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Classical and quantum dynamics of chirped pulse dissociation of diatomic molecules
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The dissociation of a diatomic molecule by a chirped infrared laser pulse is modeled by a Morse oscillator
interacting with a classical electric field with a time-dependent frequency. Our previous classical analysis in
terms of bucket dynamics, in which systems within the single-node separdticeleets in phase space are
trapped and undergo convection to highly excited states, is found to be applicable to the more general cases of
nonlinear chirping and using a realistic dipole moment function for the molecule. This route of excitation leads
to a much lower dissociation threshold laser intensity when compared to the chaotic diffusion route for
monochromatic excitation. Time-dependent quantum mechanical calculations of the dissociation probability
based on the split-operator method are performed. It is found that the classical and quantum results agree well,
and the classical resonances appear also in the quantum probabilities. Hence the classical method can be used
to investigate various characteristics of the chirped pulse excitation and dissociation processes.
[S1050-294{@8)03403-9

PACS numbefs): 33.80.Wz, 33.80.Gj, 03.28i,

[. INTRODUCTION eters, such as the field intensity and frequefly The cor-
responding quantum calculation[6] shows similar
The possibility of dissociating molecules by multiphoton sensitivity, but its resolution is limited by the effective
absorption processes using infrar@R) lasers was discov- Planck constant, which is inversely proportional to the num-
ered in the early 19704 ], and a particularly exciting aspect ber of bound states of the Morse oscillator. Furthermore,
of this process is its isotopic selectivif2]. The study of under suitable conditions, the addition of a second laser low-
excitation and dissociation of molecules by IR lasers ha®rs the dissociation threshold intensity considergdlg],
continued to be a subject of interds], but experimental which can be predicted using the Chirikov overlap criterion
results are available only for polyatomic molecules. The genf14]. We also show that in the presence of a laser field,
erally accepted mechanism involves near-resonant excitaollisions between two atoms interacting via a Morse poten-
tions of the pumped modes which are coupled to othetial exhibit fractal scattering pattert].
modes, with the other degrees of freedom serving as a bath Ideally, predictions based on nonlinear resonances should
[4]. Focusing on the excitation and dissociation aspect of &e compared with experiments directly. However, it has been
single pumped mode, one often studies the simplified probshown that, at the laser intensity required for significant mul-
lem of a diatomic molecule modeled by a Morse oscillatortiphoton IR dissociation of diatomic molecules, the ioniza-
and driven by an IR lasdi5,6]. It should be noted that the tion process actually dominat¢$5—17. Thus, no experi-
local mode concept employing the Morse oscillator has alsenental result on monochromatic multiphoton dissociation of
been used extensively in the study of overtone vibrationaheutral diatomic molecules without ionizatigexcept the
spectra of polyatomic molecul¢g]. HCI* ion[18]) has been reported to date. On the other hand,
The driven Morse oscillatd6] has been one of the para- recent quantum calculatiori$5-17,19 showed that by us-
digms in the study of classical-quantum correspondence dhg chirped laser pulses, the threshold field intensity for dis-
nonlinear (microscopi¢ systems[6,8,9] as well. The roles sociation can be reduced to a range below that for ionization,
played by nonlinear resonancgl)] in the dissociation dy- which is achievable in present-day laboratories. A chirped
namics of a Morse oscillator driven by a continuous or anlaser pulse is a pulse whose frequency sweeps adiabatically
impulsive field have been studied in detflll,12. As the  with time. For molecular dissociation, it is optimal to sweep
laser intensity increases, these resonance islands begin tlte frequency downward, since the resonant frequency de-
overlap and annihilate each other. The associated bifurcareases with energy due to anharmonicity. Furthermore,
tions divide the phase space into fragments filled withchirped pulses have been shown theoretically to be effective
smaller resonance islands, periodic orbits, and other invarianin selective inversion of vibrational overtong20].
phase space structures, such as homoclinic or heteroclinic Frequency chirping also occurs in plasma physics, and
aperiodic orbitg[6,11]. As a result, the dynamics becomes particle motion in a wave with time-dependent frequency has
very irregular or chaotic. We have shown that these phasbeen analyzed in terms of bucket dynam[&{,22. Re-
space structures are often organized by the symmetry lines eently, we employed similar ideas to provide a physical pic-
the problen{12], and that the associated dissociation dynam+ure for the classical dynamics of chirped pulse dissociation
ics becomes extremely sensitive to external control paramef a Morse oscillatof23]. For the case of a linearly chirped
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57 CLASSICAL AND QUANTUM DYNAMICS OF CHIRPBED . .. 1993

