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Stochastic model of nonclassical light emission from a microcavity
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A sub-Poissonian distribution of photon numbguhoton-number squeezingithin a microcavity is theo-
retically shown to be possible using a realistic model of nonlinear photon dissipation. By deriving and solving
a stochastic Schdinger equation for a system with photons and atoms in a microcavity, we have obtained
strong antibunching and a sub-Poissonian distribution of the number of emitted photons from the microcavity.
The relationship among the above three statistical quantities, which describe the nonclassical nature of the
guantum radiation field, are also discusge&11050-294{@8)07102-9

PACS numbgs): 42.50.Lc, 42.50.Ct, 42.55.Sa

I. INTRODUCTION temporal sequence of photons emitted from the cavity.
So far there has been no direct investigation of the rela-

The interaction of atoms or excitons with the radiationtionship betweend?, g‘®(7), and ¢2 in a quantum-
field within microcavities has been studied extensively. Themechanical system. In the present paper, we will explore the
radiation field is so well quantized there that only a singlerelation among these nonclassical features by proposing con-
mode can dominate the interaction with materials and therete quantum-mechanical models.
field amplitude increases in inverse proportion to the square Concerning photon-number squeezing within the cavity,
root of the volume of the microcavity. Large Rabi splittings we have reported that a nonclassical feature of the radiation
[1] and clear Rabi oscillatior{2] were observed for excitons field is possible under resonant stationary pumping of the
in semiconductor microcavities. A great variety of nonlinearlowest exciton[11]. The degree of sub-Poissonian distribu-
optical responses are observed depending on the quality ¢ibn, however, was weak for photons within the microcavity.
the quantum well$3-5|. The nonclassical nature has beenNamely, the Fano factor, defined by
observed for the radiation field emitted from these micro-
cavities. For example, photon-number squeezing was ob- (n?)—(n)?
served with a semiconductor laser operating under constant (n) ' @)
current[6]. Antibunching of the luminescent light was ob-
served from a small number &fMg * ions under stationary was as close to one as 0.94 even under optimum conditions.
pumping within a microcavity7,8]. Here Tn?p=(n?) and Tnp=(n) are averaged with the re-

These phenomena have been analyzed by the Jaynesuced density matrix of the systemunder the stationary
Cummings mode[9] . This model has been extended so ascondition. In the present paper, we propose a model of non-
to include (i) cavity damping andii) pumping of an elec- linear photon dissipation that can realize the robust nonclas-
tronic systenj10,11]. Recently, we have extended the modelsical feature of light and thus we will be able to control the
further to includeiii) excitonic effects, i.e., effects due to degree of squeezing, i.e., the sub-Poissonian distribution of
many atoms and excitation propagation. We have studied thge photon-number within the microcavity. Enhancement of
extended model by solving an equation of motion for thethe photon number squeezing due to the nonlinear photon
reduced density matrixXRDM) [12-19 with terms repre- dissipation will be investigated in Sec. Il
senting the dissipation and the pumping effddts]. As for the temporal characteristics, such as the antibunch-

The nonclassical features that we study here(ayghe  ing of the emission and the sub-Poissonian photon counting,
sub-Poissonian distribution of photon numbers within a mi-it is necessary to introduce a microscopic dynamical model
crocavity (photon-number squeezingvhich is measured by that describes the dynamics in the stationary state. Therefore,
the Fano factoro?, (b) the antibunching of the temporal we introduce a stochastic Sclinger equatiofSSE, i.e., a
sequence of photon emissions from the cavity, which is charSchralinger equation with some random modulation, to
acterized by the second-order normalized time-correlatiostudy such temporal properties of individual stochastic pro-
function g®®)(7), and(c) the sub-Poissonian distribution of cesses. In Sec. Il this equation is derived from microscopic
photons emitted from the cavity. We will introduce a kind of processes described within the density-matrix formalism. We
Fano factorog to measure the degree of suf@r super}  consider that the present stochastic model can simulate the
Poissonian photon counting outside the cavity. The nonclaseelevant behavior of realistic systems. Averaging over the
sical features(b) and (c) are investigated by studying the stochasticity, we obtain the same result for the time evolu-
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tion of quantities as is obtained by the RDM method. This
SSE can be regarded as a direct realization of the method of

guantum jumgd16-1§.

The nature of the temporal behavior of the radiation field
is characterized by the second-order time-correlation funcl

tion of I(t) as

((O1(t+ 1)
(1) (I(t+7))

wherel (1) indicates the intensity of the radiation field emit-
ted from the cavity. We obtain the trivial inequality

g®(r)= @

9'?(0)=g?(7), )

as long ad(t) andl (t+ 7) are considered classical variables.
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n=> nPd.(n), ne=> n?p
n=0 n=0

)

?mit(n)-

he relation betweernr? and antibunching has been dis-
cussed 19,20,22,24 If we assume that the probability to
count an emission in a timat is proportional to the inten-
sity | andAt, i.e.,p=«alAt, then the probabilinmei[(n) is
given by a Poissonian distribution, wheeteis a constant
dependent on the detector. The mean of the distribution is
proportional to the intensity of the radiatiarstl. The prob-
ability P2'.(n) should be averaged over the distribution of
the intensity of the radiation. In the limit where the counting
time 6t is short compared to the coherent time over which

the intensity changesl_andnTare obtained ag22,23

On the other hand, when we take into account the quantiza-

tion of the radiation, we should be careful about the defini-

tion of g (0). In this caseg®(r) is written as[19]

