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Classical and quantum dynamics of chirped pulse dissociation of diatomic molecules
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The dissociation of a diatomic molecule by a chirped infrared laser pulse is modeled by a Morse oscillator
interacting with a classical electric field with a time-dependent frequency. Our previous classical analysis in
terms of bucket dynamics, in which systems within the single-node separatrices~buckets! in phase space are
trapped and undergo convection to highly excited states, is found to be applicable to the more general cases of
nonlinear chirping and using a realistic dipole moment function for the molecule. This route of excitation leads
to a much lower dissociation threshold laser intensity when compared to the chaotic diffusion route for
monochromatic excitation. Time-dependent quantum mechanical calculations of the dissociation probability
based on the split-operator method are performed. It is found that the classical and quantum results agree well,
and the classical resonances appear also in the quantum probabilities. Hence the classical method can be used
to investigate various characteristics of the chirped pulse excitation and dissociation processes.
@S1050-2947~98!03403-9#

PACS number~s!: 33.80.Wz, 33.80.Gj, 03.20.1i,
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I. INTRODUCTION

The possibility of dissociating molecules by multiphoto
absorption processes using infrared~IR! lasers was discov
ered in the early 1970s@1#, and a particularly exciting aspec
of this process is its isotopic selectivity@2#. The study of
excitation and dissociation of molecules by IR lasers
continued to be a subject of interest@3#, but experimental
results are available only for polyatomic molecules. The g
erally accepted mechanism involves near-resonant ex
tions of the pumped modes which are coupled to ot
modes, with the other degrees of freedom serving as a
@4#. Focusing on the excitation and dissociation aspect o
single pumped mode, one often studies the simplified pr
lem of a diatomic molecule modeled by a Morse oscilla
and driven by an IR laser@5,6#. It should be noted that the
local mode concept employing the Morse oscillator has a
been used extensively in the study of overtone vibratio
spectra of polyatomic molecules@7#.

The driven Morse oscillator@6# has been one of the para
digms in the study of classical-quantum correspondenc
nonlinear ~microscopic! systems@6,8,9# as well. The roles
played by nonlinear resonances@10# in the dissociation dy-
namics of a Morse oscillator driven by a continuous or
impulsive field have been studied in detail@11,12#. As the
laser intensity increases, these resonance islands beg
overlap and annihilate each other. The associated bifu
tions divide the phase space into fragments filled w
smaller resonance islands, periodic orbits, and other invar
phase space structures, such as homoclinic or heteroc
aperiodic orbits@6,11#. As a result, the dynamics becom
very irregular or chaotic. We have shown that these ph
space structures are often organized by the symmetry line
the problem@12#, and that the associated dissociation dyna
ics becomes extremely sensitive to external control par
571050-2947/98/57~3!/1992~10!/$15.00
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eters, such as the field intensity and frequency@6#. The cor-
responding quantum calculation@6# shows similar
sensitivity, but its resolution is limited by the effectiv
Planck constant, which is inversely proportional to the nu
ber of bound states of the Morse oscillator. Furthermo
under suitable conditions, the addition of a second laser l
ers the dissociation threshold intensity considerably@13#,
which can be predicted using the Chirikov overlap criteri
@14#. We also show that in the presence of a laser fie
collisions between two atoms interacting via a Morse pot
tial exhibit fractal scattering patterns@6#.

Ideally, predictions based on nonlinear resonances sh
be compared with experiments directly. However, it has b
shown that, at the laser intensity required for significant m
tiphoton IR dissociation of diatomic molecules, the ioniz
tion process actually dominates@15–17#. Thus, no experi-
mental result on monochromatic multiphoton dissociation
neutral diatomic molecules without ionization~except the
HCl1 ion @18#! has been reported to date. On the other ha
recent quantum calculations@15–17,19# showed that by us-
ing chirped laser pulses, the threshold field intensity for d
sociation can be reduced to a range below that for ionizat
which is achievable in present-day laboratories. A chirp
laser pulse is a pulse whose frequency sweeps adiabati
with time. For molecular dissociation, it is optimal to swe
the frequency downward, since the resonant frequency
creases with energy due to anharmonicity. Furthermo
chirped pulses have been shown theoretically to be effec
in selective inversion of vibrational overtones@20#.

