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Lasing threshold and mode competition in chaotic cavities
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The lasing threshold of a multimode chaotic cauiipear sizeD > wavelength\) coupled to the outside
through a small holdlinear sized<\) is studied. For sufficiently weak absorption by the boundaries, the
statistical distribution of the threshold is wide, its mean value being much less than the pumping rate needed
to compensate the average loss. The average nufilge>1 of noncompeting excited modes is proportional
to the square root of the pumping rate. We use the classical model of spatial hole burning to account for mode
competition and find a reduction in the average number of excited mode$Nje=3Y3(N,)?".
[S1050-2947@8)06802-4

PACS numbgs): 42.55.Sa, 05.45:b, 42.55.Ah, 78.45th

[. INTRODUCTION S0 thatyy/dwe=(d/\y)®<1. Note that the los$l) is not
proportional to the area of the hole. It is in fact much smaller
Incorporation of quantum optical effects is a necessarghan one might guess by extrapolating the dependence
and interesting extension of active ongoing research on muk=cd?/V valid for d>\,. The effect of sample-to-sample
tiple scattering of electromagnetic waves in random mediductuations is pronounced only if, <7y,. This regime is
[1]. It becomes particularly important when the medium isexperimentally accessible, as was demonstrated by a recent
active, as is the case in experimentally realized “randomseries of experiments on microwave cavities with supercon-
lasers”[2—-4]. Quantum effects have been largely ignored iNducting niobium wall12,13.
many publications devoted to propagation in disordered am-  g4ch act of spontaneous emission in a pumped cavity is a
plifying waveguides5—8], in which only amplified stimu- g 1ce of radiation into some cavity mode. Classical condi-

lr?tEd ?m'srﬁ'ign dofnfx'r[ﬁrrl‘a;: lincovrrJlngthIl(anbil;tt hot O&;Eé?ma'tion of the lasing threshold in a given cavity mode is satisfied
ceously emitte ermal noise was take 0 acc " if the gain due to stimulated emission equals the loss.

[9] being a notable exceptipnAmplified internal noise can oo .
lead to excitation of low-threshold lasing modes of the wave—ThrEShOId for the cavity is the smallest value of the pumping

guide, making practical use of amplifying waveguides prob-rate at which threshold is att_ained for one of the modes. The
lematic. The difficulty of the waveguide geometry is the on-guestions we a_sk are, what is the th_reshold rate of pump!ng?
set of localization. In this paper we consider a simpler caviy 1oW many lasing modes can coexist for a given pumping
geometry, which does not show localization, but retains twdate a_bove th.e t.hreshold? The p.roblem of .spectral_ content of
essential features of the problefd) large sample-to-sample 0Outgoing radiation has been widely studied for integrable
fluctuations and2) instability brought about by spontaneous cavities of definite shape. Considering arrays of chaotic cavi-
emission. ties of slightly varying shape or with different configurations
A complete description of the fluctuations is possible inof scatterers we address the problem statistically and com-
the universal regime characterized by a chaotic pattern gfute the probability of lasing, the distribution of the thresh-
classical trajectories. We assume that the cafsitlumeV  old, and the average number of excited modes.
=D?) is confined by conducting walls, filled with a lasing  Trivially, gain greater than mean losg will be on the
medium (central frequency of the gain profiley), and average sufficient to ensure lasing, while gain smaller than
coupled to external detectors via one or several small holesy, will never suffice. The mean loss from a tiny hole is
It was demonstrated recently that a nonintegrable shape @mall. We argue that the actual average threshold can still be
the resonator can significantly affect its lasing propertiesmany orders of magnitude smaller. Each individual cavity
[10]. Chaoticity of classical trajectories can be achieved eiexhibits a well-defined threshold but its statistical distribu-
ther by a peculiar shape of the resondibt—-13, or by @  {jon is wide. In Sec. Il we compute this distribution for the
small amount of disorder scattering. We will speak aboufyeslized casey, =0. Effects of nonzero resistivity of the
chaotic cavities,” meaning either of the two mechanisms 15 are discussed in Sec. Ill. Section IV is devoted to the

res\[/)voen?elzbslt?i;?rotl:]rieol\r;sgttgftﬁzag;e of well-resolved cavit computation of the average number of excited modes above
Ythe threshold. We conclude in Sec. V.