_ (ET(WE (t+DET(t+ 1)ET (1))

g'*()= (E-(DET(ONE (t+DE (t+1)’

4)

where() denotes the average over the distribution @j. If
we define

9?(0)=limg?(7), )
7—0
then we could have
9?(0)<g?(7). (6)

As has been reviewed [r20], there are two definitions of
antibunching: One is given by E¢6) and the other is deter-
mined by the derivative 0§®(r) at 7=0. When the in-
equality

dg(7)
dr

9'(0)= @)

=0

holds, the process is called antibunchinggif0)=<0, it is
bunching. These definitions, however, do not always coin
cide. If g®®(7) is monotonic, both definitions coincide. For
example, it has been foun@21] that g®(0)>1 and

g®(7) decreases monotonically for thermal radiation, which

is bunching in both definitions.
The words “bunching” and ‘“antibunching” originate
from the temporal distribution of photons emitted from the

system. Thus we study this distribution in Sec. IV, namely,

we investigate how uniformly the radiation is distributed in
time. There we study the distributid?ﬁtmit(n) of the photon
number observed outside the cavity for each time inteéval
We introduce a kind of Fano factor for the distribution
ag(at), which gives another nonclassical feature of the pho
ton emission:

n2—

n2

o(8t)= ®

where

n=adt(l)
and
n2—n2=ast(l)+(ast)2((12—(1)?).
In this casep? is given ag 19,27

43— (1y?

0%:1-1- HT.

Here() denotes an average over the distribution @@j. For

the classical caser,g is always larger than 1.0. On the other
hand, for quantum-mechanical systems, taking into account
relation (4), the following relation is obtainef24]:

(10

n
(8t)?

t+ ot t+ ot
f dt, f dty[g'@(t,—ty) —1]
t t

0'(29=1+

~1+n[ limg®@(st)—1].
o5t—0

(11)

This expression is derived when the observation tifhas
much shorter than the time characterizingg® (7). There-

fore, we are careful in taking the limit—0 numerically
within 7> 6t when we compare the stationary propeotﬁ(
and dynamical propertg(®(7—0). From this relation we
can deduce the following: i2<1.0, then the emission is
antibunching, i.e., lim_,g®(7)<1. In Sec. IV the depen-
dence ofa? on &t and also on the degree of antibunching
will be discussed.

In Sec. Il we introduce the model with nonlinear photon
dissipation and describe the equation of motion of the RDM
and the SSE. In Sec. Ill strongly sub-Poissonian photon-
number distributions within the microcavity are demon-

strated in the model of nonlinear decay of photons. The

second-order correlation functi@i?)(7) of photon emission
and the temporal distribution of emissions are evaluated in
Sec. IV. A possible mechanism of antibunching and sub-
Poissonian photon counting is discussed from the viewpoint
of the existence of dead tinf20] in the present dynamical
process in Sec. V. Section VI is devoted to a summary and
discussion for future problems.
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Il. MODEL AND METHOD including the mirrors consists of nonlinear optical materials
In order to studv the properties of photons emitted from &° that the dielectric constant of the system depends on the
y Prop P hoton number within the microcavity. Therefore, the effec-

mlc?ég(l:?r:”\t\}/lﬁicwz ssi;ug?é/-n?o d%egﬁg?gﬁg ci?pl:?:; v(\ighm;slgg ive transmittance of this micrpcavity dgpend.s on t_he photon
tem of interacting two-level atoms: numbe_r. We set the microcavity at a point of inflection of the
' transmission spectrum for a small number of photons and
then can increase the photon decay rate in proportion to the
thon sz—hJZ (Sj*Sj’HJr Sj’Sj*+1)+thbTb photon number. In the second case, we use a material where
) ! two-photon absorption due to a biexciton affects the nonlin-
ear dissipation of photons. When the energy dissipation
+ﬁgZ (Sfb+ S]-’bT), 12 through biexcitons is so rapid, we may eliminate adiabati-
! cally the biexciton degree of freedom and describe this effect
as a nonlinear decay of photoh26]. These two channels

Z +(—) H e — o
Yxhetrr?estvig-(ljesvel atg:ﬁ zﬁlt;]’foa?necjrztc;rrsevtvr;fboléindﬁfggtti)on will be discussed in detail in the Appendix. The effects of
9 excitons, i.e., collective modes coming from the interaction

anpl annihilation operators of the cawty.phgton. Herg we reémong atoms, will be studied elsewhere.
strict ourselves to the resonant conditieg= w, for sim-

- In this paper we study processes described by (E8§)
plicity. Throughout the present paper we use the Vacuunith the nonlinear relaxation rate. In the general theory of

Rabi frequency as the unit of energy, i.e., we getl.0. P : :
Using the method of Markovian reduced density of statedISS'pa“on’ the terni'p should be given in the form

