained by determining the spectrum for four choices of
phasef, namely,f50, p/2, p, and 3p/4, and forming the
combinations R(v)5@S(v,p)2S(v,0)# and I (v)
5@S(v,3p/2)2S(v,p/2)#. A determination ofR(v) and
I (v) yields the values ofan5wnwn21* in the same way as
before. The probability amplitudeswn can now be deter-
mined ~apart from an arbitrary and uninteresting phase f
tor! from the recursion relation

wn5
an

wn21*
. ~25!

Herew0 can be determined by taking the root ofP(0) and
the rest ofwn can be found from this recursion relation. Th
the full state is determined to within an arbitrary phase f
tor. However, this procedure is possible only if none of t
amplitudeswn is zero. Unfortunately, such is not the case
a squeezed vacuum state. In such cases where the ampli
are zero for alternaten, a two-photon process may be r
quired.

III. CONCLUDING REMARKS

In an experiment to measure the photon statistics us
the proposed method, a number of conditions@in addition to
inequalities ~1!# need to be satisfied. In order to resol
clearly the various peaks associated with different value
n, we also require that (An122An)@gd /g. For largen,
this reduces ton!(g/gd)2. Thus the present method wou
be valid for states with small number of photons. In t
cavity configuration, the photon lifetime inside the cavitytc
should also be much larger thanG21. All these conditions
can be achieved in recent experiments on single-atom mi
maser@14#. For example, in the microwave region,g52p
317 kHz, tc

2152p36 kHz, andG52p35 Hz has been
reported@16#. In recent experiments in the optical region o
N

ev
.

t.

J.
e

-

-

r
des

g

of

o-

the realization of ‘‘one-dimensional’’ atom@17#, a ratio of
g/G of 8 has also been reported.

We also emphasize that the proposed scheme has th
vantage of being independent of the detector efficiency. T
detector inefficiency places a limit on the observation of no
classical features of light in schemes such as optical ho
dyne tomography@18#. In such schemes, the phase quad
tures are measured in a balanced homodyne detection s
in which the input field is superimposed on the field from
local oscillator at a lossless beam splitter. The two outp
are directed to detectors whose quantum efficiency is
than unity. The photocount mean and variances are diffe
from the photon-number mean and variances. Nonideal
tection is therefore a considerable source of noise in ho
dyne detection. The present scheme, which requiresdirect
detection of the scattered field, is independent of the dete
efficiency as a no count can be ignored. Thus if no photo
detected due to the nonideal nature of the detectors, we
ignore that particular measurement and proceed with the
measurement.

The present method can be used to determine the ph
statistics for arbitrary states, pure or mixed. However it
limited to finding the complete quantum state of the radiat
field for a pure state from the recursion relation~25! only if
none of the amplitudeswn is zero. For states where some
the amplitudes are zero, multiphoton process may be u
We also note that the present method can only determine
diagonal and first off-diagonal elementsrnn andrn,n11 of a
mixed state as seen from Eqs.~17! and ~18!. In order to
determine the higher off-diagonal elements, multiphot
transitions may be required. This point will be discussed i
later publication.
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