pulse and a molecule with a linear dipole moment, we havdond distance. The angular frequency is measured in terms
shown that the system is well described by a time-dependemtf the harmonic frequency of the Morse oscillator,
approximate resonant Hamiltonian in a moving frame. Thewy,=a2D/M, whereM is the reduced mass of the mol-

system can become trapped in buckets in phase space, agdule. The driving amplitudB is related to the electric field
carried upwards to highly excited regions by convection.E of the laser byB=q.E/(2aD) with g, the effective
This route of excitation is very different from the chaotic charge of the molecule and a square pulse is assumed for the
diffusion mechanism in fixed-frequency excitation, and re-calculations reported below. The driving frequency is as-
quires a much lower threshold intensity for dissociation.  sumed to be of the form

In this paper, we wish to study extensively the applicabil-
ity of “bucket dynamics” to the cases df) nonlinear chirp- 1/ t\"
ing and(ii) the use of a realistic dipole moment function for 1 2 (_) } S

Tsw,

the molecule NO24]. We have also carried out quantum
mechanical wave packet calculations to compare with ouBoth the linear chirping case with,=1 and the nonlinear
classical dynamics results. The organization of this paper ighirping case withn,=2 will be studied in detail. We as-
as follows: in Sec. I, we summarize the classical analysis ogume that)(t) is a slowly varying function of time, so that
the chirped pulse excitation of a Morse oscillator within theadiabatic invariance allows us to define instantaneous reso-
Chirikov resonant approximation, which gives rise to thenance frequencies and actions of the Hamiltonian of (By.
concept of “bucket dynamics.” We will demonstrate by nu- satisfying
merical calculation that this concept applies to the general
case of nonlinear chirping and to the molecule NO with a Qt)=mo(i,) or iy(t)=1-Q(t)/m, (5)
realistic dipole moment. In Sec. lll, we describe the method
used in our quantum calculation, and we compare our quarwherem=1.2, ..
tum and classical results in Sec. IV. The paper is concluded We have shown in Ref23] that for the case of a linear

with a discussion in Sec. V. dipole moment functionu(x)=x, molecules near thenth
resonance zone with action closei fft) can be described in
Il. BUCKET DYNAMICS a “moving frame” by the resonant Hamiltonian

We first study the classical dynamics of chirped pulse 2

dissociation. The diatomic molecule is represented by a K(‘!"‘]):E“LV(‘/’)'
Morse oscillator, with the Hamiltonian in dimensionless
units given by[(11,15,23 6 d .
V(¢)=—BGmcosm¢—Ea(Qt), (6)

Ho(x ):1 241 T _2ex (1)
olX,p 2p z(e S ) where

Here energy is measured in terms dd 2with D being the

dissociation energy of the diatomic molecule, and length is W= 9,[_
measured from the equilibrium bond length in terms of the m
range of the Morse oscillator &/ In terms of the action-

angle variables i(6), the Morse Hamiltonian takes the andGm_is the coefficient of comé in the Foqrier expansion
simple formH,(i)=—%(1—i)2. The Cartesian and action- of x(4,i) of Eq.(2) evaluated at the stable fixed point of the

: system. The detailed derivation of E@) will be given in
angle variables are related by1,13,23 the Appendix. For linear chirping with n,=1,

0
0, J=|—|m+at, (7

1—J1—(1-i)’°cos@ O=-0Q4/(27g,) is a constant, and the resonant Hamil-
=In (1-1)2 ; tonian of Eq.(6) becomes time-independent when the time
dependence of the slowly varying(t) is ignored. We show
— in Fig. 1 the potentiaV () and the phase space trajectories
p= 2N @ T Vlwsm&y (2)  for K(,J) with parameters satisfying the existence condi-
1—1—w?cos 6 tion
wherew=w(i)=dHy/di=1—1i is the frequency of unper- |Q|/(szGm)<1, @)

turbed motion. This shows that as the energy of the molecule
increases with the action the unperturbed frequency de- sq thatv(y) can have local maxima and minima. The fixed
creases. When=1, Hy(i)=0 and the molecule dissociates. points ofK are given byd=0 andz//'C=[2I 7+ 8]/m, where

