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Velocity-dependent screening in metals
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We propose a model to calculate in a quantum-mechanical way the screening and energy loss of swift ions
in metals. The model is based on an extension of the Friedel sum rule to finite velocities, which allows us to
describe the scattering and nonlinear screening of electrons in the field of the moving ion. The scattering
process is formulated according to the partial-wave expansion, assuming an effective scattering potential that
is adjusted in a self-consistent way using the phase-shift sum rule. We consider in particular the limits of low
and high velocities, where the results of this model agree with those obtained using the density-functional and
perturbation theories. We apply the method to the calculation of the mean energsttggsng poweron the
whole range of velocitied.S1050-294{@7)04812-9

PACS numbds): 34.50.Bw, 34.50.Fa, 79.20.Rf

[. INTRODUCTION In order to improve the description of similar features in
the case of random incidence, a simplified model to integrate
The screening of ions in solids is one of the central probthe stopping power for nonhomogeneous electron distribu-
lems in the study of ion-solid interactions. The problem is oftions in solids was developdd6]. The model is strongly
interest to understand both the behavior of static impuritiebased on the Friedel sum rule for the phase shifts in the case
in metals, such as the resistivity of impurities and metallicof slow ions and uses this rule to adjust, in a self-consistent
solutions[1], or the energy loss and ranges of swift ions inway, the scattering potential. The approach has been used
solids[2]. earlier by various authofd3—15 in homogeneous systems,
Various perturbative models have been used to describ&ith very good results. The model provides a good descrip-
the basic interaction process. In particular, the dielectric fortion of both theZ, and theZ, dependences of the low-
malism, based on linear-response thef@y5], provides a velocity friction coefficients for ions in various solid targets
unified description of dynamical screening, plasmon excitaf16]. In addition, with a more elaborate treatment of the elec-
tion, and electron-hole pairs. It shows also the main featuresonic density sampled in channeling conditions, the model
of the velocity dependence of the stopping power of metalswas used to produce a complete simulation of the slowing
a proportionality with velocity in the adiabatic low-velocity down of protons channeled in Au crystalk7].
range, a threshold for plasmon excitation and maximum The problem of extending the quantum models to finite
stopping power at intermediate velocities, and a decreasingelocities has been considered recently either in the context
behavior at high energies, in agreement with the Bethef the DFT [18] or using model potentials and the Born
theory[2]. The main weakness of this model is observed inapproximatior{19]. In particular, an extension of the Friedel
the low-velocity range because the interaction effects besum rule to finite velocities is contained in the formulation
come too strong to be described well by linear or perturbagiven in Ref.[19]. In both cases the dynamical potential is
tive approximation$6]. replaced by a spherical average in order to proceed with the
Models based on kinetic theofy,8] provide also a good calculations. The model presented here also makes use of
description of the velocity-dependent stopping power, buthis assumption.
require a knowledge of the transport cross sections for dy- The purpose of this work is to extend previous models for
namically screened interactions including quantum effects oslow ions[13—17] to the case of ions moving with arbitrary
the whole range of velocities. On the other hand, quantum¢nonrelativistig velocities. To carry out this idea we first
mechanical models have been proposed for the particulgrerform an extension of the Friedel sum rule to the case of
case of slow ion§9—16]. Briggs and Pathal9] introduced a moving ions. This extension allows us to incorporate in a
transport—cross-section approach based on the partial-wagelf-consistent way the dynamical effects that give rise to the
method to calculate the friction coefficient for slow ions in velocity dependence of the relevant quantities, including the
channeling conditions. The model qualitatively explained thebehavior of the scattering terms and the energy loss of the
oscillatory dependence observed as a function of the ioparticle. We will report here calculations performed with this
atomic numbeiZ,;. A more accurate many-body representa-model for the whole range of velocities.
tion of the nonlinear screening and stopping process was The extension of the phase-shift sum rule is described in
given by Echeniqueet al. [11,12, who introduced the Sec. Il and calculations for various velocity ranges are con-
density-functional theoryDFT) to calculate the friction co- sidered in Sec. lll. The results are compared with previous
efficient for slow ions embedded in a uniform electron gasmodels in the limits of small and large velocities. Some ap-
The model explained in a more definitive way the oscillatoryproximate results that may be obtained using perturbation
Z, dependence for the case of channeled ions. theory are included in the Appendix.
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Il. MODEL a) V<VF N
Extension of the Friedel sum rule for moving ions
Let us first consider the usual treatment of the Friedel sum -k

