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Transverse effects in the laser threshold due to electronic-vibrational coupling
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Transverse effects in the laser threshold, originated by electronic-vibrational coupling in the active centers,
are analyzed theoretically by means of the semiclassical two-level Maxwell-Bloch equations. A single longi-
tudinal mode is considered. It is found that the first laser threshold suffers modifications depending on the
electronic-vibrational coupling strength. This coupling imposes certain conditions for the selection of a par-
ticular transverse spatial state and provides the minimum wavelength that can appear in the transverse pattern.
The nature of the bifurcation and the stability of the homogeneous and critical traveling waves are analyzed.
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[. INTRODUCTION pling strengths. We analyze how this dependence imposes
certain conditions for the selection of a particular spatial

In the electronic excitation of molecules or crystals bystate at the first laser threshold. We found that the vibrational
radiation, vibrational couplings may modify significantly the coupling considered provides the minimum spatial scale
behavior of the system. Phonon or vibrational effects havéwavelength that can appear in the transverse pattern. It
been taken into account in nonlinear opfits-5]. In particu- complements the result of a previous wd&0] where the
lar, phonon effects on optical bistability were shown to leadspatial diffusion term found provides also a cutoff value for
to a new type of optical bistability4—7]. Effects of the the size of the spatial structures that can appear in the sys-
electronic-vibrational coupling in a single mode laser with-tem.
out transverse effects have been recently stuBédit was The nature of the bifurcation at the first laser threshold is
found that the region of laser oscillation shifts to a loweranalyzed. In the case without electronic-vibrational coupling,
frequency and suffers modifications so that for particularthe bifurcation is always supercriticgl8], but in our case,
conditions there are pump values above which laser emissione find that it may be supercritical or subcritical, depending
can disappear. on the laser parameters.

One of the most interesting topics at the present is the We analyze the stability of the two patterns selected at the
transverse effects in lasef8—14]. The single-longitudinal- first laser thresholdthe critical traveling wave and the ho-
mode laser has been a useful laboratory to study transverseogeneous wayethe homogeneous solution being the only
phenomena without the influence of other degrees of freeene that can survive for high pumping values.
dom|[15].

Concerning the transverse effects at threshold, an analysis Il. THE MODEL
of the laser bifurcatio16—-19 shows that for negative de- ) ) ] .
tuning, the mode with the biggest growth rate at threshold is Our System consists di identical molecules per unit
homogeneouski=0), whereas for positive detuning, a trav- volume mserteq ina cavity. The length of the cavity is tuned
eling wave is expected above threshold. Its correspondinP @ single longitudinal mode of frequenay Each molecule
wave vector is related to the detunidgand to the diffrac- 1S modeled by two electronic levels only, the ground staje
tion coefficienty by k= A7v [17]. and the excited staf@) with respective energie; andE,

In this paper we study theoretically the modifications of N the optical range, connected by one photon transition so
transverse effects in the laser threshold originated byhatiw~E,—E;. _
electronic-vibrational coupling in the active centers. A single We shall consider that the active electrons of the mol-
longitudinal mode is considered. The description is made bycules interact with the vibrational normal modes of the nu-
means of the semiclassical two-level Maxwell-Bloch equaC€i (phonons if the molecule is a big polymer or we deal
tions, assuming the rotating wave and the slowly varyingVith @ crystal by means of a simplified model.
amplitude approximations. The electronic-vibrational cou- 1€ Hamiltonian of the electronic system is
pling considered is more general than the coupling assumed H=HO+ He™ 4+ Hev 1)
in the previous work8]. The neutral stability curve obtained '
in the present work, in the linear stability analysis of theo js the free electronic Hamiltonian whose eigenstates are

nonlasing state, presents some features that are similar F9> and|2). The electronic wave function is then
those obtained in the case of a Raman laser md! In

our case the curve depends on the electronic-vibrational cou- | (1)) =Cy(t)e 1| 1)+ C,(t)e 'E2|2), 2)