The molecule is coupled to the chirped laser pulse by the, . _, - _ -
electric dipole interaction. Thus the total time-dependenl‘s_ sin H|O(MPBGy)]}, 1=0,£ 1,22, .. . ;while the saddle

Hamiltonian is points are given byJ=0, d/'s=[(2l+1)7-r+ S8]/m. Thus,
single-node separatrices are formed which produce trapped
H(x,p,t)=Hg(x,p) — Bu(x)cog Q(t)t]. 3 regions called “buckets.” Transforming back from the mov-

ing frame to the original frame, we observe that trajectories
In Eqg. (3), u(x) is the reduced dipole moment function of inside the buckets will oscillate about the centers whose ac-
the molecule normalized tdx(0)/dx=1 at the equilibrium tions increase in time according 3o=0 or
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and dissociate wheiy~ 1. Trajectories in the untrapped re-
gion will not dissociate; as shown in Ré21], when they are 08 ]
far from the separatrix, the averaged action is given by =] <D <> <]
d/dt(J)=Q/m or d/dt({i)=0, so that(i)=const. As they 06k .. A
approach the separatrix, they slide over to the other side ¢ — <
the resonance zone and move away, eventually attaining =
lower value of(i). Such behavior has indeed been observec 0.4 -
from trajectories generated by the exact Hamiltonian of Eq
(3) [23]. Furthermore, from their associated Poincaraps
in the moving frame, we have demonstrated in R28] that 02 ]
the approximate Hamiltonian of E¢6) does provide an ac- <
curate description of the system for the case of linear chirp o aa
ingny,=1 and a linear dipole moment functiqu(x) =x. We 00 02 04 06 08 L 12 14 16 18 2
hence arrived at the following physical picture: dissociation ' o/m

occurs when the system is trapped by the bucket in phase
space, and transported convectively upwards in action at f:ixact trajectories for a chirped laser pulse with parameters set at

rate proportional to the chirping rate. B=0.003, 7,,= 2000, 0,=0.9, andn,=2. The initial conditions

We now wish to show that the concept of bucket dynam-Of the trajectories are (i(0),6(0))=(0.10,1.61r),

ics applies also to the cases of nonlinear chirping, and ”SinQ(O),e(O))=(0.55,0.3]17), (i(0),6(0))=(0.70,0.733 33). The

a realistic dipole moment function(x). We study first the  jashed lines denote the trajectories of the centers of the buckets
case of nonlinear chirping,=2 with a linear dipole func- i5(t) given by Eq.(9) for m=1 2, and 3.(b) Poincafesurfaces of

tion u(x)=x. In Figs. 2a) apd 2b), we plot the dissociating  section for a chirped laser pulse with parameters and initial condi-
trajectories and their Poincaneaps by numerically integrat- tions given in(a); (c) the Poincaresurfaces of section for a fixed-
ing Hamilton’s equations fof2y=0.9. As beforeg[23], the  frequency pulse, with parameters and initial conditions give@in
Poincaremaps of the dissociating trajectories are obtained byexcept than,=0.

FIG. 2. Excitation using a linear dipole moment functida)
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recording the values of the action-angle variables at titpes
satisfyingQ (t,)t,=2n, n=0,1,2,.., until the system dis-
sociates. Note that at,, mod(#,27) =27 mod(,27). In
Fig. 2(a), the trajectories oscillate about their corresponding
centers given by Eq9), and the phase portraits of Fig(2
again correspond to those f#t(y,J), and resemble the
Poincaremaps of Fig. 2) for fixed frequency excitation.

