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Transverse effects in the laser threshold due to electronic-vibrational coupling

Oscar G. Caldero´n* and Isabel Gonzalo
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Transverse effects in the laser threshold, originated by electronic-vibrational coupling in the active centers,
are analyzed theoretically by means of the semiclassical two-level Maxwell-Bloch equations. A single longi-
tudinal mode is considered. It is found that the first laser threshold suffers modifications depending on the
electronic-vibrational coupling strength. This coupling imposes certain conditions for the selection of a par-
ticular transverse spatial state and provides the minimum wavelength that can appear in the transverse pattern.
The nature of the bifurcation and the stability of the homogeneous and critical traveling waves are analyzed.
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I. INTRODUCTION

In the electronic excitation of molecules or crystals
radiation, vibrational couplings may modify significantly th
behavior of the system. Phonon or vibrational effects h
been taken into account in nonlinear optics@1–5#. In particu-
lar, phonon effects on optical bistability were shown to le
to a new type of optical bistability@4–7#. Effects of the
electronic-vibrational coupling in a single mode laser wi
out transverse effects have been recently studied@8#. It was
found that the region of laser oscillation shifts to a low
frequency and suffers modifications so that for particu
conditions there are pump values above which laser emis
can disappear.

One of the most interesting topics at the present is
transverse effects in lasers@9–14#. The single-longitudinal-
mode laser has been a useful laboratory to study transv
phenomena without the influence of other degrees of fr
dom @15#.

Concerning the transverse effects at threshold, an ana
of the laser bifurcation@16–19# shows that for negative de
tuning, the mode with the biggest growth rate at threshol
homogeneous (k50), whereas for positive detuning, a tra
eling wave is expected above threshold. Its correspond
wave vector is related to the detuningD and to the diffrac-
tion coefficientv by k5AD/v @17#.

In this paper we study theoretically the modifications
transverse effects in the laser threshold originated
electronic-vibrational coupling in the active centers. A sing
longitudinal mode is considered. The description is made
means of the semiclassical two-level Maxwell-Bloch equ
tions, assuming the rotating wave and the slowly vary
amplitude approximations. The electronic-vibrational co
pling considered is more general than the coupling assu
in the previous work@8#. The neutral stability curve obtaine
in the present work, in the linear stability analysis of t
nonlasing state, presents some features that are simila
those obtained in the case of a Raman laser model@18#. In
our case the curve depends on the electronic-vibrational
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pling strengths. We analyze how this dependence impo
certain conditions for the selection of a particular spa
state at the first laser threshold. We found that the vibratio
coupling considered provides the minimum spatial sc
~wavelength! that can appear in the transverse pattern
complements the result of a previous work@20# where the
spatial diffusion term found provides also a cutoff value f
the size of the spatial structures that can appear in the
tem.

The nature of the bifurcation at the first laser threshold
analyzed. In the case without electronic-vibrational coupli
the bifurcation is always supercritical@18#, but in our case,
we find that it may be supercritical or subcritical, dependi
on the laser parameters.

We analyze the stability of the two patterns selected at
first laser threshold~the critical traveling wave and the ho
mogeneous wave!, the homogeneous solution being the on
one that can survive for high pumping values.

II. THE MODEL

Our system consists ofN identical molecules per uni
volume inserted in a cavity. The length of the cavity is tun
to a single longitudinal mode of frequencyv. Each molecule
is modeled by two electronic levels only, the ground stateu1&
and the excited stateu2& with respective energiesE1 andE2
in the optical range, connected by one photon transition
that \v'E22E1.

We shall consider that the active electrons of the m
ecules interact with the vibrational normal modes of the n
clei ~phonons if the molecule is a big polymer or we de
with a crystal! by means of a simplified model.

The Hamiltonian of the electronic system is

H5H01He-r1He-v. ~1!

H0 is the free electronic Hamiltonian whose eigenstates
u1& and u2&. The electronic wave function is then

uc~ t !&5C1~ t !e2 iE1t/\u1&1C2~ t !e2 iE2t/\u2&. ~2!

