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Velocity-dependent screening in metals

A. F. Lifschitz and N. R. Arista
División Colisiones Ato´micas, Centro Ato´mico Bariloche and Instituto Balseiro,

Comisión Nacional de Energı´a Atómica, 8400 Bariloche, Argentina
~Received 21 May 1997!

We propose a model to calculate in a quantum-mechanical way the screening and energy loss of swift ions
in metals. The model is based on an extension of the Friedel sum rule to finite velocities, which allows us to
describe the scattering and nonlinear screening of electrons in the field of the moving ion. The scattering
process is formulated according to the partial-wave expansion, assuming an effective scattering potential that
is adjusted in a self-consistent way using the phase-shift sum rule. We consider in particular the limits of low
and high velocities, where the results of this model agree with those obtained using the density-functional and
perturbation theories. We apply the method to the calculation of the mean energy loss~stopping power! on the
whole range of velocities.@S1050-2947~97!04812-9#

PACS number~s!: 34.50.Bw, 34.50.Fa, 79.20.Rf
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I. INTRODUCTION

The screening of ions in solids is one of the central pr
lems in the study of ion-solid interactions. The problem is
interest to understand both the behavior of static impuri
in metals, such as the resistivity of impurities and meta
solutions@1#, or the energy loss and ranges of swift ions
solids @2#.

Various perturbative models have been used to desc
the basic interaction process. In particular, the dielectric
malism, based on linear-response theory@3–5#, provides a
unified description of dynamical screening, plasmon exc
tion, and electron-hole pairs. It shows also the main featu
of the velocity dependence of the stopping power of met
a proportionality with velocity in the adiabatic low-velocit
range, a threshold for plasmon excitation and maxim
stopping power at intermediate velocities, and a decrea
behavior at high energies, in agreement with the Be
theory @2#. The main weakness of this model is observed
the low-velocity range because the interaction effects
come too strong to be described well by linear or pertur
tive approximations@6#.

Models based on kinetic theory@7,8# provide also a good
description of the velocity-dependent stopping power,
require a knowledge of the transport cross sections for
namically screened interactions including quantum effects
the whole range of velocities. On the other hand, quantu
mechanical models have been proposed for the partic
case of slow ions@9–16#. Briggs and Pathak@9# introduced a
transport–cross-section approach based on the partial-w
method to calculate the friction coefficient for slow ions
channeling conditions. The model qualitatively explained
oscillatory dependence observed as a function of the
atomic numberZ1. A more accurate many-body represen
tion of the nonlinear screening and stopping process
given by Echeniqueet al. @11,12#, who introduced the
density-functional theory~DFT! to calculate the friction co-
efficient for slow ions embedded in a uniform electron g
The model explained in a more definitive way the oscillato
Z1 dependence for the case of channeled ions.
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In order to improve the description of similar features
the case of random incidence, a simplified model to integr
the stopping power for nonhomogeneous electron distri
tions in solids was developed@16#. The model is strongly
based on the Friedel sum rule for the phase shifts in the c
of slow ions and uses this rule to adjust, in a self-consist
way, the scattering potential. The approach has been u
earlier by various authors@13–15# in homogeneous systems
with very good results. The model provides a good desc
tion of both theZ1 and theZ2 dependences of the low
velocity friction coefficients for ions in various solid targe
@16#. In addition, with a more elaborate treatment of the el
tronic density sampled in channeling conditions, the mo
was used to produce a complete simulation of the slow
down of protons channeled in Au crystals@17#.

The problem of extending the quantum models to fin
velocities has been considered recently either in the con
of the DFT @18# or using model potentials and the Bor
approximation@19#. In particular, an extension of the Fried
sum rule to finite velocities is contained in the formulatio
given in Ref.@19#. In both cases the dynamical potential
replaced by a spherical average in order to proceed with
calculations. The model presented here also makes us
this assumption.