rule (FSR for static iong[20]. It may be shown in this case ;o
that each of the scattered electrons contributes to the accu- ] e
mulation of screening charge by an amount that, in a partial- L%
wave expansion, is given by the derivative of the phase shift
8, in the formAq,=(1/7)(dé,/dk). The FSR represents the
condition of overall charge neutrality, expected for a metallic
environment, as a result of the screening by all the electron
states within a Fermi sphere. The rule may be expressed as

UF(1)<d5|)dk b) v>vg k

Z;—Np= —
! b I,n?mS fo dk

L 2¢ ve(d§
_;;)(zwl)fo (W)dk, (1)

™

rn

where N, is the number of bound electrons ad the
nuclear charge of the ioatomic units will be used in this
papej. In this casgi.e.,v =0) the integral over the electron
velocities, or wave vectotls, extends over a Fermi sphere of
radiusvg centered in the origin.

Let us consider now the case of a particle moving with

velocity v along thez axis. As seen from the particle rest

frame. the electrons occuny a displaced Fermi sphere whose FIG. 1. Representation of the displaced Fermi sphere and inte-
! Py P P gration regions for the caséa) v<vg and(b) v>vg. The maxi-

center is located at the velocityv, while its radiusvr re-  mum angleg, is indicated for each value &fin the Fermi sphere.

mains unchanged. The situation may be considered statiofor k<y-—v in case(a) the value ofé, is .

ary in a frame of reference moving with the projectile. More-

over, in a metallic environment the intruder charge should bgjere the angle,, corresponds to the maximum angle of the

neutralized by the screening charge. Therefore, the conditiop vector for electrons in the Fermi sphere, as indicated for

of charge neutrality may be applied to this case. _different cases in Fig. 1. We separate the following cases.
In order to account for the ion velocity, the integration () ;, <;,_. As shown in Fig. 1a), the integration here

must now be preformed over a Fermi sphere displaced byconains two terms, depending on the valuekof(i) 0<k

—v relative to the origin, as shown in Fig. 1. The contribu- <ve—v, in which case no restriction is applied on the an-

tion to the accumulation of screening charge from a Sphergular integration and thed,= 7 and g(k,u)=1, and (ii)

ical shell of radiusk and thicknessdk is given by ve—v<k<ve+v, where co§ =(k2+vz—v§)/2kv, accord-

(1/ar)(d s, /dk)dk; therefore, thek integration in Eq.(1) ing to Fig. 1a), and ¢

should now be replaced by an integ@|l over the displaced ’

Fermi spherdDFS) as

1 2 2 2
g(k,v)=—4kv [2kv +vg—k“—v~7]. (5)
<d5|)k2dkd(2_fkmax d5|

i WLLI
dk] amk? dk (b) v>vg. This is the case shown in Fig(l); we also
2 get co®,=(K+v>—v?)i2kv (With v —ve<k<v-+vg) and

a(k,v) is given again by Eq(5).

with Kin=minfO —ve} and kpax=v+ve. The sum rule Therefore, the extended sum rule for any velocitpe-
now takes the form comes

GI(U:UF):J

DFS Kmin

2 -
217 No= 22 (214 DG (w0 ) 2,=23, (21+1)G (0,06 +No, ®)