The electric dipole interaction with the radiation is given
He-r52mE, with m[2er, e being the absolute value o
2056 © 1998 The American Physical Society



ea
n
n

i-

ite
-

n
qu
th

ui
th

an
o-
e of
is,
he

of
de

be

57 2057TRANSVERSE EFFECTS IN THE LASER THRESHOLD . . .
the charge of the electron, assuming that the radiation
linearly polarized, with the electric fieldEW in the same direc-
tion as the transition and permanent dipoles.He-v is the
electron-vibration Hamiltonian, where we assume a lin
coupling between the electronic states and the vibratio
normal modes. To analyze better this term it is first writte
following Refs.@21,22,6,7#, as

He-v5(
s1

\vs1
~us1

* bs1
1us1

bs1

† !u1&^1u1(
s2

\vs2
~us2

* bs2

1us2
bs2

† !u2&^2u, ~3!

wherebs1
, bs1

† , andbs2
, bs2

† are the vibrational quanta ann

hilation and creation operators for the ground and exc
states, respectively,vs1

andvs2
are the vibrational frequen

cies, vs1
,vs2

!v, and us1
is dependent on the interactio

strength and related to the relative displacement of the e
librium positions of the nuclei after the molecule reaches
ground levelu1& coming from levelu2&, and in an analogous
way, us2

is related to the relative displacement of the eq
librium positions of the nuclei after the molecule reaches
excited levelu2& coming from levelu1&.
on
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As the lifetime of the electronic states is much longer th
the evolution time of the nuclei to the new equilibrium p
sitions, we can evaluate the quantum mechanical averag
He-v factoring the electronic and nuclei variables, that
uC2u2 and uC1u2 can be considered to be constant while t
nuclei evolve to the new equilibrium positions:

^He-v&c ^ v5(
s1

\vs1
uC1u2^us1

* bs1
1us1

bs1

† &v

1(
s2

\vs2
uC2u2^us2

* bs2
1us2

bs2

† &v . ~4!

Taking the new equilibrium coordinates as the new origin
reference, the quantum vibrational operator for the mo
reads

b̄ s1
5bs1

1uC1u2us1
, b̄ s2

5bs2
1uC2u2us2

, ~5!

whereupon the averaged electron-vibration interaction can
written as
^He-v&c ^ v5(
s1

\vs1
uC1u2^~us1

* b̄ s1
1us1

b̄ s1

† !22uC1u2uus1
u2&v1(

s2

\vs2
uC2u2^~us2

* b̄ s2
1us2

b̄ s2

† !22uC2u2uus2
u2&v

5(
s1

22\vs1
uC1u4uus1

u21(
s2

22\vs2
uC2u4uus2

u252~12d!\ f 1uC1u22~11d!\ f 2uC2u2, ~6!
r

he

p-
by
where f 1[(s1
f s1

, f 2[(s2
f s2

, f s1
[vs1

uus1
u2, f s2

[vs2
uus2

u2 have frequency dimension and 11d52uC2u2,

12d52uC1u2, with d[uC2u22uC1u2 being the population
inversion per molecule. The effective electron-vibrati
Hamiltonian acting only on the electronic stateuc& is then

Heff
e-v52~12d!\ f 1u1&^1u2~11d!\ f 2u2&^2u. ~7!

It must be noted that the values of the frequenciesvs1
,

vs2
are between;1011 s21 ~some bending modes in larg

plane molecules! and ;1013 s21. As the dimensionless pa
rametersuus1

u2, uus2
u2 may take values from 1 to 20 approx

mately @23#, the values off 1, f 2 can be of the order of 1012

or 1013 s21.
To obtain the evolution equations of the system we foll

a well-known procedure@24#. From the Schro¨dinger equa-
tion for the function given by Eq.~2!, the time evolution
equations forC1 andC2 are

i\
dC1

dt
5Em11C11Em12C2e2 iv12t2~12d!\ f 1C1 , ~8!

i\
dC2

dt
5Em21C1eiv12t1Em22C22~11d!\ f 2C2 , ~9!
wherem i j [^ i ueru j & andv12[(E22E1)/\. The microscopic
polarization is

p5^cu2eruc&5~p11p2!1m11uC1u21m22uC2u2,
~10!

where p1[2m12C1* C2e2 iv12t and p25p1* . Taking the
time derivative ofp1 and of the population inversion pe
molecule,d, using the expressions~8!, ~9!, multiplying by N
to introduce the macroscopic variablesP5Np, D5Nd, and
including phenomenologically the relaxation terms for t
polarization and population inversion, we obtain

]P1

]t
52~g'1 iv12!P

12 i
E~m222m11!