The purpose of this work is to extend previous models
slow ions@13–17# to the case of ions moving with arbitrar
~nonrelativistic! velocities. To carry out this idea we firs
perform an extension of the Friedel sum rule to the case
moving ions. This extension allows us to incorporate in
self-consistent way the dynamical effects that give rise to
velocity dependence of the relevant quantities, including
behavior of the scattering terms and the energy loss of
particle. We will report here calculations performed with th
model for the whole range of velocities.

The extension of the phase-shift sum rule is described
Sec. II and calculations for various velocity ranges are c
sidered in Sec. III. The results are compared with previo
models in the limits of small and large velocities. Some a
proximate results that may be obtained using perturba
theory are included in the Appendix.
200 © 1998 The American Physical Society



u
e
cc
tia
h
e
lli
tro
d

n
of

ith
st
o

tio
e
b

itio

n
b
u-
e

c
y
ow

e
for
s.

n-

nte-

57 201VELOCITY-DEPENDENT SCREENING IN METALS
II. MODEL

Extension of the Friedel sum rule for moving ions

Let us first consider the usual treatment of the Friedel s
rule ~FSR! for static ions@20#. It may be shown in this cas
that each of the scattered electrons contributes to the a
mulation of screening charge by an amount that, in a par
wave expansion, is given by the derivative of the phase s
d l in the formDql5(1/p)(dd l /dk). The FSR represents th
condition of overall charge neutrality, expected for a meta
environment, as a result of the screening by all the elec
states within a Fermi sphere. The rule may be expresse

Z12Nb5 (
l ,ml ,ms

E
0

vFS 1

p D S dd l

dk Ddk

5
2

p(
l 50

`

~2l 11!E
0

vFS dd l

dk Ddk, ~1!

where Nb is the number of bound electrons andZ1 the
nuclear charge of the ion~atomic units will be used in this
paper!. In this case~i.e., v50) the integral over the electro
velocities, or wave vectorsk, extends over a Fermi sphere
radiusvF centered in the origin.

Let us consider now the case of a particle moving w
velocity vW along theẑ axis. As seen from the particle re
frame, the electrons occupy a displaced Fermi sphere wh
center is located at the velocity2vW , while its radiusvF re-
mains unchanged. The situation may be considered sta
ary in a frame of reference moving with the projectile. Mor
over, in a metallic environment the intruder charge should
neutralized by the screening charge. Therefore, the cond
of charge neutrality may be applied to this case.

In order to account for the ion velocity, the integratio
must now be preformed over a Fermi sphere displaced
2v relative to the origin, as shown in Fig. 1. The contrib
tion to the accumulation of screening charge from a sph
ical shell of radius k and thicknessdk is given by
(1/p)(dd l /dk)dk; therefore, thek integration in Eq.~1!
should now be replaced by an integralGl over the displaced
Fermi sphere~DFS! as

Gl~v,vF!5E
DFS

S dd l

dk D k2dkdV

4pk2
5E

kmin

kmax
dkS dd l

dk Dg~k,v !,

~2!

with kmin5min$0,v2vF% and kmax5v1vF . The sum rule
now takes the form

Z12Nb5
2

p(
l 50

`

~2l 11!Gl~v,vF!. ~3!

The angular integration over the DFS, given by the fun
tion g(k,v) in Eq. ~2!, may be performed in a simple wa
using the geometrical representation of the kinematics sh
in Fig. 1 and taking into account the axial symmetry

g~k,v !5E
DFS

dV

4p
5

1

2
~12cosuc!. ~4!
m
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Here the angleuc corresponds to the maximum angle of th
k vector for electrons in the Fermi sphere, as indicated
different cases in Fig. 1. We separate the following case

~a! v,vF . As shown in Fig. 1~a!, the integration here
contains two terms, depending on the value ofk: ~i! 0,k
,vF2v, in which case no restriction is applied on the a
gular integration and thenuc5p and g(k,v)51, and ~ii !
vF2v,k,vF1v, where cosuc5(k21v22vF

2)/2kv, accord-
ing to Fig. 1~a!, and

g~k,v !5
1

4kv
@2kv1vF

22k22v2#. ~5!

~b! v.vF . This is the case shown in Fig. 1~b!; we also
get cosuc5(k21v22vF

2)/2kv ~with v2vF,k,v1vF) and
g(k,v) is given again by Eq.~5!.