Frequency chirping also occurs in plasma physics, a
particle motion in a wave with time-dependent frequency h
been analyzed in terms of bucket dynamics@21,22#. Re-
cently, we employed similar ideas to provide a physical p
ture for the classical dynamics of chirped pulse dissociat
of a Morse oscillator@23#. For the case of a linearly chirpe
1992 © 1998 The American Physical Society
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57 1993CLASSICAL AND QUANTUM DYNAMICS OF CHIRPED . . .
pulse and a molecule with a linear dipole moment, we h
shown that the system is well described by a time-depen
approximate resonant Hamiltonian in a moving frame. T
system can become trapped in buckets in phase space
carried upwards to highly excited regions by convectio
This route of excitation is very different from the chaot
diffusion mechanism in fixed-frequency excitation, and
quires a much lower threshold intensity for dissociation.

In this paper, we wish to study extensively the applicab
ity of ‘‘bucket dynamics’’ to the cases of~i! nonlinear chirp-
ing and~ii ! the use of a realistic dipole moment function f
the molecule NO@24#. We have also carried out quantu
mechanical wave packet calculations to compare with
classical dynamics results. The organization of this pape
as follows: in Sec. II, we summarize the classical analysis
the chirped pulse excitation of a Morse oscillator within t
Chirikov resonant approximation, which gives rise to t
concept of ‘‘bucket dynamics.’’ We will demonstrate by n
merical calculation that this concept applies to the gen
case of nonlinear chirping and to the molecule NO with
realistic dipole moment. In Sec. III, we describe the meth
used in our quantum calculation, and we compare our qu
tum and classical results in Sec. IV. The paper is conclu
with a discussion in Sec. V.

II. BUCKET DYNAMICS

We first study the classical dynamics of chirped pu
dissociation. The diatomic molecule is represented b
Morse oscillator, with the Hamiltonian in dimensionle
units given by@11,15,23#

H0~x,p!5
1

2
p21

1

2
~e22x22e2x!. ~1!

Here energy is measured in terms of 2D, with D being the
dissociation energy of the diatomic molecule, and length
measured from the equilibrium bond length in terms of
range of the Morse oscillator 1/a. In terms of the action-
angle variables (i ,u), the Morse Hamiltonian takes th

simple formH0( i )52 1
2 (12 i )2. The Cartesian and action

angle variables are related by@11,13,25#

x5 lnF12A12~12 i !2cosu

~12 i !2 G ,
p5

vA12v2sin u

12A12v2cosu
, ~2!

wherev5v( i )5]H0 /] i 512 i is the frequency of unper
turbed motion. This shows that as the energy of the molec
increases with the actioni , the unperturbed frequency de
creases. Wheni 51, H0( i )50 and the molecule dissociate

The molecule is coupled to the chirped laser pulse by
electric dipole interaction. Thus the total time-depend
Hamiltonian is

H~x,p,t !5H0~x,p!2Bm~x!cos@V~ t !t#. ~3!

In Eq. ~3!, m(x) is the reduced dipole moment function
the molecule normalized todm(0)/dx51 at the equilibrium
e
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bond distance. The angular frequency is measured in te
of the harmonic frequency of the Morse oscillato
v05aA2D/M , whereM is the reduced mass of the mo
ecule. The driving amplitudeB is related to the electric field
E of the laser byB5qeE/(2aD) with qe the effective
charge of the molecule and a square pulse is assumed fo
calculations reported below. The driving frequency is a
sumed to be of the form

V~ t !5V0F12
1

2 S t

tsw
D npG . ~4!