modes, which means thét) resistive lossy, in the cavity
walls is less than the mean modal spacifigy= 72c%/ w3V

and (2) characteristic size of the holekis smaller than the Il. DISTRIBUTION OF LASING THRESHOLD

wavelength\ y=27c/ wy. Mean lossy, through a small hole We assume that the line of spontaneous emission is ho-
was calculated by BetHd 4], mogeneously broadened and has Lorentzian shape with cen-
o tral frequencywy and width ZQ Let ;(r) be the ampli'tude
Yo=——. d<\g, (1) of a mode of trle clgsed cavity at frequeney, normalized
AoV according tofdrzpiz(r) =V. (For simplicity we neglect polar-
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ization dependent phenomena and work with real scalar field C g2
amplitudes. In the presence of weak coupling to the outsidep,(s)~]| ( 1- X )
world the modes acquire finite widthg . We assume two m [1+m?(Swo /)]
sets of conditions:
~exp( —C,e"?>) [1+m¥ 5(,)0/9)2]”’2) , (6)
’yo< 5&)0<Q<w0, d<)\0<D (2) m
C,=(v/2) YT (v/2)] . 7

An especially important role is played by the inequality
< dwg, Which is implied byd<\ . It ensures that the modes
of the open cavity are well defined and do not differ signifi-
cantly from those of the closed one. In this section we con
sider the idealized case in which there is no loss in the wall
of the cavity (y, =0).

In a chaotic cavity the mode$i(F) can be modeled as
random superpositions of plane wayéas|. (Validity of this ~
model has been checked experimentally in microwave cavit!e® €= JaC,I[(v—1)/2)IT (v/2) for v>1 (below we

ties[12,16.) This implies a Gaussian distribution fgr(r) ~ Will separately defineC,). Modes far fromw, have negli-
at any pointr. The corresponding distribution faf(r) is gible chance to get excited and need not be taken into ac-
. 1

o count. On the contrary, for=1 all cavity modes, including
called the Porter-Thomas distributiphi7]. Loss from a small those very far fromw,, contribute to the probability.

hole located af_is proportional td Vi (r) 12 [with V() To treat the contribution of distant modes fo=1 cor-
the derivative in the direction normal to the surface of therecily, we must account for several factors which we could
hole] and has the same Porter-Thomas distribution, whichgnore fory>1. (1) The spectral density cannot be replaced
was directly probed in the experiments of REE2]. More by its valuepy=1/6w, at o= wg. Insteadp(w)=p0w2/w§.
generally, the distribution of normalized modal widthis

=, 1y, in a cavity withv holes is given by the? distribu-
tion with v degrees of freedortnormalized to 1),

Because the summand decaysmas” we find that for
v>1 the leading behavior of the probability of no lasing is
determined by the modes wifm|=<Q/ Swy,

p,(e)~exfd —C,(Q/ dwg)e"]. ®)

(2) The mean loss is frequency depender(iw) = yo0*/ wg,

cf. Eq.(1). (3) The Lorentziar(4) for the amplification rate is

an approximation valid only in the vicinity ab,. A correct

(v/2)"2 expression for the gaig(w) must be even inw to comply
P(y)= y~ L 2exp — vyl2). 3) with the symmetryy(w) = x* (— w) of the dielectric suscep-

I'(v/2) tibility x. It includes contributions of both poles wy+iQ
and reads

We assumed that loss from different holes is independent,

which is true provided their separation is larger than For ©) 4w?yee)?

small integerr, the distribution(3) is wide. The single-hole g(w)= .

casev=1 looks especially promising from the point of view (07— w))?+2(0?+ wp) QA+ 0

of low-threshold lasing becausie;(y)=exp(—-y/2)/\2xwy

grows with decreasing.