Next we use a realistic dipole moment for the molecule =
NO. Recent experiments have demonstrated that this mo
ecule can be prepared in a specific vibrational excited stat
[26—-28, and thus is a prime candidate for testing our theory.
The dipole moment function is given 24,23

uw(x)=rye Y? y=(a'la)x+a, (10)

wherea’=1.29 A", a=0.1058,b=0.6017, andk is cho- 0 001000 1500 2000 200 3000
sen to satisfydu(0)/dx=1. In Fig. 3a), we show the ac-
tions of dissociating trajectories along with the time devel- 1 ; : ' , , . . . T
opment of their corresponding centeggt). As before, the
trajectories oscillate about their centers until they reach
highly excited state, showing that they are trapped by buck 0.8 - 7
ets. In Fig. 3b), we plot the Poincarenaps in the moving
frame for the dissociating trajectories, and compare with the
Poincaremaps for fixed frequency excitation shown in Fig. & 96
3(c). Again, the phase portraits resemble thos& 6§, J). It
is interesting to note that the Poincarap of the trajectory
with initial conditionsi(0)=0.437 194(0)=0 contains is-
lands which also appear in the fixed frequency excitatior
case. Thus, the idea of trajectories trapped by the bucke
appears to be applicable even though the approximat
Hamiltonian of Eq.(6), which cannot give islands in the
phase portrait, has become less accurate. 0 L L L L L L L L L
We can observe from Figs.(@ and 3a) that once the '
systems have been carried up convectively to highly excite:
states, they begin to depart from the cenigyg). In such 1 T T T T T r T T T
excited states, the laser field is strong enough to bring th
system into the chaotic regime. Then our resonance mod:
breaks down, but the system continues to diffuse to dissocie 0.8 7
tion. This scenario can be illustrated by comparing the life-
time distribution of the trajectories in phase space for chirpec > e < <
excitation with that for fixed frequency excitation. We ob- 06 T
serve that the nondissociating resonance zone during fixe < eyt N
frequency excitation becomes dissociative when acted upc '
by a chirped pulse, as expected from bucket dynamics cor
sideration. In the highly excited are#&with i close to 1},
however, the two distributions are quite similar, indicating 02l i
that chaotic diffusion is responsible for dissociation.
Hence, the idea of bucket dynamics applies equally wel

J(ta) + im(0)

04 f ‘ ‘ 4

0 b0 ]

to the cases of nonlinear chirping and to molecules witr L 0'9 0'4 0'6 0'8 e 1'8 5
realistic dipole moment functions, even though it was base: S e T T

on the approximate Hamiltonian of E@®) derived for linear o ) o )
chirping and a linear dipole moment. FIG. 3. Excitation using a realistic dipole moment function of

NO, Eq.(10). (a) Exact trajectories for a chirped laser pulse with
parameters set at,,= 2000, ,=1.05, andh,=2. The initial con-
ll. QUANTUM-MECHANICAL STUDIES ditions for the lower trajectory aré(0),6(0))=(0.437 19,1.1&)
. . _ with B=0.01, while those for the upper trajectory are
To find out how the classical predictions compare to thei(O),e(O))z(o.esl 32,0.072) with B=0.0065. The dashed lines

quantum ones, we have carried out quantum-mechanical ¢ lenote the trajectories of the centers of the buckg§ given by

Cu_lations fqr the molecule NO using the FEit'FleCk Fourier-Eq.(g) for m=2 and 3.(b) Poincaresurface of section for a chirped
grid (or SP|It.-0.p.eI’at(.)) met_hod[2_9]. A_ssumlr_lg that the NO laser pulse with parameters given(a); (c) the Poincaresurface of
molecule is initially in a given vibrational eigenstate (X)  section for a fixed-frequency pulse with parameters and initial con-

of the Morse oscillator of Eq(1), we propagate the wave ditions given in(a) except than,=0.
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packeti(x,t) using a time-evolution operator whose Hamil-
tonian is given by Eq(3). The time-evolution operator is
computed as a product of a series of small time-step evolu
tion operators, which is further approximated by a split form.
In this split form a potential step is propagated in betweer
two half-step kinetic steps given by P(t)