Both the linear chirping case withnp51 and the nonlinear
chirping case withnp52 will be studied in detail. We as
sume thatV(t) is a slowly varying function of time, so tha
adiabatic invariance allows us to define instantaneous r
nance frequencies and actions of the Hamiltonian of Eq.~3!
satisfying

V~ t !5mv~ i m! or i m~ t !512V~ t !/m, ~5!

wherem51,2,....
We have shown in Ref.@23# that for the case of a linea

dipole moment functionm(x)5x, molecules near themth
resonance zone with action close toi m(t) can be described in
a ‘‘moving frame’’ by the resonant Hamiltonian

K~c,J!5
J2

2
1V~c!,

V~c!52BGmcosmc2
f

m

d

dt
~V̇t !, ~6!

where

c5
V

m
t2u, J5 i 2 i m1

V̇

m
t, ~7!

andGm is the coefficient of cosmu in the Fourier expansion
of x(u,i ) of Eq. ~2! evaluated at the stable fixed point of th
system. The detailed derivation of Eq.~6! will be given in
the Appendix. For linear chirping with np51,

V̇52V0 /(2tsw) is a constant, and the resonant Ham
tonian of Eq.~6! becomes time-independent when the tim
dependence of the slowly varyingi m(t) is ignored. We show
in Fig. 1 the potentialV(c) and the phase space trajectori
for K(c,J) with parameters satisfying the existence con
tion

uV̇u/~m2BGm!,1, ~8!

so thatV(c) can have local maxima and minima. The fixe
points ofK are given byJ50 andcc

l 5@2lp1d#/m, where

d5sin21$uV̇u/(m2BGm)#%, l 50,61,62, . . . ; while the saddle
points are given byJ50, cs

l 5@(2l 11)p1d#/m. Thus,
single-node separatrices are formed which produce trap
regions called ‘‘buckets.’’ Transforming back from the mo
ing frame to the original frame, we observe that trajector
inside the buckets will oscillate about the centers whose
tions increase in time according toJ50 or
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1994 57JIAN-MIN YUAN AND WING-KI LIU
i B~ t !5 i m~ t !2V̇t/m, ~9!

and dissociate wheni B;1. Trajectories in the untrapped re
gion will not dissociate; as shown in Ref.@21#, when they are
far from the separatrix, the averaged action is given

d/dt ^J&5V̇/m or d/dt ^ i &50, so that^ i &5const. As they
approach the separatrix, they slide over to the other side
the resonance zone and move away, eventually attainin
lower value of^ i &. Such behavior has indeed been observ
from trajectories generated by the exact Hamiltonian of E
~3! @23#. Furthermore, from their associated Poincare´ maps
in the moving frame, we have demonstrated in Ref.@23# that
the approximate Hamiltonian of Eq.~6! does provide an ac-
curate description of the system for the case of linear chi
ing np51 and a linear dipole moment functionm(x)5x. We
hence arrived at the following physical picture: dissociati
occurs when the system is trapped by the bucket in ph
space, and transported convectively upwards in action a
rate proportional to the chirping rate.

We now wish to show that the concept of bucket dyna
ics applies also to the cases of nonlinear chirping, and us
a realistic dipole moment functionm(x). We study first the
case of nonlinear chirpingnp52 with a linear dipole func-
tion m(x)5x. In Figs. 2~a! and 2~b!, we plot the dissociating
trajectories and their Poincare´ maps by numerically integrat-
ing Hamilton’s equations forV050.9. As before@23#, the
Poincare´ maps of the dissociating trajectories are obtained

FIG. 1. ~a! The potentialV(f) and ~b! phase space portrait in
the moving frame forB50.003,m51, V050.9, andtsw52000.
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FIG. 2. Excitation using a linear dipole moment function.~a!
Exact trajectories for a chirped laser pulse with parameters set
B50.003, tsw52000, V050.9, andnp52. The initial conditions
of the trajectories are „i (0),u(0)…5(0.10,1.61p),
„i (0),u(0)…5(0.55,0.31p), „i (0),u(0)…5(0.70,0.733 33p). The
dashed lines denote the trajectories of the centers of the buck
i B(t) given by Eq.~9! for m51 2, and 3.~b! Poincare´ surfaces of
section for a chirped laser pulse with parameters and initial cond
tions given in~a!; ~c! the Poincare´ surfaces of section for a fixed-
frequency pulse, with parameters and initial conditions given in~a!
except thatnp50.
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57 1995CLASSICAL AND QUANTUM DYNAMICS OF CHIRPED . . .
recording the values of the action-angle variables at timetn
satisfyingV(tn)tn52np, n50,1,2,..., until the system dis-
sociates. Note that attn , mod(u,2p)52p mod(c,2p). In
Fig. 2~a!, the trajectories oscillate about their correspond
centers given by Eq.~9!, and the phase portraits of Fig. 2~b!
again correspond to those forK(c,J), and resemble the
Poincare´ maps of Fig. 2~c! for fixed frequency excitation.