\
P11 i S f 22 f 1

1
D

N
~ f 21 f 1! D P12

i um12u2ED

\
, ~11!

]D

]t
5g i~D02D !2

2iE

\
~P12P2!, ~12!

whereD0 is the population inversion induced by the pum
ing, g'

21 is the depolarization time of the dipoles induced
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2058 57OSCAR G. CALDERÓN AND ISABEL GONZALO
the radiation, andg i
21 is the relaxation time of the popula

tion inversion. The electric radiation field into the cavity
given by the Maxwell wave equation

DE2m0sc

]E

]t
2

1

c2

]2E

]t2
5m0

]2P

]t2
~ I.S. units!, ~13!

wheresc stands for the effective cavity losses andm0 is the
vacuum magnetic permeability. The field is assumed to b
the form E5E0

1(x,y,t)exp(ikz2ivt)1c.c. Establishing the
one-photon resonance condition (v'v12), using the rotating
wave, and the slowly varying amplitude approximation
Eqs.~11!–~13! transform into

2 i
c2

v
D'E0

112
]E0

1

]t
52m0c2scE0

11 im0c2vP0
1 ,

~14!

]P0
1

]t
52~g'1 iv122 iv!P0

11 iP0
1S f 22 f 11

D

N
~ f 21 f 1! D

2
i um12u2E0

1D

\
, ~15!

]D

]t
5g i~D02D !2

2i

\
~E0

2P0
12E0

1P0
2!, ~16!

where P0
1 is the polarization amplitude andD'[]2/]x2

1]2/]y2 the transversal Laplacian. To obtain dimensionle
and simplified equations, we definet[g't, rW 5(j,h)
[(x,y)/b (b being the transverse size of the resonator!, a
[Nvum12u2/(2e0c\g') and the following variable changes

P0
152

iNum12usc

4e0ca
Ag i

g'

Ps , E0
15

\Ag ig'

2um12u
Es , ~17!

D5
Nsc

2e0ca
Ds , D05

Nsc

2e0ca
r , ~18!

wherePs , Es , Ds , and r , are the new dimensionless ma
nitudes. In terms of these new variables Eqs.~14!–~16! take
finally the form

2 ivD'Es1
]Es

]t
5s~Ps2Es!, ~19!

]Ps

]t
52~11 id!Ps1 iasDsPs1DsEs , ~20!

]Ds

]t
52g@Ds2r 1 1

2 ~Es* Ps1EsPs* !#, ~21!

where v[cl/(4pb2g') ~with l52pc/v), s
[sc /(2e0g'), d[(v122v2 f 21 f 1)/g'[D2( f 2
2 f 1)/g' @with D[(v122v)/g'#, a[( f 21 f 1)/(ca), g
[g i /g' , and the normalized pumping r
[2e0caD0 /(Nsc). This system of equations is similar t
that of Maxwell-Bloch equations, except for the nonline
term iasDsPs and the termi „( f 22 f 1)/g'…Ps , both in the
polarization equation. The factor (f 22 f 1)/g' acts as a de-
of

,

s

r

tuning originated by the vibrational coupling strengthsf 1 and
f 2. The factorasDs depends on the population inversio
and acts as a dynamic detuning.

III. LINEAR STABILITY ANALYSIS OF THE NONLASING
SOLUTION

Let us analyze the stability of the nonlasing solutionEs
50, Ps50, Ds5r . By linearizing about this trivial solution
and expanding the variables as a Fourier series of transv
modes of wave vectorsk, we get for each set of Fourie
components (dEk ,dPk ,dDk) the following system:

]~dEk!

]t
52 ivk2~dEk!1s„~dPk!2~dkE!…, ~22!

]~dPk!

]t
52~11 id!~dPk!1 iasr ~dPk!1r ~dEk!,

~23!

]~dDk!

]t
52g~dDk!, ~24!

which yields the three eigenvalues

l352g, ~25!

l652
11s1 i ~d2asr 1vk2!

2

6AS 12s1 i ~d2asr 2vk2!

2 D 2

1sr . ~26!

