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Quantum-state control in optical lattices
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We study the means of preparing and coherently manipulating atomic wave packets in optical lattices, with
particular emphasis on alkali-metal atoms in the far-detuned limit. We derive a general, basis-independent
expression for the lattice potential operator, and show that its off-diagonal elements can be tailored to couple
the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a
trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman
cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation
of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend them-
selves particularly well to reservoir engineering via well-controlled fluctuations in the potential, making the
atom-lattice system attractive for the study of decoherence and the connection between classical and quantum
physics.[S1050-29478)00803-9

PACS numbgs): 32.80.Pj, 32.80.Qk, 73.40.Gk, 03.65v

[. INTRODUCTION deleterious effects are minimized. Equally, it is of great im-
portance to perform controlled studies of the effect of the
One of the great challenges of modern science is to deenvironment on macroscopic and mesoscopic quantum
velop tools to prepare, manipulate, and measure thetates, so as to improve our understanding of the limits that
guantum-mechanical state of a physical system. Examples afpply when we attempt to evolve them in a quantum coher-
systems in which quantum control is sought or has beeent fashion.
accomplished are found in a wide range of fields. In physical In this article we explore a promising system in which to
chemistry, laser pulses are designed to direct chemical reastudy quantum-state preparation, coherent control, and the
tions along a desired pathwa{]. In quantum optics, non- decoherence of macroscopic superposition states—neutral at-
classical states of a single mode of the electromagnetic fieldms trapped in an “optical lattice.” Optical lattices are pe-
have been preparel®] and accurately measurd®], and riodic potentials formed by the ac Stark shifight shift)
several groups now pursue quantum-state engineering of seen by atoms when they interact with a set of interfering
single mode of a higly cavity[4]. In atomic physics, it has laser beamdq13]. In a suitable lattice formed by near-
proved possible to control electronic orbital motion, and pro-resonance light, laser cooling will quickly accumulate atoms
duce both quasiclassical and highly nonclassical Rydberg the few lowest bound staté®Vannier statgsof the indi-
wave packet$5]. In ion traps, the exceptionally long-lived vidual optical potential wells, as demonstrated by resonance
vibrational and hyperfine coherences, which originally in-fluorescence and pump-probe spectrosdd@y. Atoms pre-
spired work on atomic clocks, have proven equally valuablepared in this fashion can be transferred afterwards to a lattice
in work on quantum-state manipulation. In a series of recentormed by light detuned far from any atomic resonances
experiments, Wineland and co-workers have demonstratgd5], where they can be tightly bound in a nearly dissipation-
state preparatiofi6], state control[7], and even quantum free potential. Far-off-resonance optical lattices have been
“logic” gates [8] using trapped ions. Proposals for quantumapplied to the study of quantum chdds$], and to the study
logic have been made also in cavity QEB)]. This work  of Bloch oscillations and Wannier-Stark ladd¢ts]. When
constitutes an important step towards building a “quantumused to trap atoms in the tight-binding regime, far-off-
computer,” in which algorithms are implemented as unitaryresonance lattices offer a realistic prospect of preparing pure
transformations on a many-body quantum sysi&fj. gquantum states, either by state selection or resolved-sideband
Of particular fundamental interest in the context of coher-Raman cooling 18).
ent control are macroscopic superposition states, or “Schro A wide range of properties characterizing an optical lat-
dinger cats.” The concept of incoherent evolution in suchtice potential can be adjusted through laser beam geometry,
systems stemming from interaction with the environmentpolarization, intensity, and frequency, and through the addi-
forms the cornerstone of our understanding of the connectiotion of static electric and magnetic fields. The richness and
between classical and quantum phy$it$]. For many years flexibility inherent to the multilevel atom-lattice interaction
a paradigm for quantum coherence has been the observatipermits us to explore Hamiltonian evolution beyond the stan-
of tunneling in macroscopic and mesoscopic syst¢h. dard coupling of a spig-system to a harmonic oscillattthe
The delocalized states resulting from tunneling over macrodaynes-Cummings modelwhich has been studied exten-
scopic distances are extremely susceptible to decoherensievely in cavity QED[2] and ion trap$19]. Finite dissipation
due to interaction with the classical environment, and it re-occurs in the lattice due to spontaneous photon scattering,
mains a key challenge to design systems for which thesbut can be suppressed to an arbitrary degree in the far-
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detuned limit, as long as sufficient laser power is available to ll. COHERENT CONTROL AND STATE PREPARATION

provide the desired potential. One can then design operations

that Ve the atomi ket | h ¢ fashi The use of lasers to coherently control the internal state of
at evolve the atomic wave packet In a conerent fashiony, ,,q is 5 well established technique, many of whose meth-

Furthermore, once t_he. |ntr|nS|c incoherent processes hav(;;dS were borrowed from nuclear spin resonance: Rabi flop-
been suppressed, dissipation may be reengineered into tB?ng, rotation of the Bloch vector vi@ pulses, adiabatic
system in the form of well characterized fluctuations of therapid passage, etc. These same techniques are readily applied
lattice potentials, allowing for a detailed study of the deco-igy the manipulation of trapped iorf9] and cold neutral
herence process. In either context, an important advantage gfoms[30], where the center-of-mass motion is included in
the atom-lattice system is the relative simplicity of the un-the overall quantum state. One technique, which has been
derlying interactions, which permits both the coherent andsuccessfully applied to quantum-state engineering with
dissipative aspects of the evolution to be incorporated in arapped ions, is to use a pair of laser fields to induce Raman
complete, yet tractablab initio quantum theory. transitions between the vibrational manifolds associated with
To explore the evolution of macroscopic quantum coher-a pair of hyperfine ground states. A similar approach can in
ence in a noisy environment, we specifically consider theprinciple be used for atoms trapped in optical lattices if Ra-
tunneling of atoms in optical double-well potentials. Theman coupling is introduced through the addition of separate
closely related process of tunneling from bound states to theoupling fields[31]. Note, however, that optical potentials
continuum has been observed in an accelerated far-offare crucially different from ion traps in one respect: the trap-
resonance standing waj/20], and found to show a signature ping potential depends strongly on the atomic internal state.
of nonexponential decdy1]. There is a wealth of literature This complexity will prevent a straightforward transfer of
on the role of dissipation in tunnelif@2], stimulated by the jon trap “technology,” but at the same time it serves as an
seminal paper by Calderia and LeggE28] in their work  example of the greater richness of the atom-lattice system,
relating to tunneling phenomena in Josephson juncli2gds  which we can exploit as we develop new tools for coherent
Since then, their ideas have been applied to a variety ofontrol. In this section we explore how appropriate Raman
systems in physics and chemisf#5]. As an example of coupling terms can be designed into the optical lattice poten-
relevance to our work here, quantum tunneling of atomsial itself, and subsequently be used as building blocks for
plays an important role in the dielectric properties of alkali-coherent evolution operators. Our main goal here is to
halide crystals and the acoustic properties of amorphous sopresent the physical concepts involved in this design process,
ids [26]. In the following we show how double potential something that is most clearly done in the context of simple
wells can be designed through the combination of light shifione-dimensional1D) and 2D lattice configurations. In these
and static magnetic dipole interactions. In this system we canD and 2D lattices we will apply the terms “quantum state”
observe tunneling of thentire atomthrough the optical and “coherent evolution” to the internal state and quantized
wavelength-sized barrier separating the potential minimamotion in the lattice directions only; motion in the unbound
and use this coupling to prepare Satirmer cat states. From direction(s) is separable, and can be ignored.
an experimental perspective we note that our double-well
potential has a built-in polarization gradient, so that tunnel- A. Designing atomic potentials

ing is accompanied by a precession of the atom’s angular ) ) . .
momentum. This provides a label for left or right positions in A Variety of potentials for cold atoms can be designed via

the double well. and allows real-time observation of coher!h€ir interaction with the electromagnetic field, including op-

ent tunneling oscillations as an oscillation in the tical fields (light shifty, static magnetic fieldgZeeman

magnetization—something that is typically not possible in aSNifts), and static electric fieldeStark shifts. We here spe-
e of low-intensity monochromatic light,

condensed-matter system. A variety of similarly delocalizecfi@lize to the cas - o ) rom
states have been produced in atom interferomd@f in ~ EL(x 1) =REE (x)e ], and static magnetic fields, so
ion traps[7], and as a result of velocity-selective coherentth@t the potential for atoms in the ground state reads
population trapping?28]. S - -