0.6

efiHAt/h — efiKAt/2ﬁefiU(x,t)At/ﬁefiKAt/2h + O((At)S),

(11) 0.4
whereK is the kinetic operator ant(x,t) is the potential
operator, which contains both the Morse potential and the
field interaction term. Due to the symmetric splitting of the
kinetic step, the error involved in the factorization approxi-
mation is then of the order ofAt)® for each step. In prac-
tice, the kinetic step is evaluated in the momentum space an
the potential step evaluated in the coordinate space, respe
tively. The transformations between the coordinate and mo 0.0
mentum spaces are carried out using the fast Fourier tran:
form routines. Now a wave packet on its way to dissociation
will spread out and go beyond the grid boundary. Thus it is
necessary to introduce an absorbing boundary condi@6h

at a reasonably large interatomic distance so that the wav
packet diminishes to zero smoothly at the grid boundary
This is achieved by introducing a filter function of the form
f(x)=1[1+expB(x—xy)], wherex. is well inside the grid
boundary and is large enough that the bound Morse eiger 0.4
functions have negligible values ®t. The parameteB is a

large number so thaf(x) is essentially zero at the grid
boundary. The dissociation probability as a function of time, P(t)
P(t), can then be computed as the total amount of probabil
ity removed from the initial wave packet at tinteby the
absorbing boundary. Alternatively, we can project out from
the wave packet the component of each Morse eigenstate al
calculate the dissociation probabilif$1] according to

0.21

0 7000 2000 3000 4000

0.6 T T T T T T

0.2r

P()=1-2 Kg(x.H)|$a(0)F, (12 00V

n 0 1000 2000 3000 4000

t

where ¢,(x) denotes the Morse eigenstate. These two defi-
nitions of P(t) differ only in the fact that the second defini-  FiG. 4. Comparison between two quantum definitions of disso-
tion excludes the projection of the truncated wave packegiation. The lighter curve denotes results using the absorbing
onto the continuous part of the spectrum. As time evolvespoundary conditionsee text, and the thicker line denotes results
these two definitions should yield values close to each othegiven by Eq.(12). The realistic dipole moment function is used.
for the continuum part of the truncated wave packet eventuTime evolution of the dissociation probability is plotted féa)
ally escapes to infinity, as evidenced in Fig. 4. The first defin,=6, 2=0.9, B=0.05, n,=1, 7,,=2000 and (b) ny=40,
nition is more reasonable and the second forms its uppe®=1.05, B=0.0065,n,=2, 7¢,=2000.
bound, which assumes the same shape, but with grassy noise
on top of a smooth curve. Dissociation probabilities are theuse of fixed frequency excitation at the outset will not pro-
guantities that we can compare directly with experimentsduce any significant dissociation. Hence chirping is essential.
when it becomes available. In most of the comparison in Sec. In a quantum calculation, the time evolution of the level
IV, the differences between the end-of-pulse results of thespopulations during a pulse excitation can also be obtained.
two quantum definitions are small, and the first definition ofWe assume that the molecules are in a given initial vibra-
P(t) employing the absorbing boundary is used in the plotstional eigenstaten,. When the pulse arrives, some of the
We should mention that the sharp riseR{t) as seen in Fig. molecules are excited and some are de-excited by the laser
4(a) occurs only for the realistic dipole case, but not thefield. This is best described by the time evolution of the level
linear dipole case. The realistic dipole decays exponentiallypopulation distributionP(n), obtainable from our quantum
with the interatomic separation and allows the chirped lasesimulation by calculating the overlaps of the wave packet
to achieve only a high level of excitation &t=2000 with  with the (field-free Morse eigenstates. We present such an
relatively low dissociation; the system can diffuse to disso-example of population dynamics of N@ith realistic dipole
ciation subsequently. Furthermore, at these field strengthspomenj for ng=6, B=0.05, and2=0.9 in Fig. 5. Att=0,
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Fig. 5(c), moving ton=37 att=931.2 in Fig. %d), and to
n=41 att=1285.3 in Fig. %). At later times, when disso-
ciation becomes appreciable this maximum shrinks, leaving
a noisy background and a persistent peak at the ground state.
This maximum may correspond to the “bucket” in our clas-
sical dynamics analysis.