[12-14, we investigate the dynamics of the modéR)
when it is coupled with incoherent processes, such as photon
dissipation and pumping of the electronic system:

Tep=2VpV'—pVV-VTVp (17)

and the photon-number dependencec@f) in Eq. (16) cor-
responds to taking the form &f as

VT=ko+ k.bTbb'. (18

The explicit matrix element of Eq17) is

2\k(n+1)Vn+1pn g meaVe(m+1)ym+1—me(m)pnm

— Pnmnk(N), (19

ap i
St L1+ Tep+Tap. (13

Here we adopt the photon dissipation procEgsn the form
I'ep=—«k(b'bp—2bpbT+ pb'b) (14)

and the pumping proce$45]

=— ~Sp—2StpS S
ap= a; (S S/p=257pS; +05 5). (19 wheren,m are the number of photons. Here we have used

relations such as
We calculate the time evolution of EQL3) by making use of
the following decomposition of the time evolution operator <n|bpr|m>= (n+1)(M+1)ppy1mea-
for a time slitAt:

The photon statistics are evaluated by solving ) for
both the stationary and transient phenomena. This RDM

method gives the time evolution of the probability distribu-

=(ix) L A(t) ime-
gfe;ﬁgr’f tial(lgf)a t[i7ni1'ep- éeang: dentdgngg;(frth)e Elrrr?ii iogdt(;reed tion of the system. Thus we can obtain the time evolution of
P P P ' .averaged quantities.

lowest approximation, but we have checked that the preci- In order to study the time sequence of the photon emis-

sion is sufficient by changlng the V_alue of the time dli . sion from the microcavity, it is necessary to solve the time

over At=0.001-0.01. If desw_ed,_hlgher-or(_je_r deCOmpOSI'evolution for each process, namely, a kind of the Langevin

tions[25] can pe used to abtain higher prec's'og' equation for the process that includes some explicit random
In the previous study11] the dependence af” on the 4 1ation. Here we introduce a stochastic Sdimger

pumping ratex and ph(_)ton decay ratewere studied, Wherg equation that gives the same statistical properties of the sys-
the parameterk was independent of the photon density. em as those obtained by RDM formaligit®). We confine
There we found that photon-number squeezing can be real

. ) " ““Ourselves to the case with a single atom in the present paper.
ized under stationary conditions, but the degree of squeezing, . ciate of the system at tinés given as
was limited too?=0.94.

In the present paper we introduce a model with a nonlin- _
S =c|ln—1,+)+ —
ear dependence of the photon dissipation on the photon den- t)=cln=1+)+d[n,—), (20
sity in order to control more efficiently the distribution of
photon numbers within the microcavity. Namely, we adopt

EAULATE+T ) LA AT

p—e

wheren denotes the photon number aftdand — denote the
up (excited and down(ground states of the atom, respec-
Kk(N)= Ko+ K1N. (16) tively. If an emission of a photon from the cavity occurs,
then the state jumps to
There are two mechanisms of introducing nonlinear decay of
photons in a microcavity. In the first case, the microcavity [t))=c'|In—=2,+)+d'|n—1,-). (21
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We can determine the probability of photon emission during 0,0 ph_1, O
the time intervalAt and the coefficients’ andd’ from Eq. Tel o — , (23)
(13). The statg20) is described in the density matrix as #n 0, Pn

cc* cd*
pn=|dc* dd* (22

in the space |@—1,+),|n,—)). The quantum-mechanical

motion is given bye™'"A!|t) and the incoherent decay pro-

cess is given by Eq17). The density matrix22) changes by
the incoherent process to

( [1-2Atk(n—1)]cc*
Pn=

{1—At[k(n)+ k(n—1)]}dc*

is defined in the spacén(—1,+),|n,—)). This is interpreted

in the space|p—2,+),/n—1,—),/n—1,+),|n,—)), where

k(n—1)cc* Vkr(n)k(n—1)cd*
pn-1=28t [e(myx(n—1)dc* xk(n)dd*

is defined in the spacgr(—2,+),/n—1,—)) and

{1-At[k(n)+ x(n—1)]}cd*
[1—2Atk(n)]dd* )

within the space |f—1,+),|n,—),|n,+),|In+1,—)). Here

as the process in which an initial pure state is modified intox= «At. The system jumps to the new stdte +) with

a mixed state ofh photons andh—1 photons, namely,

pn—(1=Q)pr+tdpn_1, (24

wherep, is a density matrix for a pure state. From EZ3)
we can identify the state in the spade{2,+),/n—1,—))
to be

Ve(n—=1)c|n—2,4+)+«k(n)djn—1,—)
|t>nfl: > > (25
Ve(n=1)[c[*+ «(n)|d]|

and
q=2At[ k(n—1)|c|?>+ «(n)|d|?]. (26)

With probability 1—q, the state remains in the original
space, but the coefficients are modified as

[t)"ocy1—2Atk(n—1)c|n—1,4+)+1—2Atk(n)d|n,—).
(27)

The choice between statéd7) and (25) is made stochasti-
cally. Namely, we generate a uniform random numben
[0,1] and compare it withy. If v <q, then Eq{(25) is chosen;
otherwise, Eq(27) is chosen.

