
7131

PHYSICAL REVIEW A MARCH 1998VOLUME 57, NUMBER 3
Quantum-state control in optical lattices
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We study the means of preparing and coherently manipulating atomic wave packets in optical lattices, with
particular emphasis on alkali-metal atoms in the far-detuned limit. We derive a general, basis-independent
expression for the lattice potential operator, and show that its off-diagonal elements can be tailored to couple
the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a
trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman
cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation
of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend them-
selves particularly well to reservoir engineering via well-controlled fluctuations in the potential, making the
atom-lattice system attractive for the study of decoherence and the connection between classical and quantum
physics.@S1050-2947~98!00803-8#

PACS number~s!: 32.80.Pj, 32.80.Qk, 73.40.Gk, 03.65.2w
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I. INTRODUCTION

One of the great challenges of modern science is to
velop tools to prepare, manipulate, and measure
quantum-mechanical state of a physical system. Example
systems in which quantum control is sought or has b
accomplished are found in a wide range of fields. In phys
chemistry, laser pulses are designed to direct chemical r
tions along a desired pathway@1#. In quantum optics, non
classical states of a single mode of the electromagnetic
have been prepared@2# and accurately measured@3#, and
several groups now pursue quantum-state engineering
single mode of a high-Q cavity @4#. In atomic physics, it has
proved possible to control electronic orbital motion, and p
duce both quasiclassical and highly nonclassical Rydb
wave packets@5#. In ion traps, the exceptionally long-live
vibrational and hyperfine coherences, which originally
spired work on atomic clocks, have proven equally valua
in work on quantum-state manipulation. In a series of rec
experiments, Wineland and co-workers have demonstr
state preparation@6#, state control@7#, and even quantum
‘‘logic’’ gates @8# using trapped ions. Proposals for quantu
logic have been made also in cavity QED@9#. This work
constitutes an important step towards building a ‘‘quant
computer,’’ in which algorithms are implemented as unita
transformations on a many-body quantum system@10#.

Of particular fundamental interest in the context of coh
ent control are macroscopic superposition states, or ‘‘Sch¨-
dinger cats.’’ The concept of incoherent evolution in su
systems stemming from interaction with the environm
forms the cornerstone of our understanding of the connec
between classical and quantum physics@11#. For many years
a paradigm for quantum coherence has been the observ
of tunneling in macroscopic and mesoscopic systems@12#.
The delocalized states resulting from tunneling over mac
scopic distances are extremely susceptible to decoher
due to interaction with the classical environment, and it
mains a key challenge to design systems for which th
571050-2947/98/57~3!/1972~15!/$15.00
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deleterious effects are minimized. Equally, it is of great i
portance to perform controlled studies of the effect of t
environment on macroscopic and mesoscopic quan
states, so as to improve our understanding of the limits
apply when we attempt to evolve them in a quantum coh
ent fashion.

In this article we explore a promising system in which
study quantum-state preparation, coherent control, and
decoherence of macroscopic superposition states—neutra
oms trapped in an ‘‘optical lattice.’’ Optical lattices are p
riodic potentials formed by the ac Stark shift~light shift!
seen by atoms when they interact with a set of interfer
laser beams@13#. In a suitable lattice formed by near
resonance light, laser cooling will quickly accumulate ato
in the few lowest bound states~Wannier states! of the indi-
vidual optical potential wells, as demonstrated by resona
fluorescence and pump-probe spectroscopy@14#. Atoms pre-
pared in this fashion can be transferred afterwards to a la
formed by light detuned far from any atomic resonanc
@15#, where they can be tightly bound in a nearly dissipatio
free potential. Far-off-resonance optical lattices have b
applied to the study of quantum chaos@16#, and to the study
of Bloch oscillations and Wannier-Stark ladders@17#. When
used to trap atoms in the tight-binding regime, far-o
resonance lattices offer a realistic prospect of preparing p
quantum states, either by state selection or resolved-side
Raman cooling@18#.

A wide range of properties characterizing an optical l
tice potential can be adjusted through laser beam geom
polarization, intensity, and frequency, and through the ad
tion of static electric and magnetic fields. The richness a
flexibility inherent to the multilevel atom-lattice interactio
permits us to explore Hamiltonian evolution beyond the st
dard coupling of a spin-1

2 system to a harmonic oscillator~the
Jaynes-Cummings model!, which has been studied exten
sively in cavity QED@2# and ion traps@19#. Finite dissipation
occurs in the lattice due to spontaneous photon scatter
but can be suppressed to an arbitrary degree in the
1972 © 1998 The American Physical Society
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57 1973QUANTUM-STATE CONTROL IN OPTICAL LATTICES
detuned limit, as long as sufficient laser power is available
provide the desired potential. One can then design operat
that evolve the atomic wave packet in a coherent fash
Furthermore, once the intrinsic incoherent processes h
been suppressed, dissipation may be reengineered into
system in the form of well characterized fluctuations of t
lattice potentials, allowing for a detailed study of the dec
herence process. In either context, an important advantag
the atom-lattice system is the relative simplicity of the u
derlying interactions, which permits both the coherent a
dissipative aspects of the evolution to be incorporated i
complete, yet tractableab initio quantum theory.

To explore the evolution of macroscopic quantum coh
ence in a noisy environment, we specifically consider
tunneling of atoms in optical double-well potentials. T
closely related process of tunneling from bound states to
continuum has been observed in an accelerated far
resonance standing wave@20#, and found to show a signatur
of nonexponential decay@21#. There is a wealth of literature
on the role of dissipation in tunneling@22#, stimulated by the
seminal paper by Calderia and Leggett@23# in their work
relating to tunneling phenomena in Josephson junctions@24#.
Since then, their ideas have been applied to a variety
systems in physics and chemistry@25#. As an example of
relevance to our work here, quantum tunneling of ato
plays an important role in the dielectric properties of alka
halide crystals and the acoustic properties of amorphous
ids @26#. In the following we show how double potentia
wells can be designed through the combination of light s
and static magnetic dipole interactions. In this system we
observe tunneling of theentire atom through the optical
wavelength-sized barrier separating the potential minim
and use this coupling to prepare Schro¨dinger cat states. From
an experimental perspective we note that our double-w
potential has a built-in polarization gradient, so that tunn
ing is accompanied by a precession of the atom’s ang
momentum. This provides a label for left or right positions
the double well, and allows real-time observation of coh
ent tunneling oscillations as an oscillation in th
magnetization—something that is typically not possible in
condensed-matter system. A variety of similarly delocaliz
states have been produced in atom interferometers@27#, in
ion traps@7#, and as a result of velocity-selective cohere
population trapping@28#.