The remainder of this article is organized as follows. In U(x)=—E{(x)- @B (X)~uB, (@)
Sec. Il we discuss how to design the three b.a5|c mgredlentvsvhere&: —268 eae Ih A, is the atomic polarizability ten-
of coherent control in the atom-lattice system: potentials, co- c-ge-eg 79 C
herent evolution, and state preparation. We focus largely oR-. operator(in the far-off-resonance limjit with Ag, the

; prep gely . .
the alkali-metal atoms, which have become the standaraetunlng from theg)—|e) resonance, and whetk is the
choice in experimental work with laser-cooled atoms. Secelectric dipole operator between these stajes# yF is the
tion Il A presents a general formalism that can be used tanagnetic dipole operator, with the gyromagnetic ratio and
derive atomic potentials in the far-off-resonance limit, cast inF the total angular momentum operator.
a form that gives a clear physical picture. Section I B ex- To illustrate some of the features of the potential that
plores coherent evolution operators based on coupling besan be easily controlled, consider an atom driven on a
tween magnetic sublevels, and Sec. Il C discusses how th|d=1/2)—|J’ =3/2) transition by a one-dimensional optical
coupling can be used to implement resolved-sideband Ramdattice, produced by a pair of red-detuned, counterpropagat-
cooling and state preparation. In Sec. Il we discuss howng plane waves with amplitud&,; and angleé between
these ingredients may be applied to the study of quanturtheir linear polarizations. We will refer to this configuration
tunneling in double potential wells, and the creation ofas “1D lin-angle-lin”; in the special cas@= =/2 it reduces
Schralinger cat states. Finally, Sec. IV summarizes our reto the familiar 1D lin_lin lattice. Near resonance laser cool-
sults. ing in lattice configurations with arbitrarg has been studied
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while changingB, shifts the minima of these wellgFig.
1(c)]. By adding a transverse magnetic field we break the
degeneracy of the bipotential at positions of linearly polar-
ized light [Fig. 1(d)]. Thus, by choosing the appropriate

-025 0 025 05 075

Z/\ angle between the laser polarizations and an appropBiate
0 field, we can design a lattice of double-well potentials with
0q © (@ adjustable barrier and asymmetry. In Sec. Il we will discuss
~ 1 e P ~ AN o~ the use of this potential to study quantum tunneling and mac-
=04 | SN SN TNy : "
g Vo y Voo N roscopic superposition states.
S 9 \J \/ Though the|J=1/2)—|J’'=3/2) system is useful for
-0.8

gaining physical intuition, the above results must be gener-
iy . , . alized to atoms with more complicated internal structure.
075 025 0 025 05 075 Here we concentrate on the alkali-metal atoms, and particu-
larly Cs. For atoms optically pumped into a given hyperfine

FIG. 1. Lin-angle-lin one-dimensional latticgs) Schematic of ground state, and having a multiplet of hyperfine excited
the laser geometry with counterpropagating beams and polariz&tates,
tions at a relative anglé. (b) Optical potentials for thém= + %) “ “
(solid) and|m= —% (dotted states, in units of the maximum light n Z PrdPe dPe
shift 2U; (U, is the single beam light shjft (c) Addition of a a=- NS ®)
magnetic field along the laser direction Zeeman shifts the wlls.
Addition of a transverse magnetic field mixes together the two POwhere PFZEm|F,m)<F,m|, PF/ZEm/|F’,m’><F’,m’| are

tentials. The resulting anticrossings lead to a lattice of double Welbrojection operators onto the ground and excited hyperfine
potentials. levels, respectively. As shown in Appendix A, the compo-

by Finkelstein. B 4 GUG2! and by Taiebet al nents of the polarizability tensor in the spherical basis,
y Finkelstein, Berman, and GU®&2] and by Taiebetal. Yq:e;,'&_eq, can be written as

[33]. The optical field can be written as a superposition of ‘o’
opposite helicity standing waves,

025 0 025 05

E’

Af _F!
. ) S =T max’ " max , F’'.m+q F'.m+q
EL(2)=V2E,{—e "2cogk z+ 6/2)e, + € "%cogk, z %a’. “§ Ar e fe F% Crmiq-q/CFm
—612)e_}, 2 X|F,m+q—q’)(F,m|. (6)
for a convenient choice of relative phase between the beamm this expressioffic/ are the relative oscillator strengths for
The potential, given by Eq1) is then decay|F')—|F), Ag g is the detuning of the laser from this
resonance|F h.,=J+1) and|F/ ,=J +1) are the “stretched
~ 2U, A states,” andcE ;™ are the Clebsch-Gordan coefficients for
U(z)=~ == {2[1+cosd cos2ky 2)]I the|F,m)—|F’,m’) dipole transition. The characteristic po-
" larizability scalar for thdJ)—|J’") transition is defined as
+[sing sin(2k 2)]o,}— = vB- o, 3 ,
2od=3 )P
a= )
Frao P
where U, is the light shift produced by a single beam of A max

amplitudeE,, driving a transition with unit Clebsch-Gordan where (J'IId1J) is the dipole operator reduced matrix ele-

coeff|C|entA(hAenceforth the ;lngle beam. I|g.ht shitt The _ ment. For this more complex system, an optical lattice with
operators{l, o} are the identity and Pauli spin operators in yo|arization gradients will generally establish coherences be-
the ground-state manifold. Note that a magnetic field alongyeen the ground-state magnetic sublevels via stimulated Ra-
the laser axigz direction does not break the rotational Sym- man transitions. These coherend#s conjunction with the
metry of the potential; transverse magnetic fields break thi%xternally imposed magnetic fieldan be used to control the
symmetry and thus establish coherences between the magmxie of the atomic wave packet as discussed below.

netic sublevels. _ o Because we are interested in coherent evolution of the
. Adiabatic potentials can now be found by diagonalizingatomic state, the lattice should be detuned as far from reso-
U(2). Figure 1 shows the adiabatic bipotentials associatedance as possible. It is therefore important to examine the
with different lattice configurations. In the absence of anature of the potential in the limit that the detuning is much
transverse field, U(z) is diagonal in the eigenstates &f. larger than the hyperfine splittings. In that case &j.re-
Varying 6 changes the peak-peak modulation depthof  duces to

the potential, and the distancez between thgm= + 1/2)

and|m= —1/2) potential wells[Fig. 1(b)], a~Pra(J—J")Pg, (8)
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where a(J—J’) is the polarizability tensor of thgJ)