The angular integration over the DFS, given by the func-
tion g(k,v) in Eq. (2), may be performed in a simple way where
using the geometrical representation of the kinematics shown ) @
in Fig. 1 and taking into account the axial symmetry Gi"(v,wp) +G%(v,vE), v<ve

G?(v,vp), v>ug,

Gi(v,vp)= )

k _J dQ_l 1 4
g(k,v)= DFSE_E( —Ccos,). (4) with
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—— Numerical

vE—U dd F ' . N
Gfl)(v,vp):foF dk<d_k|):5|(UF_U)_5I(O) ®) (a) Hydrogenic potential

BN e Born approximation

and

0.1k

v+ug dé
Gf2>(u,vp)=f| ) |dk(d—k')gl(k.v)- A

An alternative expression fo@fz) may be obtained by I:

partial integration

0.001
K2+ p2—p?2 1

v+uv UVe— 10 100
GPwup=| (K, (+1
! \v—v \ 4k21)
] (b) Yukawa potential l Nierical
—0O(vg—v)d(ve—v), (10

---------- Born approximation |

where® (v —v) denotes the Heaviside function. In particu-
lar, for v=0, G®(v,vg)—0 and the sum rule takes the
simple form o 0d

2
zlng (21+D[8(ve) = 8(0)]+Np. (1D 001

Furthermore, if we use Levinson's theorem #£2E,(2I
+1)6,(0)=N,, the last two terms in Eq11) cancel out and 10
we retrieve the Friedel sum rule in the usual form (+1

0.001 =
1 100

2 FIG. 2. Calculated values of phase shifts far hydrogenic and
Zl:_E (21+1)8,(vE). (12 (b) Yukawa potentials for the casg=2 (with the value ofa ad-
T justed using the FSRCalculations for various electron velocitiks
as a function of +1. The dotted lines show the values calculated
In the opposite limit ofv>vg, we calculate the value of using the Born approximation.
G{?(v,vg) using Eq.(5) in Eq. (9) and we expand the terms

in powers of g /v). Thus we get the result The main assumption on the scattering potential is that of

spherical symmetry, which allows us to apply the usual

3 phase-shift analysis. We expect that the use of the sum rule
UF 2 d5| . . . .
Z;=| —|=> (21+1)|—| +N,. (13)  to adjust the parametex will give us a good spherical-
3v2) T dk K=o average representation of the réahisotropi¢ potential. The
goodness of this assumption will be tested later in the more
IIl. MODEL CALCULATIONS unfavorable case of high velocities.

Calculations were performed for static and moving ions
In order to consider the application of the extended sunwith nuclear charg&,=2. We will discuss first the better-
rule, we study the velocity dependence of the stopping forc&nown case of zero velocity and then analyze the whole ve-
on a moving particle. We performed calculations using twolocity dependence.
models for the interaction potential: a hydrogenic potential

Vy(r) and the Yukawa potentia¥(r), given respectively A. Calculations of §, values forv=0
by As a first step we have calculated the values of the phase
1 w shifts 6,(k) for the cases of hydrogenic and Yukawa poten-
Vu(r)=—2Z4| =+ = |exp( — ar), (14)  tials; these calculations were performed by numerically solv-
ro2 ing the radial Schrdinger equation using standard methods

[21,22. We show some of the results in FiggaRand Zb),
where thed, values are plotted as a functionlof 1. In both
cases we have fixed thg parameter(related to the Fermi
velocity byv=1.919f,) at the valuag ;=2 (in the range of
Here « is a velocity-dependent parameter whose value waterest for several metglswhile the corresponding values
adjusted in a self-consistent way using the requirement thaif « for each potential were determined by the Friedel sum-
the calculated phase shifs should satisfy the velocity de- rule method, Eq(11), using thed, values calculated at the
pendent sum rule of Ed6). The phase shifts were numeri- Fermi surfacek=v. The N, value in this case, as deter-
cally determined by integration of the radial Scffirgger  mined by the Levinson sum, I¥,=2. As may be observed,
equation for each value af and adjusting this value until for small values ok only a few phase shifts are needed to
the sum rule was satisfied. calculate