The remainder of this article is organized as follows.
Sec. II we discuss how to design the three basic ingredi
of coherent control in the atom-lattice system: potentials,
herent evolution, and state preparation. We focus largely
the alkali-metal atoms, which have become the stand
choice in experimental work with laser-cooled atoms. S
tion II A presents a general formalism that can be used
derive atomic potentials in the far-off-resonance limit, cas
a form that gives a clear physical picture. Section II B e
plores coherent evolution operators based on coupling
tween magnetic sublevels, and Sec. II C discusses how
coupling can be used to implement resolved-sideband Ra
cooling and state preparation. In Sec. III we discuss h
these ingredients may be applied to the study of quan
tunneling in double potential wells, and the creation
Schrödinger cat states. Finally, Sec. IV summarizes our
sults.
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II. COHERENT CONTROL AND STATE PREPARATION

The use of lasers to coherently control the internal state
atoms is a well established technique, many of whose m
ods were borrowed from nuclear spin resonance: Rabi fl
ping, rotation of the Bloch vector viau pulses, adiabatic
rapid passage, etc. These same techniques are readily ap
to the manipulation of trapped ions@29# and cold neutral
atoms@30#, where the center-of-mass motion is included
the overall quantum state. One technique, which has b
successfully applied to quantum-state engineering w
trapped ions, is to use a pair of laser fields to induce Ram
transitions between the vibrational manifolds associated w
a pair of hyperfine ground states. A similar approach can
principle be used for atoms trapped in optical lattices if R
man coupling is introduced through the addition of separ
coupling fields@31#. Note, however, that optical potentia
are crucially different from ion traps in one respect: the tra
ping potential depends strongly on the atomic internal st
This complexity will prevent a straightforward transfer
ion trap ‘‘technology,’’ but at the same time it serves as
example of the greater richness of the atom-lattice syst
which we can exploit as we develop new tools for coher
control. In this section we explore how appropriate Ram
coupling terms can be designed into the optical lattice pot
tial itself, and subsequently be used as building blocks
coherent evolution operators. Our main goal here is
present the physical concepts involved in this design proc
something that is most clearly done in the context of sim
one-dimensional~1D! and 2D lattice configurations. In thes
1D and 2D lattices we will apply the terms ‘‘quantum state
and ‘‘coherent evolution’’ to the internal state and quantiz
motion in the lattice directions only; motion in the unboun
direction~s! is separable, and can be ignored.

A. Designing atomic potentials

A variety of potentials for cold atoms can be designed
their interaction with the electromagnetic field, including o
tical fields ~light shifts!, static magnetic fields~Zeeman
shifts!, and static electric fields~Stark shifts!. We here spe-
cialize to the case of low-intensity monochromatic ligh
EL(x,t)5Re@EL(x)e2 ivLt#, and static magnetic fields, s
that the potential for atoms in the ground state reads

Û~x!52EL* ~x!•â•EL~x!2m̂•B, ~1!

whereâ52(ed̂ged̂eg /\Dge is the atomic polarizability ten-
sor operator~in the far-off-resonance limit!, with Dge the
detuning from theug&→ue& resonance, and whered̂eg is the

electric dipole operator between these states;m̂5\gF̂ is the
magnetic dipole operator, withg the gyromagnetic ratio and
F̂ the total angular momentum operator.

To illustrate some of the features of the potential th
can be easily controlled, consider an atom driven on
uJ51/2&→uJ853/2& transition by a one-dimensional optica
lattice, produced by a pair of red-detuned, counterpropa
ing plane waves with amplitudeE1 and angleu between
their linear polarizations. We will refer to this configuratio
as ‘‘1D lin-angle-lin’’; in the special caseu5p/2 it reduces
to the familiar 1D lin'lin lattice. Near resonance laser coo
ing in lattice configurations with arbitraryu has been studied
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1974 57IVAN H. DEUTSCH AND POUL S. JESSEN
by Finkelstein, Berman, and Guo@32# and by Taiebet al.
@33#. The optical field can be written as a superposition
opposite helicity standing waves,

EL~z!5&E1$2e2 iu/2cos~kLz1u/2!e11eiu/2cos~kLz

2u/2!e2%, ~2!

for a convenient choice of relative phase between the bea
The potential, given by Eq.~1! is then

Û~z!52
2U1

3
$2@11cosu cos~2kLz!# Î

1@sinu sin~2kLz!#ŝz%2
\

2
gB•ŝ, ~3!

where U1 is the light shift produced by a single beam
amplitudeE1 , driving a transition with unit Clebsch-Gorda
coefficient ~henceforth the ‘‘single beam’’ light shift!. The
operators$ Î ,ŝ i% are the identity and Pauli spin operators
the ground-state manifold. Note that a magnetic field alo
the laser axis~z direction! does not break the rotational sym
metry of the potential; transverse magnetic fields break
symmetry and thus establish coherences between the
netic sublevels.

Adiabatic potentials can now be found by diagonalizi
Û(z). Figure 1 shows the adiabatic bipotentials associa
with different lattice configurations. In the absence of
transverseB field, Û(z) is diagonal in the eigenstates ofJz .
Varying u changes the peak-peak modulation depthUp of
the potential, and the distanceDz between theum511/2&
and um521/2& potential wells@Fig. 1~b!#,

FIG. 1. Lin-angle-lin one-dimensional lattices.~a! Schematic of
the laser geometry with counterpropagating beams and pola
tions at a relative angleu. ~b! Optical potentials for theum51

1
2 &

~solid! andum52
1
2 & ~dotted! states, in units of the maximum ligh

shift 2U1 ~U1 is the single beam light shift!. ~c! Addition of a
magnetic field along the laser direction Zeeman shifts the wells.~d!
Addition of a transverse magnetic field mixes together the two
tentials. The resulting anticrossings lead to a lattice of double w
potentials.
f

s.

g

is
ag-

d

Up5
4

3
U1A3 cos2u11, kLDz5tan21S tanu

2 D , ~4!

while changingBz shifts the minima of these wells@Fig.
1~c!#. By adding a transverse magnetic field we break
degeneracy of the bipotential at positions of linearly pol
ized light @Fig. 1~d!#. Thus, by choosing the appropria
angle between the laser polarizations and an appropriaB
field, we can design a lattice of double-well potentials w
adjustable barrier and asymmetry. In Sec. III we will discu
the use of this potential to study quantum tunneling and m
roscopic superposition states.

Though the uJ51/2&→uJ853/2& system is useful for
gaining physical intuition, the above results must be gen
alized to atoms with more complicated internal structu
Here we concentrate on the alkali-metal atoms, and part
larly Cs. For atoms optically pumped into a given hyperfi
ground state, and having a multiplet of hyperfine excit
states,

â52(
F8

PFd̂PF8d̂PF

\DF,F8
, ~5!

where PF5(muF,m&^F,mu, PF85(m8uF8,m8&^F8,m8u are
projection operators onto the ground and excited hyper
levels, respectively. As shown in Appendix A, the comp
nents of the polarizability tensor in the spherical bas
âq8,q5eq8

*
•â•eq , can be written as

âq8,q5ã(
F8

DFmax,F
max8

DF,F8
f F8F(

mF

cF,m1q2q8
F8,m1q cF,m

F8,m1q

3uF,m1q2q8&^F,mu. ~6!

In this expressionf F8F are the relative oscillator strengths fo
decayuF8&→uF&, DF,F8 is the detuning of the laser from thi
resonance,uFmax5J1I& and uFmax8 5J81I& are the ‘‘stretched

states,’’ andcF,m
F8,m8 are the Clebsch-Gordan coefficients f

the uF,m&→uF8,m8& dipole transition. The characteristic po
larizability scalar for theuJ&→uJ8& transition is defined as

ã[
u^J8idiJ&u2

\DFmax,F
max8

, ~7!

where ^J8idiJ& is the dipole operator reduced matrix el
ment. For this more complex system, an optical lattice w
polarization gradients will generally establish coherences
tween the ground-state magnetic sublevels via stimulated
man transitions. These coherences~in conjunction with the
externally imposed magnetic field! can be used to control th
state of the atomic wave packet as discussed below.