—]J') transition. Thus, for the alkali-metal atoms, the very 199
far-off-resonance optical lattice has properties quite similat

to the familiar|J=1/2)—|J’ =3/2) transition. The operator
a(J—J') is a rank-2 tensor that can be written as a sum of
irreducible tensors of rank 0, 1, and 2. Because it acts on = 15
two-dimensional Hilbert space, in which any operator can be
written as a superposition of scalar and vector operator:
{10}, it follows that the irreducible rank-2 component must
vanish exactly. In Appendix B we show that -200

E/Er

- (2 ~ i .
aij(J—>J')=a<§ ijl — 3 &ijkok

. 9

3

-250)

Let us now express the lattice field a%¥ (x)
=RgEs (x)e '“'], where& (x) is the local polarization
(not necessarily unit normand where we have factored out  _3qq
some conveniently chosen amplitule For concreteness, .
we will assume that the field is formed by a set of equal
amplitude beams, in which case it is most convenient to fac krz kL
tor out the single-beam amplitude,. The optical potential (@ )
can then be written in the compact form

FIG. 2. Cs band structuréa) Adiabatic potentials for Cs atoms
in a 1D linLlin lattice detuned 20d0 to the red of the 6,(F
=4)—6P4,(F'=5) resonance, with single beam light shift;
=15CEg. (b) The energy bands in the first Brillouin zone. Below
2 . ) i . . the crossing points of the diabatic potentials the bands are clearly in
U;=- 3 UglgL(3)|%  Ben(x)= 3 Uilel (X)X e (X)], the tight-binding regiméband energy width much less than Bg).
(10) Above, there are hybrid free-bound bands due to stimulated Raman
resonance between states witin=+2. These anticrossings van-
ish in the limit of infinite detuning.

U(x)=U ;001 +Be(X) - &,

where UlzaEfM is the single beam light shift. In other
words, the light-shift potential is equivalent to a shift, pro-
portional to the local intensity of the field and independent of
the hyperfine state of the atom, and an effective static mag- Consider a typical 1D linlin optical lattice for Cs atoms,
netic field whose magnitude and direction depend on théormed by light detuned 20@0to the red of the 6,,(F

B. Designing coherent evolution operators

local ellipticity of the laser polarizatiof34]. Using Landés ~ =4)—6P3,(F’'=5) resonance, with a single-beam light
projection theorem, for the “stretched” ground hyperfine shift U;=150Eg. The band structure is easily calculated
level with F=1+J, Eq. (10) yields [35], and is shown in Fig. 2. Without further perturbation

tunneling between neighboring wells is negligible, i.e., the
system is in the tight-binding regime, and we can consider
(11) each lattice site as an independent potential well. This con-
clusion holds also for lattices of similar depth in higher di-
mensions. In this limit an appropriate description is given by
This expression is useful for interpreting the physical naturdghe set of Wannier states that constitute an orthonormal basis
of the potential, and also very convenient for calculationswithin each well; Wannier states associated with different
because it is basis independent. lattice sites are also orthogonal. Coherences between mag-
From Egs.(10) and(11) we can make the following ob- netic sublevels can arise due to Raman coupling terms in the
servations. In the limit of infinite detuning, coherenceslattice potential, Eq(1), and the Wannier states in general
|F,m)«—|F,m=2) go to zero. If the light field is everywhere become spinor$36]. Most optical lattices are designed to
linearly polarized, the effective magnetic field vanishes, andchave pure helicity at the points of maximum light shift, in
the light shift is independent of the magnetic substate of thevhich case the most deeply bound states have negligible
atom, Ug(x)=U,(x)1. For fields with arbitrary ellipticity, ~admixture ofm states. In that case the Wannier spinor is
polarization in thex-y plane gives rise to effective longitu- approximately a local harmonic oscillator state for the given
dinal B fields; the combination ofm-polarized ando-  diabatic potential|n,m)=|®{™)|F,m). A notable excep-
polarized light yields an effective transverse field. Unlike ation occurs when a pair of states in the vibrational manifolds
true, externally applied, static magnetic field, the effective{|n,m)}, {|{n’,m’)} are nearly degenerate, and coherent mix-
magnetic field can vary spatially with a period on the ordering via stimulated Raman transitions becomes resonantly en-
of the optical wavelength. This dependence will be importantanced, as shown by Courtd37]. By applying a longitudi-
in designing potentials that generate coherences betweearal magnetic field one can use the Zeeman shift to tune
given atomic vibrational states. different levels into and out of Raman resonance at will, and

i B

Up(X)=U 001 + Beg(X) -
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vature of them=4,2 wells, the coupling matrix element is
asol/ N ANV 125 Ur~2U,8;, 4. The full detuning dependence of the cou-
pling constant can be obtained from E§),
-175 -155 Ags
52,4=2 f4F’(_, 05,2'305,4’3
, F’ A4,F
& -200 -185 \/_
o (n=0, m=2> 7 A A
=1, m=4>) 215 :ﬁ)(m_ 21A ii‘i +5A :Z‘ (19
225 =0, med>| 45T 054 45t 053
®) » Whereé,:i F) is the splitting between excited-state hyperfine
-250 = 3 5 levels F; and F5. According to Landes interval rule, the

splitting between hyperfine levels’ andF’—1 is propor-
tional to F’, so d54~56 and 85 3~948, where 5~10" for

63 Cs. Expanding Eq(13) to lowest order inl'/A4 5 gives the
asymptotic expression
. 62
N e, mer> B, ~4 4L (14)
K6l 7 ’ aa Ays’

Coherent manipulation of the atomic state requires that the
L, med> (© time scalefi/Ug for coherent evolution be shorter than the
lifetime of the Raman coherence between staésm= 2)
and|n,m=4), which is dominated by the decay of the state
7yB/ER In’,m=2) due to optical pumping, and thus of ordef*
FIG. 3. (a) First three energy bands of a far-off resonance Iattice(.the Inverse .phOton scattering T}m‘w‘? can then define a
near ao, site of the lattice in the tight-binding regim@iabatic figure of merit for coherent manipulation,

56 58 6 62 64

potentials superimposgd(b) Potential with an external magnetic U A
field bringing [n=1m=4) and [n=0m=2) into Raman reso- KEﬁ_R%nB2,4T4'5%4'4771 (15)
nance.c) Energy levels as a function of magnetic field enefgys Vs

the gyromagnetic ratjoln the absence of coupling the states follow

the dashed lines. Raman coupling adiabatically transfers populatiofNich should be much larger than unity. We see that for
(black doi from |[n=1,m=4) to |[n=0m=2) as the field is slowly Raman couplingAm= *2, the figure of merit is of the same
swept past the avoided crossing. order as the Lamb-Dicke parameter, which is small by as-

sumption. Thus these coherences will generally not be useful
for full coherent control.
design various coherent evolution operatorspulses, adia- One is left with the possibility to induce coherences
batic rapid passage, etdn a manner closely analogous to =*1 through the addition of an external transverse mag-
the methods applied in ion traps. Figure 3 illustrates thignetic field or via stimulatedr— o. Raman transitions. The
procedure for Cs in a 1D linlin far-off-resonance lattice. In  coupling matrix element is then
the following we examine the types of Raman coupling
available in some representative lattice geometries.

