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Stochastic model of nonclassical light emission from a microcavity
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A sub-Poissonian distribution of photon numbers~photon-number squeezing! within a microcavity is theo-
retically shown to be possible using a realistic model of nonlinear photon dissipation. By deriving and solving
a stochastic Schro¨dinger equation for a system with photons and atoms in a microcavity, we have obtained
strong antibunching and a sub-Poissonian distribution of the number of emitted photons from the microcavity.
The relationship among the above three statistical quantities, which describe the nonclassical nature of the
quantum radiation field, are also discussed.@S1050-2947~98!07102-9#

PACS number~s!: 42.50.Lc, 42.50.Ct, 42.55.Sa
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I. INTRODUCTION

The interaction of atoms or excitons with the radiati
field within microcavities has been studied extensively. T
radiation field is so well quantized there that only a sin
mode can dominate the interaction with materials and
field amplitude increases in inverse proportion to the squ
root of the volume of the microcavity. Large Rabi splitting
@1# and clear Rabi oscillations@2# were observed for exciton
in semiconductor microcavities. A great variety of nonline
optical responses are observed depending on the quali
the quantum wells@3–5#. The nonclassical nature has be
observed for the radiation field emitted from these mic
cavities. For example, photon-number squeezing was
served with a semiconductor laser operating under cons
current @6#. Antibunching of the luminescent light was ob
served from a small number of24Mg 1 ions under stationary
pumping within a microcavity@7,8#.

These phenomena have been analyzed by the Jay
Cummings model@9# . This model has been extended so
to include ~i! cavity damping and~ii ! pumping of an elec-
tronic system@10,11#. Recently, we have extended the mod
further to include~iii ! excitonic effects, i.e., effects due t
many atoms and excitation propagation. We have studied
extended model by solving an equation of motion for t
reduced density matrix~RDM! @12–15# with terms repre-
senting the dissipation and the pumping effects@11#.

The nonclassical features that we study here are~a! the
sub-Poissonian distribution of photon numbers within a m
crocavity~photon-number squeezing!, which is measured by
the Fano factors2, ~b! the antibunching of the tempora
sequence of photon emissions from the cavity, which is ch
acterized by the second-order normalized time-correla
function g(2)(t), and ~c! the sub-Poissonian distribution o
photons emitted from the cavity. We will introduce a kind
Fano factorse

2 to measure the degree of sub-~or super-!
Poissonian photon counting outside the cavity. The nonc
sical features~b! and ~c! are investigated by studying th
571050-2947/98/57~3!/2046~10!/$15.00
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temporal sequence of photons emitted from the cavity.
So far there has been no direct investigation of the re

tionship betweens2, g(2)(t), and se
2 in a quantum-

mechanical system. In the present paper, we will explore
relation among these nonclassical features by proposing
crete quantum-mechanical models.

Concerning photon-number squeezing within the cav
we have reported that a nonclassical feature of the radia
field is possible under resonant stationary pumping of
lowest exciton@11#. The degree of sub-Poissonian distrib
tion, however, was weak for photons within the microcavi
Namely, the Fano factor, defined by

s25
^n2&2^n&2

^n&
, ~1!

was as close to one as 0.94 even under optimum conditi
Here Trn2r5^n2& and Trnr5^n& are averaged with the re
duced density matrix of the systemr under the stationary
condition. In the present paper, we propose a model of n
linear photon dissipation that can realize the robust nonc
sical feature of light and thus we will be able to control t
degree of squeezing, i.e., the sub-Poissonian distributio
the photon-number within the microcavity. Enhancement
the photon number squeezing due to the nonlinear pho
dissipation will be investigated in Sec. III.

As for the temporal characteristics, such as the antibun
ing of the emission and the sub-Poissonian photon count
it is necessary to introduce a microscopic dynamical mo
that describes the dynamics in the stationary state. There
we introduce a stochastic Schro¨dinger equation~SSE!, i.e., a
Schrödinger equation with some random modulation,
study such temporal properties of individual stochastic p
cesses. In Sec. II this equation is derived from microsco
processes described within the density-matrix formalism.
consider that the present stochastic model can simulate
relevant behavior of realistic systems. Averaging over
stochasticity, we obtain the same result for the time evo
2046 © 1998 The American Physical Society
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57 2047STOCHASTIC MODEL OF NONCLASSICAL LIGHT . . .
tion of quantities as is obtained by the RDM method. T
SSE can be regarded as a direct realization of the metho
quantum jump@16–18#.

The nature of the temporal behavior of the radiation fi
is characterized by the second-order time-correlation fu
tion of I (t) as

g~2!~t !5
^I ~ t !I ~ t1t!&

^I ~ t !&^I ~ t1t!&
~2!

whereI (t) indicates the intensity of the radiation field em
ted from the cavity. We obtain the trivial inequality

g~2!~0!>g~2!~t !, ~3!

as long asI (t) andI (t1t) are considered classical variable
On the other hand, when we take into account the quant
tion of the radiation, we should be careful about the defi
tion of g(2)(0). In this case,g(2)(t) is written as@19#

g~2!~t !5
^E2~ t !E2~ t1t!E1~ t1t!E1~ t !&

^E2~ t !E1~ t !&^E2~ t1t!E1~ t1t!&
, ~4!

where^& denotes the average over the distribution ofI (t). If
we define

g~2!~0!5 lim
t→0

g~2!~t !, ~5!

then we could have

g~2!~0!,g~2!~t !. ~6!