Because we are interested in coherent evolution of
atomic state, the lattice should be detuned as far from re
nance as possible. It is therefore important to examine
nature of the potential in the limit that the detuning is mu
larger than the hyperfine splittings. In that case Eq.~5! re-
duces to

â'PFâ~J→J8!PF , ~8!
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57 1975QUANTUM-STATE CONTROL IN OPTICAL LATTICES
where â(J→J8) is the polarizability tensor of theuJ&
→uJ8& transition. Thus, for the alkali-metal atoms, the ve
far-off-resonance optical lattice has properties quite sim
to the familiaruJ51/2&→uJ853/2& transition. The operato
â(J→J8) is a rank-2 tensor that can be written as a sum
irreducible tensors of rank 0, 1, and 2. Because it acts o
two-dimensional Hilbert space, in which any operator can
written as a superposition of scalar and vector opera
$ Î ,ŝ i%, it follows that the irreducible rank-2 component mu
vanish exactly. In Appendix B we show that

â i j ~J→J8!5ãS 2

3
d i j Î 2

i

3
« i jk ŝkD . ~9!

Let us now express the lattice field asEL(x)
5Re@E«WL(x)e2 ivLt#, where «W L(x) is the local polarization
~not necessarily unit norm!, and where we have factored o
some conveniently chosen amplitudeE. For concreteness
we will assume that the field is formed by a set of eq
amplitude beams, in which case it is most convenient to f
tor out the single-beam amplitudeE1 . The optical potential
can then be written in the compact form

Û~x!5UJ~x! Î 1Beff~x!•ŝ,

UJ52
2

3
U1u«W L~x!u2, Beff~x!5

i

3
U1@«W L* ~x!3«W L~x!#,

~10!

where U15ãE1
2/4 is the single beam light shift. In othe

words, the light-shift potential is equivalent to a shift, pr
portional to the local intensity of the field and independent
the hyperfine state of the atom, and an effective static m
netic field whose magnitude and direction depend on
local ellipticity of the laser polarization@34#. Using Lande´’s
projection theorem, for the ‘‘stretched’’ ground hyperfin
level with F5I 1J, Eq. ~10! yields

ÛF~x!5UJ~x! Î 1Beff~x!•
F̂

F
. ~11!

This expression is useful for interpreting the physical nat
of the potential, and also very convenient for calculatio
because it is basis independent.

From Eqs.~10! and ~11! we can make the following ob
servations. In the limit of infinite detuning, coherenc
uF,m&↔uF,m62& go to zero. If the light field is everywher
linearly polarized, the effective magnetic field vanishes, a
the light shift is independent of the magnetic substate of
atom, ÛF(x)5UJ(x) Î . For fields with arbitrary ellipticity,
polarization in thex-y plane gives rise to effective longitu
dinal B fields; the combination ofp-polarized ands-
polarized light yields an effective transverse field. Unlike
true, externally applied, static magnetic field, the effect
magnetic field can vary spatially with a period on the ord
of the optical wavelength. This dependence will be import
in designing potentials that generate coherences betw
given atomic vibrational states.
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B. Designing coherent evolution operators

Consider a typical 1D lin'lin optical lattice for Cs atoms,
formed by light detuned 2000G to the red of the 6S1/2(F
54)→6P3/2(F855) resonance, with a single-beam lig
shift U15150ER . The band structure is easily calculate
@35#, and is shown in Fig. 2. Without further perturbatio
tunneling between neighboring wells is negligible, i.e., t
system is in the tight-binding regime, and we can consi
each lattice site as an independent potential well. This c
clusion holds also for lattices of similar depth in higher d
mensions. In this limit an appropriate description is given
the set of Wannier states that constitute an orthonormal b
within each well; Wannier states associated with differe
lattice sites are also orthogonal. Coherences between m
netic sublevels can arise due to Raman coupling terms in
lattice potential, Eq.~1!, and the Wannier states in gener
become spinors@36#. Most optical lattices are designed t
have pure helicity at the points of maximum light shift,
which case the most deeply bound states have neglig
admixture ofm states. In that case the Wannier spinor
approximately a local harmonic oscillator state for the giv
diabatic potential,un,m&[uFn

(m)&uF,m&. A notable excep-
tion occurs when a pair of states in the vibrational manifo
$un,m&%, $un8,m8&% are nearly degenerate, and coherent m
ing via stimulated Raman transitions becomes resonantly
hanced, as shown by Courtois@37#. By applying a longitudi-
nal magnetic field one can use the Zeeman shift to t
different levels into and out of Raman resonance at will, a

FIG. 2. Cs band structure.~a! Adiabatic potentials for Cs atom
in a 1D lin'lin lattice detuned 2000G to the red of the 6S1/2(F
54)↔6P3/2(F855) resonance, with single beam light shiftU1

5150ER . ~b! The energy bands in the first Brillouin zone. Belo
the crossing points of the diabatic potentials the bands are clear
the tight-binding regime~band energy width much less than 0.1ER!.
Above, there are hybrid free-bound bands due to stimulated Ra
resonance between states withDm562. These anticrossings van
ish in the limit of infinite detuning.



to
hi

ng

e

g
ng
.
n

de
ift

al
in
th

u

s
u-

ne

the
e

te

for
e
as-
eful

ag-

g-

ck-
the
ld
ect

III
ple
-lin
an

he
nd
-

ic

c

w
ti

1976 57IVAN H. DEUTSCH AND POUL S. JESSEN
design various coherent evolution operators~p pulses, adia-
batic rapid passage, etc.! in a manner closely analogous
the methods applied in ion traps. Figure 3 illustrates t
procedure for Cs in a 1D lin'lin far-off-resonance lattice. In
the following we examine the types of Raman coupli
available in some representative lattice geometries.

In general the electromagnetic field can induce coh
ences of the formum8&↔um1Dm&, Dm561,2, through
stimulated Raman transitions of the typep↔s6 and
s1↔s2 . For alkali-metal atoms at large but finite detunin
both types of coupling occur, though in the infinite detuni
limit only coherencesDm561 persist as shown by Eq
~11!. To establish the important scaling laws we first co
sider theDm562 coherences in a 1D lin'lin lattice. In a
two-level picture, the strength of the Raman coupling is
termined by the off-diagonal matrix element of the light sh
operator,

UR'U1b2,4̂ n851,m52usin~2kLz!un50,m54&. ~12!

The parameterb2,4 determines the coupling of the intern
degrees of freedom, whereas the matrix element determ
the effective Franck-Condon overlap. To lowest order in
Lamb-Dicke parameter,h5kLz05AER /\vosc, wherez0 is
the ground-state variance, and ignoring the difference in c

FIG. 3. ~a! First three energy bands of a far-off resonance latt
near as1 site of the lattice in the tight-binding regime~diabatic
potentials superimposed!. ~b! Potential with an external magneti
field bringing un51,m54& and un50,m52& into Raman reso-
nance.~c! Energy levels as a function of magnetic field energy~g is
the gyromagnetic ratio!. In the absence of coupling the states follo
the dashed lines. Raman coupling adiabatically transfers popula
~black dot! from un51,m54& to un50,m52& as the field is slowly
swept past the avoided crossing.
s

r-

-

-

es
e

r-

vature of them54,2 wells, the coupling matrix element i
UR'2U1b2,4h. The full detuning dependence of the co
pling constant can be obtained from Eq.~6!,

b2,45(
F8

f 4F8S D4,5

D4,F
D c4,2

F8,3c4,4
F8,3

5
A7

360 S 16221
D4,5

D4,51d5,4
15

D4,5

D4,51d5,3
D , ~13!

wheredF
18 ,F

28
is the splitting between excited-state hyperfi

levels F18 and F28 . According to Lande´’s interval rule, the
splitting between hyperfine levelsF8 and F821 is propor-
tional to F8, so d5,4'5d and d5,3'9d, whered'10G for
Cs. Expanding Eq.~13! to lowest order inG/D4,5 gives the
asymptotic expression

b2,4'4.4
G

D4,5
. ~14!