The electric dipole interaction with the radiation is given by
*Electronic address: oscargc@eucmax.sim.ucm.es H®'=—uE, with u=—er, e being the absolute value of
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the charge of the electron, assuming that the radiation is As the lifetime of the electronic states is much longer than

linearly polarized, with the electric fielfl in the same direc- the evolution time of the nuclei to the new equilibrium po-
tion as the transition and permanent dipolet® is the  Sitions, we can evaluate the quantum mechanical average of
electron-vibration Hamiltonian, where we assume a lineaH®" factoring the electronic and nuclei variables, that is,
coupling between the electronic states and the vibrationdC2|> and|C4|* can be considered to be constant while the
normal modes. To analyze better this term it is first written,nuclei evolve to the new equilibrium positions:

following Refs.[21,22,6,1, as

e-v — 2/ % T
HE0 =3 fiwg, (U, b, +s L)[L)(L+ 3 g, (UL b, (H >w®v—521 fiws, | Cal*(ug,bs, +Us,bs ),
1 2
T
+ug,bd)[2)(2], €) +522 fiws)|Col(Us b, +us pl), . (@)

whereb , bl , andbs,, bl are the vibrational quanta anni-

hilation and creation operators for the ground and excitedraking the new equilibrium coordinates as the new origin of
states, respectivelyys andws, are the vibrational frequen- reference, the quantum vibrational operator for the mode
cies, ws, 05, <, and Us, is dependent on the interaction reads

strength and related to the relative displacement of the equi-

librium positions of the nuclei after the mo!ecule reaches the be=b, +|Cy2uy, ba=be +|C,l%uq, (5)
ground level 1) coming from level2), and in an analogous

way, Us, is related to the relative displacement of the equi-

librium positions of the nuclei after the molecule reaches thevhereupon the averaged electron-vibration interaction can be
excited level|2) coming from level|1). written as

<He_v>w®vzsz ﬁwsl|cl|2<(u:1b_sl+usl ) 2|C1| |us:L 2>U+E ﬁ(osz|C2|2<(U bszdl'us2 2|C2|2|us |2>v
1

=2 ~2hog|Cillug |+ 2 —2hg |Colug,P= — (1= d)Afy|Cof*~ (1 +d)Af|C,l% (6)
1 2

where f;=3¢fs, =31, fslzwsl|usl|2, fs,  whereu;;=(iler|j) andw;,=(E;—E;)/%. The microscopic
=wg |us,|* have frequency dimension andtH=2|C,|?, polarization is
1—-d=2|C,|?, with d=|C,|?—|C,|? being the population _ it 2 2
: . ’ ; N =(y|— =(pt+p )+ +
inversion per molecule. The effective electron-vibration P (91 =erly)=(p"+p7)+ ol Cof + mad Col%
Hamiltonian acting only on the electronic state) is then
ev_ 4 3 where p*=— u,,CCoe '*1? and p~=p**. Taking the
Heif = — (1= d)Afy[ 11 - A+ d)if5[2)(2. () time derivative ofp™ and of the population inversion per
It must be noted that the values of the frequenaigs ~ Meleculed, using the expression8), (9), multiplying by N

are between-10t s~1 (some bending modes in Ié\r e to introduce the macroscopic variablés-Np, D=Nd, and
@s, s 1 g ) 9 including phenomenologically the relaxation terms for the
plane moleculgsand ~10° s™*. As the dimensionless Pa- polarization and population inversion, we obtain
rameteré,usl|2, |u52|2 may take values from 1 to 20 approxi-

mately[23], the values off ;, f, can be of the order of 18 N
or 108 s 1 aP” .  E(pmao— 1)

=—(y, tiwp)P i PT+i| fo—f
To obtain the evolution equations of the system we follow  dt (7 +iws) h 2
a well-known procedur§24]. From the Schrdinger equa- D i 11]2ED
tion for the function given by Eq(2), the time evolution +—(f,+fy)|PT— "U“L (11)
equations foiC; andC, are N fi
. dCy i D 2iE
'ﬁW:EMnCl‘*‘EMlzCze ‘12— (1-d)hf,Cq, (8) E=7H(D0—D)—T(P+—P*), (12

dC; whereD, is the population inversion induced by the pump-
_c— iwqot 0
% gr = EraiCae ™2+ BualCom (1 d)AT,Cy, © ing, v, ! is the depolarization time of the dipoles induced by
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the radiation, ancbfu‘l is the relaxation time of the popula-
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tuning originated by the vibrational coupling strengthand

tion inversion. The electric radiation field into the cavity is f,. The factoracD4 depends on the population inversion

given by the Maxwell wave equation

9°P
= po—
Jt?