In general the electromagnetic field can induce coher-
ences of the formm’)«<|m+Am), Am==1,2, through (16)
stimulated Raman transitions of the type—o. and
o, < o_ . For alkali-metal atoms at large but finite detuning whereB™ is the sum of the external and the effective mag-
both types of coupling occur, though in the infinite detuningnetic field given by Eq(10). Clearly, strong coupling of the
limit only coherencesAm=*1 persist as shown by Eq. internal degrees of freedom is guaranteed, but the Franck-
(11). To establish the important scaling laws we first con-Condon overlap depends on the local spatial symmetry of the
sider theAm= +2 coherences in a 1D lidin lattice. In a  total “magnetic field.” An external transverse magnetic field
two-level picture, the Strength of the Raman Coup”ng is de_Creates a Spatlally uniform COUp”ng, which does not connect

termined by the off-diagonal matrix element of the light shift States of different parityim,n), [m=1n=1), located at a
operator, given lattice site, but is useful in other contexts. In Sec. IlI

we employ external transverse magnetic fields to couple
Ur~U1B,4n'=1m=2|sin(2k z)[n=0m=4). (12)  states localized at different lattices sites of a 1D lin-angle-lin
lattice, thereby inducing quantum tunneling. In contrast to an
The paramete3, , determines the coupling of the internal external field, the effective magnetic field provided by the
degrees of freedom, whereas the matrix element determindsittice light field can be designed to provide both even and
the effective Franck-Condon overlap. To lowest order in theodd parity coupling. In the infinite detuning limit the off-
Lamb-Dicke parameterp=k z,=\Er/fhw.s, Wherezy is  diagonal element of the light shift operator, E41), be-
the ground-state variance, and ignoring the difference in cureomes

('} m=1|[BL) FiBL(x)]F .| {n},m)
Um,mil: 2F '
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Uy VE(F+1)—m(m=1)

Unme1=— n'HleX(X)e, (X)+eX_ (X)e(x)]]{n}), 1

1= o = ({n'}lle3(0e,, (00 +e5 (0e.0011n}) (17
|

wheree ., (X), €,-(X), ande (x) are the normalized elec- E.e iky ’

tric field amplitudes of the lattice-.. and 7-polarized com- E.(x)= [—e{1+2e*YcogKx)}

ponents, andn} are the vibrational quantum numbers. From

Eqs.(lQ) and(1_7) one can o_leduce a few general aspects of +e {1+2eKW cogK,x—20)}]

the lattice spatial symmetries. The Raman coupling terms ‘

will have nodes where the light is either puredy. or o +eE e 'k, (19

polarized. Generally the representation of the light-shift op-
erator in terms of diabatic potentials and off-diagonal Raman o B S
couplings depends on the choice of quantization axis. Thgvhe_:reKﬁ—k sm?, Ky—_k'(:1+cosg)i:Thf gffectlve field gov-
exception is at positions where the light is linearly polarized.ernlng the couplingm=F)—|m=F—1) is

At these positions the effective magnetic field vanishes, irre-

spective of the quantization axis, and thus all the diabatic e U, E, S
potentials are degenerate and the Raman coupling is zer®x +iBy = 3 . 125 sin(K,x— f)cosKyy—¢)
These features are illustrated in the examples below. !

The 1D lin-angle-lin class of optical lattices includes all +2i cos cogK,x— 0)sin(Kyy— ) —i sine},

configurations that can be formed by a set of counterpropa-
gating plane waves. Thus the light fields of purely one-
dimensional lattices can always be decomposed.incom-
ponents, and it follows that one cannot introduge» o whereU, is the single beam light shift. We can now use Eqgs.
type Raman coupling. We can, however, misalign slightly(16) and(20) to calculate the matrix elemelty,_¢ m -1
the direction of propagation of one on the beams, so that af the Raman coupling. Figuregh} and 4c) show cuts of
small component of polarization lies along the axis of thethe diabatic potentials and coupling matrix elements along
standing wave. For an arbitrary pair of cross polarized laserthex andy directions for6= /3, and reveal that the Raman
(not necessarily counterpropagatinthe optical potential in  coupling has both even and odd terms along bo#ndy,
the very far-off-resonance limit is whose relative magnitude and phase can be controlled
through the ellipticity of the beam polarization.

(20)

- 4 . 2 R
U(X): - § Ull - ﬁ Ulsir[(kl_ k2) . X](el>< ez) -F. = tl'_?ipei‘/’
(19 @ /(,
ky e,,r---*x

Choosing the quantization axis alokg—k,, Eq. (18) im- \/—\'kes%
plies that both the diabatic and off-diagonal potentials have
the same spatial dependence, and thus the off-diagonal co oF ® ©
pling is always an even parity operator with respect to well Al 5
center. 2t

We have much greater flexibility to design the coupling § B § 3
potential in higher-dimensional lattices. Consider, for ex- d ®
ample, a 2D lattice formed by three coplanar laser beams ¢ 0
equal intensity and linearly polarized in that plane as showr 3 ()
in Fig. 4. Grynberget al. used this geometrywith lasers o T i)
near atomic resonancéo cool and trap Cs atoms in the 05 05 0 o0z 05 ' . 4
Lamb-Dicke regimg38]. A slight rotation of the linear po- /A 05 0% yo//l 02505

larization of one beam out of they plane introduces ar !
component, and thus stimulatet— o, couplings. In con-
trast to the 1D geometry of Eq18), the 2D configuration
permits us to vary the phase of thecomponent indepen-
dently frqm'the phase'of the components, f"md thus fa\llows respect to the in-plane component. The optical potentials with
us to optlmlze_ the des,'rEd couplings. Cop3|def-polar|;ed = /3 for Cs are shown in units of the single beam light shift

component with amplitud&, and a relative phase eXxp]  40ng thex direction (b) andy direction (c). The relative phase

to the lattice beam propagating in they direction(in gen-  petween the beams pus, light at the origin.(i) Diabatic poten-
eral this would correspond to some elliptical polarization oftials for m= +4 andm= +3. The real(solid) and imaginary(dot-

that beam For a choice of relative phase between the beamged) parts of the Raman couplingn=4)«|m=3) are shown for
that puts the maximum of the . -polarized light at the ori- ¢=0 (i) and ¢=#/2 (iii). Both of these phases give rise to odd
gin, the lattice electric field is and even parity coupling operators.

FIG. 4. (a) Three-beam 2D lattice in the-y plane, with beam 1
bisecting the angle @between the other two. Beam 1 has a com-
ponent of its polarization in the direction, with a phase with
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Expanding around the minimum of the potential well atverse and longitudinal magnetic fields should allow the
the origin and making the harmonic approximation for thepopulation to be increased to 45%. As demonstrategd i
vibrational levels, we find to first order in the small param-atoms prepared in this fashion can be transferred to a far-off-
eterskx, ky, resonance lattice, with close to unit efficiency and no signifi-

cant increase in vibrational excitation.
U; E, In contrast to the one-dimensional case, the vibrational

Urpp-1~— E E_1 degeneracy occurring in two and especially three dimensions

prevents one from obtaining useful ground-state populations

+i(ele—1 e“‘P)ky]|{nX,ny},F), (21) solely with Sisyphu_s cooling in a near-resonance Iattig:g. In

that case, preparation of a pure state will require additional

Maximal coupling of the odd parity states results fgr ~cooling after the atoms have been transferred into a far-off-

=7/2, in which case the coupling matrix elements for vibra-resonance lattice. Because we are primarily interested in the

({ne.ny} F=1][—€'*+ 3 e '%kx

tional change of one quantum alorgandy are preparation of well localized Wannier states, the most effi-
cient method is resolved-sideband cooling. In the Lamb-
UZE j~iUgVn,, UYL ~3Ugy\n,, Dicke regime this technique in principle allows for the re-
moval of one quantum of vibrational energy every few
U, E, oscillation periods. Thus the rate of vibrational excitation
RE——=— 17, (22 must be well below the frequency of oscillatiodn/dt
2\2F B4 <wye IN an optical lattice, heating is dominated by photon

scattering; in the harmonic approximation, the condition
becomes wys 7°ys, Or equivalently fwys/Er)?
Er \¥2 [2 Eq\ ¥4 >hyleR. This requ_irement is easily met by several orders
77=< E) :(1_5U_) (23 of magnitude, even in lattices detuned by only a few thou-
1 sand linewidthg15].