The trivial solution is linearly unstable if one of the eige
values has a positive real part. The expression under
square root is a complex number, which will be denoted
(x1 i j)2, with x>0, namely,

~x1 i j!2[S 12s1 i ~d2asr 2vk2!

2 D 2

1sr . ~27!

It can be seen that the trivial solution is unstable if and o
if the real part of Eq.~26! is positive, i.e.,2@(11s)/2#
6x.0, equivalent tox2.@(11s)/2#2. Equating the real
and imaginary parts of both sides of Eq.~27! we find thatx
satisfies

F~x2![x42F S 12s

2 D 2

2S d2asr 2vk2

2 D 2

1sr Gx2

2S 12s

2 D 2S d2asr 2vk2

2 D 2

50. ~28!

This expression can be interpreted as a function of a varia
F(u2), which has a real and positive zero foru25x2. It can
be seen that the parabolaF(u2) has two real zeros, one o
them positive and the other negative, but only the posit
one has physical meaning sincex is defined as real and the
x2 must be positive. HenceF(u2),0 for u2,x2. In particu-
lar, if @(11s)/2#2,x2 ~the above instability condition!, the
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57 2059TRANSVERSE EFFECTS IN THE LASER THRESHOLD . . .
function F takes a negative value foru25@(11s)/2#2.
Thus, whenx2 is replaced by@(11s)/2#2 in Eq. ~28!, we
have the instability condition

FS S 11s

2 D 2D[
s

4
@~11s!21~d2asr 2vk2!22r ~11s!2#

,0, ~29!

which can be rearranged to read

G~r ,k2![~11s!2~12r !1~d2asr 2vk2!2,0. ~30!

It is easy to see that the normalized pumpr must verify r
.1 for Eq. ~30! to be fulfilled. We can also write the insta
bility condition as a quadratic function ofr ,

G~r ,k2![a2s2r 22@2as~d2vk2!1~11s!2#r 1~11s!2

1~d2vk2!2,0. ~31!

This condition is verified for values ofr in the range limited
by the two real roots. The necessary condition forG(r ,k2)
50 to have two different real roots is that the coefficients
the parabola verify

@2as~d2vk2!1~11s!2#224a2s2@~11s!21~d2vk2!2#

.0, ~32!

which directly leads to

k2<
1

vFd2as1
~11s!2

4as G[kmax
2 . ~33!

Thus, an upper limit to the value ofk appears in the insta
bility condition given by Eq.~31!. Consequently, only the
traveling waves whose values ofk are lower thankmax are
able to instabilize the nonlasing solution, which means t
there is a cutoff in the electric field spectrum. This new
sult, due to the electronic-vibrational coupling, provides
minimum spatial scale~wavelengthlmin[2pb/kmax) that
can appear in the transverse pattern. This is one of the m
interesting consequences of the new terms included in
Maxwell-Bloch equations. It is essential thatkmax

2 .0 for
kmax to have physical meaning. This last condition applied
Eq. ~33! leads to

a,
d1Ad21~11s!2

2s
, ~34!

or, what is equivalent@introducing the definitiond[D
2( f 22 f 1)/g'#, to

D.
~ f 22 f 1!

g'

1
~ f 21 f 1!s

ca
2

~11s!2

4as
[Dmin . ~35!

This new result means that the detuningD must be larger
thanDmin to obtain laser emission. From Eqs.~33! and~35!,
for lmin52pb/kmax, we obtain
f

t
-
e

st
e

o

lmin5S pcl

g'~D2Dmin!
D 1/2

. ~36!

When k,kmax, i.e., l.lmin , the equationG(r ,k2)50
has the two real roots

r 6~k!5
1

2a2s2H 2as~d2vk2!1~11s!2

6~11s!2A11
4as

~11s!2
~d2as2vk2!J ,

~37!

the nonlasing solution being unstable when the normali
pump verifiesr 2(k),r ,r 1(k). We denote byr b the value
where the two branches ofr th(k) @r 2(k) and r 1(k)# join,

r 2~6kmax!5r 1~6kmax!511
~11s!2

4a2s2
[r b . ~38!

The laser thresholdr th(k) for any traveling wave~any k)
is obtained by doingG(r th ,k2)50. The corresponding curve
r th(k) is called the neutral stability curve. In our caser th(k)
consists of the two branches given by Eq.~37!, r 2(k) and
r 1(k), in contrast to the case without vibrational couplin
where only the branchr 2(k) with a50 appears.