Next we use a realistic dipole moment for the molec
NO. Recent experiments have demonstrated that this m
ecule can be prepared in a specific vibrational excited s
@26–28#, and thus is a prime candidate for testing our theo
The dipole moment function is given by@24,23#

m~x!5kye2y/b, y5~a8/a!x1a, ~10!

wherea851.29 Å21, a50.1058,b50.6017, andk is cho-
sen to satisfydm(0)/dx51. In Fig. 3~a!, we show the ac-
tions of dissociating trajectories along with the time dev
opment of their corresponding centersi B(t). As before, the
trajectories oscillate about their centers until they reac
highly excited state, showing that they are trapped by bu
ets. In Fig. 3~b!, we plot the Poincare´ maps in the moving
frame for the dissociating trajectories, and compare with
Poincare´ maps for fixed frequency excitation shown in Fi
3~c!. Again, the phase portraits resemble those ofK(c,J). It
is interesting to note that the Poincare´ map of the trajectory
with initial conditions i (0)50.437 19,u(0)50 contains is-
lands which also appear in the fixed frequency excitat
case. Thus, the idea of trajectories trapped by the bu
appears to be applicable even though the approxim
Hamiltonian of Eq.~6!, which cannot give islands in th
phase portrait, has become less accurate.

We can observe from Figs. 2~a! and 3~a! that once the
systems have been carried up convectively to highly exc
states, they begin to depart from the centersi B(t). In such
excited states, the laser field is strong enough to bring
system into the chaotic regime. Then our resonance m
breaks down, but the system continues to diffuse to disso
tion. This scenario can be illustrated by comparing the li
time distribution of the trajectories in phase space for chirp
excitation with that for fixed frequency excitation. We o
serve that the nondissociating resonance zone during fi
frequency excitation becomes dissociative when acted u
by a chirped pulse, as expected from bucket dynamics c
sideration. In the highly excited areas~with i close to 1!,
however, the two distributions are quite similar, indicati
that chaotic diffusion is responsible for dissociation.

Hence, the idea of bucket dynamics applies equally w
to the cases of nonlinear chirping and to molecules w
realistic dipole moment functions, even though it was ba
on the approximate Hamiltonian of Eq.~6! derived for linear
chirping and a linear dipole moment.

III. QUANTUM-MECHANICAL STUDIES

To find out how the classical predictions compare to
quantum ones, we have carried out quantum-mechanical
culations for the molecule NO using the Feit-Fleck Fouri
grid ~or split-operator! method@29#. Assuming that the NO
molecule is initially in a given vibrational eigenstatefn0

(x)
of the Morse oscillator of Eq.~1!, we propagate the wav
g
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FIG. 3. Excitation using a realistic dipole moment function o
NO, Eq. ~10!. ~a! Exact trajectories for a chirped laser pulse with
parameters set attsw52000,V051.05, andnp52. The initial con-
ditions for the lower trajectory are„i (0),u(0)…5(0.437 19,1.10p)
with B50.01, while those for the upper trajectory are
„i (0),u(0)…5(0.651 32,0.072p) with B50.0065. The dashed lines
denote the trajectories of the centers of the bucketsi B(t) given by
Eq. ~9! for m52 and 3.~b! Poincare´ surface of section for a chirped
laser pulse with parameters given in~a!; ~c! the Poincare´ surface of
section for a fixed-frequency pulse with parameters and initial co
ditions given in~a! except thatnp50.
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1996 57JIAN-MIN YUAN AND WING-KI LIU
packetc(x,t) using a time-evolution operator whose Ham
tonian is given by Eq.~3!. The time-evolution operator is
computed as a product of a series of small time-step ev
tion operators, which is further approximated by a split for
In this split form a potential step is propagated in betwe
two half-step kinetic steps given by

e2 iHDt/\5e2 iKDt/2\e2 iU ~x,t !Dt/\e2 iKDt/2\1O„~Dt !3
…,
~11!