In the following we explore a scheme for resolved-
sideband Raman cooling that is based on transitions from
stategn, m=F) in the vibrational manifold of the stretched

1/4 state, to statefn—1, m=F—Am) in the vibrational mani-
K= ﬁ% 0.047E, H (%) (24)  fold of another magnetic sublevel, as illustrated in Fig. 5. As
hiys  JF B2 T 1U; discussed in Sec. 11 B, in a 1D lin-angle-lin lattice, odd-

. L ) ) parity coupling operators are available only with then
If we consider, for example, CsF(=4) in a lattice with  _5 tyne transitions, while 2D and 3D geometries allow
U,=25Eg, A=—10T", andE_=0.5E;, we then obtairk

- . . Am=1,2 depending on the details of the lattice geometry.
~53. Even more favorable figures of merit can be obtainedyq|axation back to the statés—1, m=F) is provided by

at Iarger detunings, provided that sufficient laser power iSptical pumping, resulting in a net loss of nearly one quan-
available. tum of vibrational excitation per cooling cycle. It is impor-
tant to note here that the required Raman coupling strength is
C. State preparation much less for sideband cooling than for fully coherent popu-
We are generally interested in the coherent evolution ofation transfer, because the process that destroys Raman co-
quantum systems initially prepared in a pure state. The teri€rence, i.e., optical pumpldgl,m=_ F—Am)—>|n,m= F>;
“pure state” is used here to describe an ensemble of identiiS also the process that accomplishes sideband cooling. In
cally prepared atom&f order 16) localized atdifferentlat- that case it is only necessary that the time scale for popula-
tice sites; in this case no single quantum state is macroscopion transfer7/|Ug|, be much shorter than the time scale for
cally occupied. The preparation of a pure state can bdibrational excitation, i.e.,
accomplished by state selection, by dissipative cooling of the Ug
system to its ground state, or by a combination thereof. State _R
selection techniques demonstrated in optical lattices include hidn/dt
gravitational[39] and inertial[20] acceleration in shallow
lattices supporting only one bound state, and in work withTo leading order ins, the rate of vibrational excitation is
metastable noble-gas atoms, selective quenching of vibratn/dt= y,(Akz,)2, where ¢Ak)? is the mean-squared mo-
tionally excited statef40]. These methods are most useful if mentum transfer in a photon scattering event, obtained by
a substantial fraction of the atoms initially occupy the de-averaging the momentum components along the lattice direc-
sired quantum state. In a 1D litin lattice this situation is  tions over the dipole emission pattern. Using E4®) and
readily achieved by near-resonance Sisyphus cooling. In the14) for the Raman coupling strength, we can then compute
case of Cs atoms it has been found that a longitudinal maghe sideband cooling figure of mewt in different types of

netic field allows the preparation of up to 28% of the total|attices. First we consider a simple 1Ddilin lattice with
population in the vibrational ground state associated with &y m=2, for which we find

single stretched stafd1]. The addition of a transverse mag-
netic field serves to enhance this population due to the in- 14
duced coherences between the magnetic sublevels; numerical /~9.J(_> ) (26)
simulations have shown that the proper combination of trans-

where the Lamb-Dicke parameter is

hwgg

Computing the figure of merit for coherent manipulation we
now find

=x'>1. (25
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dampedUg/% ys<1, and thus the largest rate of population
transfer is achieved by continuous resonant excitation. Be-
cause the coupled potential wells have different oscillation
frequencies, resonant excitation on the red Raman sideband
can be achieved only for one pair of levels,—1,m=2),
In,m=4), at a time. We ignore any accidental degeneracies
that may occur simultaneously between higher-lying states,
since these are not significantly populated for the vibrational
temperatures of interest.

As the Raman coupling is small compared to the oscilla-
tion frequency(resolved-sideband limjitit can be treated as
a perturbation and we can separate our system into a series of
n two-level systemg|n—1, m=2),|n, m=4)}, which are
connected only through optical pumping, as shown in Fig.
5(b). The master equation is then

i~ 1
n-2 = .. — .. —
from=2} [nm =) Pij 7 [H.plij+ > k;{:’,,—} 2| [ i) Yi—kP1 — Yk—1Pkid
(28)

FIG. 5. () Schematic of resolved-sideband Raman cooling. An
appropriate Raman coupling terfo.—o_ in this examplg is  where the Hamiltonian consists of<2 blocks
designed into the optical potential, and connects the vibrational

manifolds associated with a pair of magnetic subleviis=4, m . hoy(n— 3)+2hyB, Uryn

=4), |F=4, m=2) states of Cs in this exampleA pair of o H,= ,
polarized beams are tuned to tffe=4)—|F’=4) (pumpej and U’,;x/ﬁ howsn+ 3)+44yB,
|F=3)—|F’=4) (repumpey transitions, and provide relaxation to (29

the |F=4,m=4) state.(b) lllustration of the significant couplings
and relaxations in a simple model of Raman sideband cooling. Iand the sum overincludes only the nonzero relaxation rates
the resolved-sideband limit the Raman coupliig connects pairs  indicated on Fig. &).
of vibrational stateg,n,m=4) and|n—1,m=2). Each pair is con- Optical pumping|n, m=2)—|n’, m=4) is in principle
nected to neighboring states in the vibrational manifolds by opticaprovided by the lattice light field, but efficient cooling re-
pumping. To leading order im” only the indicated pumping rates quires the addition of a separate -polarized pumper beam
v,y are significant. Due to different oscillation frequencies in theresonant with thé=4—F’=4 transition. This helps con-
two pot_entials only one pair of states can be exactly degenerate atfge population to then= 2,4 manifolds. More importantly,
given time. them=4 sublevel is dark with respect to this pumper beam,
] o ] and we can achieve a pumping ragg>ys without extra
For a large, put still realls_tlg deptbllz_SOCER we obtain heating that would result from pumping on tFe=4<F’
«'~43. The figure of merit is further improved in the 2D _ 5 transition. The price of this arrangement is occasional
lattice configuration of Fig. 4. As discussed in Sec. Il B, theoptical pumping to theF=3 hyperfine manifold. Optical
polarization of one lattice beam is made elliptical in order t0pumping toF =3 is problematic, because the optical poten-
generate a strong Raman coupling, as given by the matrix,s associated with the two hyperfine ground-state mani-
element, Eq(22): Th|§ yields the following figures of merit {54 are offset by\/4, so an atom pumped inf6=3 finds
for thex andy directions: itself on the top of a potential hill. Unwanted heating can be
va avoided if the atom is repumped back into the-4 mani-
Es H (ﬁ) = 3! 27) fold on a time scale short compared to the time in which a
E, T \Egr/ "’ Ky ™ okx wave packet disperses, of orderl/wy.. This is easily ac-
complished by adding alsoa, -polarized repumper tuned to
For realistic parameterdJ;=45E;, A=—-4000’, and theF=3—F’=4 transition, which repumps atoms at a rate
E./E;=0.5 we obtaink,~880 andx)’,~2.6>< 10°. ~I'>w,s.. Solving the rate equations for optical pumping
To explore the prospects for resolved-sideband Ramawe find that an average of 2 pumper and~1 repumper
cooling in more detail, we consider a simplified numericalphotons are scattered before the atom is returned to the
model for cooling of Cs atoms in a 1D lifin far-off-  stretched state. The three-step optical pumping process trans-
resonance lattice. We restrict the system to the two vibrafers an average mean-squared momentum alangf
tional manifolds{|n, m=4)} and {|n’, m=2)}, approxi- 21%2k?/5, which is three times the average momentum trans-
mated by harmonic oscillators with eigenfrequencles,  ferin a single-step process. To first order in the small param-
=4\JU,ERr/3 and#w,= 22U, ER/3 [Fig. 5b)]. To accom- eter »? and ignoring the small effect of curvature difference
plish one step of the cooling, a longitudinal magnetic figjd  Petween the wells, the pumping rates from Figb)Sthen
is used to shift a particular pair of states n’=1 into de- become
generacy; in the terminology of sideband cooling this corre-
sponds to tuning the Raman coupling to the red sidebandyn_.n~ yp[1— g 7°n], Yn—n’#n= Vp % m’max(n,n’).
Rabi oscillations between a pair of states are always over- (30