Zy
VY(r)z—Texp(—ar). (15
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_ ‘ _ _ FIG. 4. Comparison of the phase shifts calculated by the present
FIG. 3. Values ofa obtained from the FSRin the static case  method with the values obtained from density-functional calcula-
for the hydrogenic and Yukawa potentials as a function of thetions (from Ref.[23]).

electron-gas parameteg.

increases, more phase shifismust be incorporated into the
the cross section, but with increasikghe &, curves flatten  SUM rule. At the largest \{EIOCItIes considered herelQ) up
and the number of phase shifts required increases accorf 600 values ofl were included. However, for>1, we
ingly. We also show in these figures the phase shift vaIueQave, “S?d the analytical re;ults prowded by the Born ap-
calculated from the Born approximatigsee the Appendjx proximation to speed up the |ter_at|on process.
We find that the Born results give a very good approximation, '€ values ok obtained in this way are shown in Fig. 5

for electron velocities larger than about 2 and Fovalues for each_ of the potentlals._ The dott_ed lines show the
also larger than-2. asymptotice values ) derived by using only the Born

In Fig. 3 we show the values af for the case of fixed approximqt_ion in the high-velocity form of the sum MB)'
ions (v =0), obtained by adjusting the Friedel sum r((e) These limiting values can be calculated analytically using the

for both potentials. The dotted lines show the values ex-
pected by using the Born approximati¢éAppendiy; these
values approach the exact results in the limit of smali.e.,
largev ), similarly to the behavior observed at high electron 5[ "4

S . ) . . Y —— Numerical
velocities in Fig. 2. The perturbative approximations apply F
well both in the high-velocity and in the high-densiithe LG T Bom approx.
so-called random-phase approximati@®PA)] limits. Ny oo T Asymptotic approx.

Finally, in Fig. 4 we compare the values calculated here
with those obtained using the density-functional method = '
[23]. We find good agreement with these values for the hy- 5
drogenic potential and very good agreement for the Yukawa s
potential.

B. Velocity dependence

We now turn to the ion-velocity dependence of the model
presented here. As already indicated, we use a self-consiste!
method where the screening effects are represented in
simple form using a model potential with a single parameter oqol— ¢ 1+ . v . o+ . 0 L0,
«, which now becomes a function of the ion velocity and 0 ! 2 8 4 > 6 / 8
whose value is determined by the application of the velocity- vi(au,)
dependent sum rule. For the present calculations we assume g 5. velocity dependence of the screening parametéor

a bare ion, withZ,; =2 andN,=0. r<=2. Solid lines, numerical values obtained from the extended

The calculations were performed using E@6)—(10),  sum rule(6) for both the hydrogenic and Yukawa potentials; dotted
starting at very low velocities with the values determined |ines, high-velocity approximationvt&v) from Eq. (18); dashed
for static ions(with Z;=2, N,=0) and searching for the lines, velocity-dependent values in the linear approximation of
new values ofa by an iteration procedure. As the velocity Eqg. (19).
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fact that in the Born approximation th# values satisfy the ~a free-electron gas is considered. One should note, however,
linearized sum rulésee the Appendix that collective effects have not been explicitly included in
this description; they arise in our case as a result of the
self-consistency imposed by the modirough the sum-rule
2 4k yZ, . I : T
= @2+ k) = — =, (16) ~ requirement A similar appearance of collective behavior in
T aé a velocity-dependent density-functional description has been

discussed by previous authdrk3].
with y=1 for the Yukawa potential angl=2 for the hydro-