whereK is the kinetic operator andU(x,t) is the potential
operator, which contains both the Morse potential and
field interaction term. Due to the symmetric splitting of th
kinetic step, the error involved in the factorization appro
mation is then of the order of (Dt)3 for each step. In prac
tice, the kinetic step is evaluated in the momentum space
the potential step evaluated in the coordinate space, res
tively. The transformations between the coordinate and m
mentum spaces are carried out using the fast Fourier tr
form routines. Now a wave packet on its way to dissociat
will spread out and go beyond the grid boundary. Thus i
necessary to introduce an absorbing boundary condition@30#
at a reasonably large interatomic distance so that the w
packet diminishes to zero smoothly at the grid bounda
This is achieved by introducing a filter function of the for
f (x)51/@11expb(x2xc)#, wherexc is well inside the grid
boundary and is large enough that the bound Morse eig
functions have negligible values atxc . The parameterb is a
large number so thatf (x) is essentially zero at the gri
boundary. The dissociation probability as a function of tim
P(t), can then be computed as the total amount of proba
ity removed from the initial wave packet at timet by the
absorbing boundary. Alternatively, we can project out fro
the wave packet the component of each Morse eigenstate
calculate the dissociation probability@31# according to

P~ t !512(
n

z^c~x,t !ufn~x!& z2, ~12!

wherefn(x) denotes the Morse eigenstate. These two d
nitions of P(t) differ only in the fact that the second defin
tion excludes the projection of the truncated wave pac
onto the continuous part of the spectrum. As time evolv
these two definitions should yield values close to each ot
for the continuum part of the truncated wave packet even
ally escapes to infinity, as evidenced in Fig. 4. The first d
nition is more reasonable and the second forms its up
bound, which assumes the same shape, but with grassy
on top of a smooth curve. Dissociation probabilities are
quantities that we can compare directly with experimen
when it becomes available. In most of the comparison in S
IV, the differences between the end-of-pulse results of th
two quantum definitions are small, and the first definition
P(t) employing the absorbing boundary is used in the plo
We should mention that the sharp rise ofP(t) as seen in Fig.
4~a! occurs only for the realistic dipole case, but not t
linear dipole case. The realistic dipole decays exponenti
with the interatomic separation and allows the chirped la
to achieve only a high level of excitation att52000 with
relatively low dissociation; the system can diffuse to dis
ciation subsequently. Furthermore, at these field streng
u-
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use of fixed frequency excitation at the outset will not pr
duce any significant dissociation. Hence chirping is essen

In a quantum calculation, the time evolution of the lev
populations during a pulse excitation can also be obtain
We assume that the molecules are in a given initial vib
tional eigenstate,n0 . When the pulse arrives, some of th
molecules are excited and some are de-excited by the l
field. This is best described by the time evolution of the le
population distribution,P(n), obtainable from our quantum
simulation by calculating the overlaps of the wave pac
with the ~field-free! Morse eigenstates. We present such
example of population dynamics of NO~with realistic dipole
moment! for n056, B50.05, andV50.9 in Fig. 5. Att50,

FIG. 4. Comparison between two quantum definitions of dis
ciation. The lighter curve denotes results using the absorb
boundary condition~see text!, and the thicker line denotes resul
given by Eq.~12!. The realistic dipole moment function is use
Time evolution of the dissociation probability is plotted for~a!
n056, V50.9, B50.05, np51, tsw52000 and ~b! n0540,
V51.05, B50.0065,np52, tsw52000.
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we haveP(6)51 and P(n)50 for any other statesn. At
t5300.3, as shown in Fig. 5~b!, the population has already
spread out wide with the highest maximum located atn
516. The distribution reaches as high asn530 and even the
n537 level has a tiny, but visible, population. There is als
an appreciable peak at the ground state. As the laser pu
evolves, the highest maximum of the distribution moves t
higher and higher vibrational quantum numbers. For ex
ample, the highest maximum occurs atn521 at t5607.8 in

FIG. 5. Time evolution of vibrational level population of NO.
The population of each vibrational quantum level is plotted again
the quantum number and points are connected by straight lines
guide the eyes. Initially, only then056 level is populated as shown
in ~a!; ~b! level population at 20 optical periods@T52p/V(T)#; ~c!
at 60 T;~d! at 100 T;~e! at 140 T;~f! at 180 T,~g! at 220 T, and~h!
at 260 T. The laser period becomes longer as time evolves due
chirping.
lse
o
-

Fig. 5~c!, moving ton537 at t5931.2 in Fig. 5~d!, and to
n541 at t51285.3 in Fig. 5~e!. At later times, when disso
ciation becomes appreciable this maximum shrinks, leav
a noisy background and a persistent peak at the ground s
This maximum may correspond to the ‘‘bucket’’ in our cla
sical dynamics analysis.