1 $’E

c? at?

JE

AE— pooe = (1.S. unity, (13)

whereo . stands for the effective cavity losses amnglis the

and acts as a dynamic detuning.

lll. LINEAR STABILITY ANALYSIS OF THE NONLASING
SOLUTION

Let us analyze the stability of the nonlasing solutieg

vacuum magnetic permeability. The field is assumed to be of 0; Ps=0, Ds=r. By linearizing about this trivial solution

the form E=E; (x,y,t)exp(kz—iwt)+c.c. Establishing the
one-photon resonance conditio@« w,,), using the rotating

wave, and the slowly varying amplitude approximations,

Egs.(11)—(13) transform into

2 +

—i EALEJ-I-ZO,)—:: — moC20Eg +ipgC?wPy ,

(14
Py _ _ . D
T=—(yi+lw12—lw)Po+|P0 f2_f1+ﬁ(f2+fl)
i|#12|2EcJ)rD
s a9
D 20 L

where P; is the polarization amplitude and, = 4?/ x>

+ 9%/ 9y? the transversal Laplacian. To obtain dimensionless

and simplified equations, we define=vy,t, 5=(§,7])
=(x,y)/b (b being the transverse size of the resonatar
=No|u1]?/(2€,chy,) and the following variable changes:

o _ _INlpsdoe [y, Lo _ivmys o an
0 4eoCa v S O 2lpd ¥
No. No.
N 260CC¥ s? O_Zfocar' (18)

wherePg, Eg, Dg, andr, are the new dimensionless mag-
nitudes. In terms of these new variables Ed<l)—(16) take
finally the form

: IEs
—ivA Eg+ — =0 (Ps—Ey),

or (19
Ps . .
—S=—(1+i§)P+iaoDP+DE;, (20
&Ds 1/ % *
I =—9y[Dg—r+ 3(E; Ps+EsP3)], (21
where v=c\/(4mb?y)) (with  A=27clw), o
=o./(2€py.), o=(wp—w—f+ 1))y =A—(f,

—f)ly, [with A=(wp—w)/y, ], a=(fo+f)/(ca), v
=yly., and the normalized pumping r
=2egcaDy/(Nog). This system of equations is similar to

and expanding the variables as a Fourier series of transversal
modes of wave vectork, we get for each set of Fourier
components §E, , 5P, ,6D,) the following system:

d(SEy) N
— = —ivK(SE)+ (PO~ (&E)), (22
I(6Py) . .
p =—(1+i6)(6P,) +iaar(oPy) +r(dEy),
(23
(D)
o=~ 7(aDy), (24
which yields the three eigenvalues
AN3=—7, (25)
_ 1l+oti(6—aor+uk?)
= 2
1-o+i(s—aor—vk?)\?
+ 5 +or. (26

The trivial solution is linearly unstable if one of the eigen-
values has a positive real part. The expression under the
square root is a complex number, which will be denoted by
(x+i&)?, with x=0, namely,

2
+or.

1—o+i(8—aor—vk?)
2

(x+i§)?= (27)

It can be seen that the trivial solution is unstable if and only
if the real part of Eq.(26) is positive, i.e.,—[(1+0)/2]

+ x>0, equivalent toy?>[(1+ o)/2]2. Equating the real
and imaginary parts of both sides of EQ7) we find thaty
satisfies

) . 1-0\? [6—aor—uvk?\? )
FXO=x"~||——| ~ 5 +or|x
1-0o\? s—aor—vk? 2_0 08
2 2 - . ( )