Let first study the branchr 2(k). The minimum value of
r 2(k) occurs for the traveling wave with the lowest thres
old ~critical wave!, that is, for the solution expected at th
laser threshold. Its corresponding wave number is term
k2 . From the derivative]r 2(k)/]k50 we obtain the solu-
tions k50 and k25(d2as)/v. At this point we consider
two cases:

~a! d,as, i.e., D,D0, where

D0[
~ f 22 f 1!

g'

1
~ f 21 f 1!s

ca
[Dmin1

~11s!2

4as
~39!

~the definitions ofd anda have been used!. In this case only
the solutionk50 has physical meaning, hencek250 is the
solution expected at the laser threshold~see lower part of the
curve in Fig. 1!. The value of the threshold, termedr 2 , is
then

r 2[r 2~k250!5
1

2a2s2H ~11s!212asd

2~11s!2A11
4as

~11s!2
~d2as!J . ~40!

It must be noted that, contrary to the case without electron
vibrational coupling, a negative detuningD,0 is not neces-
sary to get the homogeneous wave (k250). In our case this
wave can occur even forD.0, provided thatD,D0. As-
suming f 2. f 1 ~usual case! we obtainD0.0, so the homo-
geneous solution is favored since the detuningD0 that sepa-
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rates the two types of solutions shifts to a positive val
increasing the range ofD values that lead to the homoge
neous solution.

~b! d.as, i.e.,D.D0. In this case, it can be seen that t
minimum value ofr 2(k) is for the other solutionk25(d
2as)/v, hencek25A(d2as)/v and traveling waves with
6k2 are expected at the laser threshold~see lower part of
Fig. 2!. The value of the threshold is

FIG. 1. General shape of branchesr 2(k) ~solid line! andr 1(k)
~dashed line! of the neutral stability curve vs the wave numberk, in
the caseDmin,D,D0. The normalized pumpr b , where the two
branches join is shown~dotted line!.

FIG. 2. General shape of branchesr 2(k) ~solid line! andr 1(k)
~dashed line! of the neutral stability curve vs the wave numberk, in
the caseD.D0.Dmin . The normalized pumpr b , where the two
branches join is shown~dotted line!.
,
r 2[r 2~k2!51. ~41!

Let now study the branchr 1(k) of the neutral stability
curve. Diminishing the value ofr coming from valuesr
.r 1(k), where the nonlasing solution is stable, the fi
wave that unstabilizes that trivial solution is the wave who
k1 gives the maximum of the curver 1(k). Since this func-
tion has only one maximum atk50, the homogeneous solu
tion, k150, appears at the laser threshold in this case~see
upper part of the curve in Figs. 1 and 2!. The value of this
threshold is

r 1[r 1~k150!5
1

2a2s2H ~11s!212asd

1~11s!2A11
4as

~11s!2
~d2as!J . ~42!

The general shape of branchesr 2(k) andr 1(k) of the neu-
tral stability curve are shown in Fig. 1 forDmin,D,D0, and
in Fig. 2 for D.D0.Dmin .

The first-threshold instability curve in the plane of detu
ing D and pumpingr is shown in Fig. 3. The two branche
arer 2[r 2(k2), given by Eqs.~40!, ~41!, andr 1[r 1(k1),
given by Eq.~42!. We see from the graphic that whenr 2 is
reached coming from lower values thanr 2 , the solution at
threshold is homogeneous or traveling depending on thD
value, while the solution is always the homogeneous o
when r diminishes coming from higher values thanr 1 to
reachr 1 .

Let us now consider a numerical example where the m
lecular data are representative of substituted aromatic m
ecules that are normally used as active centers in lasers@25#.
Different cases with equal or different coupling valuesf 1

FIG. 3. The first-threshold instability curve in the plane of d
tuning D[(v122v)/g' and normalized pumpingr . The pump
thresholdr 1 given by Eq.~ 42! ~dashed line! andr 2 given by Eqs.
~40! and ~41! ~solid line!. The value ofr b is given ~dotted line!.
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and f 2 can be found among the wide variety of molecules.
general, f 2> f 1 can be assumed. Let us takev1253.0
31015 s21, m1250.1 D50.33695310230 C m, g i5109

s21, g'51010 s21, N55.031022 m23, f 252.031012 s21,
f 151.999931012 s21, and the following resonator param
eters L50.02 m, b50.01 m, R150.9, R251, and sc /e0

.2clnAR1R2/L. With these values we obtainDmin5
21.38 andD050.18. We must take into account that th
detuning (v122v) must be less than half of the axial-mod
spacing of the resonator,pc/(2L), i.e., uDu<pc/(2Lg')
52.356. In spite of this restriction, it is possible in this ca
to get the two different spatial solutions at threshold, hom
geneous wave forDmin521.38,D,D050.18, and travel-
ing wave forD.D0.