As has been reviewed in@20#, there are two definitions o
antibunching: One is given by Eq.~6! and the other is deter
mined by the derivative ofg(2)(t) at t50. When the in-
equality

g8~0!5
dg~2!~t !

dt U
t50

.0 ~7!

holds, the process is called antibunching; ifg8(0)<0, it is
bunching. These definitions, however, do not always co
cide. If g(2)(t) is monotonic, both definitions coincide. Fo
example, it has been found@21# that g(2)(0).1 and
g(2)(t) decreases monotonically for thermal radiation, wh
is bunching in both definitions.

The words ‘‘bunching’’ and ‘‘antibunching’’ originate
from the temporal distribution of photons emitted from t
system. Thus we study this distribution in Sec. IV, name
we investigate how uniformly the radiation is distributed
time. There we study the distributionPemit

dt (n) of the photon
number observed outside the cavity for each time intervaldt.
We introduce a kind of Fano factor for the distributio
se

2(dt), which gives another nonclassical feature of the p
ton emission:

se
2~dt !5

n2̄2n2̄

n̄
, ~8!

where
s
of

d
c-

.
a-
i-

-

,

-

n̄5 (
n50

`

nPemit
dt ~n!, nē5 (

n50

`

n2Pemit
dt ~n!. ~9!

The relation betweense
2 and antibunching has been di

cussed@19,20,22,24#. If we assume that the probabilityp to
count an emission in a timeDt is proportional to the inten-
sity I andDt, i.e., p5aIDt, then the probabilityPemit

dt (n) is
given by a Poissonian distribution, wherea is a constant
dependent on the detector. The mean of the distributio
proportional to the intensity of the radiationadtI . The prob-
ability Pemit

dt (n) should be averaged over the distribution
the intensity of the radiation. In the limit where the countin
time dt is short compared to the coherent time over wh

the intensity changes,n̄ andn2̄ are obtained as@22,23#

n̄5adt^I &

and

n2̄2n2̄5adt^I &1~adt !2~^I 2&2^I &2!.

In this case,se
2 is given as@19,22#

se
2511 n̄

^I 2&2^I &2

^I &2 . ~10!

Here^& denotes an average over the distribution ofI (t). For
the classical case,se

2 is always larger than 1.0. On the oth
hand, for quantum-mechanical systems, taking into acco
relation ~4!, the following relation is obtained@24#:

se
2511

n̄

~dt !2Et

t1dt

dt2E
t

t1dt

dt1@g~2!~ t22t1!21#

.11 n̄ @ lim
dt→0

g~2!~dt !21#. ~11!

This expression is derived when the observation timedt is
much shorter than the timet characterizingg(2)(t). There-
fore, we are careful in taking the limitt→0 numerically
within t.dt when we compare the stationary propertyse

2

and dynamical propertyg(2)(t→0). From this relation we
can deduce the following: ifse

2,1.0, then the emission is
antibunching, i.e., limt→0g(2)(t),1. In Sec. IV the depen-
dence ofse

2 on dt and also on the degree of antibunchin
will be discussed.

In Sec. II we introduce the model with nonlinear photo
dissipation and describe the equation of motion of the RD
and the SSE. In Sec. III strongly sub-Poissonian phot
number distributions within the microcavity are demo
strated in the model of nonlinear decay of photons. T
second-order correlation functiong(2)(t) of photon emission
and the temporal distribution of emissions are evaluated
Sec. IV. A possible mechanism of antibunching and s
Poissonian photon counting is discussed from the viewp
of the existence of dead time@20# in the present dynamica
process in Sec. V. Section VI is devoted to a summary
discussion for future problems.
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II. MODEL AND METHOD

In order to study the properties of photons emitted from
microcavity, we study a generalized Jaynes-Cummi
model in which a single-mode photon is coupled with a s
tem of interacting two-level atoms:

H5\v0(
j

Sj
z2\J(

j
~Sj

1Sj 11
2 1Sj

2Sj 11
1 !1\vLb†b

1\g(
j

~Sj
1b1Sj

2b†!, ~12!

whereSz andS1(2) are spin operators withS51/2 describ-
ing the two-level atom andb† andb are the boson creatio
and annihilation operators of the cavity photon. Here we
strict ourselves to the resonant conditionv05vL for sim-
plicity. Throughout the present paper we use the vacu
Rabi frequency as the unit of energy, i.e., we setg51.0.

Using the method of Markovian reduced density of st
@12–14#, we investigate the dynamics of the model~12!
when it is coupled with incoherent processes, such as ph
dissipation and pumping of the electronic system:

]r

]t
52

i

\
@H,r#1GFr1GAr. ~13!

Here we adopt the photon dissipation processGF in the form

GFr52k~b†br22brb†1rb†b! ~14!

and the pumping process@15#

GAr52a(
j

~Sj
2Sj

1r22Sj
1rSj

21rSj
2Sj

1!. ~15!

We calculate the time evolution of Eq.~13! by making use of
the following decomposition of the time evolution operat
for a time slitDt:

eDt~L1GF1GA!r→eDtLeDtGFeDtGAr,

whereLr5( i\)21@H,r# andeA(t) denotes the time-ordere
exponential of a time-dependent operatorA(t). This is the
lowest approximation, but we have checked that the pr
sion is sufficient by changing the value of the time slitDt
over Dt50.001–0.01. If desired, higher-order decompo
tions @25# can be used to obtain higher precision.