For the pumping procesél5), a similar procedure is
adopted. UndeF , the statg22) is changed into

cc* (1—x)cd*
(1—x)dc* (1-—2x)dd*

2xdd* 0 '
0 0 o0

(28)

probability 2x|d|2. The wave function in the original space is
identified as

[t) eccln—1,+)+(1—x)d|n,—) (29

of O(At). Thus we compare the random numherwith
2x|d|? and choose the staf@9) or |n,+).

In Fig. 1(a) a typical example of the time evolution of the
expectation value of the photon numHiex(t)) is shown for
the parametersc;=0.1, k;=0.1, and a=0.1. The open
circle, closed circle, and cross denote three samples of
(n(t)). From this figure we can read the equation of motion
of photons for one ensemble: The photon numbefirst
oscillates with the Rabi frequency and second decreases or
increases due to photon decay or pumping, respectively. In
Fig. 1(b) the average photon numbgm(t))) and the aver-
age population inversiof{m(t))) over 1000 samples are
shown by open squares and open circles, respectively. Here
(()) denotes the average of the expectation value over the
stochasticity. The error bars for the average are much smaller
than the size of the symbols. The solid lines denote results
for ((n(t))) and{{m(t))) obtained by solving the equation
of motion of the RDM, Eq(13). Hereafter we expresg))
by () for simplicity. In the figure, we have confirmed that the
present stochastic model gives the same time evolution as
that of Eq.(13).

We also study the stationary state by the SSE. For ex-
ample, we obtair(n)=0.33+0.01 ando?=0.87+0.01 for
the parametergy=0.1, x;=0.1, ande=0.1. Here we esti-
mated the error bars as the standard deviation over five bins
(group of samplesof 10° samples. The corresponding data
obtained by the RDM arén)=0.33 ando?=0.87. Thus we
again confirm the equivalence of the two methods for aver-
aged quantities.

The present method involving the time evolution of the
wave function is a kind of Langevin equation equivalent to
Eg. (13), which could be called a stochastic Satirmer
equation. This type of stochastic procedure has been termed
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TABLE |. Fano factor ¢2) for t=50 (stationary state
Ko Ky a (m) (n) o’
A
? 0.00 0.001 0.3 0.00 11.86 0.54
v 0.00 0.003 0.3 0.01 6.78 0.56
0.00 0.005 0.3 0.01 5.18 0.57
0.00 0.01 0.3 0.01 3.56 0.61
0.00 0.05 0.3 —0.01 1.41 0.73
@ 0.00 0.10 03  -0.06 0.94 0.75
0.00 0.30 0.3 —0.21 0.49 0.75
é 0.00 0.50 0.3 —0.26 0.34 0.78
§ 0.00 0.70 0.3 —-0.27 0.26 0.81
N 0.00 1.00 0.3 —0.25 0.18 0.85
§ 0.00 2.00 0.3 —0.10 0.08 0.92
\
0.10 0.001 0.3 —0.03 151 0.99
0.10 0.003 0.3 —0.04 1.45 0.97
(b) 0.10 0.005 0.3 —0.04 1.39 0.95
- 0.10 0.01 0.3 —0.04 1.28 0.92
FIG. 1. (a) Samples of the time evolution of the expectation of 0.10 0.05 0.3 —0.09 0.88 0.83
the photon numbe¢n(t)) within the microcavity forx,=0.1, 0.10 0.10 0.3 -0.14 0.69 0.80
=0.1, anda=0.1. The different symbols denote different samples0.10 0.30 0.3 —0.24 0.41 0.78
of the time evolution by the SSEb) The square denotes the en- 0.10 0.50 0.3 —0.27 0.29 0.80
semble average ofn(t)) and the solid line through the squares 0.10 0.70 0.3 -0.27 0.23 0.83
denote(n(t)) obtained by the RDM. The same for the population 0.10 1.00 0.3 -0.24 0.16 0.86
difference(m(t)) is given by circles. The unit of time is the inverse .10 2.00 03 —0.09 0.08 0.93
of the Rabi frequency, which maintains throughout the paper.
0.30 0.001 0.3 —0.19 0.59 0.91
the method of quantum jumfl6—18 and the present the 0.30 0.003 0.3 -0.19 0.59 0.90
SSE can be regarded as an example of this. The relatioh30 0.005 0.3 -0.19 0.58 0.90
between SSE and the RDM is similar to that between th&.30 0.01 0.3 —-0.20 0.57 0.89
Langevin equation and the Fokker-Planck equation. The ing.30 0.05 0.3 -0.22 0.50 0.86
dividual transition probability in the SSE cannot be justified .30 0.10 0.3 —0.24 0.43 0.84
from more fundamental mechanics. In this sense, the SSE {g30 0.30 0.3 —0.28 0.30 0.82
just a stochastic model that provides the same statisticgl 3q 0.50 0.3 —0.27 0.23 0.84
property as the RDM, namely, E¢L3). However, just like g 3q 0.70 0.3 —0.25 0.18 0.86
the case of the kinetic Ising model, the SSE may provide @ 3, 1.00 0.3 —0.21 0.14 0.88
qualitative description of the dynamics of realistic models.() 5 2.00 0.3 006 0.07 0.94
The kinetic Ising model has been introduced to provide the
canonical ensemble of states in the steady state, but it 850 0.001 0.3 -0.26 0.38 0.88
actually used to study the qualitative nature of the relax-0.50 0.003 0.3 -0.26 0.38 0.88
ational motion of uniaxial magnef27-30. Thus we adopt 0.50 0.005 0.3 -0.26 0.37 0.88
the present procedure as a first step in the study of the tenp-50 0.01 0.3 -0.26 0.37 0.88
poral properties of emission. This SSE is applied to evaluatg 50 0.05 0.3 —0.27 0.34 0.87
antibunching and dead time effect on the photon emissiog 59 0.10 0.3 —0.27 0.31 0.86
from the microcavity in Secs. IV and V, respectively. 0.50 0.30 0.3 —0.27 0.23 0.85
0.50 0.50 03  —0.26 0.18 0.86
I1l. PHOTON-NUMBER SQUEEZING 0.50 0.70 0.3 -0.23 0.15 0.88
WITHIN THE MICROCAVITY 0.50 1.00 0.3 ~0.18 0.12 0.90
In this section the photon statistics are evaluated by solv9-50 2.00 0.3 —0.03 0.06 0.94
ing the time evolution of Eq(13) and the Fano factoo? 0.00 0.001 0.5 0.01 15.46 0.52
[Eq. (1] is calculated. This shows that the degree of subq og 0.001 0.8 0.02 19.59 0.51
Poissonian nature is enhanced by the nonlinearity in the dgj g 0.001 1.0 0.02 21.87 0.51