Ky, ~0.17
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(a) simplified, as high selectivity against the closest state
[n=1,m=4) is no longer so critical.

The imperfect population transfer evident in Fig. 6 indi-
cates below optimal Raman coupling strength, so that popu-
lation escapes to highly excited states during several cooling
steps. The problem becomes more severe as we try to accu-
mulate population from higher-lying vibrational states; in the
above example adding the last three steps to the cooling
sequence resulted in a ground-state population gain of only
' ~4%. Significant improvement in the cooling efficiency can
%0 20 be achieved with a modest increase of the figure of metit

but this would require valued ;>500Eg that are probably
(b) not realistic. Limits onU, are imposed by the need to stay
far detuned from the excited hyperfine manifold, and by the
cooling cooling available laser power. Though a large figure of merit may be
é ) difficult to achieve in 1D lattices, it is readily available in 2D
o T

populations

initial 1-step 5-step
and 3D geometries. Sideband cooling in higher-dimensional
lattices will of course require a much more elaborate se-

. guence of cooling steps, in part due to vibrational degen-

eracy, and in part due to the existence of noncoupled states
within each of the degenerate vibrational manifoldg]. A

- more detailed theoretical model of cooling in the 2D lattice

. n geometry of Fig. 4 will be the subject of future work.

populations

. . . . ’ . IIl. QUANTUM TUNNELING AND SCHRO DINGER CATS
FIG. 6. (a) Vibrational populations during a five-step cooling Q

process with Cs in a 1D linlin lattice, for U;=500Er, A= We have seen in Sec. |l the flexibility with which one can
—2000’, and initial Boltzmann factogs=0.5. At the beginning of  prepare and coherently manipulate an atomic wave packet in
the first cooling step we shift states=5m=4), [n=4m=2) into  an optical lattice. In this section we discuss how these tech-
degeneracy, at the begln_nlng of the second step we shift _statqﬁques may be used to study atomic tunneling in an optical
[n=4m=4), [n=3m=2) into degeneracy, etc., until population goyple-well potential, introduced in E(B), when coupled to
has been transferred to the vibrational ground state0m=4). 3 nojsy (but well characterizédenvironment. Though not
(b) Vibrational populations fomg=0.5, after a one-step cooling  macroscopic in the sense of a condensed matter system with
process(statesin=1m=4) and|n=0m=2) shifted into degen- ;- qer Avagadro’s number of particles, the separation be-
eracy for a timet=20(h/Eg), and after the five-step cooling pro- e the wells of a given pair is on the order of the optical
cess of(a). Substantial accumulation of population in the ground avelength. which mav be considered macroscopic when
state results from both one-step and five-step cooling. The mocjeg},ompare% tyo the atom )(/jimension As such an atopm that is
gain when extending the cooling process from one to five stepg herently distributed on two side.s of the d(,)uble wells ma
indicates less-than-optimal Raman coupling strength as discussedﬁ? 'dy d1ob “Sch » y
the text. e considered to be a Sc mger cat. _

To establish a clear physical picture, and elucidate the

For photons scattered from the lattice light field, the meanimportant scaling laws and order of magnitude of the effects,

squared momentum transfer alobgs 112k%/15, yielding W first return to the simplifief) = 1/2)—|J’ = 3/2) atom in
a 1D lin-angle-lin lattice with an external transverse mag-

, 1 netic field applied along. The resulting potential operator is
Ynon=Ys(1= 15 7°N), given by Eq.(3). For a sufficiently deep potential, the vibra-
tional energy-level spacing is large compared to the Larmor
frequency Q, = yB,, in which case the magnetically in-
duced coupling can be treated as a perturbation on the two
for the remaining rates from Fig.(). harmonic wells for the two spin stat¢pm= + )},

Sideband cooling can now be simulated by integrating the
master equation, E¢28), with initial vibrational populations  (j(z) = L Ml J(z—AzZI2)? +)(+|+(z+Az/2)2| =)~ |]
,, corresponding to a thermal state with Boltzmann factor
Og=eXp(—fiwys/ kg T) = 7,1 /m,. As an example, Fig. 6 +HQ (| )=+ |+ =], (32
shows the evolution of a system with single beam light shift
U,=500Eg, detuningA=—2000", initial Boltzmann fac- wherefi w,s.=2VEgU, and whereJ, andAz are given in
tor gg=0.5, and a sequence of cooling steps designed t&q. (4). The ground-state splitting arising from the coupling
transfer populatiofn=5m=4)—---—|n=0m=4). After =~ between the neighboring wells is approximatel§E
these five steps substantial cooling has been achieved, ardi (), (0, |Og), where|0.) and |Og) are the ground-state
the ground-state population has increased from the initialvave function in the left and right potential wells having
m,=0.5 to m;=~0.86. Also, the task of producing a com- spin|+) and|—), respectively. In the harmonic approxima-
pletely pure ground state by state selection has been mudlon (i.e., Gaussian ground-state wave functjpns

11

7;1_>n'¢n:75 15 nzma)(n!n,)l (31)
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5E%hﬂlef(kAz)2/8n2:hﬂlef(lm)Mwgsc(Azl2)2/(1/2)ﬁwosc_ cise for_ a scalar parti_cle, b_ut for a nonseparable potential
(33) erendlng on .the particle’s mterna] degree; of_ freedom, the
issue of classical versus nonclassical motion is more com-
The right-hand side shows that the ground-state splittingplex, since the internal state may or may not adiabatically
scales exponentially with the ratio of the potential energyfollow the center-of-mass motion. We will defer the formu-
where the diabatic potentials crogsmeasure of the barrier lation of a general definition of tunneling in this system to a
heighi, to the ground-state energy in the unperturbed wellsfuture publication; here we adopt instead the following un-
For a typical experiment we might choase~\/6, in which  ambiguous, sufficient condition. The adiabatic potential
case the separation between the double minima at one lattice
site is half the distance to the neighboring site; in this case

we can neglect tunneling between neighboring sites. Choos- Uadia 2) = 3 Mgl 22+ (5 A2)?]