This expression can be interpreted as a function of a variable
F(6?), which has a real and positive zero fét= x2. It can

be seen that the parabdig 6°) has two real zeros, one of
them positive and the other negative, but only the positive

that of Maxwell-Bloch equations, except for the nonlinearone has physical meaning singds defined as real and then

termiacDgP and the term ((f,—f;)/y,)Pg, both in the
polarization equation. The factof{—f,)/y, acts as a de-

x2 must be positive. Hende(6%) <0 for #2< x2. In particu-
lar, if [(1+ 0)/2]2< x? (the above instability conditionthe
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function F takes a negative value fof?=[(1+ o)/2]>.
Thus, wheny? is replaced by (1+ ¢)/2]? in Eq. (28), we
have the instability condition

1+o

2
> )s S+ o)+ (520 —ok?)2=1(1+0)7]

<0, (29
which can be rearranged to read
G(r,k¥)=(1+0)%(1-r)+(6—aor —vk?)?<0. (30

It is easy to see that the normalized pumpnust verify r

>1 for Eq.(30) to be fulfilled. We can also write the insta-

bility condition as a quadratic function of
G(r,k®)=a’c?r?—[2ac(5—vk?®) +(1+0)?Jr+(1+0)?

+(8—vk?)?<0. (31)

This condition is verified for values afin the range limited
by the two real roots. The necessary condition &{r,k?)

2059

TCA 1/2
Amin=| ——F—=| .
min ( ')’L(A_Amin)>

When k<K, i.€., \>\yin, the equationG(r,k?)=0
has the two real roots

(36)

r.(k)= 2 2

|2a0(5—vk2)+(1+0')2
2a‘o

+(1+0)°\/1+ i (6—aoc—vk? 1,
(1+0)?
(37)

the nonlasing solution being unstable when the normalized
pump verifiesr _ (k) <r<r , (k). We denote by the value
where the two branches of,(k) [r_(k) andr (k)] join,

(1+0)?

N (ZKkna) =r (FKpa =1+ ———=r1,,.
4da

=T (39

The laser thresholdy,(k) for any traveling wavdany k)

=0 to have two different real roots is that the coefficients ofis optained by doing(r,,k2) =0. The corresponding curve

the parabola verify

[2a0(8—vk?) +(1+0)?]?—4a%c?[(1+ 0)%+ (5—vk?)?]

>0, (32
which directly leads to

(1+0)?
dao

2
— “max

S—aoc+

1
k2< - (33
v

Thus, an upper limit to the value & appears in the insta-
bility condition given by Eq.(31). Consequently, only the

traveling waves whose values kfare lower thark,,,, are

able to instabilize the nonlasing solution, which means that
there is a cutoff in the electric field spectrum. This new re-

r(K) is called the neutral stability curve. In our casgk)
consists of the two branches given by Eg87), r _(k) and
r.(k), in contrast to the case without vibrational coupling,
where only the branch_(k) with a=0 appears.

Let first study the branch_(k). The minimum value of
r _(k) occurs for the traveling wave with the lowest thresh-
old (critical wave, that is, for the solution expected at the
laser threshold. Its corresponding wave number is termed
k_. From the derivative)r _(k)/ok=0 we obtain the solu-
tions k=0 andk?®=(6—ao)/v. At this point we consider
two cases:

(a) 6<aa, i.e., A<A,, where

(1+0)?

(fo—f1) (fotf)o
+
4acoc

A
0 Y. ca

EAmin+

(39

sult, due to the electronic-vibrational coupling, provides the

minimum spatial scalgwavelength) i, =27b/k ) that

(the definitions ofé anda have been usedin this case only

can appear in the transverse pattern. This is one of the mogie solutionk=0 has physical meaning, henke=0 is the
interesting consequences of the new terms included in theolution expected at the laser threshelde lower part of the

Maxwell-Bloch equations. It is essential thkf_ >0 for

curve in Fig. 3. The value of the threshold, termed , is

kmax t0 have physical meaning. This last condition applied tothen

Eq. (33) leads to

5+ 8%+ (1+0)?

a< H
20

(34

or, what is equivalentintroducing the definitioné=A
—(fo—=f)/y. ] to

(fa—1fq) N (fot+f)o 3 (1+0)?