IV. CLASSICAL-QUANTUM COMPARISON

In this section, we discuss the comparison between
classical and quantum results so that we can gain better
derstanding of the classical-quantum correspondence
driven systems@32#, which may assist us in designing pat
ways to control chemical processes using chirped la
pulses@20,33#. The quantum dissociation probabilityP(t) is
computed as discussed in Sec. III. To calculateP(t) classi-
cally, 1000 trajectories@34# are generated with initial angle
u uniformly distributed between 0 and 2p, and the initial
action given by the Einstein-Brillouin-Keller~EBK! quanti-
zation condition@35#

i n0
5~n01 1

2 !\eff , n050,1,2,..., ~13!

where the effective Planck’s constant is given in terms of
Morse parameters by

\eff5\a/A2MD. ~14!

For the NO molecule,\eff50.017 844@36#. After transform-
ing the initial action-angle coordinates into Cartesian coor
nates using Eq.~2!, the Hamilton’s equations correspondin
to the Hamiltonian of Eq.~3! are integrated numerically
P(t) is then given by the fraction of trajectories which b
time t have already attained energies greater than 0 and
teratomic separations greater than 10. In our numerical s
ies, frequency chirping is terminated att5tsw when

V(t)5 1
2 V0 , and the laser frequency is kept constant at t

value for the remainder of the pulse.
We first consider the dependence of the final dissocia

probability,Pd , as a function of initial quantum number,n0 .
In Fig. 6, we present the comparison between the class
and quantumPd as a function ofn0 ~n in Fig. 6! for the
diatomic molecule NO. These figures show an overall agr
ment between the classical and quantum results, but ca
examination reveals some subtleties about the class
quantum correspondence of driven systems. Focusing firs
Fig. 6~a!, where the transition dipole moment of NO is a
proximated by a linear function@37#, we can divide the fig-
ure into two regions, separated by the initial quantum nu
bern0538. In the smalln0 region, there are two pronounce
peaks appearing in both the classical and quantum calc
tions, and they correspond to the two lowest primary re
nances of the Chirikov Hamiltonian given b
i n0

512(V0 /m), m51,2. Thus these resonances clearly
fluence both classical and quantum dynamics. The class
results in this range reveal two additional smaller resonan
which may arise from secondary resonances produ
through the interactions between primary resonances. H
ever, these two minor peaks are absent in the quantum
sults, which exhibit instead a single broad peak.
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1998 57JIAN-MIN YUAN AND WING-KI LIU
FIG. 6. Comparison between the quantum and classical di
ciation probability of NO, as a function of the initial vibrationa
quantum number, at the end of a chirped laser pulse. The l
parameters are set attsw52000, and the pulse duration i
Tmax54000, which corresponds to 11.2 ps for NO. Chirping
turned off att5tsw and the laser frequency is kept fixed atV0/2
until the end of the pulse. Diamonds connected by solid lines de
classical results and crosses connected by dashed lines denote
tum results. ~a! Approximate linear dipole moment used atB
50.003, V050.9, np51. ~b! Realistic dipole moment function
used atB50.0065,V051.05, np51. ~c! Realistic dipole moment
function used atB50.0065,V051.05, np52.
In the largen0 region of Fig. 6~a!, wheren0.38, we see
that the quantum curve still fluctuates with peaks located
higher-order primary resonances on top of a backgro
which increases withn0 . However, the classical curve i
much smoother with smaller peaks of resonance. In this
ergy range the phase space is chaotic; it seems that the
linear resonances influence quantum dynamics more
nouncedly than classical dynamics. Furthermore, in the s
chaos region for whichn0 is between 38 and 46, the quantu
results oscillate around the classical curve in such a way
the classical curve resembles a smoothed version of
quantum results, but aboven0546, the quantum curve
clearly falls below the classical one.