Coherent manipulation of the atomic state requires that
time scale\/UR for coherent evolution be shorter than th
lifetime of the Raman coherence between statesun8,m52&
and un,m54&, which is dominated by the decay of the sta
un8,m52& due to optical pumping, and thus of ordergs

21

~the inverse photon scattering rate!. We can then define a
figure of merit for coherent manipulation,

k[
UR

\gs
'hb2,4

D4,5

G
'4.4h, ~15!

which should be much larger than unity. We see that
Raman couplingDm562, the figure of merit is of the sam
order as the Lamb-Dicke parameter, which is small by
sumption. Thus these coherences will generally not be us
for full coherent control.

One is left with the possibility to induce coherencesDm
561 through the addition of an external transverse m
netic field or via stimulatedp↔s6 Raman transitions. The
coupling matrix element is then

Um,m615
^$n8%,m61u@Bx

tot~x!7 iBy
tot~x!#F̂6u$n%,m&

2F
,

~16!

whereBtot is the sum of the external and the effective ma
netic field given by Eq.~10!. Clearly, strong coupling of the
internal degrees of freedom is guaranteed, but the Fran
Condon overlap depends on the local spatial symmetry of
total ‘‘magnetic field.’’ An external transverse magnetic fie
creates a spatially uniform coupling, which does not conn
states of different parity,um,n&, um61,n61&, located at a
given lattice site, but is useful in other contexts. In Sec.
we employ external transverse magnetic fields to cou
states localized at different lattices sites of a 1D lin-angle
lattice, thereby inducing quantum tunneling. In contrast to
external field, the effective magnetic field provided by t
lattice light field can be designed to provide both even a
odd parity coupling. In the infinite detuning limit the off
diagonal element of the light shift operator, Eq.~11!, be-
comes

e

on
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Um,m6152
U1

3&

AF~F11!2m~m61!

F
^$n8%u@«p* ~x!«s6

~x!1«s7
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where«s1(x), «s2(x), and«p(x) are the normalized elec
tric field amplitudes of the lattices6 andp-polarized com-
ponents, and$n% are the vibrational quantum numbers. Fro
Eqs.~10! and ~17! one can deduce a few general aspects
the lattice spatial symmetries. The Raman coupling te
will have nodes where the light is either purelys6 or p
polarized. Generally the representation of the light-shift o
erator in terms of diabatic potentials and off-diagonal Ram
couplings depends on the choice of quantization axis.
exception is at positions where the light is linearly polarize
At these positions the effective magnetic field vanishes, i
spective of the quantization axis, and thus all the diab
potentials are degenerate and the Raman coupling is z
These features are illustrated in the examples below.

The 1D lin-angle-lin class of optical lattices includes
configurations that can be formed by a set of counterpro
gating plane waves. Thus the light fields of purely on
dimensional lattices can always be decomposed ins6 com-
ponents, and it follows that one cannot introducep↔s6

type Raman coupling. We can, however, misalign sligh
the direction of propagation of one on the beams, so th
small component of polarization lies along the axis of t
standing wave. For an arbitrary pair of cross polarized las
~not necessarily counterpropagating!, the optical potential in
the very far-off-resonance limit is

Û~x!52
4

3
U1Î 2

2

3F
U1sin@~k12k2!•x#~e13e2!•F̂.

~18!

Choosing the quantization axis alongk12k2 , Eq. ~18! im-
plies that both the diabatic and off-diagonal potentials h
the same spatial dependence, and thus the off-diagonal
pling is always an even parity operator with respect to w
center.

We have much greater flexibility to design the coupli
potential in higher-dimensional lattices. Consider, for e
ample, a 2D lattice formed by three coplanar laser beam
equal intensity and linearly polarized in that plane as sho
in Fig. 4. Grynberget al. used this geometry~with lasers
near atomic resonance! to cool and trap Cs atoms in th
Lamb-Dicke regime@38#. A slight rotation of the linear po-
larization of one beam out of thex-y plane introduces ap
component, and thus stimulatedp↔s6 couplings. In con-
trast to the 1D geometry of Eq.~18!, the 2D configuration
permits us to vary the phase of thep component indepen
dently from the phase of thes components, and thus allow
us to optimize the desired couplings. Consider ap-polarized
component with amplitudeEp and a relative phase exp(iw)
to the lattice beam propagating in the2y direction ~in gen-
eral this would correspond to some elliptical polarization
that beam!. For a choice of relative phase between the bea
that puts the maximum of thes1-polarized light at the ori-
gin, the lattice electric field is
f
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EL~x!5
E1e2 iky

&
@2e1$112eiK yycos~Kxx!%

1e2$112eiK yy cos~Kxx22u!%#

1epEpe2 iky, ~19!

whereKx5k sinu, Ky5k(11cosu). The effective field gov-
erning the couplingum5F&↔um5F21& is

Bx
eff1 iBy

eff52
2U1

3

Ep

E1
$2 sinu sin~Kxx2u!cos~Kyy2w!

12i cosu cos~Kxx2u!sin~Kyy2w!2 i sinw%,

~20!

whereU1 is the single beam light shift. We can now use Eq
~16! and ~20! to calculate the matrix elementUm5F,m85F21
of the Raman coupling. Figures 4~b! and 4~c! show cuts of
the diabatic potentials and coupling matrix elements alo
thex andy directions foru5p/3, and reveal that the Rama
coupling has both even and odd terms along bothx and y,
whose relative magnitude and phase can be contro
through the ellipticity of the beam polarization.

FIG. 4. ~a! Three-beam 2D lattice in thex-y plane, with beam 1
bisecting the angle 2u between the other two. Beam 1 has a co
ponent of its polarization in thez direction, with a phasew with
respect to the in-plane component. The optical potentials witu
5p/3 for Cs are shown in units of the single beam light shiftU1

along thex direction ~b! and y direction ~c!. The relative phase
between the beams putss1 light at the origin.~i! Diabatic poten-
tials for m564 andm563. The real~solid! and imaginary~dot-
ted! parts of the Raman couplingum54&↔um53& are shown for
w50 ~ii ! and w5p/2 ~iii !. Both of these phases give rise to od
and even parity coupling operators.
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Expanding around the minimum of the potential well
the origin and making the harmonic approximation for t
vibrational levels, we find to first order in the small param
eterskx, ky,

UF,F21'2
U1

A2F

Ep

E1
^$nx8 ,ny8%,F21u@2eiw1 1

2 e2 iwkx

1 i ~eiw2 1
2 e2 iw!ky#u$nx ,ny%,F&. ~21!

Maximal coupling of the odd parity states results forw
5p/2, in which case the coupling matrix elements for vibr
tional change of one quantum alongx andy are

UF,F21
~x! ' iU RAnx, UF,F21

~y! '3URAny,

UR5
U1

2A2F

Ep

E1
h, ~22!

where the Lamb-Dicke parameter is

h5S ER

\vosc
D 1/2

5S 2

15

ER

U1
D 1/4

. ~23!

Computing the figure of merit for coherent manipulation w
now find

k[
UR

\gs
'

0.047

AF

Ep

E1

uDu
G S ER

U1
D 1/4

. ~24!

If we consider, for example, Cs (F54) in a lattice with
U1525ER , D52104G, andEp50.5E1 , we then obtaink
'53. Even more favorable figures of merit can be obtain
at larger detunings, provided that sufficient laser powe
available.