A>
o7 Ca 4ao

Amin . (35)

This new result means that the detuniagmust be larger
thanA ., to obtain laser emission. From Eq83) and(35),
for A pin=2m7b/Kmax, We obtain

1
r_=r_(k_.=0)=——{ (1+0)%+2a0é
( ) 2a202[( )

C1te21+ -2 s_aml. 4o
(1+0)?

It must be noted that, contrary to the case without electronic-
vibrational coupling, a negative detunidg<O0 is not neces-
sary to get the homogeneous wake E0). In our case this
wave can occur even fahk>0, provided thatA<A,. As-
sumingf,>f, (usual casewe obtainA,>0, so the homo-
geneous solution is favored since the detuningthat sepa-
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(k) r
P +
in(K) r N
’ homogeneous
I’b +
rb T
homogeneous raveling

11 i r

’ ' ; . i

'kmax k,=k =0 kmax min A, A
k

FIG. 1. General shape of branchregk) (solid line) andr , (k)
(dashed lingof the neutral stability curve vs the wave numkemn
the caseA,;,<A<A,. The normalized pump,, where the two
branches join is showfdotted ling.

FIG. 3. The first-threshold instability curve in the plane of de-
tuning A=(wq,— w)/y, and normalized pumping. The pump
thresholdr . given by Eq.( 42) (dashed lingandr _ given by Egs.
(40) and(41) (solid line). The value ofry, is given(dotted ling.

r_=r_(k_)=1. (41

rates the two types of solutions shifts to a positive value,

increasing the range of values that lead to the homoge-

neous solution.

Let now study the branch, (k) of the neutral stability
curve. Diminishing the value of coming from valuesr

(b) 5>ao, i.e.,A>A,. Inthis case, it can be seen that the >r ,(k), where the nonlasing solution is stable, the first

minimum value ofr _(k) is for the other solutiork®= (&
—ao)lv, hencek_=/(d—ao)/v and traveling waves with
+k_ are expected at the laser thresh¢dee lower part of
Fig. 2). The value of the threshold is

r+(k)

FIG. 2. General shape of branchegk) (solid line) andr , (k)
(dashed lingof the neutral stability curve vs the wave numkein
the caseA>Ay>A i, The normalized pump,, where the two
branches join is show(dotted ling.

wave that unstabilizes that trivial solution is the wave whose
k. gives the maximum of the curve, (k). Since this func-
tion has only one maximum &=0, the homogeneous solu-
tion, k, =0, appears at the laser threshold in this c@se
upper part of the curve in Figs. 1 and. Zhe value of this
threshold is

r+zr+(k+=0)=2a202[ (1+0)°+2acs
+(l+0’)2\/1+ e
(1+0)?

The general shape of branchesg(k) andr, (k) of the neu-
tral stability curve are shown in Fig. 1 fd,,;,<<A<<A,, and
in Fig. 2 forA>Ag>A in-

The first-threshold instability curve in the plane of detun-
ing A and pumping is shown in Fig. 3. The two branches
arer _=r_(k_), given by Eqs(40), (41), andr . =r, (k,),
given by Eq.(42). We see from the graphic that when is
reached coming from lower values than, the solution at
threshold is homogeneous or traveling depending onAthe
value, while the solution is always the homogeneous one
when r diminishes coming from higher values than to
reachr . .

Let us now consider a numerical example where the mo-
lecular data are representative of substituted aromatic mol-
ecules that are normally used as active centers in [§26ts
Different cases with equal or different coupling values
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8.0x10
045}
7.0x10* |
0.40 b
6.0x107 -
035} .
A traveling
£ 50x10%
= 030}
c
£ 4.0x10*
< 025+
3.0x107 |
020} homogeneous
2.0x10* -
015
1.0x10°* ——— . ; . 102 107 o107
2 4\ - 0 1 2 3
min A N (m*
FIG. 4. The minimum wavelength,, vs dimensionless detun- FIG. 5. The critical dimensionless detunirg, vs N for the

ing A for the parametersw;,=3.0x10"® s !, u;,=0.1 D  same parameters as in Fig. 4.