In the previous study@11# the dependence ofs2 on the
pumping ratea and photon decay ratek were studied, where
the parameterk was independent of the photon densi
There we found that photon-number squeezing can be r
ized under stationary conditions, but the degree of squee
was limited tos2.0.94.

In the present paper we introduce a model with a non
ear dependence of the photon dissipation on the photon
sity in order to control more efficiently the distribution o
photon numbers within the microcavity. Namely, we ado

k~n!5k01k1n. ~16!

There are two mechanisms of introducing nonlinear deca
photons in a microcavity. In the first case, the microcav
a
s
-

-

m

e

on

i-

-

.
al-
ng

-
n-

of

including the mirrors consists of nonlinear optical materi
so that the dielectric constant of the system depends on
photon number within the microcavity. Therefore, the effe
tive transmittance of this microcavity depends on the pho
number. We set the microcavity at a point of inflection of t
transmission spectrum for a small number of photons
then can increase the photon decay rate in proportion to
photon number. In the second case, we use a material w
two-photon absorption due to a biexciton affects the non
ear dissipation of photons. When the energy dissipat
through biexcitons is so rapid, we may eliminate adiaba
cally the biexciton degree of freedom and describe this ef
as a nonlinear decay of photons@26#. These two channels
will be discussed in detail in the Appendix. The effects
excitons, i.e., collective modes coming from the interact
among atoms, will be studied elsewhere.

In this paper we study processes described by Eq.~13!
with the nonlinear relaxation rate. In the general theory
dissipation, the termGFr should be given in the form

GFr52VrV†2rV†V2V†Vr ~17!

and the photon-number dependence ofk(n) in Eq. ~16! cor-
responds to taking the form ofV as

V†5Ak01k1b†bb†. ~18!

The explicit matrix element of Eq.~17! is

2Ak~n11!An11rn11,m11Ak~m11!Am112mk~m!rnm

2rnmnk~n!, ~19!

wheren,m are the number of photons. Here we have us
relations such as

^nubrb†um&5A~n11!~m11!rn11,m11 .

The photon statistics are evaluated by solving Eq.~13! for
both the stationary and transient phenomena. This R
method gives the time evolution of the probability distrib
tion of the system. Thus we can obtain the time evolution
averaged quantities.

In order to study the time sequence of the photon em
sion from the microcavity, it is necessary to solve the tim
evolution for each process, namely, a kind of the Lange
equation for the process that includes some explicit rand
modulation. Here we introduce a stochastic Schro¨dinger
equation that gives the same statistical properties of the
tem as those obtained by RDM formalism~13!. We confine
ourselves to the case with a single atom in the present pa
The state of the system at timet is given as

ut&5cun21,1&1dun,2&, ~20!

wheren denotes the photon number and1 and2 denote the
up ~excited! and down~ground! states of the atom, respec
tively. If an emission of a photon from the cavity occur
then the state jumps to

ut&85c8un22,1&1d8un21,2&. ~21!
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We can determine the probability of photon emission dur
the time intervalDt and the coefficientsc8 andd8 from Eq.
~13!. The state~20! is described in the density matrix as

rn5S cc* cd*

dc* dd* D ~22!

in the space (un21,1&,un,2&). The quantum-mechanica
motion is given bye2 iHDtut& and the incoherent decay pro
cess is given by Eq.~17!. The density matrix~22! changes by
the incoherent process to
nt

l

-

g

GFS 0,0

0,rnD 5S rn218 , 0

0, rn8D ~23!

in the space (un22,1&,un21,2&,un21,1&,un,2&), where

rn218 52DtS k~n21!cc* Ak~n!k~n21!cd*

Ak~n!k~n21!dc* k~n!dd* D
is defined in the space (un22,1&,un21,2&) and
rn85S @122Dtk~n21!#cc* $12Dt@k~n!1k~n21!#%cd*

$12Dt@k~n!1k~n21!#%dc* @122Dtk~n!#dd* D
is
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is defined in the space (un21,1&,un,2&). This is interpreted
as the process in which an initial pure state is modified i
a mixed state ofn photons andn21 photons, namely,

rn→~12q!rn81qrn218 , ~24!

wherern is a density matrix for a pure state. From Eq.~23!
we can identify the state in the space (un22,1&,un21,2&)
to be

ut&n215
Ak~n21!cun22,1&1Ak~n!dun21,2&

Ak~n21!ucu21k~n!udu2
~25!

and

q52Dt@k~n21!ucu21k~n!udu2#. ~26!

With probability 12q, the state remains in the origina
space, but the coefficients are modified as

ut&8}A122Dtk~n21!cun21,1&1A122Dtk~n!dun,2&.
~27!

The choice between states~27! and ~25! is made stochasti
cally. Namely, we generate a uniform random numberv in
@0,1# and compare it withq. If v<q, then Eq.~25! is chosen;
otherwise, Eq.~27! is chosen.