C. State preparation

We are generally interested in the coherent evolution
quantum systems initially prepared in a pure state. The t
‘‘pure state’’ is used here to describe an ensemble of ide
cally prepared atoms~of order 106! localized atdifferent lat-
tice sites; in this case no single quantum state is macrosc
cally occupied. The preparation of a pure state can
accomplished by state selection, by dissipative cooling of
system to its ground state, or by a combination thereof. S
selection techniques demonstrated in optical lattices incl
gravitational @39# and inertial @20# acceleration in shallow
lattices supporting only one bound state, and in work w
metastable noble-gas atoms, selective quenching of vi
tionally excited states@40#. These methods are most useful
a substantial fraction of the atoms initially occupy the d
sired quantum state. In a 1D lin'lin lattice this situation is
readily achieved by near-resonance Sisyphus cooling. In
case of Cs atoms it has been found that a longitudinal m
netic field allows the preparation of up to 28% of the to
population in the vibrational ground state associated wit
single stretched state@41#. The addition of a transverse mag
netic field serves to enhance this population due to the
duced coherences between the magnetic sublevels; nume
simulations have shown that the proper combination of tra
t
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verse and longitudinal magnetic fields should allow t
population to be increased to 45%. As demonstrated in@15#,
atoms prepared in this fashion can be transferred to a far-
resonance lattice, with close to unit efficiency and no sign
cant increase in vibrational excitation.

In contrast to the one-dimensional case, the vibratio
degeneracy occurring in two and especially three dimens
prevents one from obtaining useful ground-state populati
solely with Sisyphus cooling in a near-resonance lattice
that case, preparation of a pure state will require additio
cooling after the atoms have been transferred into a far-
resonance lattice. Because we are primarily interested in
preparation of well localized Wannier states, the most e
cient method is resolved-sideband cooling. In the Lam
Dicke regime this technique in principle allows for the r
moval of one quantum of vibrational energy every fe
oscillation periods. Thus the rate of vibrational excitati
must be well below the frequency of oscillation,dn̄/dt
!vosc. In an optical lattice, heating is dominated by phot
scattering; in the harmonic approximation, the conditi
becomes vosc@h2gs , or equivalently (\vosc/ER)2

@\gs /ER . This requirement is easily met by several orde
of magnitude, even in lattices detuned by only a few tho
sand linewidths@15#.

In the following we explore a scheme for resolve
sideband Raman cooling that is based on transitions f
statesun, m5F& in the vibrational manifold of the stretche
state, to statesun21, m5F2Dm& in the vibrational mani-
fold of another magnetic sublevel, as illustrated in Fig. 5.
discussed in Sec. II B, in a 1D lin-angle-lin lattice, od
parity coupling operators are available only with theDm
52 type transitions, while 2D and 3D geometries allo
Dm51,2 depending on the details of the lattice geome
Relaxation back to the statesun21, m5F& is provided by
optical pumping, resulting in a net loss of nearly one qua
tum of vibrational excitation per cooling cycle. It is impo
tant to note here that the required Raman coupling streng
much less for sideband cooling than for fully coherent pop
lation transfer, because the process that destroys Rama
herence, i.e., optical pumpingun,m5F2Dm&→un,m5F&,
is also the process that accomplishes sideband cooling
that case it is only necessary that the time scale for pop
tion transfer,\/uURu, be much shorter than the time scale f
vibrational excitation, i.e.,

uURu
\dn̄/dt

5k8@1. ~25!

To leading order inh, the rate of vibrational excitation is
dn̄/dt5gs(Dkz0)2, where (\Dk)2 is the mean-squared mo
mentum transfer in a photon scattering event, obtained
averaging the momentum components along the lattice di
tions over the dipole emission pattern. Using Eqs.~12! and
~14! for the Raman coupling strength, we can then comp
the sideband cooling figure of meritk8 in different types of
lattices. First we consider a simple 1D lin'lin lattice with
Dm52, for which we find

k8'9.1S U1

ER
D 1/4

. ~26!
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57 1979QUANTUM-STATE CONTROL IN OPTICAL LATTICES
For a large, but still realistic depthU15500ER we obtain
k8'43. The figure of merit is further improved in the 2
lattice configuration of Fig. 4. As discussed in Sec. II B, t
polarization of one lattice beam is made elliptical in order
generate a strong Raman coupling, as given by the ma
element, Eq.~22!. This yields the following figures of meri
for the x andy directions:

kx8'0.17
Ep

E1

uDu
G S U1

ER
D 1/4

, ky853kx8 . ~27!

For realistic parametersU1545ER , D524000G, and
Ep /E150.5 we obtainkx8'880 andky8'2.63103.

To explore the prospects for resolved-sideband Ram
cooling in more detail, we consider a simplified numeric
model for cooling of Cs atoms in a 1D lin'lin far-off-
resonance lattice. We restrict the system to the two vib
tional manifolds $un, m54&% and $un8, m52&%, approxi-
mated by harmonic oscillators with eigenfrequencies\v4

54AU1ER/3 and\v252A2U1ER/3 @Fig. 5~b!#. To accom-
plish one step of the cooling, a longitudinal magnetic fieldBz
is used to shift a particular pair of statesn2n851 into de-
generacy; in the terminology of sideband cooling this cor
sponds to tuning the Raman coupling to the red sideba
Rabi oscillations between a pair of states are always o

FIG. 5. ~a! Schematic of resolved-sideband Raman cooling.
appropriate Raman coupling term~s1↔s2 in this example! is
designed into the optical potential, and connects the vibratio
manifolds associated with a pair of magnetic sublevels~uF54, m
54&, uF54, m52& states of Cs in this example!. A pair of s1

polarized beams are tuned to theuF54&→uF854& ~pumper! and
uF53&→uF854& ~repumper! transitions, and provide relaxation t
the uF54,m54& state.~b! Illustration of the significant couplings
and relaxations in a simple model of Raman sideband cooling
the resolved-sideband limit the Raman couplingĤn connects pairs
of vibrational states,un,m54& andun21,m52&. Each pair is con-
nected to neighboring states in the vibrational manifolds by opt
pumping. To leading order inh2 only the indicated pumping rate
g,g8 are significant. Due to different oscillation frequencies in t
two potentials only one pair of states can be exactly degenerate
given time.
ix

n
l

-

-
d.
r-

damped,UR /\gs<1, and thus the largest rate of populatio
transfer is achieved by continuous resonant excitation.
cause the coupled potential wells have different oscillat
frequencies, resonant excitation on the red Raman sideb
can be achieved only for one pair of levels,un21,m52&,
un,m54&, at a time. We ignore any accidental degenerac
that may occur simultaneously between higher-lying sta
since these are not significantly populated for the vibratio
temperatures of interest.

As the Raman coupling is small compared to the osci
tion frequency~resolved-sideband limit!, it can be treated as
a perturbation and we can separate our system into a seri
n two-level systems$un21, m52&,un, m54&%, which are
connected only through optical pumping, as shown in F
5~b!. The master equation is then

ṙ i j 52
i

\
@Ĥ,r̂ # i j 1

1

2 (
k5$ i , j %

(
l

@d i j g l→kr l l 2gk→ lrkk#,

~28!

where the Hamiltonian consists of 232 blocks

Ĥn5H \v2~n2 1
2 !12\gBz URAn

UR* An \v4~n1 1
2 !14\gBz

J ,

~29!

and the sum overl includes only the nonzero relaxation rat
indicated on Fig. 5~b!.