Therefore, the extended sum rule for any velocityv be-
comes

Z15
2

p(
l 50

`

~2l 11!Gl~v,vF!1Nb , ~6!

where

Gl~v,vF!5H Gl
~1!~v,vF!1Gl

~2!~v,vF!, v,vF

Gl
~2!~v,vF!, v.vF ,

~7!

with

FIG. 1. Representation of the displaced Fermi sphere and i
gration regions for the cases~a! v,vF and ~b! v.vF . The maxi-
mum angleuc is indicated for each value ofk in the Fermi sphere.
For k,vF2v in case~a! the value ofuc is p.
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202 57A. F. LIFSCHITZ AND N. R. ARISTA
Gl
~1!~v,vF!5E

0

vF2v
dkS dd l

dk D5d l~vF2v !2d l~0! ~8!

and

Gl
~2!~v,vF!5E

uv2vFu

v1vF
dkS dd l

dk Dg~k,v !. ~9!

An alternative expression forGl
(2) may be obtained by

partial integration

Gl
~2!~v,vF!5E

uv2vFu

v1vF
dkF k21vF

22v2

4k2v
Gd l~k!,

2Q~vF2v !d l~vF2v !, ~10!

whereQ(vF2v) denotes the Heaviside function. In partic
lar, for v50, Gl

(2)(v,vF)→0 and the sum rule takes th
simple form

Z15
2

p(
l

~2l 11!@d l~vF!2d l~0!#1Nb . ~11!

Furthermore, if we use Levinson’s theorem (2/p)( l(2l
11)d l(0)5Nb , the last two terms in Eq.~11! cancel out and
we retrieve the Friedel sum rule in the usual form

Z15
2

p(
l

~2l 11!d l~vF!. ~12!

In the opposite limit ofv@vF , we calculate the value o
Gl

(2)(v,vF) using Eq.~5! in Eq. ~9! and we expand the term
in powers of (vF /v). Thus we get the result

Z1>S vF
3

3v2D 2

p(
l

~2l 11!Fdd l

dk G
k5v

1Nb . ~13!

III. MODEL CALCULATIONS

In order to consider the application of the extended s
rule, we study the velocity dependence of the stopping fo
on a moving particle. We performed calculations using t
models for the interaction potential: a hydrogenic poten
VH(r ) and the Yukawa potentialVY(r ), given respectively
by

VH~r !52Z1S 1

r
1

a

2 Dexp~2ar !, ~14!

VY~r !52
Z1

r
exp~2ar !. ~15!

Here a is a velocity-dependent parameter whose value w
adjusted in a self-consistent way using the requirement
the calculated phase shiftsd l should satisfy the velocity de
pendent sum rule of Eq.~6!. The phase shifts were numer
cally determined by integration of the radial Schro¨dinger
equation for each value ofa and adjusting this value unti
the sum rule was satisfied.
e
o
l

s
at

The main assumption on the scattering potential is tha
spherical symmetry, which allows us to apply the usu
phase-shift analysis. We expect that the use of the sum
to adjust the parametera will give us a good spherical-
average representation of the real~anisotropic! potential. The
goodness of this assumption will be tested later in the m
unfavorable case of high velocities.

Calculations were performed for static and moving io
with nuclear chargeZ152. We will discuss first the better
known case of zero velocity and then analyze the whole
locity dependence.

A. Calculations of d l values for v50

As a first step we have calculated the values of the ph
shifts d l(k) for the cases of hydrogenic and Yukawa pote
tials; these calculations were performed by numerically so
ing the radial Schro¨dinger equation using standard metho
@21,22#. We show some of the results in Figs. 2~a! and 2~b!,
where thed l values are plotted as a function ofl 11. In both
cases we have fixed ther s parameter~related to the Fermi
velocity byvF51.919/r s) at the valuer s52 ~in the range of
interest for several metals!, while the corresponding value
of a for each potential were determined by the Friedel su
rule method, Eq.~11!, using thed l values calculated at the
Fermi surfacek5vF . The Nb value in this case, as dete
mined by the Levinson sum, isNb52. As may be observed
for small values ofk only a few phase shifts are needed
calculate