To grasp the picture we first confine ourselves to a subs
of cavity modes located near,. We neglect fluctuations of
their frequencies and assume that the modes are equidistant, ® "
wm=wot wgm, M=0,21,%2,... . Wedenote byR, a pu(8)=exp<f maxdwp(w)lnf oy Py(y)).
reference pumping rate necessary to provide gain equal to 0 9(@)y(w)
the mean losy, at frequencywg, and introduce the reduced

pumping ratee =Ry /Ry, assgm§d<1. Loss O.f different £~ 1 this leads to Eq(8), the ultraviolet cutoffw ay
modes is uncorrelated and distributed according to BH. peing irrelevant. For=1 we get

while gain diminishes with increasing different¢e — w|
according to the Lorentzian
where erf(z)=(2/\/;)f§dx exp(—x?) is the error function.
The main logarithmic contribution of typédw/w to the
So(om) 7o integral in Eg.(11) comes from large values @é. The ul-
pv(g):H (1_j " dy pv(y)), (5) traviolet cutoff wyq~=2mc/d appears because loss of high
m 0 frequency modes withh<d no longer exhibits the strong
fluctuations of Eq(3). Beyond the cutoff classical ray optics
For <1, the upper limit of the integral is alse1, and we applies, leading to a narrowly peaked distribution of the loss
can replaceP,(y) by its leading behavior at smay, around the valued?/V> y,. Because we are considering the
P,(y)=y~1**2 which yields cases <1 in which the gain is much smaller than the average

(€)

Taking these three factors into account and replacing the
eqiscrete sum by an integral, the probability of no lasing is
given by

(10

1—erf %w)

2y(w)

pl(s)=exp( fowm“dwp(w)m

go(@)="yoe[ 1+ (0= wo) Q%] . (4) 1

It follows that the probabilityp, (&) of there being no lasing
mode at the pumping rate is given by
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FIG. 1. Probability of lasing + p4(&) versus reduced pumping
rate ¢ with pi(e) given by Eq.(11) (wo/Q=10, Q/Swy=10).
Thick lines are for different ratio®/d corresponding to different
numbersM = (D/d)? of relevant cavity modeédot-dashed linév
=10, dashed lindVl = 10?, solid lineM =10%). Left inset shows an
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FIG. 2. Probability distribution of the lasing threshold in a cav-
ity with small absorption in the boundary and a single hole (
=1), computed as-dp,(g)/de from Eq. (14). We choseQ)/ Sw,
=10 and took three values of, /y, such thaty, /v, is much

example of chaotic cavity. Chaotic behavior of classical trajectorieg,4jjer than, equal to, or much greater thag/Q)2"=10"2.

in this particular “die” shaped cavity was shown in Rdfl1].

Radiation is confined inside by means of ideally conducting walls
and can leave the cavity only through a tiny hole. Right inset

shows the probability distribution of the lasing threshold
T,(X)=(v/2)x " "2exp(=x"?), with x related to ¢ by x

=¢(C, 0/ 8wy)?”, for different number of holeg=1,2,3.

loss vy, the high frequency modes cannot be excited. It fol-

lows that the only relevant cavity modes are those with fre
guencies smaller than wna,. Their number M
~w? J3w38we=(D/d)® is >1. From Eq.(11) the prob-
ability of no lasingp,(&) can be cast in the form of E¢8)
with the coefficientC, = (8/7)YAn(wmay/Q) Weakly depen-
dent on the frequency cutof,,,. Figure 1 shows that the
probability of lasing - p4(g) can be reasonably large even
for extremely small values of the reduced pumping rate
The quantity -p,(¢g) is the fraction of lasing cavities in
an array at a given pumping ratelt is directly related to the
probability distributionT (&) of the lasing threshold. Obvi-
ously [5de'T, (¢')=1-p,(g), hence T, (e)=—dp,(e)/
de. We find from Eq.(8) that

T,(e)=20C (QSwy)e 1 "exd — C (O dwg)e"?].
(12)

(Deviations which arise at=1 are unimportant.The dis-
tribution is wide and in the single-hole case 1 diverges as
e—+0 (see right inset of Fig. )L The average reduced
threshold reads(e,)=T'(1+2/v)(C,Q/bwo) 2", 1t is
smallest forv=1 and is indeed much smaller than 1.