genic potential. _ )
C. Velocity-dependent stopping power

Using these values in EqL3) (with N,=0) we get, in the
high-velocity limit, As an application of the method we consider the calcula-
tion of the stopping forc&(v)= —dE/dx for ions moving in
3 3 a metal. A simple and yet nontrivial question here is whether
vg || d |4k yZ, dve \yZ, O . . .
le(_) _(_ _) —( )_ (17)  the present description of nonlinear screening describes the
32/ Akl ™ &f )| \3mv?] of well-known existence of a maximum in the energy loss for
ion velocities close to the electron Fermi velocity as well as
and therefore the high-velocity behavior.
To integrate the average energy loss we use a previously
ap= 7,1/22 (18) derived expression, based on a transport—cross-section de-
v’ scription of the procesi8], which gives the stopping power
as an integral ofr, in the form
with the values ofy indicated before for each case. We have
used here the relation®=(37/4)w3 betweenvy and the

v [v+ul 2_ u2
plasma frequencyp . . - S(v)= f Fu duf dk Koy(k,v)| 1+ ?
On the other hand, one can obtain an extended analytical 47v2Jo lv—ul k?
expression for by using the limiting condition of Eq.16) (20)

in the exact expressions of Ed$) and(10) [i.e., by insert-
ing the sum ovef values in Eq(6) within the integral of Eq.  This expression takes into account the statistical average of
(10) and making use of E¢(16)]. In this case the integral the momentum transfers due to collisions with relative ve-
may be handled analytically and one obtains an approximapocitiesv, =k (in the rangdv —u|<k<|v +ul), between the
tion for a that has a more appropriate velocity dependencemoving ion(with velocity v), and a distribution of electrons
viZ., incident from all angles and with all possible velocities

inside the Fermi sphere Qu<uvg), as shown in Fig. 1.

The transport cross sectian,(k,v) is calculated accord-

(19 ing to the usual expressidfor a relative electron-ion veloc-

ity v, =k)
This expression applies to any screened potential of the form
V(r)=—(Z,/r)®(ar), with the value ofy given by Eq. 4
(A11) in the Appendix. In particular, for the case of a _am . _
Yukawa potential Eq(19) coincides with the one derived by U”(k’v)_?zl (I+Dsir8(k) =610 (2D
Nagy and Bergarfl9] also in the linear approximation. The
velocity dependence of the values obtained from this ex-

pression are shown with dashed lines in Fig. 5; these Valuet%rough the phase shifté(k), whose values depend para-

are in better agreement with the numerical restésiid metrically on the ion velocity because of the requirement
lines) for intermediate and large velocities, but they deviate. Y q

from the exact values in the low-velocity regime, where non-Imposed b.y the velpcity-dependent sum .rule used to adjust
linear effects become important. ' the potentiaV(r) [with = «a(v)] as described before.

We parenthetically note that thevalues foro =0 shown The .stoppmg power vallues obtained |n.th.|s way: aré
I . . = . shown in Fig. 6 together with the expected limits from the
in Fig. 5 differ from those of Fig. 3 for the casg=2. This . . . S
: . . X low- and high-velocity regimes. The former is given by the
is due to the assumption of differeNt, values in both cases. low-velocity stopping coefficienitL0]

The calculations for static ions in Fig. 3 are consistent with y stopping

the valueN,=2 resulting from Levinson’s theorem for this
case, whereas those in Fig. 5 were made under the assump-
tion of N,=0, i.e., the expected value for fast ions. A real-
istic simulation of helium ions in matter would involve a
combination of the different charge statéé,&0, 1, and 2
with the statistical weights determined by dynamical effect
and capture and loss proces§a4).

As a final remark, the dependence ®p/v in Eq. (18) is
the typical one for the high-velocity limitdynamical- Shig(v) =
screening distance-v/wp) When the collective behavior of 9

2
2vk v,:—v2 v+uUg

aé(v)zy? 1+ In

2vpy (v —UE

The dependence on ion velocity is implicitly considered

Sow(v) =NvvEoy(ve), (22

while the latter is given by a Bethe-like formul2], as
Sshown in the Appendix,

= 2

Ziw? [2mv
In
v

 Ziwp ) 2mp?
02 ha

| e

h(l)p
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Numerical

Hydrogenic-Asymptotic approx. ]

Yukawa-Asymptotic approx.