cay rate of photons. This sub-Poissonian nat(pkoton-
number squeezings one of the most significant nonclassical
features of the radiation field within the microcavity and canPoissonian nature as is naturally expected. It is notedsthat
be measured, e.g., by quantum nondemolition measurementgas a minimum point as a function ef for nonzerox,. On

In Table | we list an example of the dependencedn x,  the other handg? decreases monotonically witm) when
and x1. When the number of photons within the microcavity x,=0.

(n) is large, the nonlinearity enhances the degree of the sub- For a very small number of photons in the microcavity,
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g2(7)

0 10 20

FIG. 3. g@(7) for k,=0.0, k;=0.01, anda=0.3.

FIG. 2. Photon distribution P(n) for the parameters The ensemble-averaged photon intensity emitted from the
(kg,k1,a)= (0.0,0.001,0.Bwherec?=0.54 and(n)=11.86 (1), cavity is expressed as
(0.0,0.01,0.3 where ¢2=0.61 and{n)=3.56 (O), (0.0,0.1,0.3

where ¢2=0.75 and (n)=0.94 @), and (0.0,1.0,0.3 where 18(t)=Tr{p(t)VTV}
%=0.85 and(n)=0.18 (). The solid lines show the Poissonian — .
distributions with(n)= 11.86 and 3.56. =Tr{p(t)Vro+ k1b'bb'b Ko+ Kk b'b}

o . = + k,b'b)b'b}.
the distribution of the photon numb&(n) almost localizes Tr{p(t)(ko+ k1b'b)b'b} (31
atn=0 or 1. HereP(n) is the probability that the system has Thys the averaged emission intensity from a state with
(n?)=(n) and the Fano factor is given approximately by

(n?)—(n)?
Uzszl—m):l—P(l)- (30) First, the second-order correlation functigi?)(7) is

evaluated to detect the photon antibunching characteristics

r?if er the system reaches the stationary state. In the simulation

Thus the degree of sub-Poissonian nature seems to beco with the SSE, we store the time of each emission. In order to
weaker when the number of photons becomes smaller, i.e., ' '

) ini issi
when k; or kg increases. In this low-photon-density region, Calculateg™*(7), we make a coarse graining of the emission

however, the concept of the sub-Poissonian may not have rs(,)ccrigl ;22:] Izntg sgyn‘;vfhg“::d;ég?st'g;ee;eggggge.r:n;;
significant meaning. ! u u issions i

The photon-number distributior3(n) are drawn in Fig. mtervgl (.&:0'.25)' In.tlus way,_wei)btaln the time sequence
2 for k;=0.001, 0.01, 0.1, and 1.0. The average photorfftelmlslf'on{l(tj.)’ fct).”_lﬁ']' -~ maX_TfatT’tWhﬁ]reT IS thlet_
number(n) in the microcavity is 11.86, 3.56, 0.94, and 0.18, otal observation time. en W_e calculate the correfation
respectively. The sub-Poissonian distribution of the photogunctlon(Z) in the discrete mesh:
number within the microcavity is clear for cases with large

A. Antibunching

- 1 ™I +m)
(n), i.e.,0?=0.54 and 0.61 fok,=0.001 and 0.01, respec- gPmy=— > L (32)
tively. For comparison, the Poissonian distributions ¢oj N2y 1-0 Jmax—mM

=11.86 and 3.56 are drawn by thin solid lines.