IV. CLASSICAL-QUANTUM COMPARISON

In this section, we discuss the comparison between the
classical and quantum results so that we can gain better un-
derstanding of the classical-quantum correspondence in
driven system$32], which may assist us in designing path-
ways to control chemical processes using chirped laser
pulses20,33. The quantum dissociation probabiliB(t) is
computed as discussed in Sec. lll. To calculafe) classi-
cally, 1000 trajectorie§34] are generated with initial angles
6 uniformly distributed between 0 ands2 and the initial
action given by the Einstein-Brillouin-KelldfEBK) quanti-
zation condition 35]

in,=(No+ e, No=0,1,2,.., (13
where the effective Planck’s constant is given in terms of the
Morse parameters by

fio—h a/ \2MD.

For the NO moleculef +=0.017 844[36]. After transform-

ing the initial action-angle coordinates into Cartesian coordi-
nates using Eq2), the Hamilton’s equations corresponding
to the Hamiltonian of Eq(3) are integrated numerically.
P(t) is then given by the fraction of trajectories which by
time t have already attained energies greater than 0 and in-
teratomic separations greater than 10. In our numerical stud-
ies, frequency chirping is terminated dt 7y, when

Q(t)=39,, and the laser frequency is kept constant at this
value for the remainder of the pulse.

We first consider the dependence of the final dissociation
probability, P4, as a function of initial quantum numberg.
In Fig. 6, we present the comparison between the classical
and quantumPy as a function ofny (n in Fig. 6) for the

(14)

FIG. 5. Time evolution of vibrational level population of NO. diatomic molecule NO. These figures show an overall agree-

The population of each vibrational quantum level is plotted againsin€nt between the classical and quantum results, but careful
the quantum number and points are connected by straight lines @xamination reveals some subtleties about the classical-
guide the eyes. Initially, only the,=6 level is populated as shown guantum correspondence of driven systems. Focusing first on
in (a); (b) level population at 20 optical periofi¥=2x/Q(T)]; (¢0  Fig. 6@, where the transition dipole moment of NO is ap-
at 60 T;(d) at 100 T;(e) at 140 T;(f) at 180 T,(g) at 220 T, andh) proximated by a linear functiof87], we can divide the fig-
at 260 T. The laser period becomes longer as time evolves due tare into two regions, separated by the initial quantum num-
chirping. berny=238. In the smalh, region, there are two pronounced
peaks appearing in both the classical and quantum calcula-
we haveP(6)=1 andP(n)=0 for any other states. At tions, and they correspond to the two lowest primary reso-
t=300.3, as shown in Fig.(B), the population has already hances of the Chirikov Hamiltonian given by
spread out wide with the highest maximum locatednat in,=1—(£o/m), m=1,2. Thus these resonances clearly in-
=16. The distribution reaches as highras 30 and even the fluence both classical and quantum dynamics. The classical
n= 37 level has a tiny, but visible, population. There is alsoresults in this range reveal two additional smaller resonances,
an appreciable peak at the ground state. As the laser pulsghich may arise from secondary resonances produced
evolves, the highest maximum of the distribution moves tathrough the interactions between primary resonances. How-
higher and higher vibrational quantum numbers. For exever, these two minor peaks are absent in the quantum re-
ample, the highest maximum occursrat 21 att=607.8 in  sults, which exhibit instead a single broad peak.
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In the largeng region of Fig. &a), whereny>38, we see
that the quantum curve still fluctuates with peaks located at
higher-order primary resonances on top of a background
. which increases witm,. However, the classical curve is
much smoother with smaller peaks of resonance. In this en-
ergy range the phase space is chaotic; it seems that the non-
linear resonances influence quantum dynamics more pro-
nouncedly than classical dynamics. Furthermore, in the soft-
chaos region for whichg is between 38 and 46, the quantum
results oscillate around the classical curve in such a way that
the classical curve resembles a smoothed version of the
- quantum results, but above,=46, the quantum curve
clearly falls below the classical one.

To interpret these observations in the classical-quantum
5 comparison, we present the following two propositions: In
the soft-chaos case, cantgremnants of resonant tori that
have broken upexisting in the phase space tend to slow
down the quantum flow more than the classical flow. In other
words, cantori can still trap quantum flow and carry it in
buckets to dissociation, while, in comparison, classical flow
tends to leak through so that dissociation takes place in this
energy regime mainly through the ordinary diffusive process.
In the hard-chaos regima¢>46), the fact that the quantum
value falls below the classical curve could be an indication
of weak quantum localizatiof88,39, but more work needs
. to be done to confirm it.