Ill. EFFECTS OF NONZERO WALL RESISTIVITY

A nonzero lossy, from the resistivity of the cavity walls
modifies the functiong§10)—(12) by suppressing lasing for
e<7v, lvo. The distribution of the lasing threshold remains
wide, as long ay, /yy<<1, as we now show. Instead of Eq.
(10) we have

dy P(y) |,
13

p,,(s)=exp<f +dwp(w)|nf _
w_ (9(@) = ¥4 (o)

where w _<w, are the two positive frequencies such that
d(w+)=1v, . A nonzero value ofy, reduces the relevant
frequency range to a narrow window arouad. Therefore

the modifications(1)—(3) of the preceding section become
unnecessary even for the case=1. Using the simple
Lorentzian (4) for g(w), instead of the more complicated
expression(9), we find w.=we*Q(eyy/v, —1)Y% Ne-
glecting thew dependence op(w), y(w) and using the
small-argument behavior of the probability functién(y),
we reduce Eq(13) to

p,(e)=exf — C,(Q/ Swo)(vx I 70)"*f (e vo! v5 — D],
(14

whereC,, is the numerical coefficient introduced in E7)
and

2\ ¥2

1-y
y2+1/z

1
2=z dy

(15

can be expressed in terms of a hypergeometric function. In
Fig. 2 we have plotted the distribution of the lasing thresh-
old, T,(¢)=—dp,(g)/de, for v=1 and different values of
v, 0. We will analyze two limiting regimes.

In the regimee yq/vy,>1 and forv>1 we recover the

expression(12) with the same constar€,. The value of

C,=ClIn(eyoly,) is different because of the different cutoff
mechanism. Instead of having a weak logarithmic depen-
dence onw . it exhibits a weak logarithmic dependence on
the pumping rates. This limiting case is statistically domi-
nant if y, / yo<(8wy/Q)?"”, because then the corrections to
Eq. (12) at e, /vy have negligible statistical weight.

In the opposite regime;yy/ v, —1<<1, the threshold dis-
tribution differs significantly from Eq(12),
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T, (e)=3%(1+ V)AV(Q/awo)()’o/V*)llz Nonexcited modes typically contain only few photons and
(112 U can be omitted from the sum. We assume that we are not far
X (&= s 170) exfl —A,(Q/6wo) (vo! ) beyond threshold, so that>=;W;n; 2(r), and we may ex-
X (&=, 7o) "7 (16)  Ppand the denominator in ER0). We arrive at the following
system of linear equationk€1, ... N):

[with a numerical coefficientA,=\7C,I'(1+ v/2)/T'(3/2

+v/2)]. This regime is statistically dominant ify, /yq

> (8wy/Q)?”. The mean value of threshold is now close to &Ry,

v, v, but there are large fluctuations towards larger

Vi

g(wik)'

E Ai,i (@i )n; =1 (21)

subject to a constraimik>0.
So far we have followed the reasoning of R€fE9,20.
In this section we focus on the number of lasing modesNOW we need to take into account randomness of coefficients
beyond the lasing threshold far=1 assumingy, =0. We in Eq. (21). CoefficientsA; ; are given by
assume that the parameters are such that many modes are
above the threshold. This requires, in particulat/y, 1 > 5 > 5
>1. In this case a nonzero value of only leads to a Aikil_v dr‘/’ik(r)‘/lﬁ(r)' (22)
redefinition ofC, because of the different cutoff mechanism.
If the modes did not compete we could compute the averag&hey are self-averaging quantities with negligibly small fluc-

IV. AVERAGE NUMBER OF EXCITED MODES

number of excited modedN o) as tuations around their mea; '|> 1+24,;,, which follows
from the independent Gaussian distributions zfxp(r) [22].
w H Bl .
(N = J dwp(w)erf 9(w) 17 Bec:?\u_se the correlations betwgénk,| s and Yi 'S are also
'y(w) negligibly small, we may substltutAiki|=1+25ikil in Eq.