For the pumping process~15!, a similar procedure is
adopted. UnderGA the state~22! is changed into

S S cc* ~12x!cd*

~12x!dc* ~122x!dd* D 0

0 S 2xdd* 0

0 0D D ,

~28!
o
within the space (un21,1&,un,2&,un,1&,un11,2&). Here
x5aDt. The system jumps to the new stateun,1& with
probability 2xudu2. The wave function in the original space
identified as

ut&8}cun21,1&1~12x!dun,2& ~29!

of O(Dt). Thus we compare the random numberv with
2xudu2 and choose the state~29! or un,1&.

In Fig. 1~a! a typical example of the time evolution of th
expectation value of the photon number^n(t)& is shown for
the parametersk050.1, k150.1, and a50.1. The open
circle, closed circle, and cross denote three samples
^n(t)&. From this figure we can read the equation of moti
of photons for one ensemble: The photon numbern first
oscillates with the Rabi frequency and second decrease
increases due to photon decay or pumping, respectively
Fig. 1~b! the average photon number^^n(t)&& and the aver-
age population inversion̂^m(t)&& over 1000 samples ar
shown by open squares and open circles, respectively. H
^^&& denotes the average of the expectation value over
stochasticity. The error bars for the average are much sm
than the size of the symbols. The solid lines denote res
for ^^n(t)&& and ^^m(t)&& obtained by solving the equatio
of motion of the RDM, Eq.~13!. Hereafter we expresŝ̂ &&
by ^& for simplicity. In the figure, we have confirmed that th
present stochastic model gives the same time evolution
that of Eq.~13!.

We also study the stationary state by the SSE. For
ample, we obtain̂ n&50.3360.01 ands250.8760.01 for
the parametersk050.1, k150.1, anda50.1. Here we esti-
mated the error bars as the standard deviation over five
~group of samples! of 106 samples. The corresponding da
obtained by the RDM arên&50.33 ands250.87. Thus we
again confirm the equivalence of the two methods for av
aged quantities.

The present method involving the time evolution of t
wave function is a kind of Langevin equation equivalent
Eq. ~13!, which could be called a stochastic Schro¨dinger
equation. This type of stochastic procedure has been ter
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the method of quantum jump@16–18# and the present the
SSE can be regarded as an example of this. The rela
between SSE and the RDM is similar to that between
Langevin equation and the Fokker-Planck equation. The
dividual transition probability in the SSE cannot be justifi
from more fundamental mechanics. In this sense, the SS
just a stochastic model that provides the same statis
property as the RDM, namely, Eq.~13!. However, just like
the case of the kinetic Ising model, the SSE may provid
qualitative description of the dynamics of realistic mode
The kinetic Ising model has been introduced to provide
canonical ensemble of states in the steady state, but
actually used to study the qualitative nature of the rel
ational motion of uniaxial magnets@27–30#. Thus we adopt
the present procedure as a first step in the study of the
poral properties of emission. This SSE is applied to evalu
antibunching and dead time effect on the photon emiss
from the microcavity in Secs. IV and V, respectively.

III. PHOTON-NUMBER SQUEEZING
WITHIN THE MICROCAVITY

In this section the photon statistics are evaluated by s
ing the time evolution of Eq.~13! and the Fano factors2

@Eq. ~1!# is calculated. This shows that the degree of s
Poissonian nature is enhanced by the nonlinearity in the
cay rate of photons. This sub-Poissonian nature~photon-
number squeezing! is one of the most significant nonclassic
features of the radiation field within the microcavity and c
be measured, e.g., by quantum nondemolition measurem
In Table I we list an example of the dependence ofs2 on k0
andk1. When the number of photons within the microcav
^n& is large, the nonlinearity enhances the degree of the s

FIG. 1. ~a! Samples of the time evolution of the expectation
the photon number̂n(t)& within the microcavity fork050.1, k1

50.1, anda50.1. The different symbols denote different samp
of the time evolution by the SSE.~b! The square denotes the e
semble average of̂n(t)& and the solid line through the square
denote^n(t)& obtained by the RDM. The same for the populati
difference^m(t)& is given by circles. The unit of time is the invers
of the Rabi frequencyg, which maintains throughout the paper.
on
e
-

is
al

a
.
e
is
-

m-
te
n

v-

-
e-

ts.

b-

Poissonian nature as is naturally expected. It is noted thas2

has a minimum point as a function ofk1 for nonzerok0. On
the other hand,s2 decreases monotonically witĥn& when
k050.

For a very small number of photons in the microcavi

TABLE I. Fano factor (s2) for t550 ~stationary state!.

k0 k1 a ^m& ^n& s2

0.00 0.001 0.3 0.00 11.86 0.54
0.00 0.003 0.3 0.01 6.78 0.56
0.00 0.005 0.3 0.01 5.18 0.57
0.00 0.01 0.3 0.01 3.56 0.61
0.00 0.05 0.3 20.01 1.41 0.73
0.00 0.10 0.3 20.06 0.94 0.75
0.00 0.30 0.3 20.21 0.49 0.75
0.00 0.50 0.3 20.26 0.34 0.78
0.00 0.70 0.3 20.27 0.26 0.81
0.00 1.00 0.3 20.25 0.18 0.85
0.00 2.00 0.3 20.10 0.08 0.92