Using the above data we represent in Fig. 4 the minim
wavelengthlmin that can appear in the system, versus det
ing @Eq. ~36!#, its value being approximatelylmin.200 mm
for D values not very close toDmin .

We must note that the detuningD0, which separates the
two transverse spatial patterns, depends on the physica
rameters of the medium and cavity. In Fig. 5 we representD0
versus N, for the molecular and laser parameters giv
above. It can be seen from the graphic how we can se
different types of patterns at threshold by changing the nu
ber of molecules per unit volume, the detuning remain
fixed.

Figure 6 representsD0 versus the differencef 22 f 1 for
fixed f 151.999931012 s21. The restriction of the detuning
imposed by the axial-mode spacing is indicated. It can
seen that whenD0 is higher than this value, only the homo
geneous solution is possible at the first threshold.

IV. SOLUTION ABOVE THRESHOLD. NATURE
OF THE BIFURCATION

The system admits, above threshold, traveling wave s
tions of the form

FIG. 4. The minimum wavelengthlmin vs dimensionless detun
ing D for the parametersv1253.031015 s21, m1250.1 D
50.33695310230 C m, g i5109 s21, g'51010 s21, N55.031022

m23, f 252.031012 s21, f 151.999931012 s21, L50.02 m, b
50.01 m,R150.9, R251, andsc /e0.2clnAR1R2/L.
-

-

a-

n
ct
-

g

e

u-

Es5 ēei ~kW•rW 1v̄t!, Ps5 p̄ei ~kW•rW 1v̄t!, Ds5 d̄ , ~43!

where ē and d̄ are real numbers whereasp̄ is a complex
quantity. Introducing the expressions~43! in Eqs.~19!–~21!

we found that the amplitudeē of the electric field is solution
of the equation

a2s2 ē41@~11s!212~d2asr 2vk2!as# ē2

1~11s!2~12r !1~d2asr 2vk2!250, ~44!

v̄, d̄ and p̄ verifying

FIG. 5. The critical dimensionless detuningD0 vs N for the
same parameters as in Fig. 4.

FIG. 6. The critical detuningD0 vs the differencef 22 f 1 for the
same parameters as in Fig. 4 andf 1 remaining fixed at 1.9999
31012 s21. The dimensionless detuning~2.356! imposed by the
axial-mode spacing is shown~dotted line!.
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v̄5
as2~r 2 ē2!2sd2vk2

11s
, d̄5r 2 ē2,

p̄5S 11 i
v̄1vk2

s
D ē. ~45!

Equation~44!, of second degree inē2, admits two solu-
tions for the variableē2,

ē6
2 5r 2r 6~k!. ~46!

It can be seen from Eq.~46! that in the region where the
nonlasing solution is unstable, i.e., forr 2(k),r ,r 1(k),
only the solutionē2

2 has physical meaning. Following@18#,
the bifurcation is subcritical if one of the solutions given
Eq. ~46! exists in the nonlasing region, where the nonlas
state is stable@r ,r 2(k) and r .r 1(k)#. Both solutions
( ē6

2 ) exist abover 1(k), so the bifurcation through this
branch is subcritical. However, since there is not any so
tion below r 2(k), the bifurcation through this branch is su
percritical, as in the case without vibrational coupling@18#.

V. LINEAR STABILITY ANALYSIS OF THE LASING
SOLUTION

We study in this section the stability of the critical tra
eling wavek5A(d2as)/v and the homogeneous wavek
50, these solutions being the two different possible patte
at the first laser threshold.