Optical pumpingun, m52&→un8, m54& is in principle
provided by the lattice light field, but efficient cooling re
quires the addition of a separates1-polarized pumper beam
resonant with theF54→F854 transition. This helps con
fine population to them52,4 manifolds. More importantly,
them54 sublevel is dark with respect to this pumper bea
and we can achieve a pumping rategp@gs without extra
heating that would result from pumping on theF54↔F8
55 transition. The price of this arrangement is occasio
optical pumping to theF53 hyperfine manifold. Optical
pumping toF53 is problematic, because the optical pote
tials associated with the two hyperfine ground-state ma
folds are offset byl/4, so an atom pumped intoF53 finds
itself on the top of a potential hill. Unwanted heating can
avoided if the atom is repumped back into theF54 mani-
fold on a time scale short compared to the time in which
wave packet disperses, of order;1/vosc. This is easily ac-
complished by adding also as1-polarized repumper tuned t
the F53→F854 transition, which repumps atoms at a ra
;G@vosc. Solving the rate equations for optical pumpin
we find that an average of;2 pumper and;1 repumper
photons are scattered before the atom is returned to
stretched state. The three-step optical pumping process tr
fers an average mean-squared momentum alongẑ of
21\2k2/5, which is three times the average momentum tra
fer in a single-step process. To first order in the small para
eterh2 and ignoring the small effect of curvature differen
between the wells, the pumping rates from Fig. 5~b! then
become

gn→n'gp@12 21
5 h2n#, gn→n8Þn5gp

21
5 h2max~n,n8!.

~30!
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1980 57IVAN H. DEUTSCH AND POUL S. JESSEN
For photons scattered from the lattice light field, the me
squared momentum transfer alongẑ is 11\2k2/15, yielding

gn→n8 5gs~12 11
15 h2n!,

gn→n8Þn
8 5gs

11
15 h2max~n,n8!, ~31!

for the remaining rates from Fig. 5~b!.
Sideband cooling can now be simulated by integrating

master equation, Eq.~28!, with initial vibrational populations
pn , corresponding to a thermal state with Boltzmann fac
qB5exp(2\vosc/kBT)5pn11 /pn . As an example, Fig. 6
shows the evolution of a system with single beam light s
U15500ER , detuningD522000G, initial Boltzmann fac-
tor qB50.5, and a sequence of cooling steps designed
transfer populationun55,m54&→•••→un50,m54&. After
these five steps substantial cooling has been achieved,
the ground-state population has increased from the in
p050.5 to p0'0.86. Also, the task of producing a com
pletely pure ground state by state selection has been m

FIG. 6. ~a! Vibrational populations during a five-step coolin
process with Cs in a 1D lin'lin lattice, for U15500ER , D5
22000G, and initial Boltzmann factorqB50.5. At the beginning of
the first cooling step we shift statesun55,m54&, un54,m52& into
degeneracy, at the beginning of the second step we shift s
un54,m54&, un53,m52& into degeneracy, etc., until populatio
has been transferred to the vibrational ground stateun50,m54&.
~b! Vibrational populations forqB50.5, after a one-step coolin
process~statesun51,m54& and un50,m52& shifted into degen-
eracy for a timet5200h/ER!, and after the five-step cooling pro
cess of~a!. Substantial accumulation of population in the grou
state results from both one-step and five-step cooling. The mo
gain when extending the cooling process from one to five st
indicates less-than-optimal Raman coupling strength as discuss
the text.
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simplified, as high selectivity against the closest st
un51,m54& is no longer so critical.

The imperfect population transfer evident in Fig. 6 ind
cates below optimal Raman coupling strength, so that po
lation escapes to highly excited states during several coo
steps. The problem becomes more severe as we try to a
mulate population from higher-lying vibrational states; in t
above example adding the last three steps to the coo
sequence resulted in a ground-state population gain of o
;4%. Significant improvement in the cooling efficiency ca
be achieved with a modest increase of the figure of meritk8,
but this would require valuesU1@500ER that are probably
not realistic. Limits onU1 are imposed by the need to sta
far detuned from the excited hyperfine manifold, and by
available laser power. Though a large figure of merit may
difficult to achieve in 1D lattices, it is readily available in 2
and 3D geometries. Sideband cooling in higher-dimensio
lattices will of course require a much more elaborate
quence of cooling steps, in part due to vibrational deg
eracy, and in part due to the existence of noncoupled st
within each of the degenerate vibrational manifolds@42#. A
more detailed theoretical model of cooling in the 2D latti
geometry of Fig. 4 will be the subject of future work.

III. QUANTUM TUNNELING AND SCHRO ¨ DINGER CATS

We have seen in Sec. II the flexibility with which one ca
prepare and coherently manipulate an atomic wave pack
an optical lattice. In this section we discuss how these te
niques may be used to study atomic tunneling in an opt
double-well potential, introduced in Eq.~3!, when coupled to
a noisy ~but well characterized! environment. Though no
macroscopic in the sense of a condensed matter system
on order Avagadro’s number of particles, the separation
tween the wells of a given pair is on the order of the opti
wavelength, which may be considered macroscopic w
compared to the atom dimension. As such, an atom tha
coherently distributed on two sides of the double wells m
be considered to be a ‘‘Schro¨dinger cat.’’

To establish a clear physical picture, and elucidate
important scaling laws and order of magnitude of the effec
we first return to the simplifieduJ51/2&→uJ853/2& atom in
a 1D lin-angle-lin lattice with an external transverse ma
netic field applied alongx. The resulting potential operator i
given by Eq.~3!. For a sufficiently deep potential, the vibra
tional energy-level spacing is large compared to the Larm
frequencyV'5gBx , in which case the magnetically in
duced coupling can be treated as a perturbation on the
harmonic wells for the two spin states$um56&%,

Û~z!5 1
2 Mvosc

2 @~z2Dz/2!2u1&^1u1~z1Dz/2!2u2&^2u#

1\V'~ u1&^2u1u1&^2u!, ~32!

where\vosc52AERUp, and whereUp andDz are given in
Eq. ~4!. The ground-state splitting arising from the couplin
between the neighboring wells is approximatelydE
'\V'^0Lu0R&, where u0L& and u0R& are the ground-state
wave function in the left and right potential wells havin
spin u1& and u2&, respectively. In the harmonic approxima
tion ~i.e., Gaussian ground-state wave functions!,
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57 1981QUANTUM-STATE CONTROL IN OPTICAL LATTICES
dE'\V'e2~kDz!2/8h2
5\V'e2~1/2!Mvosc

2
~Dz/2!2/~1/2!\vosc.

~33!

The right-hand side shows that the ground-state split
scales exponentially with the ratio of the potential ene
where the diabatic potentials cross~a measure of the barrie
height!, to the ground-state energy in the unperturbed we
For a typical experiment we might chooseDz'l/6, in which
case the separation between the double minima at one la
site is half the distance to the neighboring site; in this c
we can neglect tunneling between neighboring sites. Cho
ing U1'50ER this gives dE'0.1\VL . For Cs the Bohr
magneton ismB'680ER /G, and a moderate transverse ma
netic field of 7 mG results in a ground-state splitting of ord
one recoil energy.

An important practical consideration is inhomogeneo
broadening of the tunneling resonance. Broadening res
from changes in the optical well depth across the lattice v
ume, arising from variations in the laser intensity. Equat
~33! implies a variation in ground-state energy splitting:

D~dE!

dE
'

~kLDz!2

16h2

DU1

U1
. ~34!

For the parameters above this impliesD(dE)/dE
'DU1 /U1 , i.e., even a relatively large variation of 10%
U1 across the lattice volume will allow observation of te
coherent oscillations between the left and right poten
wells.