FIG. 2. Calculated values of phase shifts for~a! hydrogenic and
~b! Yukawa potentials for the caser s52 ~with the value ofa ad-
justed using the FSR!. Calculations for various electron velocitiesk
as a function ofl 11. The dotted lines show the values calculat
using the Born approximation.
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57 203VELOCITY-DEPENDENT SCREENING IN METALS
the cross section, but with increasingk the d l curves flatten
and the number of phase shifts required increases acc
ingly. We also show in these figures the phase shift val
calculated from the Born approximation~see the Appendix!.
We find that the Born results give a very good approximat
for electron velocities larger than about 2 and forl values
also larger than;2.

In Fig. 3 we show the values ofa for the case of fixed
ions (v50), obtained by adjusting the Friedel sum rule~12!
for both potentials. The dotted lines show the values
pected by using the Born approximation~Appendix!; these
values approach the exact results in the limit of smallr s ~i.e.,
largevF), similarly to the behavior observed at high electr
velocities in Fig. 2. The perturbative approximations ap
well both in the high-velocity and in the high-density@the
so-called random-phase approximation~RPA!# limits.

Finally, in Fig. 4 we compare the values calculated h
with those obtained using the density-functional meth
@23#. We find good agreement with these values for the
drogenic potential and very good agreement for the Yuka
potential.

B. Velocity dependence

We now turn to the ion-velocity dependence of the mo
presented here. As already indicated, we use a self-consi
method where the screening effects are represented
simple form using a model potential with a single parame
a, which now becomes a function of the ion velocity a
whose value is determined by the application of the veloc
dependent sum rule. For the present calculations we ass
a bare ion, withZ152 andNb50.

The calculations were performed using Eqs.~6!–~10!,
starting at very low velocities with thea values determined
for static ions~with Z152, Nb50) and searching for the
new values ofa by an iteration procedure. As the veloci

FIG. 3. Values ofa obtained from the FSR~in the static case!
for the hydrogenic and Yukawa potentials as a function of
electron-gas parameterr s .
rd-
s

n

-

e
d
-
a

l
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-
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increases, more phase shiftsd l must be incorporated into th
sum rule. At the largest velocities considered here (;10) up
to 600 values ofl were included. However, forl @1, we
have used the analytical results provided by the Born
proximation to speed up the iteration process.

The values ofa obtained in this way are shown in Fig.
for each of the potentials. The dotted lines show t
asymptotica values (aB) derived by using only the Born
approximation in the high-velocity form of the sum rule~13!.
These limiting values can be calculated analytically using

e

FIG. 4. Comparison of the phase shifts calculated by the pre
method with the values obtained from density-functional calcu
tions ~from Ref. @23#!.

FIG. 5. Velocity dependence of the screening parametera for
r s52. Solid lines, numerical values obtained from the extend
sum rule~6! for both the hydrogenic and Yukawa potentials; dott
lines, high-velocity approximation (v@vF) from Eq. ~18!; dashed
lines, velocity-dependenta values in the linear approximation o
Eq. ~19!.
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204 57A. F. LIFSCHITZ AND N. R. ARISTA
fact that in the Born approximation thed l
B values satisfy the

linearized sum rule~see the Appendix!

2

p(
l

~2l 11!d l
B~k!5

4k

p

gZ1

aB
2

, ~16!

with g51 for the Yukawa potential andg52 for the hydro-
genic potential.

Using these values in Eq.~13! ~with Nb50) we get, in the
high-velocity limit,

Z15S vF
3

3v2D F d

dkS 4k

p

gZ1

aB
2 D G

k5v

5S 4vF
3

3pv2D gZ1

aB
2

~17!

and therefore

aB>g1/2
vP

v
, ~18!

with the values ofg indicated before for each case. We ha
used here the relationvF

35(3p/4)vP
2 betweenvF and the

plasma frequencyvP .
On the other hand, one can obtain an extended analy

expression fora by using the limiting condition of Eq.~16!
in the exact expressions of Eqs.~6! and ~10! @i.e., by insert-
ing the sum overl values in Eq.~6! within the integral of Eq.
~10! and making use of Eq.~16!#. In this case the integra
may be handled analytically and one obtains an approxi
tion for a that has a more appropriate velocity dependen
viz.,

aB
2~v !5g

2vF

p F11
vF

22v2

2vFv
lnUv1vF

v2vF
UG . ~19!