ing U;~50ER this gives SE~0.12Q, . For Cs the Bohr > > >

magneton isug~680ER /G, and a moderate transverse mag- ~V(Mw5zAz)%+(hQ,) (39
netic field of 7 mG results in a ground-state splitting of order .

one recoil energy. is the lowest eigenvalue dfi(z) and therefore the lowest

An important practical consideration is inhomogeneouspossible energy allowed at a given position. Energy conser-
broadening of the tunneling resonance. Broadening resultgation implies that the semiclassical motion @&ways
from changes in the optical well depth across the lattice volbounded within one wellregardless of the initial conditions
ume, arising from variations in the laser intensity. Equationif the total energy falls below the adiabatic barrier
(33) implies a variation in ground-state energy splitting: U.diaf0)=1/8 MwﬁSCAzz—th , In which case we can in-
terpret oscillations between the wells as a manifestation of
quantum tunneling. For example, if we takeQ /Eg
~5=26E/Ex~1.0 we find a barrier heightU.4.{0)
~15.3, while at the same time the energy of the stHig},
|0.) is hwysd2ER~8.6, i.e., quantum tunneling through a
For the parameters above this implied(SE)/SE  classical barrier. . _
~AU,/U,, i.e., even a relatively large variation of 10% in ~ Though this two-level model serves to establish physical
U, across the lattice volume will allow observation of ten intuition, one must be cautious when scaling the expressions
coherent oscillations between the left and right potentiad€rived above to the real alkali atoms. Let us return to the
wells. case of Cs. In the very far-off-resonance limit, the atomic

The physical interpretation of these coherent oscillationgotential is given by Eq(32) with the Pauli spin operators
is quite subtle, even for the seemingly simple potential of EqréPlaced by normalized hyperfine ground-state angular mo-
(32. A particle is said taunnelbetween two wells if its total mentum operatorsg— F/F, in the expression for the light
energy is less than the potential energy within the barrieshift, ande/2— F in the Zeeman interaction. In the presence
separating them. In that case the motion between the wells isf a transverse magnetic field we have a coupled set of nine
classically forbidden. Such a definition of tunneling is pre-diabatic potentials

A(SE) (k Az2)? AU,
5E 1677 U,

(34

- 4
U@)=2 | = 3 U1~ Upncos 2k 2~k Azy) — ymB, | [F,m)(F,m|
- hz—y {VF(F+1)—m(m+1)(B,—iB,)|F,m+1)(F,m|+H.c}, (36)

with modulation depth, and nearest well separation

m tand
2F

m 2
E) sirfg, k Az,=tan?!

(37

4
Upm=3 ul\/4 cog o+

In the absence of a longitudinal field, making the harmonic approximation for the deeply bound states, the potential can be
written as a coupled set of pairwise degenerate parabolic wells,

0(z)~§ Up ml[K2(z— Azy/2)2= 1]|F,m)(F,m| + [K2(z+ Azy/2)%— 1]|F, — m)(F, = M|} + Ve 1 o] F,m= 1)(F,m.
(38
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In this case the Wannier spinor is well approximated by one
period of the Bloch spinor,

|wn,q>=§ e9uy®|F,m), (39)

for any gq. Figure 7 shows the Bloch wave functions for the
ground-state doublet with=0, which are symmetric or an-
tisymmetric according tou{n(—2)==u{,"(2). In the

limit of large transverse magnetic fields, the barrier is re-
moved and these states map onto the ground and excited
states of the deepest adiabatic potential well. We define
ground states localized in the left or right potential wells in
terms of the symmetric and antisymmetric std®s|A), in

the usual way|L,R)=(|S)=|A))/v2. The average magne-
tization of the localized states is calculated as

<ﬁZ>L,R=§ m J dzju{"}(2)|. (40)

For the parameters chosen above, this giV€s), r=
+2.66, which is sufficiently large to be resolved in real time.
Preparation of the staték,R,S,A) can be accomplished
using the techniques described in Sec. Il. Through a combi-
nation of sideband cooling and state selection, the atoms are
first prepared in a 1D linlin lattice in the “pure state”
In=0, m=4). A small longitudinal magnetic fiel®, is ap-
plied to break the degeneracy between neighboring potential
wells, thereby preventing the system from tunneling. The
FIG. 7. Tunneling wave functionsa) 1D lattice of double well  polarization is then adiabatically rotated to bring the wells
potentials as in FIg(lC) with 8=/2.3. Deepest three adiabatic together in pairsl and the transverse magnetic field is adia-
potentials for Cs, computed in the infinite detuning lifitig. (10)], batically ramped from zero to the value that produces the
with U, =15CER . The split ground banddE ~2Eg) as well as two  desired coupling. IB, is then ramped to zero at a rate slow
excited bands in the first Brillouin zone are superimposed. B|00hcompared to the tunneling rate, the initial state will adiabati-
spinor wave functions of the symmetric stéit¢ and antisymmetric cally connect tdS), as shown in Fig. 8. If on the other hand
state (c), with evenm components solid and odd-dotted. The B, is turned off rapidly compared to the tunneling rate, but
total'_ p_robability density shows the well-separated peaks of the|gyy compared to the energy spacing between the ground
Schralinger cat. doublet and the next excited state, the atom will be prepared
in |R). Each of these states will allow us to explore the
The transverse magnetic field will cause the atom to oscillat€ffects of dissipation on quantum coherence.
between the wells together with an oscillation of the atomic,_ 10 d0 S0 we must assure that decoherence caused by pho-
magnetization due to the Larmor precession. Note that thiPn scattering Is suppressed. Because coherent coupling in

. ; our system derives from the externally applied magnetic field
angular momentum will not generally oscillate over the full (rather than the intrinsic Raman coupling discussed in Sec.

range betweefm=+F) and|m=—F), since all magnetic ;g ‘this is easily accomplished by detuning very far from
sublevels are coupled, even at the bottom of the wells. Thgagonance. Note that photon scattering need not be fully sup-
splitting of the ground-state energy is not as simply approxipressed, since its does not act to completely decohere a
mated as it was for the spin-1/2 case, since the degeneragthralinger cat state, whose constitu¢h},|R) wave pack-
ground-state doublet is coupled by no less than eighth ordests are separated by less that2 [44]. Once coherent tun-
in the interaction potential. Perturbation theory quickly be-neling has been accomplished, we can simulate the effects of
comes intractable when the degeneracy is not broken in firstoupling to an environment by introducing carefully de-
or second ordef43]. For this reason we go directly to a signed temporal fluctuations of the lattice, with well-defined
numerical solution for the fully qguantum Hamiltonian, with statistical propertiegnoise spectrum, etc. For example,
potential Eq.(11). fluctuations in the angle between the laser polarizatiens,
The band structure, together with the three deepest adia~ 0+ &(t), simulate phonons in the lattice, which adds a
batic potentials, is shown in Fig. 7 withl;=150Eg, 6 noise source to the Hamiltonian of the form
=7/2.3, andh yB1=10Eg. The ground band doublet is split
by 6E~1.8Eg, and lies below the top of the adiabatic bar- ao ()= &)8(0
rier; this satisfies the sufficient condition for quantum tunnel- nots 3
ing described above. For such tightly bound bands, there is -
negligible tunneling between different lattice sites, and each — cosd sin(2k, 2) E
double well can be considered as isolated from its neighbors. LF