0.10 0.001 0.3 20.03 1.51 0.99
0.10 0.003 0.3 20.04 1.45 0.97
0.10 0.005 0.3 20.04 1.39 0.95
0.10 0.01 0.3 20.04 1.28 0.92
0.10 0.05 0.3 20.09 0.88 0.83
0.10 0.10 0.3 20.14 0.69 0.80
0.10 0.30 0.3 20.24 0.41 0.78
0.10 0.50 0.3 20.27 0.29 0.80
0.10 0.70 0.3 20.27 0.23 0.83
0.10 1.00 0.3 20.24 0.16 0.86
0.10 2.00 0.3 20.09 0.08 0.93

0.30 0.001 0.3 20.19 0.59 0.91
0.30 0.003 0.3 20.19 0.59 0.90
0.30 0.005 0.3 20.19 0.58 0.90
0.30 0.01 0.3 20.20 0.57 0.89
0.30 0.05 0.3 20.22 0.50 0.86
0.30 0.10 0.3 20.24 0.43 0.84
0.30 0.30 0.3 20.28 0.30 0.82
0.30 0.50 0.3 20.27 0.23 0.84
0.30 0.70 0.3 20.25 0.18 0.86
0.30 1.00 0.3 20.21 0.14 0.88
0.30 2.00 0.3 20.06 0.07 0.94

0.50 0.001 0.3 20.26 0.38 0.88
0.50 0.003 0.3 20.26 0.38 0.88
0.50 0.005 0.3 20.26 0.37 0.88
0.50 0.01 0.3 20.26 0.37 0.88
0.50 0.05 0.3 20.27 0.34 0.87
0.50 0.10 0.3 20.27 0.31 0.86
0.50 0.30 0.3 20.27 0.23 0.85
0.50 0.50 0.3 20.26 0.18 0.86
0.50 0.70 0.3 20.23 0.15 0.88
0.50 1.00 0.3 20.18 0.12 0.90
0.50 2.00 0.3 20.03 0.06 0.94

0.00 0.001 0.5 0.01 15.46 0.52
0.00 0.001 0.8 0.02 19.59 0.51
0.00 0.001 1.0 0.02 21.87 0.51
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the distribution of the photon numberP(n) almost localizes
at n50 or 1. HereP(n) is the probability that the system ha
n photons within the microcavity. For cases withn50 or 1,
^n2&5^n& and the Fano factor is given approximately by

s25
^n2&2^n&2

^n&
.12^n&512P~1!. ~30!

Thus the degree of sub-Poissonian nature seems to be
weaker when the number of photons becomes smaller,
whenk1 or k0 increases. In this low-photon-density regio
however, the concept of the sub-Poissonian may not ha
significant meaning.

The photon-number distributionsP(n) are drawn in Fig.
2 for k150.001, 0.01, 0.1, and 1.0. The average pho
number̂ n& in the microcavity is 11.86, 3.56, 0.94, and 0.1
respectively. The sub-Poissonian distribution of the pho
number within the microcavity is clear for cases with lar
^n&, i.e., s250.54 and 0.61 fork150.001 and 0.01, respec
tively. For comparison, the Poissonian distributions for^n&
511.86 and 3.56 are drawn by thin solid lines.

In order to study cases with larger values of^n& we in-
vestigate the model with stronger pumping, i.e.,a50.5, 0.8,
and 1.0. The Fano factor seems to converge to 0.5 when^n&
increases@31#. If we consider stronger nonlinearity fork(n),
such as a cubic function or a step function of the pho
numbern, however, we could have smaller values ofs2.
Here we confine ourselves to the nonlinearity given by E
~16!.

IV. ANTIBUNCHING EMISSION AND SUB-POISSONIAN
PHOTON COUNTING

Nonclassical features of emitted photons are discusse
this section by regarding the photon decay as equivalen
photon emission. Of course, the dissipation of photons d
not necessarily mean the emission of photons. Here, h
ever, we assume that the photon dissipation comes only f
the leakage of photons from the microcavity. Thus the fi
mechanism for the nonlinearity of the dissipation~16! is
more suitable for the present assumption.

FIG. 2. Photon distribution P(n) for the parameters
(k0 ,k1 ,a)5 ~0.0,0.001,0.3! wheres250.54 and̂ n&511.86 (n),
~0.0,0.01,0.3! where s250.61 and^n&53.56 (s), ~0.0,0.1,0.3!
where s250.75 and ^n&50.94 (d), and ~0.0,1.0,0.3! where
s250.85 and^n&50.18 (h). The solid lines show the Poissonia
distributions with^n&5 11.86 and 3.56.
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The ensemble-averaged photon intensity emitted from
cavity is expressed as

I e~ t !5Tr$r~ t !V†V%

5Tr$r~ t !Ak01k1b†bb†bAk01k1b†b%

5Tr$r~ t !~k01k1b†b!b†b%. ~31!

Thus the averaged emission intensity from a state withn
photons is proportional tok(n)n.

A. Antibunching

First, the second-order correlation functiong(2)(t) is
evaluated to detect the photon antibunching characteris
after the system reaches the stationary state. In the simula
with the SSE, we store the time of each emission. In orde
calculateg(2)(t), we make a coarse graining of the emissi
process. That is to say we divide the time sequence in
discrete mesh and count the numbers of emissions in e
interval (dt50.25). In this way, we obtain the time sequen
of emission$I ( j ), for j 51, . . . ,j max5T/dt%, whereT is the
total observation time. Then we calculate the correlat
function ~2! in the discrete mesh:

g~2!~m!5
1

nemit
2 (

j 50

j 5 j max2m
I ~ j !I ~ j 1m!

j max2m
, ~32!

wherenemit is the average number of emissions in an inter
dt. Because of the stationarity, we set here^I (t)&5^I (t
1Dt)&5nemit. We simulated five different time sequenc
of T52.03104 @2.03107Dt(50.001)#. The error bar in the
figures denotes the standard deviation over these
samples.