Using standard linear-stability methods we introdu
small perturbations in the solution given by Eq.~43!,

Es5~ ē1de!ei ~kW•rW 1v̄t!, Ps5~ p̄1dp!ei ~kW•rW 1v̄t!,

Ds5 d̄1dd, ~47!

where de, dp, and dd are the perturbations, andk is the
wave number of the traveling or the homogeneous wave
obtain the linearized system we assume plane waves fode

and dp, of dimensionless wave vectorqW , so that ¹W (de)
5 iqW (de), and analogously fordp. The linearized system
obtained for the perturbations is

]~de!

]t
52@s1 i v̄1 iv~kW1qW !2#~de!1s~dp!, ~48!

]~dp!

]t
5 d̄~de!2@11 i ~d1v̄2as d̄ !#~dp!

1~ ē1 ias p̄ !~dd!, ~49!

]~dd!

]t
52g†~dd!1 1

2 @ p̄* ~de!1 p̄~de* !1 ē~dp!

1 ē~dp* !#‡. ~50!

Settingde5e11 ie2 anddp5p11 ip2, we finally obtain the
five-dimensional system for the real and imaginary parts
de, dp, and fordd,
g

-

s

o

f

]te152se11sp11@v1v~kW1qW !2#e2 , ~51!

]tp15~r 2 ē2!e12p11@d1v̄2as~r 2 ē2!#p2

1 ē@12a~v̄1vk2!#~dd!, ~52!

]te252@v̄1v~kW1qW !2#e12se21sp2 , ~53!

]tp252@d1v̄2as~r 2 ē2!#p11~r 2 ē2!e22p2

1as ē~dd!, ~54!

]t~dd!52g ēe12g ēp12
g ē

s
~v̄1vk2!e22g~dd!.

~55!

The laser solution is stable if, for all values ofq, the matrix
of the coefficients of the above system has all its eigenva
with negative real part. If any eigenvalue has positive r
part, the solution is unstable. The problem of finding t
eigenvalues of the 535 matrix has been approached nume
cally.

We will consider the two types of instability most com
mon in the Maxwell-Bloch laser equations: The Eckhaus
stability, occurring along the direction of the traveling wa
(qW parallel or antiparallel tokW ), and the zigzag instability
occurring at right angles of the traveling wave (qW perpen-
dicular tokW ).

We use in the following numerical example the same d
as in Sec. III andr values up tor 550. Cases with and
without electronic-vibrational coupling will be compare
First we consider the case without such a coupling, i.e.,f 1
5 f 250 and thena50, d5D. We found, in agreement with
other authors@17,18#, that for positive detuning, the critica
traveling wave is stable and the homogeneous wave is
stable, while for negative detuning, the homogeneous w
is stable~see Fig. 7!.

In the case where the electronic-vibrational coupling
taken into account, there are two cases,~a! and ~b! ~as we
stated in Sec. III!.

~a! Dmin,D,D050.18: In this case only the homoge
neous solution is possible, being stable in a wide ranger
andD values@see Fig. 8~a!#. Note that in the case of positiv
detuning, the behavior is different from the case without
brational coupling.

To see how the homogeneous solution becomes unst
we show in Fig. 9~a! the growth rate curve for the perturba
tion versus the wave numberq. The solution becomes un
stable following both Eckhaus and zigzag instabilities forq
.120 ~both curves have the same shape!. This instability
behavior is similar to that of the case without vibration
coupling.

~b! D.D050.18: The critical traveling wave is the on
selected at threshold. However, this solution becomes
stable above values ofr very close to the threshold@see Fig.
8~b!#, while the homogeneous wave is stable and survive
higher r values forD not very far fromD0 @see Figs. 8~a!
and 8~b!#. So then, only for very lowr values, the cases with
and without vibrational coupling present a rather similar b
havior ~the critical traveling wave is stable!. This traveling
wave disappears following an Eckhaus instability@see Fig.
9~b!#. This instability appears around two differentq values;
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at long wavelength (q.0) and at shorter wavelength (q
.130). The homogeneous wave becomes unstable at higD
values@see Fig. 8~a!#, following Eckhaus and zigzag insta
bilities @see Fig. 9~c!#. The instabilities appear at short wav
length,q.350, both growth curves having the same sha

VI. CONCLUSIONS

Electronic-vibrational coupling in the two-level activ
centers of a single-mode laser has been analyzed assum
linear coupling between the electronic states~the ground and
the excited states! and the normal vibrational modes.