=0.33695<10 * Cm, y=10° s %, y, =10 s, N=5.0x 10P
m-3, f,=2.0x10% s % f,=1.9999<10” s % L=0.02 m, b

_ ani(k-ptown) ik ptor)
=0.01 m,R;=0.9,R,=1, ando/ey=—cinVR,R,/L. Es=ee™rmen, Pg=peltcrrer

, De¢=d, (43

andf, can be found among the wide variety of molecules. In —  — —
general, f,=f, can be assumed. Let us take,=3.0 where e and d are real numbers wheregs is a complex

X10"% 51 ;,,=0.1 D=0.33695¢10"% Cm, 7‘2109 quantity. Introducing the eﬁaressio(m?) in Egs.(19—(22)
s y,=10"s 1 N=5.0x102 m 3 f,=2.0x10% s 1,  we found that the amplitude of the electric field is solution
f,=1.9999x 10'? s™1, and the following resonator param- of the equation

etersL=0.02 m,b=0.01 m,R;=0.9, R,=1, ando./¢g
=—cInyR;R,/L. With these values we obtaim ;,=
—1.38 andA,=0.18. We must take into account that the
detuning @;,— w) must be less than half of the axial-mode +(1+0)%(1—r)+(5—aor—vk?)?=0, (44)
spacing of the resonatorrc/(2L), i.e., |A|<mc/(2Ly,)

=2.356. In spite of this restriction, it is possible in this case—— —

to get the two different spatial solutions at threshold, homo<: d and p verifying

geneous wave foA ;= —1.38<A<A,=0.18, and travel-

a2o?e?+[(1+0)2+2(5—aor —vk?ac]e?

ing wave forA>A,. 35
Using the above data we represent in Fig. 4 the minimum
wavelength\ i, that can appear in the system, versus detun- 30
ing [EQ. (36)], its value being approximately,i,=200 um _ .
for A values not very close ta . 281 2dakmodespading /o
We must note that the detuniny, which separates the 20l
two transverse spatial patterns, depends on the physical pa- A wravelin
rameters of the medium and cavity. In Fig. 5 we repreagnt 0 45| 9
versus N, for the molecular and laser parameters given
above. It can be seen from the graphic how we can select 10} homogeneous
different types of patterns at threshold by changing the num-
ber of molecules per unit volume, the detuning remaining 05
fixed.
Figure 6 representd versus the differencé,—f, for 00
fixed f;=1.9999< 10*? s~1. The restriction of the detuning
imposed by the axial-mode spacing is indicated. It can be e .

seen that wher is higher than this value, only the homo- 0 1x1I01° 2x1'01o 3x1'010
geneous solution is possible at the first threshold. £-f, ()
2™

IV. SOLUTION ABOVE THRESHOLD. NATURE N _ _
OF THE BIFURCATION FIG. 6. The critical detunln@o vs the dlfferencéz— fl for the

same parameters as in Fig. 4 ahdremaining fixed at 1.9999
The system admits, above threshold, traveling wave solux 10'? s™1. The dimensionless detunin@.356 imposed by the
tions of the form axial-mode spacing is show(dotted ling.
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— aa'z(r—?)—aﬁ—vk2
“= 1+o

w+vk?

p:

e.

1+ (45)

Equation(44), of second degree ie?, admits two solu-
tions for the variablee?,

eZ=r—r.(k). (46)

It can be seen from Eq46) that in the region where the
nonlasing solution is unstable, i.e., for (k)<r<r,(k),
only the solutione? has physical meaning. Followir{d.],
the bifurcation is subcritical if one of the solutions given by
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d.6,=—oe;+opitoto(k+q)?le, (51
9.p1=(r—e?e;—p,+[5+w—ac(r—e?)]p,

+e[l-a(w+vk?)](5d), (52)

9,6,= —[w+v(K+0)?Je,—oe,+ap,, (59
3.p2=—[+w—ac(r—e?)]p;+(r—e?e,—p,

+ace(sd), (54)

— — ye —
d-(6d)=—yee;~yep,— ——(w+vk)e;—y(d).
(55

The laser solution is stable if, for all values @f the matrix

Eg. (46) exists in the nonlasing region, where the nonlasingof the coefficients of the above system has all its eigenvalues

state is stabldr<r_(k) and r>r,(k)]. Both solutions

(gzi) exist abover ,(k), so the bifurcation through this
branch is subcritical. However, since there is not any solu
tion belowr _(k), the bifurcation through this branch is su-
percritical, as in the case without vibrational coupliig].