In order to study cases with larger values(af we in-  Wherenenm;is the average number of emissions in an interval
vestigate the model with stronger pumping, i®=0.5, 0.8, ot. Because of the stationarity, we set hegt))=(I(t
and 1.0. The Fano factor seems to converge to 0.5 whgn +A1))=nNemi. We simulated five different time sequences
increase$31]. If we consider stronger nonlinearity fa(n), ~ ©f T=2.0x 10" [2.0x 10"At(=0.001)]. The error bar in the
such as a cubic function or a step function of the photomgures denotes the standard deviation over these five
numbern, however, we could have smaller values @f. ~ Samples.

Here we confine ourselves to the nonlinearity given by Eq. In the cases where a Iarge deg.ree.of squeezing was real-
(16). ized studied in Sec. Il antibunching is not found. For ex-

ample, in Fig. 3g®(7) is shown fork,=0.0, x;=0.01, and
«=0.3. For this set of parameterg®(7) is almost flat,
although strong squeezing?=0.61 was found. Here the av-
erage number of emissian,,,; is 0.074.

Nonclassical features of emitted photons are discussed in In order to realize antibunching, we reduce the photon
this section by regarding the photon decay as equivalent tBumber within the microcavity by increasing the relaxation
photon emission. Of course, the dissipation of photons doesate. First, we takey=0.0, x<;=0.1, anda=0.3; g®(7) is
not necessarily mean the emission of photons. Here, howshown in Fig. 4a), whereng,;=0.079. Here we find a small
ever, we assume that the photon dissipation comes only fromip for smallr, which is supposed to be a sign of antibunch-
the leakage of photons from the microcavity. Thus the firsiing, but the process is still almost Poissonian.
mechanism for the nonlinearity of the dissipati@tb) is Next, we consider cases with stronger damping, where the
more suitable for the present assumption. distribution of more than two photons within the microcavity

IV. ANTIBUNCHING EMISSION AND SUB-POISSONIAN
PHOTON COUNTING
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= ot ®, O, and A denote the data fok;=0.1, 1.0, and 2.0, respec-
o [ .
C tively.
1} o
Co localizes only oven=0 and 1, as shown by open squares in
= Fig. 2. Thus we cannot find the correlation between the Fano

factor o of photon number within the microcavity and the
) 0 . o . 3 gntibur_lchingg(z)(q-) of photons emitted from the microcav-

ity. This is in contrast to the relation of the antibunching
property to the Fano factorg of the distribution of photons
emitted from the microcavity, which is defined in the follow-
ing subsection.

g.(1)

N
TBLT I T I T T[T T T T TTTTT]

B. Sub-Poissonian photon counting

Next we obtain the distributioR2,,(n) of the numbers of

emitted photons in a time intervak, which corresponds to
o o , the photon number counting outside the microcavity. Here
) 0 10 20 we divide the observation tim& into T/t intervals and
calculateP2' (n) by counting how many intervals contain
emitted photons. The distribution depends &inand thest
dependence of the Fano fact@ﬁ is shown in Fig. 5. Here

we can discuss the relation between the Fano fagfoand
drawn for ko=0.0, x;= 1.0, anda=0.3. For this set of pa- antibunchingg® (7). For such a case in which antibunching

. . 2
rameters, we find that®(7) becomes small asapproaches 'S observ_able, whenst increases the _Fano facter de-
to zero. We thus conclude that the present sequence of emiS€ases, i.e., the nonclassical nature is enhanced as the ob-
sions shows antibunching. Hene,;~0.094. If we increase servation intervabt increases beyond the characteristic time

2 2 H
the value ofx,, stronger antibunching is found. In Figio4  ©f g‘?(7). On the other handyg(ét) remains near 1.0 for
the results fork,=2.0 are also plotted, where,;~0.082.  the case of weak nonlinear dampirg=0.01 in which the

The recovery time of antibunching will be discussed in Secdegree of antibunching is weak, i.g'”)(7)=1. This behav-

V. ior will be analyzed in more detail in Sec. V. Now let us
It should be noted that when we increase the decay raté:,onsider the relationf11). For the smallest Elue of the ob-

the number of photons within the microcavity) decreases, servation time 8t=0.25, we find that * n[g®®)(7=dt)

while the number of emitted photoms,,,; does not depend —1] is 1.0, 0.943, and 0.936 and thai(ét) is 1.0, 0.943,

heavily on the rate. and 0.929 forx,= 0.01, 0.1, and 1.0, respectively. Thus we
Now we discuss the relation betweerf for photons find good agreement with the second line of ELf).

within the microcavity and antibunching of the emitted pho- We also investigatedg at the valuest where the average

tons. The antibunching nature becomes more clear as thg,mper of emissions is nearly 1.0. This quantity2 (1.0)
; : .0. < (1.
nonlinear decay rate, increases. On the other hand, theig 4 kind of Fano factor for the distribution of the number of

degree of squeezing decreases with the increase,ofor  gmjitted photons in the time period for which one photon is
example, the Fano facter? is 0.61, 0.75, 0.85, and 0.92 for emitted on average. For;=0.1, we tookdt=3.25, where

x1=0.01, 0.1, 1.0, and 2.0, respectively. As was mentioned ; »e. 5 00, and  obtaineds2(3.25)=0.922+ 0.005.
in Sec. lll, for a very small number of photons in the micro- e

cavity, the concept of the sub-Poissonian distribution maﬁmnarly, we obtained the following: fok,=1.0, ot=2.75,

not have a significant meaning. The average photon numbefs=1.036=0.004, ando(2.75)=0.599+0.002 and fors,
within the microcavity(n) are 3.56, 0.94, 0.18, and 0.08, for =2.0, 6t=3.00, n=0.993+0.003, and ¢%(3.00)=0.500
x1=0.01, 0.1, 1.0, and 2.0, respectively. For realization of+0.004. We conclude that when the degree of antibunching
antibunching, it seems important that the distributi®m) is stronger the distribution of emitted photons becomes more