In the cases where a large degree of squeezing was
ized studied in Sec. III antibunching is not found. For e
ample, in Fig. 3,g(2)(t) is shown fork050.0,k150.01, and
a50.3. For this set of parameters,g(2)(t) is almost flat,
although strong squeezings250.61 was found. Here the av
erage number of emissionnemit is 0.074.

In order to realize antibunching, we reduce the pho
number within the microcavity by increasing the relaxati
rate. First, we takek050.0, k150.1, anda50.3; g(2)(t) is
shown in Fig. 4~a!, wherenemit50.079. Here we find a smal
dip for smallt, which is supposed to be a sign of antibunc
ing, but the process is still almost Poissonian.

Next, we consider cases with stronger damping, where
distribution of more than two photons within the microcavi

FIG. 3. g(2)(t) for k050.0, k150.01, anda50.3.
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is almost zero, i.e.,P(n).0 for n>2. In Fig. 4~b!, g(2)(t) is
drawn fork050.0, k151.0, anda50.3. For this set of pa-
rameters, we find thatg(2)(t) becomes small ast approaches
to zero. We thus conclude that the present sequence of e
sions shows antibunching. Herenemit;0.094. If we increase
the value ofk1, stronger antibunching is found. In Fig. 4~c!
the results fork152.0 are also plotted, wherenemit;0.082.
The recovery time of antibunching will be discussed in S
V.

It should be noted that when we increase the decay r
the number of photons within the microcavity^n& decreases
while the number of emitted photonsnemit does not depend
heavily on the rate.

Now we discuss the relation betweens2 for photons
within the microcavity and antibunching of the emitted ph
tons. The antibunching nature becomes more clear as
nonlinear decay ratek1 increases. On the other hand, t
degree of squeezing decreases with the increase ofk1, for
example, the Fano factors2 is 0.61, 0.75, 0.85, and 0.92 fo
k150.01, 0.1, 1.0, and 2.0, respectively. As was mention
in Sec. III, for a very small number of photons in the micr
cavity, the concept of the sub-Poissonian distribution m
not have a significant meaning. The average photon num
within the microcavitŷ n& are 3.56, 0.94, 0.18, and 0.08, fo
k150.01, 0.1, 1.0, and 2.0, respectively. For realization
antibunching, it seems important that the distributionP(n)

FIG. 4. g(2)(t) for a50.3 and~a! k050.0 andk150.1, ~b!
k050.0 andk151.0, and~c! k050.0 andk152.0.
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localizes only overn50 and 1, as shown by open squares
Fig. 2. Thus we cannot find the correlation between the F
factor s2 of photon number within the microcavity and th
antibunchingg(2)(t) of photons emitted from the microcav
ity. This is in contrast to the relation of the antibunchin
property to the Fano factorse

2 of the distribution of photons
emitted from the microcavity, which is defined in the follow
ing subsection.

B. Sub-Poissonian photon counting

Next we obtain the distributionPemit
dt (n) of the numbers of

emitted photons in a time intervaldt, which corresponds to
the photon number counting outside the microcavity. H
we divide the observation timeT into T/dt intervals and
calculatePemit

dt (n) by counting how many intervals containn
emitted photons. The distribution depends ondt and thedt
dependence of the Fano factorse

2 is shown in Fig. 5. Here
we can discuss the relation between the Fano factorse

2 and
antibunchingg(2)(t). For such a case in which antibunchin
is observable, whendt increases the Fano factorse

2 de-
creases, i.e., the nonclassical nature is enhanced as th
servation intervaldt increases beyond the characteristic tim
of g(2)(t). On the other hand,se

2(dt) remains near 1.0 for
the case of weak nonlinear dampingk150.01 in which the
degree of antibunching is weak, i.e.,g(2)(t).1. This behav-
ior will be analyzed in more detail in Sec. V. Now let u
consider the relation~11!. For the smallest value of the ob
servation timedt50.25, we find that 11 n̄ @g(2)(t5dt)
21# is 1.0, 0.943, and 0.936 and thatse

2(dt) is 1.0, 0.943,
and 0.929 fork15 0.01, 0.1, and 1.0, respectively. Thus w
find good agreement with the second line of Eq.~11!.

We also investigatedse
2 at the valuedt where the average

number of emissionsn̄ is nearly 1.0. This quantityse
2 (1.0)

is a kind of Fano factor for the distribution of the number
emitted photons in the time period for which one photon
emitted on average. Fork150.1, we tookdt53.25, where
n̄51.02560.006, and obtainedse

2(3.25)50.92260.005.
Similarly, we obtained the following: fork151.0, dt52.75,
n̄51.03660.004, andse

2(2.75)50.59960.002 and fork1

52.0, dt53.00, n̄50.99360.003, and se
2(3.00)50.500

60.004. We conclude that when the degree of antibunch
is stronger the distribution of emitted photons becomes m

FIG. 5. Dependence ofse
2 on dt for the cases shown in Fig. 4

d, s, and n denote the data fork150.1, 1.0, and 2.0, respec
tively.
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sub-Poissonian. Namely, in the present model, the Fano
tor se

2( n̄51.0) has a strong correlation with the degree
antibunching found ing(2)(t). Here we found that the non
classical nature of the emission can be clearly observabl
the antibunching phenomenon at small timet and, on the
other hand, as the sub-Poissonian distribution of emi
photons at largedt for which n̄>1.