The physical interpretation of these coherent oscillatio
is quite subtle, even for the seemingly simple potential of
~32!. A particle is said totunnelbetween two wells if its total
energy is less than the potential energy within the bar
separating them. In that case the motion between the we
classically forbidden. Such a definition of tunneling is pr
g
y
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cise for a scalar particle, but for a nonseparable poten
depending on the particle’s internal degrees of freedom,
issue of classical versus nonclassical motion is more c
plex, since the internal state may or may not adiabatica
follow the center-of-mass motion. We will defer the form
lation of a general definition of tunneling in this system to
future publication; here we adopt instead the following u
ambiguous, sufficient condition. The adiabatic potential

Uadiab~z!5 1
2 Mvosc

2 @z21~ 1
2 Dz!2#

2A~Mvosc
2 zDz!21~\V'!2 ~35!

is the lowest eigenvalue ofÛ(z) and therefore the lowes
possible energy allowed at a given position. Energy cons
vation implies that the semiclassical motion isalways
bounded within one well~regardless of the initial conditions!
if the total energy falls below the adiabatic barri
Uadiab(0)51/8 Mvosc

2 Dz22\V' , in which case we can in-
terpret oscillations between the wells as a manifestation
quantum tunneling. For example, if we take\V' /ER
'5⇒2dE/ER'1.0 we find a barrier heightUadiab(0)
'15.3, while at the same time the energy of the statesu0R&,
u0L& is \vosc/2ER'8.6, i.e., quantum tunneling through
classical barrier.

Though this two-level model serves to establish physi
intuition, one must be cautious when scaling the express
derived above to the real alkali atoms. Let us return to
case of Cs. In the very far-off-resonance limit, the atom
potential is given by Eq.~32! with the Pauli spin operators
replaced by normalized hyperfine ground-state angular
mentum operators,ŝ→F̂/F, in the expression for the ligh
shift, andŝ/2→F̂ in the Zeeman interaction. In the presen
of a transverse magnetic field we have a coupled set of n
diabatic potentials
l can be
Û~z!5(
m

S 2
4

3
U12Up,mcos~2kLz2kLDzm!2\gmBzD uF,m&^F,mu

2
\g

2
$AF~F11!2m~m11!~Bx2 iBy!uF,m11&^F,mu1H.c.%, ~36!

with modulation depth, and nearest well separation

UP,m5
4

3
U1A4 cos2u1S m

F D 2

sin2u, kLDzm5tan21S m tanu

2F D . ~37!

In the absence of a longitudinal field, making the harmonic approximation for the deeply bound states, the potentia
written as a coupled set of pairwise degenerate parabolic wells,

Û~z!'(
m

Up,m$@kL
2~z2Dzm/2!221#uF,m&^F,mu1@kL

2~z1Dzm/2!221#uF,2m&^F,2mu%1Vm61,muF,m61&^F,mu.

~38!



la
i
th

ul

Th
x
r

rd
e
fir
a
h

d

it
r-
el
e
ac
or

ne

e
-

re-
cited
fine
in

-

e.

bi-
are

ntial
he
lls
dia-
the
w
ti-
d
ut
und
red

he

pho-
g in
eld
ec.
m
up-

re a

ts of
e-
ed

,
a

ic

ch

th

1982 57IVAN H. DEUTSCH AND POUL S. JESSEN
The transverse magnetic field will cause the atom to oscil
between the wells together with an oscillation of the atom
magnetization due to the Larmor precession. Note that
angular momentum will not generally oscillate over the f
range betweenum51F& and um52F&, since all magnetic
sublevels are coupled, even at the bottom of the wells.
splitting of the ground-state energy is not as simply appro
mated as it was for the spin-1/2 case, since the degene
ground-state doublet is coupled by no less than eighth o
in the interaction potential. Perturbation theory quickly b
comes intractable when the degeneracy is not broken in
or second order@43#. For this reason we go directly to
numerical solution for the fully quantum Hamiltonian, wit
potential Eq.~11!.

The band structure, together with the three deepest a
batic potentials, is shown in Fig. 7 withU15150ER , u
5p/2.3, and\gBT510ER . The ground band doublet is spl
by dE'1.8ER , and lies below the top of the adiabatic ba
rier; this satisfies the sufficient condition for quantum tunn
ing described above. For such tightly bound bands, ther
negligible tunneling between different lattice sites, and e
double well can be considered as isolated from its neighb

FIG. 7. Tunneling wave functions.~a! 1D lattice of double well
potentials as in Fig.~1c! with u5p/2.3. Deepest three adiabat
potentials for Cs, computed in the infinite detuning limit@Eq. ~10!#,
with U15150ER . The split ground band (dE'2ER) as well as two
excited bands in the first Brillouin zone are superimposed. Blo
spinor wave functions of the symmetric state~b! and antisymmetric
state ~c!, with even-m components solid and odd-m dotted. The
total probability density shows the well-separated peaks of
Schrödinger cat.
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In this case the Wannier spinor is well approximated by o
period of the Bloch spinor,

ucn,q&5(
m

eiqzuun,q
~m!& ^ uF,m&, ~39!

for any q. Figure 7 shows the Bloch wave functions for th
ground-state doublet withq50, which are symmetric or an
tisymmetric according toun,q

(m)(2z)56un,q
(2m)(z). In the

limit of large transverse magnetic fields, the barrier is
moved and these states map onto the ground and ex
states of the deepest adiabatic potential well. We de
ground states localized in the left or right potential wells
terms of the symmetric and antisymmetric statesuS&,uA&, in
the usual way,uL,R&5(uS&6uA&)/&. The average magne
tization of the localized states is calculated as

^F̂z&L,R5(
m

mE dzuuL,R
~m!~z!u2. ~40!

For the parameters chosen above, this gives^Fz&L,R5
62.66, which is sufficiently large to be resolved in real tim

Preparation of the statesuL,R,S,A& can be accomplished
using the techniques described in Sec. II. Through a com
nation of sideband cooling and state selection, the atoms
first prepared in a 1D lin'lin lattice in the ‘‘pure state’’
un50, m54&. A small longitudinal magnetic fieldBz is ap-
plied to break the degeneracy between neighboring pote
wells, thereby preventing the system from tunneling. T
polarization is then adiabatically rotated to bring the we
together in pairs, and the transverse magnetic field is a
batically ramped from zero to the value that produces
desired coupling. IfBz is then ramped to zero at a rate slo
compared to the tunneling rate, the initial state will adiaba
cally connect touS&, as shown in Fig. 8. If on the other han
Bz is turned off rapidly compared to the tunneling rate, b
slow compared to the energy spacing between the gro
doublet and the next excited state, the atom will be prepa
in uR&. Each of these states will allow us to explore t
effects of dissipation on quantum coherence.

To do so we must assure that decoherence caused by
ton scattering is suppressed. Because coherent couplin
our system derives from the externally applied magnetic fi
~rather than the intrinsic Raman coupling discussed in S
II B !, this is easily accomplished by detuning very far fro
resonance. Note that photon scattering need not be fully s
pressed, since its does not act to completely decohe
Schrödinger cat state, whose constituentuL&,uR& wave pack-
ets are separated by less thanl/2 @44#. Once coherent tun-
neling has been accomplished, we can simulate the effec
coupling to an environment by introducing carefully d
signed temporal fluctuations of the lattice, with well-defin
statistical properties~noise spectrum, etc.!. For example,
fluctuations in the angle between the laser polarizationsu
→u1«(t), simulate phonons in the lattice, which adds
noise source to the Hamiltonian of the form

Ĥnoise~ t !5S 2U1

3 D «~ t !F2 sinu cos~2kLz! Î

2 cosu sin~2kLz!
F̂z

F G . ~41!
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Fluctuations in the transverse magnetic field translate
fluctuations in the barrier height, which is an important co
ponent in the Bu¨tteker-Landauer paradigm for exploring th
time it takes a particle to traverse a forbidden barrier@45#.
Time-dependent lattice potentials can also be used to d
the double-well system in a coherent fashion; the interp
between quantum tunneling and coherent drives then op
the door to exploration of a whole separate class of phen
ena. For example, coherent oscillations of the longitudi
magnetic field can be used to drive the ‘‘bias,’’ or ener
asymmetry between the wells. In that case it has been
dicted that certain frequencies will completely suppress t
neling due to quantum interference@46#, a phenomenon
known as ‘‘dynamic localization’’@47#.