)
oy
a

FIG. 4. g@(7) for «=0.3 and(a) k,=0.0 andk;=0.1, (b)
ko=0.0 andx;=1.0, and(c) k;=0.0 andx;=2.0.

is almost zero, i.eP(n)=0 forn=2. In Fig. 4b), g®(7) is
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sub-Poissonian. Namely, in the present model, the Fano fathen takes some time to restatét), which causes the dead

tor 02(n=1.0) has a strong correlation with the degree oftime. First, the atom must be excited, name,—)—|0,
antibunching found ig®(7). Here we found that the non- *+)- The timeto; to pump the atom4=0.3) is estimated as
classical nature of the emission can be clearly observable as 1 s

the antibunching phenomenon at small timeand, on the toy=o— == (37)
other hand, as the sub-Poissonian distribution of emitted 2a 3

photons at larget for whichn=1. Here let us remember the unit of time to be the inverse of the
It should be noted that it is only in such low-photon- pap;i frequencyg. A second contribution to the dead time

density regions agn)<1 that both nonclassical features, comes from the duration for which the atom emits a photon
that is, antibunching and sub-Poissonian photon countlan

i ety n the microcavity. The timeg, for the system to change
are clearly observed. The nonlinear dissipation produces e fom [0,+) to |1, ) is roughly given by
ficiently the distribution over the photon numbers 1 and 0 ' ’

and consequently the antibunching and the sub-Poissonian Trabi 27 1
photon counting are enhanced. too= 7 don b_= > (39
anl
V. EFFECT OF THE DEAD TIME The dead time is given by the sum of these two contributions
In this section we consider the mechanism of the anti- to=to1+too. (39

bunching emission. As long as the emission probability per
unit time is constant and independent of time, the distribuin Figs. 4b), 4(c), and 5 we can see that the characteristic
tion of the emitted photon number is expressed as time is about 1.0-2.0 fok,;=1.0 and 2.0, which is consis-
o ] N tent with the  dependence 0§ (7). This characteristic
PemidM=nCnp"(1=p)"" ", p=(n)dt/N,  (33)  time is of the same order as the above estimatg.o®n the
. : o . . other hand, the characteristic time far;=0.1 is much
where a time intervabt is divided intoN piecesst/N and longer. This dependence is understood as follows: For

(n)=«(n)n. For the binomial distribution, we have  ,,=1.0 and 2.0, the photon dissipates with high probability

=pN andn?—n?=p(1—p)N. Thus when photons appear within the microcavity for the first
5 time. On the other hand, the photon dissipation is so weak
ge=1-p. or k;=0.1 that the photon may not dissipate but rather ex-

1-p (34 f 0.1 that the ph dissi b h

o ’ _cite the atom again. Namely, the procdds—) to |0,+)
If we take the limitN—o, g becomes 1. Namely, the dis- takes place. Then the system has to wait until the next time
tribution (33) becomes the Poissonian distribution as long agegion for which|d(t)|2~1. Under this situation, the higher
p is independent of time. photon number states are produced through such pumping
When we consider the quantum-mechanical natures of eXyrocess agn, —) to |n, +), so that the effect of dead time is

citation and emission, a dead time after each emission ismeared out.

inevitable. Consequently, it is not realistic to assume the bi- Now et us consider the effect of the dead titgeon the

nomial distribution of the number of emitted photons for emission of photons. During the dead time, the emission of a

every time interval of very smalt/N. photon is suppressed. Thus it naturally causes antibunching,
Let us consider the origin of the dead time. When a phoj g | the reduction 0§®(7). We can study the effect of dead

ton is emitted from an atom via spontaneous emissiofime on the photon-counting statistics by looking at the dis-
namely, without t_he cavity, some time must elapse before theipution P2 (n). If we consider a constant probability
atom can be excited again. Thlls.glves rise to a degd [tithe .k(n)n of photon emission, the distribution of emitted pho-
Furthermore, when the atom is in a cavity, there is an addi

. o g fons during an intervabt is the Poissonian distribution, as
tional contribution to the dead time from the process that th‘?/vas pointed out above. If we take into account the dead time
excited atom emits a photon in the cavity. | '