This coupling leads to two new terms in the semiclass
Maxwell-Bloch equations. One of the terms leads to a sli
shift in energy in the two electronic levels. The other ter
nonlinear, can be interpreted well as a detuning depend
on the population inversion, as well as an additional fi
proportional to the polarization.

The neutral stability curve depends now on the coupl
parameters. In this situation, it is found that the instabi
condition of the nonlasing solution provides the minimu
wavelength or spatial scale that can appear in the transv
pattern. Such a minimum wavelength depends on the c
pling parameters, detuning and laser parameters. For typ
data of the laser with substituted aromatic molecules as
tive centers, it is found thatlmin.200 mm.

The neutral stability curver th(k) has two branches,r 2(k)
and r 1(k), in contrast to the case without vibrational co
pling, where only the branchr 2(k) appears. In this branch
r 2(k), the selected spatial state is the homogeneous w
(k50) when the detuningD[(v122v)/g' verifies Dmin

FIG. 7. The first-threshold instability curve~solid line! and the
second-threshold instability curve~dashed line! of the homoge-
neous and the critical traveling wave, in the plane of detuningD
and normalized pumpingr , without vibrational coupling. The pa
rameters are the same as in Fig. 4 but nowf 15 f 250. The detuning
D050 ~dotted line! that separates the two transversal spatial p
terns is shown.
.
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,D,D0, and traveling wave whenD.D0, whereDmin and
D0 are values depending on the coupling parameters
laser parameters. A lower bound for detunings,Dmin , ap-
pears in the instability condition. This bound limits the a
lowed detunings to obtain laser emission. The correspond
pump threshold values are given. Contrary to the case w
out vibrational coupling@16–19#, here a negative detuning i
not necessary to get the homogeneous wave at the
threshold sinceD can be positive provided thatD,D0. So
then, the homogeneous wave becomes favored, being
only solution allowed in some cases. A similar theoretic
result has been found recently when certain losses are in
duced in the Maxwell-Bloch equations@20#.

t-

FIG. 8. ~a! The first-threshold instability curve~solid line! and
the second-threshold instability curve~dashed line! of the homoge-
neous and the critical traveling wave, in the plane of detuningD
and normalized pumpingr , for the same parameters as in Fig.
The detuningD050.18~dotted line! that separates the two transve
sal spatial patterns, and the lower boundDmin521.38 ~dotted line!
that appears in the instability condition are shown.~b! Detail of Fig.
8~a! in the regionD.D0 and r values close to the first threshold
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FIG. 9. The largest real part of any eigenvalue as a function of the dimensionless wave numberq, for the same parameters as in Fig.

~a! Eckhaus (qW parallel or antiparallel tokW ) and zigzag (qW perpendicular tokW ) instability for the homogeneous wavek50; r 510 andD

521. ~b! Eckhaus instability (qW parallel or antiparallel tokW ) for the critical traveling wave withk566.69;r 52 andD50.25.~c! Eckhaus

(qW parallel or antiparallel tokW ) and zigzag (qW perpendicular tokW ) instability for the homogeneous wavek50; r 525 andD50.36.
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It is found that the new branch,r 1(k), of the neutral
stability curve always leads to the selection of the homo
neous wave at threshold. Its pump value is given.

We study the behavior of the critical detuningD0 @which
separates the two types of patterns at threshold in bra
r 2(k)# with the concentration of the active centers and w
the vibrational coupling parameters.

The bifurcation at threshold was found to be supercriti
in branchr 2(k) ~as in the case without vibrational coupling!
and subcritical in the new branchr 1(k).

The stability of the patterns selected at the first thresh
the homogeneous wave (k50) and the critical traveling
wavek5A(d2as)/v, has been analyzed.

For D,D0, the homogeneous wave is stable in a wi
range ofr andD values.

For D.D0, the critical traveling wave is stable only forr
-

ch

l

d,

values very close to the threshold. For higherr values, the
homogeneous wave becomes stable in a range ofD values
not very far fromD0. So, the homogeneous wave is the on
one that can survive for highr values.

It can be said that the electronic-vibrational coupling
vors the homogeneous pattern to the detriment of the tra
ing one, due to the shift of the detuningD0 to a positive
value, and because the homogeneous solution is the only
that can be stable for high pumping values.
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