It should be noted that it is only in such low-photo
density regions aŝn&!1 that both nonclassical feature
that is, antibunching and sub-Poissonian photon count
are clearly observed. The nonlinear dissipation produces
ficiently the distribution over the photon numbers 1 and
and consequently the antibunching and the sub-Poisso
photon counting are enhanced.

V. EFFECT OF THE DEAD TIME

In this section we consider the mechanism of the a
bunching emission. As long as the emission probability
unit time is constant and independent of time, the distri
tion of the emitted photon number is expressed as

Pemit
dt ~n!5NCnpn~12p!~N2n!, p5^n&dt/N, ~33!

where a time intervaldt is divided intoN piecesdt/N and

^n&5k(n)n. For the binomial distribution, we haven̄
5pN and n̄ 22 n̄ 25p(12p)N. Thus

se
2512p. ~34!

If we take the limitN→`, se
2 becomes 1. Namely, the dis

tribution ~33! becomes the Poissonian distribution as long
p is independent of time.

When we consider the quantum-mechanical natures of
citation and emission, a dead time after each emissio
inevitable. Consequently, it is not realistic to assume the
nomial distribution of the number of emitted photons f
every time interval of very smalldt/N.

Let us consider the origin of the dead time. When a p
ton is emitted from an atom via spontaneous emiss
namely, without the cavity, some time must elapse before
atom can be excited again. This gives rise to a dead time@7#.
Furthermore, when the atom is in a cavity, there is an ad
tional contribution to the dead time from the process that
excited atom emits a photon in the cavity.

In the microcavity, the atom interacts coherently w
photons by Eq.~12! and the emission from the cavity i
given by the mechanism of Eq.~14!. There a state is ex
pressed as

uf~n!&5c~ t !un21,1&1d~ t !un,2&. ~35!

The emission is counted when a photon exits the ca
through a wall. The probability of emission is proportional
that of the dissipation of photons:

pemit5uc~ t !u2k~n21!~n21!1ud~ t !u2k~n!n. ~36!

If the dissipation is very strong compared to the pumpi
only the probabilitiesP(0) andP(1) have significant values
In such a case the emission occurs only whenud(t)u2Þ0.
After the emission of a photon, the state changes tou0,2&. It
c-
f

as

d

g,
f-
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is
i-

-
n,
e
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then takes some time to restored(t), which causes the dea
time. First, the atom must be excited, namely,u0,2&→u0,
1&. The timet01 to pump the atom (a50.3) is estimated as

t015
1

2a
5

5

3
. ~37!

Here let us remember the unit of time to be the inverse of
Rabi frequencyg. A second contribution to the dead tim
comes from the duration for which the atom emits a pho
in the microcavity. The timet02 for the system to change
from u0,1& to u1,2& is roughly given by

t025
TRabi

4
5

2p

4vRabi
5

1

2
p. ~38!

The dead time is given by the sum of these two contributio

t05t011t02. ~39!

In Figs. 4~b!, 4~c!, and 5 we can see that the characteris
time is about 1.0–2.0 fork151.0 and 2.0, which is consis
tent with thet dependence ofg(2)(t). This characteristic
time is of the same order as the above estimate oft0. On the
other hand, the characteristic time fork150.1 is much
longer. This dependence is understood as follows:
k151.0 and 2.0, the photon dissipates with high probabi
when photons appear within the microcavity for the fi
time. On the other hand, the photon dissipation is so w
for k150.1 that the photon may not dissipate but rather
cite the atom again. Namely, the processu1,2& to u0,1&
takes place. Then the system has to wait until the next t
region for whichud(t)u2;1. Under this situation, the highe
photon number states are produced through such pum
process asun,2& to un,1&, so that the effect of dead time i
smeared out.

Now let us consider the effect of the dead timet0 on the
emission of photons. During the dead time, the emission
photon is suppressed. Thus it naturally causes antibunch
i.e., the reduction ofg(2)(t). We can study the effect of dea
time on the photon-counting statistics by looking at the d
tribution Pemit

dt (n). If we consider a constant probabilit
k(n)n of photon emission, the distribution of emitted ph
tons during an intervaldt is the Poissonian distribution, a
was pointed out above. If we take into account the dead ti
however, the time available for the photon emission from
cavity is reduced byt0 per every emission. Generally, th
distributionPemit

dt (n), with the dead time taken into accoun
has a complicated form. Here let us confine ourselves to
casedt@t0 for simplicity, where the overlap of dead time
can be neglected. Then the probability ofk emissions
Pemit

dt (k) has to be modified as

Pemit
dt ~k!5 ~N2Mk!Ckp

k~12p!~N2Mk2k!, M5t0N/dt.
~40!