. . . ._however, the time available for the photon emission from the
In the microcavity, the atom interacts coherently with

o ission, v th
photons by Eq.12) and the emission from the cavity is cavity is reduced byto per every emission. Generally, the

given by the mechanism of E¢l4). There a state is ex- g|str|but|on IT.em"(nd) ’fWIth t:e d?ad time t?ken Into ?ccount,h
pressed as as a complicated form. Here let us confine ourselves to the

casedt>t, for simplicity, where the overlap of dead times
d(n))=c(t)|n—1,4)+d(t)|n,—). (35) can be neglected. Tr_lgn the probability kf emissions
| ) | ) In.= P2 (k) has to be modified as
The emission is counted when a photon exits the cavity . (N—Mk—k)
through a wall. The probability of emission is proportional to Pemi K) = n-minCxP (1 —p) , M=toN/ét.
that of the dissipation of photons: (40)

Pemit=|C(1)|2k(N—1)(n—1)+|d(t)|2(n)n.  (36) Ifgtve take the Ii.mitNHoo keepingM/N=t,/ét to constant,
Pemi(K) is rewritten as
If the dissipation is very strong compared to the pumping, L
only the probabilitied?(0) andP(1) have significant values. St _ _ K _ _
In such a case the emission occurs only wheft)|?+#0. Pemi(k) k! [(m) ot(L=rk) Fexdl = (m at(1=rk)],
After the emission of a photon, the state changg€ie ). It (41
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Cummings model can be coupled to external degrees of free-
- dom. In the present paper photon dissipation has been treated
as equivalent to emission from the microcavity. In this sense,
o ° the first mechanism discussed in Sec. | and the Appendix is
relevant to the present study. When the second mechanism,
° o photon dissipation through electronic excitation and its sub-
sequent relaxation into the reservoir, is operative, we must
L included an additional term representing this effedt gp of
- to / 8t Eg. (14). The number of atoms was restricted to one in the
05— "% """ present paper. The case of many atoms interacting with each
other is a problem for the future. We hope the present paper
FIG. 6. ® andO denotest anda?, respectivelyAt is normal-  gives a starting point for further developments.
ized by the value foty=0.

ot and o2
—h
91
oe

T
[s]
o)
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APPENDIX: MECHANISM OF THE NONLINEAR
DISSIPATION

bunching is clearly observable. containing nonlinear optical materials. The transmission rate
T(w) for the Fabry-Pet cavity is sensitive to the photon
VI. SUMMARY AND DISCUSSION number within the microcavity. The transmission raigw)
is given as

In this paper we have studied the nonclassical features of
photon emission, making use of direct numerical analyses of
a quantum-mechanical system. In particular, introducing a T(w)ZW(—k), (A1)
nonlinear decay mechanism, we have observed a strong sub-
Poissonian distribution of the photon number within the mi-whereQ is theQ value of the cavityQ=4R/(1—R)?. Here
crocavity. So far, photon-number squeezing has been reaR is the reflection rate of the walls ané=ngwlL/c
ized only in semiconductor lasers operating under constant (n,wL/c)N, where the refractive index of the walls is
current injection[6]. This may be called externally con- given byn(N)=n,+n,N, with N being the number of pho-
trolled photon-number squeezing. On the other hand, in theyns within the microcavity and the width of the wall.

present paper we have presented a large amount of intrinsic The decay rate 2(N) from the Fabry-Pet cavity is
photon-number squeezing under the presence of nonline@i\,en by

dissipation.

We have proposed an alternative formalism, the stochastic
Schradinger equation, and solved to obtain the degree of ZKZW(l_R):WT(w)- (A2)
antibunchingg®(7) and the sub-Poissonian degreg of a
photon emitted from the cavity. It has been found that theHere let us consider the Fabry+sBe cavity under the opti-
antibunching and sub-Poissonian distribution originate frommum condition, namely,
the existence of the dead time after a photon emission. In the

present study we have found the antibunching of the emitted NowL ™
light only for a small number of photons within the micro- c 4’ (A3)
cavity, while squeezing is visible for a large number of pho-
tons. and set

It should be noted that the present results may strongly
relate to the dynamical model that we adopted. There is no NawlL N= o Ad
microscopic justification of the stochastic treatment for the c 2 (A4)

stochastic Schidinger equation. The present model should
be considered as one of possible ways in which the Jayne&xpanding Z of Eq. (A2) in &,
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c [ 1 1 nywl
2Kk= +
n(N)L|1+Q/2  \1+Q/2 c
_ Q nzwL
—ZKQ 1+1+—Q/2TN y (AS)
where
2Kp= c ! A6
“O=n(NIL 1+ Q2 (A0
then the nonlinear decay ratex;N is given by

kono,wLQN/c(1+ Q/2). Making the relation with Eq(A3),
we have

K1 a

Ky Q m

ko 41+Q2ny (A7)
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Therefore, in order to have the same order of nonlinear and
linear decayn, should be the same order ag In a micro-
cavity, this condition should be possible.

Here it should be noted that in order to realize a very
rapid change of(n) for a few photons, the required nonlin-
earity is the same order of magnitude as for the quantum
computer, i.e.n,NwlL/c~ /2. We will be able to reduce
the linear decay rate, by using a microcavity with ex-
tremely largeQ values.

The other channel of nonlinear decay is brought about by
two-photon absorption due to a biexciton and;2is esti-
mated to be 1¥/sec for two photon resonant absorption by a
biexciton within the microcavity with voluma 2. This be-
comes larger than &, for a realizable system. Thus the
present mechanism can provide a strong nonlinear decay rate
[32].
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