To interpret these observations in the classical-quan
comparison, we present the following two propositions:
the soft-chaos case, cantori~remnants of resonant tori tha
have broken up! existing in the phase space tend to slo
down the quantum flow more than the classical flow. In oth
words, cantori can still trap quantum flow and carry it
buckets to dissociation, while, in comparison, classical fl
tends to leak through so that dissociation takes place in
energy regime mainly through the ordinary diffusive proce
In the hard-chaos regime (n0.46), the fact that the quantum
value falls below the classical curve could be an indicat
of weak quantum localization@38,39#, but more work needs
to be done to confirm it.

The above discussions of the multiphoton dissociat
properties of NO using an approximate linear dipole mom
apply equally well to the results using a more realistic dip
moment function, as shown in Figs. 6~b! and 6~c!. However,
the features of these plots are not as clearly manifest a
Fig. 6~a!. Furthermore, the effects of varying the order
chirping, np , can be observed by comparing the two qua
tum curves of Figs. 6~b! and 6~c!: at this sweeping rate
(tsw52000), quadratic chirping is slightly more effectiv
than linear chirping in promoting dissociation.

We can examine the correspondence between clas
and quantum dynamics even more closely by following
time evolution of dissociation probabilities,P(t), as shown
in Fig. 7. In all cases shown, there is strong similarity in t
shapes of the curves, such as the sudden rise ofP(t) at about
the same time, and multiple thresholds of the curves. T
multithreshold behavior appears to be a common feature
P(t), when the realistic dipole moment of Eq.~10! is used
~see also Fig. 4!. The second threshold occurs at tim
t;tsw52000 when chirping is switched off and the las
pulse assumes a constant frequency at 1/2V0 . To interpret
this phenomenon classically, we refer to Fig. 3~a!, which is
under a similar situation. The system is excited to a h
value of i at t5tsw52000 by the chirped pulse. After chirp
ing is switched off, the system under the action of fix
frequency excitation at 1/2V0 is chaotic. It immediately dif-
fuses to dissociation as shown in the figure, resulting in
sudden rise inP(t). Detailed studies of the classical diss
ciation dynamics under various pulse shape and chirp
conditions will be presented in a forthcoming paper@40#.

The strong similarity between the classical and the qu
tum results is encouraging, for it implies that in most cas
the phase space structures influence both the classical
quantum dynamics alike. Therefore, nonlinear dynamics
be used to provide us with useful physical pictures, and t
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deeper understanding, of the chirped processes invol
More importantly, we can make use of the classical ph
space dynamics to design pathways to control chemical
cesses when a chirped laser pulse is employed and qua
coherence does not play a key role.

FIG. 7. Time evolution of the dissociation probability during
chirped laser pulse wheretsw52000 andTmax54000. Solid lines
denote quantum results and dashed lines denote classical resul~a!
Parameters aren0530, B50.003,V050.9, np52 and linear di-
pole function used.~b! n056, B50.05,V050.9, np52 and real-
istic dipole function used.~c! n0536, B50.0065,V051.05, np

51 and realistic dipole function used.
d.
e
o-
um

V. DISCUSSION

In the present paper we study the effects upon the dis
ciation dynamics achieved by varying the initial vibration
states, the sweeping rate, the order of frequency chirp
field strength and frequency, and the functional form of t
dipole moment function. Our results show that in all cas
investigated the bucket dynamic model is very useful in p
dicting the dynamical behavior of the chirped process
Therefore, it provides an analytical base for the frequen
control of a laser pulse to climb an anharmonic ladder.