The above discussions of the multiphoton dissociation
properties of NO using an approximate linear dipole moment
apply equally well to the results using a more realistic dipole
moment function, as shown in Figgbp and Gc). However,
the features of these plots are not as clearly manifest as in
60 Fig. 6@). Furthermore, the effects of varying the order of
chirping, n,, can be observed by comparing the two quan-
tum curves of Figs. ) and Gc): at this sweeping rate
(7sw=2000), quadratic chirping is slightly more effective
than linear chirping in promoting dissociation.

. We can examine the correspondence between classical
and quantum dynamics even more closely by following the
time evolution of dissociation probabilitieB(t), as shown

in Fig. 7. In all cases shown, there is strong similarity in the
shapes of the curves, such as the sudden riggfat about

the same time, and multiple thresholds of the curves. This
multithreshold behavior appears to be a common feature of
P(t), when the realistic dipole moment of E{.0) is used

i (see also Fig. ¥ The second threshold occurs at time
t~ 75,= 2000 when chirping is switched off and the laser
pulse assumes a constant frequency af)}/2To interpret

% this phenomenon classically, we refer to Figa)3 which is

n under a similar situation. The system is excited to a high

. : . value ofi att=7,=2000 by the chirped pulse. After chirp-
_FIG. 6. Comparison between the quantum and classical dissqr, \ %o "s\itched off, the system under the action of fixed
ciation probability of NO, as a function of the initial vibrational

quantum number, at the end of a chirped laser pulse. The las%;equency'excngtl.on at U2, is chaotlc. .It Immedlate.ly d.lf_
parameters are set at,,=2000, and the pulse duration is 'USES to dissociation as shown in the figure, resulting in the

T,.,=4000, which corresponds to 11.2 ps for NO. Chirping is sudden rise irP(t). Detailed studies of the classical disso-
turned off att=r,, and the laser frequency is kept fixed@y/2 ~ ciation dynamics under various pulse shape and chirping
until the end of the pulse. Diamonds connected by solid lines denotgonditions will t?e 'pre.sented na forthcom!ng papéo].
classical results and crosses connected by dashed lines denote quan-The strong similarity between the classical and the quan-

tum results.(a) Approximate linear dipole moment used Bt  tum results is encouraging, for it implies that in most cases
=0.003, 2,=0.9, n,=1. (b) Realistic dipole moment function the phase space structures influence both the classical and

used atB=0.0065,02,=1.05, n,=1. (c) Realistic dipole moment quantum dynamics alike. Therefore, nonlinear dynamics can
function used aB=0.0065,02=1.05, n,=2. be used to provide us with useful physical pictures, and thus
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FIG. 7. Time evolution of the dissociation probability during a
chirped laser pulse where,,=2000 andT,,~=4000. Solid lines
denote quantum results and dashed lines denote classical régults.
Parameters ara,=30, B=0.003,(,=0.9, n,=2 and linear di-
pole function used(b) ny=6, B=0.05,0,=0.9, n,=2 and real-
istic dipole function used(c) ny=36, B=0.0065,,=1.05, n,
=1 and realistic dipole function used.

V. DISCUSSION

In the present paper we study the effects upon the disso-
ciation dynamics achieved by varying the initial vibrational
states, the sweeping rate, the order of frequency chirping,
field strength and frequency, and the functional form of the
dipole moment function. Our results show that in all cases
investigated the bucket dynamic model is very useful in pre-
dicting the dynamical behavior of the chirped processes.
Therefore, it provides an analytical base for the frequency
control of a laser pulse to climb an anharmonic ladder.