If we take the limitN→` keepingM /N5t0 /dt to constant,
Pemit

dt (k) is rewritten as

Pemit
dt ~k!5

1

k!
@^n&dt~12rk !#kexp@2^n&dt~12rk !#,

~41!
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wherer 5t0 /dt. This modified Poissonian distribution show
a sub-Poissonian nature, i.e.,se

2,1.0. In Fig. 6 these
2 is

drawn as a function oft0 /dt as open circles, keeping th
average number of emitted photons to 1. The length of
interval dt is also shown as closed circles.

Thus we conclude that the antibunching and the degre
sub-Poissonian nature of the distribution of the emitted p
ton number are strongly related to the existence of the d
time after an emission. We find that the antibunching em
sion occurs only when̂n& is very small. This is understoo
as follows: When the distributionP(n) at large n is not
small, more than two values ofn contribute to the emission
and the effect of the dead time at eachn is smeared out. Thus
the degree of antibunching is very much reduced. The sm
^n& means that the quantum number of the systemn is 1 or
0, where large fluctuation ofn is suppressed and the an
bunching is clearly observable.

VI. SUMMARY AND DISCUSSION

In this paper we have studied the nonclassical feature
photon emission, making use of direct numerical analyse
a quantum-mechanical system. In particular, introducin
nonlinear decay mechanism, we have observed a strong
Poissonian distribution of the photon number within the m
crocavity. So far, photon-number squeezing has been r
ized only in semiconductor lasers operating under cons
current injection@6#. This may be called externally con
trolled photon-number squeezing. On the other hand, in
present paper we have presented a large amount of intr
photon-number squeezing under the presence of nonli
dissipation.

We have proposed an alternative formalism, the stocha
Schrödinger equation, and solved to obtain the degree
antibunchingg(2)(t) and the sub-Poissonian degreese

2 of a
photon emitted from the cavity. It has been found that
antibunching and sub-Poissonian distribution originate fr
the existence of the dead time after a photon emission. In
present study we have found the antibunching of the emi
light only for a small number of photons within the micro
cavity, while squeezing is visible for a large number of ph
tons.

It should be noted that the present results may stron
relate to the dynamical model that we adopted. There is
microscopic justification of the stochastic treatment for
stochastic Schro¨dinger equation. The present model shou
be considered as one of possible ways in which the Jay

FIG. 6. d ands denotedt andse
2 , respectively.Dt is normal-

ized by the value fort050.
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Cummings model can be coupled to external degrees of f
dom. In the present paper photon dissipation has been tre
as equivalent to emission from the microcavity. In this sen
the first mechanism discussed in Sec. I and the Appendi
relevant to the present study. When the second mechan
photon dissipation through electronic excitation and its s
sequent relaxation into the reservoir, is operative, we m
included an additional term representing this effect inGFr of
Eq. ~14!. The number of atoms was restricted to one in t
present paper. The case of many atoms interacting with e
other is a problem for the future. We hope the present pa
gives a starting point for further developments.
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APPENDIX: MECHANISM OF THE NONLINEAR
DISSIPATION

Let us discuss the feasibility of the methods of generat
the nonclassical light described in Sec. II. First we will d
cuss the first mechanism making use of a Fabry-Pe´rot cavity
containing nonlinear optical materials. The transmission r
T(v) for the Fabry-Pe´rot cavity is sensitive to the photo
number within the microcavity. The transmission rateT(v)
is given as

T~v!5
1

11Qsin2~k!
, ~A1!

whereQ is theQ value of the cavityQ54R/(12R)2. Here
R is the reflection rate of the walls andk5n0vL/c
1(n2vL/c)N, where the refractive index of the walls i
given byn(N)5n01n2N, with N being the number of pho
tons within the microcavity andL the width of the wall.

The decay rate 2k(N) from the Fabry-Pe´rot cavity is
given by

2k5
c

n~N!L
~12R!5

c

n~N!L
T~v!. ~A2!

Here let us consider the Fabry-Pe´rot cavity under the opti-
mum condition, namely,

n0vL

c
52

p

4
, ~A3!

and set

n2vL

c
N[

d

2
. ~A4!

Expanding 2k of Eq. ~A2! in d,
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2k.
c

n~N!LF 1

11Q/2
1S 1

11Q/2D
2

Q
n2vL

c
NG

52k0S 11
Q

11Q/2

n2vL

c
ND , ~A5!

where

2k05
c

n~N!L

1

11Q/2
, ~A6!

then the nonlinear decay rate,k1N is given by
k0n2vLQN/c(11Q/2). Making the relation with Eq.~A3!,
we have

k1

k0
5

p

4

Q

11Q/2

n2

n0
. ~A7!
a,

-

.

li

s

n

Therefore, in order to have the same order of nonlinear
linear decay,n2 should be the same order asn0. In a micro-
cavity, this condition should be possible.

Here it should be noted that in order to realize a ve
rapid change ofk(n) for a few photons, the required nonlin
earity is the same order of magnitude as for the quan
computer, i.e.,n2NvL/c;p/2. We will be able to reduce
the linear decay ratek0 by using a microcavity with ex-
tremely largeQ values.

The other channel of nonlinear decay is brought about
two-photon absorption due to a biexciton and 2k1 is esti-
mated to be 1013/sec for two photon resonant absorption by
biexciton within the microcavity with volumel3. This be-
comes larger than 2k0 for a realizable system. Thus th
present mechanism can provide a strong nonlinear decay
@32#.
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