IV. SUMMARY

We have explored quantum state preparation and cohe
control in a physical system consisting of atoms bound in
optical lattice. In doing so our goal has been to exploit, as
as possible, the flexibility available in designing optical p
tentials. The potential operator in general has both diago
elements, which are the diabatic potentials associated
different magnetic sublevels, and off-diagonal parts, wh
represent Raman coupling between magnetic sublevels.

FIG. 8. Coherent control in the double well.~a! Ground-state
doublet energy splitting as a function of the longitudinal fieldBz . A
negative bias localizes the atoms in the left well~white dot! or the
right well ~black dot!. Adiabatically lowering the field to zero con
nects population in these states to the delocalized symmetric~hori-
zontal stripes! and antisymmetric states~vertical stripes!, respec-
tively. A further adiabatic change to a positive field transfers th
populations to states localized in the right and left wells, resp
tively. ~b! Energy levels in the double well with the bias fie
hgBz /ER520.5 ~i!, 0 ~ii !, and 0.5~iii !.
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properly designed lattice we can trap atoms in nearly h
monic potential wells, and at the same time build in Ram
coupling between the vibrational manifolds associated w
pairs of magnetic sublevels. If the strength of this Ram
coupling is modest compared to the vibrational spacing, t
coupling between the manifolds can be controlled by app
ing a magnetic field parallel to the quantization axis, a
shifting pairs of states into or out of degeneracy. When R
man coupling of appropriate strength and symmetry has b
obtained, it is in principle straightforward to manipulate t
atomic quantum state using the standard repertoire ou
pulses, adiabatic rapid passage, etc., in analogy to the t
niques demonstrated for trapped ions.

Special consideration has been given to the case of alk
metal atoms trapped in far-off-resonance optical lattices
this situation it is useful to establish a basis-independent
resentation of the optical potential. We have shown tha
this limit one can separate the potential into a part indep
dent ofF andm and an effective magnetic field that can va
spatially on the scale of an optical wavelength. Our analy
shows that Raman coherences of the formuF,m&↔uF,m
61& persist in the infinite detuning limit, provided that th
lattice light field can be designed to contain boths and p-
polarized components. The flexibility to do so is available
2D and 3D lattice configurations. We define a figure of me
for state manipulation,k[UR /\gs , which can fall in the
range 10–100. At large but finite detuning Raman coh
ences of the typeuF,m&↔uF,m62& also occur, but vanish
asymptotically asUR}hU1 /D. These coherences are ther
fore driven at a rate comparable to the rate of decay du
spontaneous light scattering, and are not useful for state
nipulation in the alkalis.

Preparation of a pure quantum state can be achie
through resolved-sideband Raman cooling based on coup
terms intrinsic to the lattice. The requirements for resolv
sideband cooling,\vosc@UR@\gs(Dkz0)2, are much less
restrictive than for coherent state manipulation. A simp
model shows that sideband cooling via theuF,m&↔uF,m
62& coupling in a 1D lin'lin lattice can bring the system
quite close to a pure state. In higher-dimensional lattices
can useuF,m&↔uF,m61& type Raman coupling. Defining a
figure of merit for cooling,k8[UR /\gs(Dkz0)2, we find
that it can easily be of order 103 in a representative 2D
configuration.

Quantum tunneling in a double-well potential is an impo
tant paradigm for coherent evolution in quantum syste
coupled to a noisy environment. A 1D lin-angle-lin far-of
resonance lattice with transverse magnetic field provides
array of double-well potentials that can be used for co
trolled experiments of this type. We have performed a ba
theoretical analysis for Cs atoms in this potential. Our res
indicate that it is possible to find parameter regimes wh
several coherent tunneling oscillations should be observ
in real-time and where the tunneling coupling can be use
prepare both localized (uL,R&) and Schro¨dinger cat states
(uL&6uR&)/&. Once coherent evolution and control h
been achieved, detailed studies of decoherence can be ca
out through the introduction of well-characterized fluctu
tions in the lattice potentials.
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APPENDIX A

In this appendix we derive Eq.~6! for the tensor polariz-
ability of an alkali-metal atom, which has been optica
pumped into a given hyperfine ground state connected
multiplet of hyperfine excited states. According to Eq.~5!, in
the spherical basis,
âq8,q52 (
F8,m

uF,m1q2q8&^F,m1q2q8ud̂2q8uF8,m1q&^F8,m1qud̂quF,m&^F,mu
\DF,F8

, ~A1!
iz-

iz-

i-

m-
the

the
where we have invoked the dipole selection rules to red
the sums in the projectors. According to the Wigner-Eck
theorem

^F8,m1qud̂quF,m&5cF,m
F8,m1q^F8~J8,I !id^ 1̂I iF~J,I !&,

~A2!

wherecF,m
F8,m1q is the Clebsch-Gordan coefficient for the d

pole transitionuF,m&→uF8,m1q&, we have used the Con
don and Shortley normalization for the reduced matrix e
ment, and 1ˆ I is the unit operator on the nuclear sp
subspace. The coupling law for the reduced matrix elem
gives

u^F8~J8,I !id^ 1̂I iF~J,I !&u25 f F8Fu^J8idiJ&u2,
~A3a!

where

f F8F5~2J811!~2F11!UHF8
J

I
1

J8
F J U2

~A3b!

is the relative oscillator strength for decayuF&→uF8&, satis-
fying the sum ruleSF f F8,F51. Substituting Eqs.~A2! and
~A3! into ~A1!,

âq8,q5â(
F8

DFmax,F
max8

DF,F8
f F8F(

m
cF,m1q2q8

F8,m1q cF,m
F8,m1q

3uF,m1q2q8&^F,mu, ~A4!

where

ã5
u^J8idiJ&u2

\DFmax,F
max8

~A5!

is the characteristic polarizability of theuJ&→uJ8&, transi-
tion.
e
rt

-

nt

APPENDIX B

Consider the Hermitian part of the linear tensor polar
ability operator, Eq.~5!, for a uJ51/2&→uJ853/2& transi-
tion. Normalized with respect to the characteristic polar
ability scalar,

ā i j [
â i j

ã
5D̂ i

†D̂ j , ~B1!

where we have defined normalized ‘‘creation’’ and ‘‘annih
lation’’ dipole operators,

D̂ i[
PJ8d̂i PJ

^J8idiJ&
5(

m,q
e¢i•«W q* cm

m1quJ8,m1q&^J,mu. ~B2!

Since ā i j acts on a two-dimensional Hilbert space, deco
position into irreducible tensor operators must truncate at
vector term

ā i j 5
1

3
d i j Tr~D̂†

•D̂!
Î

2
1

1

2
« i jk~D̂†3D̂!k. ~B3!

By symmetry,

Tr~D̂†
•D̂!53 Tr~D̂z

†D̂z!53~^1uD̂z
†D̂zu1&1^2uD̂z

†D̂zu2&!

54. ~B4!

The vector part is anti-Hermitian, and thus must be of
form

~D̂†3D̂!k5 iCŝk , ~B5!

whereC is some real constant, independent ofk, which can
be found by direct expansion,

~D̂†3D̂!z52 i ~D̂1
† D̂12D̂2

† D̂2!52 2
3 i ŝz . ~B6!

Thus, the polarizability tensor for theuJ51/2&→uJ853/2&
has the form given in Eq.~9!,

â i j ~J→J8!5ãS 2

3
d i j Î 2

i

3
« i jk ŝkD . ~B7!
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