V. LINEAR STABILITY ANALYSIS OF THE LASING
SOLUTION

We study in this section the stability of the critical trav-
eling wavek=\(6—ao)/v and the homogeneous wake
=0, these solutions being the two different possible pattern
at the first laser threshold.

with negative real part. If any eigenvalue has positive real
part, the solution is unstable. The problem of finding the
eigenvalues of the 85 matrix has been approached numeri-
cally.

We will consider the two types of instability most com-
mon in the Maxwell-Bloch laser equations: The Eckhaus in-
stability, occurring along the direction of the traveling wave

(ﬁ parallel or antiparallel tdZ), and the zigzag instability,
occurring at right angles of the traveling Wavé perpen-

dicular tok).

We use in the following numerical example the same data
g@s in Sec. lll andr values up tor=50. Cases with and
without electronic-vibrational coupling will be compared.

Using standard linear-stability methods we introduceFirst we consider the case without such a coupling, f.e.,

small perturbations in the solution given by E43),

E.=(e+ose)ekrron  p =(p+sp)eketon,

D=d+4d, (47)

where e, 6p, and &d are the perturbations, arld is the
wave number of the traveling or the homogeneous wave. T
obtain the linearized system we assume plane wavesdor
and ép, of dimensionless wave vect(ﬁ, SO thatﬁ(&e)
=iq(de), and analogously fodp. The linearized system
obtained for the perturbations is

ﬁ((ie)=—[a+iw_+iv(|2+a)2](5e)+a(5p), (48)
ﬁ(jf) =d(de)—[1+i(5+w—acd)](p)
+(e+iagp)(ad), (49
J(éd — — —
%=—7[(5d)+ 2[p*(de)+ p(de*)+e(ap)
+e(5p*)]1. (50)

Settingde=e;+ie, andSp=p,+ip,, we finally obtain the

=f,=0 and thera=0, §=A. We found, in agreement with
other authorg17,1§, that for positive detuning, the critical
traveling wave is stable and the homogeneous wave is un-
stable, while for negative detuning, the homogeneous wave
is stable(see Fig. 7.

In the case where the electronic-vibrational coupling is
taken into account, there are two cas@s,and (b) (as we
Stated in Sec. Il

(@ Ann<A<Ay=0.18: In this case only the homoge-
neous solution is possible, being stable in a wide range of
andA values[see Fig. 8)]. Note that in the case of positive
detuning, the behavior is different from the case without vi-
brational coupling.

To see how the homogeneous solution becomes unstable
we show in Fig. @a) the growth rate curve for the perturba-
tion versus the wave number. The solution becomes un-
stable following both Eckhaus and zigzag instabilities dor
=120 (both curves have the same shapEhis instability
behavior is similar to that of the case without vibrational
coupling.

(b) A>A,=0.18: The critical traveling wave is the one
selected at threshold. However, this solution becomes un-
stable above values ofvery close to the thresholdee Fig.
8(b)], while the homogeneous wave is stable and survives at
higherr values forA not very far fromA, [see Figs. &)
and 8b)]. So then, only for very low values, the cases with
and without vibrational coupling present a rather similar be-
havior (the critical traveling wave is stableThis traveling

five-dimensional system for the real and imaginary parts ofvave disappears following an Eckhaus instabifisge Fig.

ée, ép, and foréd,

9(b)]. This instability appears around two differantvalues;
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FIG. 7. The first-threshold instability curvsolid line) and the
second-threshold instability curv@ashed ling of the homoge- ;
neous and the critical traveling wave, in the plane of deturing / k=0
and normalized pumping, without vibrational coupling. The pa- ¢ stable
rameters are the same as in Fig. 4 but fgw f,=0. The detuning 1.004 |
Ay,=0 (dotted ling that separates the two transversal spatial pat-
terns is shown. traveling
stable
at long wavelength {=0) and at shorter wavelengthy (
=130). The homogeneous wave becomes unstable attigh IR
values[see Fig. 8], following Eckhaus and zigzag insta- 1.000 f— I
bilities [see Fig. &)]. The instabilities appear at short wave- _ r
length,q=350, both growth curves having the same shape. traveling
05 10 15 2,0
VI. CONCLUSIONS (b) A