_ (21). Without loss of generality we can assume that
For e<1 it is given by (N, = C1(Q/ Swp)e*2. However, 7"1/9(“"1) yIZ/g(w|2)< ~-syiN/g(wiN). Inverting the
the modes do compete for a homogeneously broadened I”?ﬁatrle we find
because one of the modes can deplete the inversion, prevent-
ing another mode from being excitgt8]. Multimode opera-

n : N :
tion is still possible if different excited modes deplete the g(w'k)n'kz 1 Y n 1 Y
inversion in different spatial regions of the cavit¥9,20. sto N+2 Zg(wik) 2(N+2)i&1 g(wil)'
We assume this mechanism of multimode generation, called (23

spatial hole burning21].
Letn,, /\/’(r) denote the number of photons in the made The number of excited mode$ is restricted by the require-
and the density of population inversion between the lasingn€nt that alin; 's should be positive. A necessary and suf-

levels. Semiclassical rate equations read ficient cond|t|on is
dn; Ny,
qr = v Wil +l)f dryf(nMn),  (18) (2+N) —— ( 2 S~ (24)
w,l
dA(r) Equation(24) can be used to determine the probability dis-

- - 9
dt _SRPOIV_WN(”_N(”Z Winighi(1). (19 ribution of the number of excited modes, using the Porter-
Thomas distributiori3) for the statistics of decay rates. In
Herew is the nonradiative decay rate alg is the rate of the region of parameters whefl)>1 this mean value can
stimulated emission into mode The constanW; is related be found analytically from the continuous approximation of

to the gain (9 in the corresponding modeW, the condition(24),

=Wg(wi)/8Rpo.
We restrict ourselves to a steady state solution. Let there 24 famaxdaa(a) T f“maxda ac(a)=2, (25
be N excited modesi;,i,, .. .,iy. Because the number of 0 e Jo '

photons in an excited mode is very large, we can approxi-
maten; +1~n; in the right-hand side of Eq18). Elimi-  with (N)= Jsmda (). The densityo() of the variables

nating the equilibrium population inversion denskjr), we  @i=7i/9(wj) is given by
get the following set of equations for the equilibrium mode

populationsn; : o(a)= fowmaxdw p(w)Pi[ag(w)/ y(»)]1g9(w) y(w)

R 2.2
dr Wi (1) _1E —12
—yi teR Wi | o 'k n, =0. =3C1(Q/dwg) a2 (26)

V N
W+; anjwjz(r)

It follows from Eq. (25) that (N)=C,(Q/Swo)z, wherez
(20 satisfies a cubic equation
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To test numerically the analytical results fax), we did
a Monte Carlo average over the Porter-Thomas distribution.
For each of 2000 realizations, we ordered the modes in in-
creasing order of the ratio loss over gain and found maximal
N satisfying Eq.(24). Results for(N(&)) are in excellent
agreement with the continuous approximation down to

—
o
o

(N)~1 (Fig. 3.

V. CONCLUSION

number of lasing modes, (N)
>

102 10" 10°

, To summarize, we have considered lasing of a chaotic
reduced pumping rate, €

cavity coupled to the outside world via small holes. We
assumed that the broadening of the cavity mottkse to
sionless pumping rate (same parameters as in Fig. The solid !eakage throth the hgles and absorpti_on by the c.avit‘)‘/ walls
lines are the analytical resyR7), the data points are a Monte Carlo IS I.ess than their s’p’Jacmg and us',gd a S'mp"? criterion “modal
average. The main plot correspondsite 1, M=1C? (circles, M gain= modal loss as the condlt_lon for a glven_mode to be
=10® (squares M=10" (diamonds. Dashed lines represent the excited. Natural unit of the pumping ra, is defined such
average numbeiN,,) of noncompeting modes. The inset shows thethat “maximal gain= mean loss.” Because of strong fluc-
casev=2 for M>1. Note a drastic reduction in the number of tuations of modal widths, the probability of lasing can be
excited modes. significantly large for much weaker pumping rates tig.
The distribution of the lasing threshold turns out to be wide,

22+1C (0 Swy)P=¢. (27)  with the mean much less thaR, . We have described the
multimode operation as a result of spatial hole burning and
found that the average number of excited modes is propor-
tional to the powen/(v+2) of the pumping rate.

FIG. 3. Average number of excited modés) versus dimen-

To leading order in IN) the termz® can be neglected,
which yields a simple answer

<N>:31/3(619/50)0)2/381/3: 31/3<Nnc>2/3- (28
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