2 sind cos(ZkLz)f

. (41
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properly designed lattice we can trap atoms in nearly har-
-324 monic potential wells, and at the same time build in Raman
coupling between the vibrational manifolds associated with
pairs of magnetic sublevels. If the strength of this Raman
coupling is modest compared to the vibrational spacing, then
coupling between the manifolds can be controlled by apply-
ing a magnetic field parallel to the quantization axis, and
shifting pairs of states into or out of degeneracy. When Ra-
man coupling of appropriate strength and symmetry has been
obtained, it is in principle straightforward to manipulate the
atomic quantum state using the standard repertoired of
(ii) pulses, adiabatic rapid passage, etc., in analogy to the tech-
\ /\ ( niques demonstrated for trapped ions.
325 Lol Special consideration has been given to the case of alkali-
metal atoms trapped in far-off-resonance optical lattices. In
-330 this situation it is useful to establish a basis-independent rep-
resentation of the optical potential. We have shown that in
this limit one can separate the potential into a part indepen-
S dent ofF andm and an effective magnetic field that can vary
spatially on the scale of an optical wavelength. Our analysis
shows that Raman coherences of the fgffam)« |F,m
+1) persist in the infinite detuning limit, provided that the

FIG. 8. Coherent control in the double weld) Ground-state lattice light field can be designed to contain bettand -

doublet energy splitting as a function of the longitudinal fiBld A Polarized components. The flexibility to QO SO i$ available ir}
negative bias localizes the atoms in the left walhite doy or the ~ 2D and 3D lattice configurations. We define a figure of merit

right well (black do}. Adiabatically lowering the field to zero con- for state manipulationk=Ug/#%ys, which can fall in the
nects population in these states to the delocalized symmoic ~ range 10—100. At large but finite detuning Raman coher-
zontal stripes and antisymmetric statelvertical stripeg respec-  ences of the typ¢F,m><—>|F,mi 2) also occur, but vanish
tively. A further adiabatic change to a positive field transfers thesgysymptotically asJr> 7U,/A. These coherences are there-
populations to states localized in the right and left wells, respeCiore driven at a rate comparable to the rate of decay due to
tively. (b) Energy levels in the double well with the bias field g,nane0us light scattering, and are not useful for state ma-
hyB,/Bg=—0.5(), 0 (i), and 0.5(ii). nipulation in the alkalis ,

Preparation of a pure quantum state can be achieved

Fluctuations in the transverse magnetic field translate intdrough resolved-sideband Raman cooling based on coupling
fluctuations in the barrier height, which is an important com-t€rms intrinsic to the lattice. The requirements for resolved
ponent in the Btteker-Landauer paradigm for exploring the Sideband coolingi w,se>Ur>1 v5(Akzo)?, are much less
time it takes a particle to traverse a forbidden barf#s). restrictive than for coherent state manipulation. A simple
Time-dependent lattice potentials can also be used to driveodel shows that sideband cooling via te,m)—|F,m
the double-well system in a coherent fashion; the interplay*=2) coupling in a 1D lin_lin lattice can bring the system
between quantum tunneling and coherent drives then opergiite close to a pure state. In higher-dimensional lattices one
the door to exploration of a whole separate class of phenonean usgF,m)« |F,m= 1) type Raman coupling. Defining a
ena. For example, coherent oscillations of the longitudinafigure of merit for cooling,x’=URg/% ys(AkZ)?, we find
magnetic field can be used to drive the “bias,” or energythat it can easily be of order 30n a representative 2D
asymmetry between the wells. In that case it has been Preconfiguration.
dic?ed that certain frequencies will completely suppress tun-  Quantum tunneling in a double-well potential is an impor-
neling due to quantum interferendd6], a phenomenon (ant paradigm for coherent evolution in quantum systems
known as “dynamic localization'[47]. coupled to a noisy environment. A 1D lin-angle-lin far-off-
resonance lattice with transverse magnetic field provides an
array of double-well potentials that can be used for con-
IV. SUMMARY trolled experiments of this type. We have performed a band-
theoretical analysis for Cs atoms in this potential. Our results
We have explored quantum state preparation and cohereitdicate that it is possible to find parameter regimes where
control in a physical system consisting of atoms bound in arseveral coherent tunneling oscillations should be observable
optical lattice. In doing so our goal has been to exploit, as fain real-time and where the tunneling coupling can be used to
as possible, the flexibility available in designing optical po-prepare both localized|l(,R)) and Schrdinger cat states
tentials. The potential operator in general has both diagond|L)+|R))/v2. Once coherent evolution and control has
elements, which are the diabatic potentials associated witheen achieved, detailed studies of decoherence can be carried
different magnetic sublevels, and off-diagonal parts, whichout through the introduction of well-characterized fluctua-
represent Raman coupling between magnetic sublevels. Intens in the lattice potentials.

(a)
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|F,m+q—q’'}F,m+q—q |d o |F . m+a)(F’ m+q|dq|F my(F, m|

q ,q F’, hAF F/
|
where we have invoked the dipole selection rules to reduce APPENDIX B
mg;gms in the projectors. According to the Wigner-Eckart Consider the Hermitian part of the linear tensor polariz-

ability operator, Eq.5), for a |[J=1/2)—|J' =3/2) transi-
tion. Normalized with respect to the characteristic polariz-

~ ’ - ability scalar,
(F'.m+qldg|F,m)=cE "™ %F' (3", do L|F3,1), d
(A2) .
N aij CATA
m+ &) T_DiD]a (B1)
wherecF "4 js the Clebsch-Gordan coefficient for the di- a

pole transition|F,m)—|F’,m+q), we have used the Con-

don and Shortley normallzatlon for the reduced matrix ele-
ment, and 1 is the unit operator on the nuclear spin
subspace. The coupling law for the reduced matrix element

where we have defined normalized ‘“creation” and “annihi-
lation” dipole operators,

gives - PJ,d P;
D=t E et 93", m+q)(J,m|. (B2)
[(F' (3" Dd@L|[F(3,1))|2=fre[(I]d]I)]?, Sincea;; acts on a two-dimensional Hilbert space, decom-
(A33) position into irreducible tensor operators must truncate at the
vector term
where
_ 1 R
2 aij=3 6j; Tr(D"-D) §+§8ijk(D X D). (B3)

(A3b)

J!
fre=(2J +1)(2F+1)[ 1 F]
By symmetry,

is the relative oscillator strength for decHy)— |F’), satis- At oA N ~in ~in
fying the sum ruleSqfr, -=1. Substituting Eqs(A2) and ~ 1"(P -D)=3Tr(D;D,) =3({+|D;D,|+)+(~|D;D,[~))

(A3) into (A1), —4. (B4)
A The vector part is anti-Hermitian, and thus must be of the
form
~ _ - max max F + F
aqr,q—aF, AFF fF’FE Cr, m”quq e Ay A -
(DX D) =iCay, (B5)
X |F,m+qg—q')}{F,m|, (A4)
whereC is some real constant, independenkofwhich can
where be found by direct expansion,
(D'xD),=—i(D'D,-D'D_)=-2i5,. (B6)
~_ K3'ldI3)I? - _ '
a=i——— (A5)  Thus, the polarizability tensor for thed=1/2)— |3’ =3/2)
FroaoF !

max*Fmax has the form given in Eq9),

- ~(2 -
aij(J—>J')=a(§6ij|—§sijk0'k). (B?)

is the characteristic polarizability of thg)—|J’), transi-
tion.
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