This expression applies to any screened potential of the f
V(r )52(Z1 /r )F(ar ), with the value ofg given by Eq.
~A11! in the Appendix. In particular, for the case of
Yukawa potential Eq.~19! coincides with the one derived b
Nagy and Bergara@19# also in the linear approximation. Th
velocity dependence of thea values obtained from this ex
pression are shown with dashed lines in Fig. 5; these va
are in better agreement with the numerical results~solid
lines! for intermediate and large velocities, but they devia
from the exact values in the low-velocity regime, where no
linear effects become important.

We parenthetically note that thea values forv50 shown
in Fig. 5 differ from those of Fig. 3 for the caser s52. This
is due to the assumption of differentNb values in both cases
The calculations for static ions in Fig. 3 are consistent w
the valueNb52 resulting from Levinson’s theorem for thi
case, whereas those in Fig. 5 were made under the ass
tion of Nb50, i.e., the expected value for fast ions. A rea
istic simulation of helium ions in matter would involve
combination of the different charge states (Nb50, 1, and 2!
with the statistical weights determined by dynamical effe
and capture and loss processes@24#.

As a final remark, the dependence onvP /v in Eq. ~18! is
the typical one for the high-velocity limit~dynamical-
screening distance;v/vP) when the collective behavior o
al

a-
e,

m

es

e
-

h

p-

s

a free-electron gas is considered. One should note, howe
that collective effects have not been explicitly included
this description; they arise in our case as a result of
self-consistency imposed by the model~through the sum-rule
requirement!. A similar appearance of collective behavior
a velocity-dependent density-functional description has b
discussed by previous authors@18#.

C. Velocity-dependent stopping power

As an application of the method we consider the calcu
tion of the stopping forceS(v)[2dE/dx for ions moving in
a metal. A simple and yet nontrivial question here is whet
the present description of nonlinear screening describes
well-known existence of a maximum in the energy loss
ion velocities close to the electron Fermi velocity as well
the high-velocity behavior.

To integrate the average energy loss we use a previo
derived expression, based on a transport–cross-section
scription of the process@8#, which gives the stopping powe
as an integral ofs tr in the form

S~v !5
1

4pv2E0

vF
u duE

uv2uu

uv1uu
dk k4s tr~k,v !F11

v22u2

k2 G .

~20!

This expression takes into account the statistical averag
the momentum transfers due to collisions with relative v
locitiesv r[k ~in the rangeuv2uu,k,uv1uu), between the
moving ion~with velocity v), and a distribution of electrons
incident from all angles and with all possible velocitiesu
inside the Fermi sphere (0,u,vF), as shown in Fig. 1.

The transport cross sections tr(k,v) is calculated accord-
ing to the usual expression~for a relative electron-ion veloc
ity v r5k)

s tr~k,v !5
4p

k2 (
l 51

`

~ l 11!sin2@d l~k!2d l 11~k!#. ~21!

The dependence on ion velocityv is implicitly considered
through the phase shiftsd l(k), whose values depend para
metrically on the ion velocityv because of the requiremen
imposed by the velocity-dependent sum rule used to ad
the potentialV(r ) @with a5a(v)# as described before.