We should point out that when the linear approximation
to the dipole moment function is valid, the classical results
are universal in the sense that there is only one scaled curve
for each excitation property for all diatomic molecules. The
quantum results, however, vary from molecule to molecule,
depending primarily on the total number of bound states,
N, , that a Morse oscillator can support. Since the action for
bound state motion must satisify< 1, we obtained from the
EBK quantization condition of Eqg. (13) that
N, =int(1/h.4+1/2). Thus an effective Planck constdsi
arises in the Morse oscillator systems that is inversely pro-
portional toN,. According to Bohr's correspondence prin-
ciple, we expect the classical-quantum correspondence to
improve as the effective Planck constant decreases or as the
number of bound states increases. To verify this numerically,
we should study several diatomic molecules with different
N, . This is one of the main reasons that we chose to study
NO, which has 56 bound Morse states. Much of our earlier
work has focused on HF5], a popular system used in the
study of infrared multiphoton dissociation with 24 bound
states. However, a systematic comparison between these two
systems has yet to be made.

Another reason to study NO is that, as suggested to us by
Bergmann, it is a molecule that can be prepared in some
highly excited vibrational states by stimulated Raman adia-
batic passag27], or by the stimulated emission pumping
technique of Wodtke and co-workel26]. Finally, the idea
of “dynamic autoresonance” introduced in the multiphoton
ionization of Rydberg atoms and kicked rot¢rl] is very
similar to that of bucket dynamics, except the former invokes
further approximations to the Chirikov Hamiltonian. Both
are useful for the analysis of chirped processes.

ACKNOWLEDGMENTS

We are grateful to Professor Peter Koch, Professor Klass
Bergmann, Professor Paul Corkum, Professor Andre D. Ban-
dauk, Professor S. Chelkowski, and Professor Donna Strick-
land for stimulating discussions. Part of this work was per-
formed when W.K.L. was visiting the Institute of Atomic
and Molecular Sciences, Academia Sinica, Taiwan; we thank
Professor S.H. Lin for his continuing interest in our work,

deeper understanding, of the chirped processes involvednd the NSC of the Republic of China for its support. This
More importantly, we can make use of the classical phasevork was partially supported by a Natural Sciences and En-
space dynamics to design pathways to control chemical pragineering Research CoundiNSERQ of Canada Research

cesses when a chirped laser pulse is employed and quanturant to W.K.L., and by the National Science Foundation

coherence does not play a key role.

through Grant No. PHY-9408879 to J.M.Y.



2000

APPENDIX

In this appendix, we provide a detailed derivation of the

resonant Hamiltonian, E@6), for the case of a linear dipole
moment functionu(x)=x. Substituting Eq.(2) into the

Hamiltonian of Eq.(3), and using the Fourier expansion of
x(cos#) [25,11,13, the Hamiltonian can be expressed in

action-angle variables as

H(0,i,t)= Ho(i)—B| Gocos Ot — Zl G,[cogn6—Qt)

+cos(n0+Qt)]], (A1)

where Ho(i)=—3(1-i)?, Go=In[(1—i/2)/(1-1)?], and
G,= 1in[i/(2—i)]™?. ExpandingH about the resonant ac-
tion i, of Eq. (5) to second order in=i—i,, and keeping
only the resonant ternG.,cosné—Qt) (the rotating wave
approximation, we obtain the Chirikov Hamiltonian

i2

Q
— J—+ Ej +BG,cogmo—Qt),

Hr(ﬁ,j,t)= 2

(A2)
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_o- 2 =] o A3

can be achieved by the generating function
F It)= 0 I Q h Ad
A010=| 6= —t]I—0t+h(t),  (Ad)

satisfyingp=9F,(6,1,t)/91 andl=dF,(6,1,t)/d0. If h(t)
in Eqg. (A4) is chosen to satisfy
dh 1 Q0t+0 d O 1 a2
qtom t+ t&( t)+§( t)°],
the new Hamiltonian in ¢,1) takes the simple form

" BG 940
-+ mcosm¢—5&( t).

ot 2
(A5)

JF,

H;(¢1I):Hr+

Making a further canonical transformation tb=1 and
= — ¢ and noting that the Jacobian of this transformation
equals—1, the final Hamiltonian in terms ofJ() is given

b
where, consistent with the assumption of adiabatic invari- y

ance, we have ignored the time dependence,ofand the
constant ternHy(i,,) has been omitted in EgA2). Follow-
ing Ref.[21], a transformation to the moving frame with

K(¢,d)=—H/(=¢,J),
which yields Eq.(6).
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