Low velocity limits

the scattering of electrons in the field of a nearly static ion. In
this range, the results are in good agreement with those ob-
tained from the density-functional formulation. In the high-
velocity limit our results agree with perturbative expansions
leading to the well-known Bethe formula.

The special interest of this model is that it may be applied
in the more complicated range of intermediate velocities,
bridging the existing gap between previous linear and non-
linear models. In this intermediate range the results repro-
duce the maximum in the stopping power. This velocity de-
pendence arises in a natural wée., not by any external
imposition as a result of the self-consistent mechanism used
to adjust the screening potential by the velocity-dependent
sum rule.

The accuracy of the model is limited to some extent by
the restriction in the potential function, which is assumed to
maintain the spherical symmetry for finite velocities. How-
ever, the self-consistent optimization applied to this potential
makes this assumption become less critical, as may be
checked by considering the behavior of the results in the
more unfavorable case of high velocities.

FIG. 6. Velocity dependence of the energy lo&opping The model provides also the possibility to calculate the
powe) for a particles in a free electron gawith ro=2). The  Stopping powers for the different charge staftesing theNy,
dotted lines show the low- and high-velocity limits described in thenumbey in the case of moving ions. This will be used to
text. represent the average energy loss for a beam of ions with
equilibrium or nonequilibrium charge states.

08| \
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04
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0 2 4 6 8
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Here we have used the high-velocifyerturbation limit of
the a values @~ wp/v) arising from the sum-rule method,
which in this limit correspond to dynamical-screening effects _ _ ) )
typically found in the range of plasmon behavithe stan- This work was partially supported by Consejo Nacional
dard approach to obtain the high-velocity result includes théle Investigaciones Ciefitas y Tenicas(Argentina.
contribution of single-particle and plasmon excitati¢g$.

As may be observed, the present model joins in a smooth
g%ptizz Iggwgﬁ ﬁféelsa%neitp(;ic;fdeurgiiet hbeetTvZ)éer t‘h”; L’;;S"fs We consider here the calculation of phase shifts and trans-

for the hydrogenic and Yukawa potentials is about 10% foPOrt Cross septior_15 using perturbation theory ar_ld derive. re-
intermediate velocities lated approximations to the sum rule in the high-velocity

limit. Following the usual first-order Born approximation
[25], the phase shifts are given by
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APPENDIX

IV. CONCLUSIONS

We have proposed a model to describe the velocity-
dependent screening in metals based on the extension of the
Friedel sum rule to finite velocities and on the use of this rule
to adjust in a self-consistent way the parameters of simple ] )
analytical potentials. The model provides a simple way tol hus we obtain for the Yukawa potential
incorporate dynamical effects in the quantum formulation of
screening and scattering processes, which is considered an
appropriate framework to analyze nonlinear screening and
stopping powers of ions in metals.

In the low-velocity limit the present model coincides with
the previous adiabatic picture of a friction force produced byand for the hydrogenic potential

5F(k>=—wjo°cdr VO dkD e (AD)

o Z
&=y fo dr e[ 315k P=1Qi(0) (A2)

BH_ ” —ar a_r 2_
ot=mZy| drre | 14— |[Jjuakn)] (A3)
0

IIxQi(x) = Qi—1(x)],

Z.,? 1
>0,

1
?QI(X)_ 2k3 X2_1
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where theQ,(x) are the second-kind Legendre functions of 8ur wp
Ith order[26] and ay=\/—=6—, (A13)
T UVE
o 4y
=1+—. A4 F wp
x=1+- > (A4) ay= /_7T = @_UF (A14)