We should point out that when the linear approximati
to the dipole moment function is valid, the classical resu
are universal in the sense that there is only one scaled c
for each excitation property for all diatomic molecules. T
quantum results, however, vary from molecule to molecu
depending primarily on the total number of bound stat
Nb , that a Morse oscillator can support. Since the action
bound state motion must satisfyi<1, we obtained from the
EBK quantization condition of Eq. ~13! that
Nb5 int(1/\eff11/2). Thus an effective Planck constant@5#
arises in the Morse oscillator systems that is inversely p
portional toNb . According to Bohr’s correspondence prin
ciple, we expect the classical-quantum correspondenc
improve as the effective Planck constant decreases or a
number of bound states increases. To verify this numerica
we should study several diatomic molecules with differe
Nb . This is one of the main reasons that we chose to st
NO, which has 56 bound Morse states. Much of our ear
work has focused on HF@5#, a popular system used in th
study of infrared multiphoton dissociation with 24 boun
states. However, a systematic comparison between these
systems has yet to be made.

Another reason to study NO is that, as suggested to u
Bergmann, it is a molecule that can be prepared in so
highly excited vibrational states by stimulated Raman ad
batic passage@27#, or by the stimulated emission pumpin
technique of Wodtke and co-workers@26#. Finally, the idea
of ‘‘dynamic autoresonance’’ introduced in the multiphoto
ionization of Rydberg atoms and kicked rotors@41# is very
similar to that of bucket dynamics, except the former invok
further approximations to the Chirikov Hamiltonian. Bo
are useful for the analysis of chirped processes.

ACKNOWLEDGMENTS

We are grateful to Professor Peter Koch, Professor Kl
Bergmann, Professor Paul Corkum, Professor Andre D. B
dauk, Professor S. Chelkowski, and Professor Donna Str
land for stimulating discussions. Part of this work was p
formed when W.K.L. was visiting the Institute of Atomi
and Molecular Sciences, Academia Sinica, Taiwan; we th
Professor S.H. Lin for his continuing interest in our wor
and the NSC of the Republic of China for its support. Th
work was partially supported by a Natural Sciences and
gineering Research Council~NSERC! of Canada Researc
grant to W.K.L., and by the National Science Foundati
through Grant No. PHY-9408879 to J.M.Y.

.



he

of
in

-

ar

on

2000 57JIAN-MIN YUAN AND WING-KI LIU
APPENDIX

In this appendix, we provide a detailed derivation of t
resonant Hamiltonian, Eq.~6!, for the case of a linear dipole
moment functionm(x)5x. Substituting Eq.~2! into the
Hamiltonian of Eq.~3!, and using the Fourier expansion
x(cosu) @25,11,13#, the Hamiltonian can be expressed
action-angle variables as

H~u,i ,t !5H0~ i !2BH G0cosVt2 (
n51

`

Gn@cos~nu2Vt !

1cos~nu1Vt !#J , ~A1!

where H0( i )52 1
2 (12 i )2, G05 ln@(12 i/2)/(12 i )2#, and

Gn5 1/n @ i /(22 i )#n/2. ExpandingH about the resonant ac
tion i m of Eq. ~5! to second order inj 5 i 2 i m and keeping
only the resonant termGmcos(mu2Vt) ~the rotating wave
approximation!, we obtain the Chirikov Hamiltonian

Hr~u, j ,t !52
j 2

2
1

V

m
j 1BGmcos~mu2Vt !, ~A2!

where, consistent with the assumption of adiabatic inv
ance, we have ignored the time dependence ofi m , and the
constant termH0( i m) has been omitted in Eq.~A2!. Follow-
ing Ref. @21#, a transformation to the moving frame with
.

.

-

n
-

cs

o

i-

f5u2
V

m
t, I 5 j 1

V̇

m
t, ~A3!

can be achieved by the generating function

F2~u,I ,t !5S u2
V

m
t D I 2u

V̇

m
t1h~ t !, ~A4!

satisfyingf5]F2(u,I ,t)/]I and I 5]F2(u,I ,t)/]u. If h(t)
in Eq. ~A4! is chosen to satisfy

dh

dt
5

1

m2 S V̇Vt1Vt
d

dt
~V̇t !1

1

2
~V̇t !2D ,

the new Hamiltonian in (f,I ) takes the simple form

Hr8~f,I !5Hr1
]F2

]t
52

I 2

2
1BGmcosmf2

f

m

d

dt
~V̇t !.

~A5!

Making a further canonical transformation toJ5I and
c52f and noting that the Jacobian of this transformati
equals21, the final Hamiltonian in terms of (J,c) is given
by

K~c,J!52Hr8~2c,J!,

which yields Eq.~6!.
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