Electronic-vibrational coupling in the two-level active

centers of a single-mode laser has been analyzed assuming aFIG. 8. (a) The first-threshold instability curvésolid line) and

linear coupling between the electronic staf® ground and
the excited statg¢sand the normal vibrational modes.

the second-threshold instability cur¢@ashed ling of the homoge-
neous and the critical traveling wave, in the plane of deturing

This coupling leads to two new terms in the semiclassicaknd normalized pumping, for the same parameters as in Fig. 4.
Maxwell-Bloch equations. One of the terms leads to a slighiThe detuningl,=0.18(dotted ling that separates the two transver-
shift in energy in the two electronic levels. The other term,sal spatial patterns, and the lower boulg,= —1.38(dotted ling
nonlinear, can be interpreted well as a detuning dependintjat appears in the instability condition are shovim Detail of Fig.
on the population inversion, as well as an additional fielgd(@ in the regionA>A, andr values close to the first threshold.

proportional to the polarization.

The neutral stability curve depends now on the coupling<A<A,, and traveling wave wheA> A, whereA ., and

parameters. In this situation, it is found that the instabilityA, are values depending on the coupling parameters and
condition of the nonlasing solution provides the minimumlaser parameters. A lower bound for detunings,,, ap-
wavelength or spatial scale that can appear in the transvergears in the instability condition. This bound limits the al-
pattern. Such a minimum wavelength depends on the codewed detunings to obtain laser emission. The corresponding
pling parameters, detuning and laser parameters. For typicpump threshold values are given. Contrary to the case with-
data of the laser with substituted aromatic molecules as a@ut vibrational coupling16—19, here a negative detuning is
tive centers, it is found that ;=200 um. not necessary to get the homogeneous wave at the first

The neutral stability curvey(k) has two branches, (k) threshold sinceA can be positive provided that<<A,. So
andr_(k), in contrast to the case without vibrational cou- then, the homogeneous wave becomes favored, being the
pling, where only the branch_(k) appears. In this branch only solution allowed in some cases. A similar theoretical
r_(k), the selected spatial state is the homogeneous wawesult has been found recently when certain losses are intro-
(k=0) when the detuning\=(w,,— w)/y, verifies A,  duced in the Maxwell-Bloch equatioi&0].
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FIG. 9. The largest real part of any eigenvalue as a function of the dimensionless wave qufidoghe same parameters as in Fig. 4.
(a) Eckhaus (i parallel or antiparallel tk) and zigzagé perpendicular tk) instability for the homogeneous wake=0; r=10 andA
=—1. (b) Eckhaus instability(ﬁ parallel or antiparallel t&) for the critical traveling wave wittk=66.69;r =2 andA =0.25.(c) Eckhaus
(g parallel or antiparallel t&) and zigzag § perpendicular tk) instability for the homogeneous wake=0; r =25 andA = 0.36.

It is found that the new branchr, (k), of the neutral values very close to the threshold. For highevalues, the
stability curve always leads to the selection of the homogehomogeneous wave becomes stable in a rangé whlues
neous wave at threshold. Its pump value is given. not very far fromA,. So, the homogeneous wave is the only

We study the behavior of the critical detunidg [which  one that can survive for high values.
separates the two types of patterns at threshold in branch |t can be said that the electronic-vibrational coupling fa-
r_(k)] with the concentration of the active centers and withyors the homogeneous pattern to the detriment of the travel-
the vibrational coupling parameters. ___ing one, due to the shift of the detuniniy, to a positive

The bifurcation at threshold was found to be supercrltlcalvamel and because the homogeneous solution is the only one
in branchr _(k) (as in the case without vibrational coupling tyat can be stable for high pumping values.
and subcritical in the new braneh (k).

The stability of the patterns selected at the first threshold,
the homogeneous wavek€0) and the critical traveling
wavek=/(6—aac)/v, has been analyzed. ACKNOWLEDGMENTS
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