Using these expressions we can derive the correspondingy the hydrogenic and Yukawa potentials, respectively.
approximations to the Friedel sum rule. Let us consider first \ye note that the value afy coincides with the so-called

the case of low velocities. Thomas-Fermi approximaticfor RPA) to the screening con-
Using the relatiorf 26] stant for static ions in a free electron g&d, namely,kyg
=\Bwp /v, whereas the value afy is a factor/2 larger.
Jis1(2)= \/2- (2), (A5) In a similar way, we may'co.nsider Fhe 'high—velocity limit,
™ wherek=v, and make a similar derivation. We start now

) ] from Eq. (13), which we write as
we may write Eq(A1) in the form

- _ v,3: d 22 | Bk
5F=—2kf dr r2v(n)j(kr) (A6) ANe= 3z g (PP DAW0] - (AL
0 =v
and the FSRfor v=0, k=vg) may be written Using again Eqs(Al) and(A8), we get

Z,= %IZO (21+1)8%(vp) ;2 (21+1)6} (k)=—7f0 dr r2v(r); (A16)

dye (= o from Egs.(A10), (A15), and(A16),
=—7Ff dr r2V(r)|EO(2I+1)j|2(v,:r). (A7)
0 =

on

42 yZ,
Zy—Np=—— Tt
Using here the property26] 3mv° Ve «a

vZ1
2 1

(A17)

|

3 with the values ofy given above. This equation determines
Z (21 + 1)j|2(kr)= 1, (A8) the value ofa for each potential in the high-velocity limit. In
=0 particular, for bare ionsN,=0) we get the simple result

we get the simple condition wp
a=y"—=, (A18)

N
Zi=——| drr2v(r), (A9) _ _ .
7 Jo which corresponds to the usual behavior of the dynamical

screening of swift ions in an electron gie&4].
where the integral can be calculated for any screened poten- Let us finally derive the asymptotic behavior of the trans-
tial of the formV(r)=—(Z,/r)®(ar), thus obtaining port cross section and stopping powers in the limit of high
velocities. The scattering amplitudg 6) in the first-order

o Z Born approximation is given b
f dr r2V(r)=—y—;, (A10) PP ’ g
0 o .
sin(gr
fB(0)=j dr nd )V(r). (A19)
with a numerical constant ar
o For the hydrogenicH) and Yukawa ¥) potentials indicated
y= fo dx x d(x). (Al11) above, we obtain
. _ . q%+2a?
In particular, one gety=1 for the Yukawa potential and B0 =4nz, —————,
vy=2 for the hydrogenic potential. Therefore, the FSR in the (q%+ a?)?
perturbation limit takes a very simple form
- 18Y( )= T4 (A20)
2 Qv yZ = )
2==3 @+ 1fwp=— 1L (A1) g2+ a?
mi=0 T

whereq=2ksin(#/2). Then we calculate the transport cross
According to this relation, the values af that would be  section, given by
consistent with both the Friedel sum rule and the Born ap-
proximations(with a strong assumption on the validity of the

_ 21—
Born approximation in the low-velocity casere given by ‘T”_J dQ[f(8)[*(1-cosh), (A21)
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and we get for each case

72 202 ot 1
BH/|,\ — 1 2, 2
7 (")‘Z’TF{'”(Q T G 6| (rad?
2q2 Amax

41 , A22
(q%+ a?)? o (A22)

Zz o2 Amax

BY(k)=27—| In(q%+ a?)+

7w (K) 71-k4 (e (q2+ a?) Ui

(A23)
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where q,in=0 andg,,=2k. In the high-velocity limit, the
stopping powerS= —dE/dx is directly given by oy(v)
through the relation

S=nv2oy(v). (A24)

Therefore, using Eq94A22) and (A23) and considering
the limit =20, we finally obtain

Z% 2v
S(U)E47Tn—2|n( ), (A25)
v

a
which, with the corresponding values af given in Eq.
(A18), provides the expected behavior in the v limit.
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