The stopping power values obtained in this way a
shown in Fig. 6 together with the expected limits from t
low- and high-velocity regimes. The former is given by th
low-velocity stopping coefficient@10#

Slow~v !5nvvFs tr~vF!, ~22!

while the latter is given by a Bethe-like formula@2#, as
shown in the Appendix,

Shigh~v !>
Z1

2vP
2

v2
lnS 2mv

\a D>
Z1

2vP
2

v2
lnS 2mv2

\vP
D . ~23!
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57 205VELOCITY-DEPENDENT SCREENING IN METALS
Here we have used the high-velocity~perturbation! limit of
the a values (a;vP /v) arising from the sum-rule method
which in this limit correspond to dynamical-screening effe
typically found in the range of plasmon behavior~the stan-
dard approach to obtain the high-velocity result includes
contribution of single-particle and plasmon excitations@2#!.

As may be observed, the present model joins in a smo
way the limiting cases and produces the maximum in
stopping power. The largest difference between the res
for the hydrogenic and Yukawa potentials is about 10%
intermediate velocities.

IV. CONCLUSIONS

We have proposed a model to describe the veloc
dependent screening in metals based on the extension o
Friedel sum rule to finite velocities and on the use of this r
to adjust in a self-consistent way the parameters of sim
analytical potentials. The model provides a simple way
incorporate dynamical effects in the quantum formulation
screening and scattering processes, which is considere
appropriate framework to analyze nonlinear screening
stopping powers of ions in metals.

In the low-velocity limit the present model coincides wi
the previous adiabatic picture of a friction force produced

FIG. 6. Velocity dependence of the energy loss~stopping
power! for a particles in a free electron gas~with r s52). The
dotted lines show the low- and high-velocity limits described in
text.
s

e

th
e
lts
r

-
the
e
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o
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the scattering of electrons in the field of a nearly static ion
this range, the results are in good agreement with those
tained from the density-functional formulation. In the hig
velocity limit our results agree with perturbative expansio
leading to the well-known Bethe formula.

The special interest of this model is that it may be appl
in the more complicated range of intermediate velociti
bridging the existing gap between previous linear and n
linear models. In this intermediate range the results rep
duce the maximum in the stopping power. This velocity d
pendence arises in a natural way~i.e., not by any externa
imposition! as a result of the self-consistent mechanism u
to adjust the screening potential by the velocity-depend
sum rule.

The accuracy of the model is limited to some extent
the restriction in the potential function, which is assumed
maintain the spherical symmetry for finite velocities. How
ever, the self-consistent optimization applied to this poten
makes this assumption become less critical, as may
checked by considering the behavior of the results in
more unfavorable case of high velocities.

The model provides also the possibility to calculate t
stopping powers for the different charge states~using theNb
number! in the case of moving ions. This will be used
represent the average energy loss for a beam of ions
equilibrium or nonequilibrium charge states.
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APPENDIX

We consider here the calculation of phase shifts and tra
port cross sections using perturbation theory and derive
lated approximations to the sum rule in the high-veloc
limit. Following the usual first-order Born approximatio
@25#, the phase shifts are given by

d l
B~k!52pE

0

`

dr r V~r !@Jl 11/2~kr !#2. ~A1!

Thus we obtain for the Yukawa potential

d l
BY5pZ1E

0

`

dr e2ar@Jl 11/2~kr !#25
Z1

k
Ql~x! ~A2!

and for the hydrogenic potential
d l
BH5pZ1E

0

`

dr r e2ar S 11
ar

2 D @Jl 11/2~kr !#255
Z1

k
Q0~x!1

Z1a2

2k3 S 1

x221D , l 50

Z1

k
Ql~x!2

Z1a2

2k3 S 1

x221D l @xQl~x!2Ql 21~x!#, l .0,

~A3!



o

di
rs

te

th

ap
e

-

it,
w

s

ical

s-
gh

ss

206 57A. F. LIFSCHITZ AND N. R. ARISTA
where theQl(x) are the second-kind Legendre functions
l th order@26# and

x511
a2

2k2
. ~A4!

Using these expressions we can derive the correspon
approximations to the Friedel sum rule. Let us consider fi
the case of low velocities.

Using the relation@26#

Jl 11/2~z!5A2z

p
j l~z!, ~A5!

we may write Eq.~A1! in the form

d l
B522kE

0

`

dr r 2V~r ! j l
2~kr ! ~A6!

and the FSR~for v50, k5vF) may be written

Z1>
2

p(
l 50

`

~2l 11!d l
B~vF!

52
4vF

p E
0

`

dr r 2V~r !(
l 50

`

~2l 11! j l
2~vFr !. ~A7!

Using here the property@26#

(
l 50

`

~2l 11! j l
2~kr !51, ~A8!

we get the simple condition

Z1>2
4vF

p E
0

`

dr r 2V~r !, ~A9!

where the integral can be calculated for any screened po
tial of the formV(r )52(Z1 /r )F(ar ), thus obtaining

E
0

`

dr r 2V~r !52g
Z1

a2
, ~A10!

with a numerical constant

g5E
0

`

dx x F~x!. ~A11!

In particular, one getsg51 for the Yukawa potential and
g52 for the hydrogenic potential. Therefore, the FSR in
perturbation limit takes a very simple form

Z1>
2

p(
l 50

`

~2l 11!d l
B~vF!5

4vF

p

gZ1

a2
. ~A12!

According to this relation, the values ofa that would be
consistent with both the Friedel sum rule and the Born
proximations~with a strong assumption on the validity of th
Born approximation in the low-velocity case!, are given by
f

ng
t

n-

e

-

aH5A8vF

p
5A6

vP

vF
, ~A13!

aY5A4vF

p
5A3

vP

vF
~A14!

for the hydrogenic and Yukawa potentials, respectively.
We note that the value ofaY coincides with the so-called

Thomas-Fermi approximation~or RPA! to the screening con
stant for static ions in a free electron gas@5#, namely,kTF

5A3vP /vF , whereas the value ofaH is a factorA2 larger.
In a similar way, we may consider the high-velocity lim

where k5v, and make a similar derivation. We start no
from Eq. ~13!, which we write as

Z12Nb>
vF

3

3v2

d

dkF 2

p(
l

~2l 11!d l
B~k!GU

k5v

. ~A15!

Using again Eqs.~A1! and ~A8!, we get

2

p(
l

~2l 11!d l
B~k!52

4k

p E
0

`

dr r 2V~r !; ~A16!

from Eqs.~A10!, ~A15!, and~A16!,

Z12Nb>
4vF

3

3pv2

gZ1

a2
5

vP
2

v2

gZ1

a2
, ~A17!

with the values ofg given above. This equation determine
the value ofa for each potential in the high-velocity limit. In
particular, for bare ions (Nb50) we get the simple result

a5g1/2
vP

v
, ~A18!

which corresponds to the usual behavior of the dynam
screening of swift ions in an electron gas@3,4#.

Let us finally derive the asymptotic behavior of the tran
port cross section and stopping powers in the limit of hi
velocities. The scattering amplitudef (u) in the first-order
Born approximation is given by

f B~u!5E d3r
sin~qr !

qr
V~r !. ~A19!

For the hydrogenic (H) and Yukawa (Y) potentials indicated
above, we obtain

f BH~u!54pZ1

q212a2

~q21a2!2
,

f BY~u!5
4pZ1

q21a2
, ~A20!

whereq52ksin(u/2). Then we calculate the transport cro
section, given by

s tr5E dVu f ~u!u2~12cosu!, ~A21!
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and we get for each case

s tr
BH~k!52p

Z1
2

k4H ln~q21a2!2
q2a2

~q21a2!2
2

a4

6 F 1

~q21a2!2

1
2q2

~q21a2!3G J U
qmin

qmax

, ~A22!

s tr
BY~k!52p

Z1
2

k4F ln~q21a2!1
a2

~q21a2!
GU

qmin

qmax

,

~A23!
f

lid

H

whereqmin50 andqmax52k. In the high-velocity limit, the
stopping powerS52dE/dx is directly given by s tr(v)
through the relation

S5nv2s tr~v !. ~A24!

Therefore, using Eqs.~A22! and ~A23! and considering
the limit qmax52v@a, we finally obtain

S~v !>4pn
Z1

2

v2
lnS 2v

a D , ~A25!

which, with the corresponding values ofa given in Eq.
~A18!, provides the expected behavior in thev@vF limit.
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